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Abstract—Because of their inherent safety, fast charging 

capacity, and extended cycle life, lithium-ion batteries are 

preferred over other types of batteries in electric vehicle 

applications. It's critical to be able to determine state factors 

like state of charge and state of health in order to generate an 

accurate battery model. The state of charge estimation 

algorithms for generic Lithium-ion batteries was enhanced 

using LA92 drive cycle experiment data. To begin, a 

mathematical model for an analogous circuit battery was 

created with the goal of accurately imitating the behavior of 

a lithium-ion battery. The Thevenin model is created by 2 RC 

branches and identifies the model parameters with the 

Extended Kalman Filter. The Hybrid Pulse Power 

Characterization (HPPC) test data obtained at 40°C, 25°C, 

10°C, 0°C, and -10°C are used to calculate the SOC 

 3-dimensional curve as a function of SOC and T. A 

comparison of the two methods is shown, indicating that the 

EKF method of battery SOC evaluation is more accurate than 

the coulomb counting method. The error observed from the 

EKF results is less than 1% and it shows EKF is reliable for 

estimating the battery’s states. 

Keywords; Electric Vehicles (EV); Lithium-ion batteries 

(Li-Ion); State of Charge (SOC); Extended Kalman Filter 

(EKF) 

I.  INTRODUCTION  

Recently, environmental concerns like carbon 

emissions and global warming issues and the depletion 

of energy resources lead to use electrical vehicles 

(EV). Among several types of batteries, Lithium-ion 

batteries are more preferable for some characteristics 

like their small size, high energy density, light weight, 

high output power, high safety and low self-discharge 

rates [2]. Nevertheless, lithium batteries are sensitive 

to temperature and aging. Therefore, special attention 

must be paid to their working environment to avoid 

physical damage, aging, and thermal runaway. 

For better performance of lithium-ion batteries, their 

Safety and longevity Battery management System 

(BMS) is crucial. An efficient BMS has the following 

key responsibilities: (i) estimates and evaluates the 

battery states accurately including state of charge 

(SOC), state of energy (SOE), state of health (SOH) 

and remaining useful life (RUL), (ii) controls the 

battery temperatures within the safe limit, (iii) 

operates fault diagnosis, fault prognosis, and fault 

handling and (iv) balances the voltage, charge, and 

capacity among battery cells [2]. Estimate the battery 

status of charge is one of the key functions of BMS. 

However, accurate SOC estimation is difficult and 

cannot be measured directly and multiple factors 

affect the value, so it is difficult to measure SOC when 

battery is working; Therefore, the SOC must be 

estimated. The SOC is the ratio of a battery's available 

capacity Q(t) to the maximum charge that can be 

stored and ranges it from 0% to 100%, with intervals 

of 10%; however, it can be changed as desired. There 

are several ways for determining SoC, the most simple 

and common of which is Coulomb counting (CC). Its 

precision, however, is dependent on the initial SOC 

and sensor accuracy [2] [3]. It is an open loop control 

to method in which the sensor errors are compounded 

together. 

Another technique is the OCV-SOC curve method, 

where OCV represents the battery's open circuit 

voltage. This method converts open circuit voltage to 

equivalent SOC. For Li-ion batteries, however, the 

curve will be flat in the middle, making accurate 

estimation impossible. 

Closed loop control methods such as Extended 

Kalman Filter (EKF) is proposed in this study to solve 

the shortcomings of CC and OCV-SOC curve 

methods. 

The electrical equivalent two RC model [4] is used in 

this study to estimate state of charge (SOC) using the 

EKF and UKF methods. Simulation data are used to 

compare the EKF method the CC method. The battery 

electrical equivalent model and its state space analysis 

are discussed in Section II. In section III, multiple 

estimation approaches for state of charge estimation 

are presented and compared results and conclusion are 

discussed in Section IV.  

II. BATTERY ELECTRICAL EQUIVALENT MODEL AND ITS 

STATE SPACE ANALYSIS 
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Figure 1.  Battery Thevenin Model.  
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   V1. �t�= -V1�t�R1C1 + I�t�C1                                                                                           

 

(1)  

 
 

     V2. �t�= -V2�t�R2C2 + I�t�C2                                                      (2)  

     SoC.= ɳI(t)

Q
                                                                  (3) 

  ����� = ����������� + ����� + ����� + ������     (4) 

 
The state and measurement equations are as followings: 

 x.�t�=Ax�t�+Bu�t�                                                         �5� 

 Y.�t�=Cx�t�+Du�t�                                                   (6) 

A=⎣⎢⎢
⎡ -1R1C1 0 00 -1R2C2 00 0 0⎦⎥⎥

⎤
      B =

⎣⎢⎢
⎢⎡ ��,��-ɳ/ ⎦⎥⎥

⎥⎤
                         (7) 

  � = 01 1 dVOCdSOC3      D= 4R05 
State Vector=x�t�= : V1�t�V2�t�SoC�t�;                              (8) 

 

The state matrix is A, the input matrix is B, the output 

matrix is C, and the feedthrough matrix is D. 

