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Abstract 

Work stress is a major problem to individuals and society, with prolonged periods of stress 

often leading to health issues and reduced productivity. COVID-19 has increased the 

incidence of individuals working in a mixture of home and office-based environments, with 

each location presenting its own stressors. Identification of stress levels in each environment 

will allow individuals to better plan how to mitigate stress and