EKF approach uses a discrete state space model. This 

is due to the fact that data will be updated after each 

time step. The following is the discrete state space 

model: 

 

V1(k+1)= e
-∆T

R1C1V1(k)+R1(1-e
-∆T

R1C1)           (9) 

 

V2(k+1)= e
-∆T

R2C2V2(k)+R2(1-e
-∆T

R2C2)           (10) 

 

 

A=<e
-∆T

R1C1 0 0

0 e
-∆T

R2C2 0

0 0 0

=      > =
⎣⎢⎢
⎢⎡R1(1-e

-∆T

R1C1�
R2(1-e

?∆AB-C-
ɳ∆T

Q

)

⎦⎥⎥
⎥⎤
    

 

  C = 01 1
dVOC

dSOC
3             D= 4R05                             (11) 

 

 

The most popular and straightforward method for 

estimating SOC is the Coulomb counting method [7]. 

However, there are two major issues with this method: 

the initial SoC and sensor noise [8]. SoC estimation 

will be erroneous if the starting SoC is incorrect. 

Because the CC method is an open loop control 

method, sensor noise accumulates at each time step. 

Closed loop approaches such as EKF is employed to 

solve these shortcomings. The suggested methodology 

employs the EKF method to estimate SOC and 

Terminal voltage. 

The Hybrid Pulse Power Characterization (HPPC) test 

data obtained at 40°C, 25°C, 10°C, 0°C, and -10°C are 

used to calculate the SOC 3-dimensional curve as a 

function of SOC and T. In the proposed methodology, 

figure 2 is resulted by fitting a four-order polynomial 

to the entirety of the SOC-OCV data with thermal 

effects on Open Circuit Voltage. 

 

OCV=f (SOC, Temperature)                                  (10) 

                                          

It can be written as following: 

 

OCVfit=p00+p10*SOC+p11*SOC*T+ 

p20*SOC2+p11*SOC*T+p02*T2 
+P30*SOC3+p21*SOC2*T                                        (11) 
+p12*SOC*T2+p03*T3+p40*SOC4 
+P31*SOC3*T+p22*SOC2*T2 
+P13*SOC*T3+p04*T4 
 

Derivative of OCV with respect to SOC is: 

 

df_OCV_SOC=4*p40*SOC3+3*p31*SOC2*T+ 

3*p30*SOC2+2*p22*SOC* 

T2+2*p21*SOC*T+2*p20*SOC+p13*DE + F12 ∗ D� +F11 ∗ D + F10                                                            (12) 

 

Derivative of OCV with respect to SOC is: 

 

df_OCV_T=p31*SOC3+2*p22*SOC2*T+p21*SOC2+    

3*p13*SOC*T2+2*p12*SOC*T+p11*SOC+4*p04*T3+ 

3*p03*T2+2*p02*T+p01                                        (13) 

 

 

These derivatives are required for C matrix to linearization 

and achieving Jacobians. 
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Figure 2.  a. dimensional Open Circuit voltage curve as a function of 

State of Charge and temperature b. real points and fitted curve c. Error 
between real points and fitted curve 

According to figure 2 it can be seen than 3-dimentional 

curve has acceptable error less than 0.05% . 

 

III. ESTIMATION APPROACHES FOR STATE OF CHARGE  

 

A. Coulomb Counting 

The measured current is integrated with regard to time in 

this method. 

 SOC�t� = SOC�+
1

Q
H Idt

t

0
                                            (14) 

 

The beginning state of charge is �I��, and the total state 

of charge is SOC.  I is the charging/discharging current and 

Q is nominal capacity of the battery.  

B. EKF(Extended Kalman Filter) algorithm  

The Li-ion battery has extremely nonlinear and 

dynamic properties. The battery's OCV-SoC 

characteristic curve, for example, is nonlinear. 

Furthermore, due to changing operating conditions, 

some essential EECM (Equivalent electrical circuit 

model) metrics, such as polarization resistance and 

capacitance, show time-varying characteristics. As a 

result, the Linear Kalman Filter cannot be used directly 

to estimate the SOC of a Li-ion battery. OCV-SoC 

characteristics and other parameters must be linearized 

around their operation point [9]. However, because the 

OCV of most Li-ion batteries does not settle to its 

ultimate value instantly, a large amount of rest time is 

required for proper mapping of the OCV-SoC 

relationship, which is not possible in many 

applications.[10] The Extended Kalman Filter (EKF) 

is based on the transition and measurement equations 

being linearized. As long as the linear approximations 

are accurate enough, it can be employed for nonlinear 

circumstances. The EKF uses a first order Taylor 

approximation of nonlinear functions via Jacobians. 

Gaussians are used to model both the process and the 

observation noises [11]. The transition equation's 

distribution of propagating states is approximated as a 

Gaussian PDF. Similarly, the Gaussian PDF is used to 

approximate the distribution of measurements 

acquired with the measurement equation. 

 

The nonlinear system’s equations are as follow: 

 

x�n+1�=f(x�n�, u�n�, w�n�)                                             (15)    
 

y�n�=h(x�n�, v�n�)                                                            (16)   

 

(a) Prediction stage: 

 

xa�n+1�=f(xe�n�, u�n�)                                                      (17) 

 

M�n+1�=F�n� P(n)F�n�T+W(n) J W�n�T                 (18)
w

 

 

(b) Correction stage: 

 

K�n+1�=M�n+1�H�n�T.[H�n�M�n+1�H�n�T+

V(n) ∑ V�n�T
v 5 L�         �19�  

 

P�n+1�=M�n+1�-K�n+1�H �n�M�n+1�                      (20) 

 

xe�n+1�= xa�n+1�+K�n+1�[y�n+1�-h(xa�n+1,0�]      �21� 
 

To anticipate the future state, the transition equation is 

employed directly. The related covariance matrix M is 

constructed according to using the Jacobians assessed at NO(n), w(n): 

 

H�n�=
dh(x,v)

dx
       P�Q� = RS�N, U�RN                             �22� 
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Covariance matrix P is updating by the following 

Jacobians that is evaluated at xa (n + 1), v(n): 

 ��Q�=
VW�X,Y�VY       Z�Q� = V[�X,\�V\                                  (23) 

 

The estimation error is directly computed using the 

measurement. Comparing the prediction and update step 

equations in Standard Kalman Filter with these steps in 

EKF, we can say that the Jacobian F(n) is said to serve the 

role of the A matrix, while the C matrix is the Jacobian 

H(n). 

The state estimate covariance matrix is P, the process noise 

covariance matrix is W, and the measurement noise 

covariance matrix is V. While, y is the measurement taken 

from the sensor. The Kalman filter will be based on the 

Kalman gain and determine whether to rely on an estimate 

or a measurement. Based on using the Kalman filter, the 

state estimate and state will be updated. 

 

  
Figure 3.   a. SOC estimation by EKF and formal Coulomb Counting 

method b. V1 estimation by EKF c. V2 estimation by EKF 

 

 
Figure 4.  Measured and estimated battery terminal voltage 

Observation noise and process noise directly affect errors 

and RMSE. Therefore, by tuning the values  the best 

amount for them set as follows: 

 

Sw=:1.0e-6 0 0

0 1.0e-5 0

0 0 1.0e-5

;       Sv=10-5       (23) 

 

 

Figure 5.  Estimation error of terminal voltage 

 

 

 

Figure 6.  Battery internal Resistances 
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Figure 7.  Battery internal Capacities 

 

 

IV. CONCLUSION 

 

In this study, the EKF methods is used to estimate the SOC 

and terminal voltage of a Lithium ion battery. The state 

space analysis is calculated using the 2 RC Lithium ion 

electrical equivalent model. The Open Circuit Voltage 

(OCV) 3-dimensional curve as a function of SOC and T is 

calculated using the Hybrid Pulse Power Characterization 

(HPPC) test data acquired at 40°C, 25°C, 10°C, 0°C, and -

10°C. It can be seen that the EKF method of battery SOC 

estimation is more accurate than the coulomb counting 

approach, according to a comparison of the two methods. 

The inaccuracy in the EKF results is less than 1%, 

indicating that EKF is a trustworthy method for estimating 

battery states. Moreover, The Root Mean Square Error 

(RMSE) is utilized as the assessment index to quantify the 

estimation error of techniques. RMSE values for Terminal 

Voltage and SOC are 5% and 1.7% respectively.  
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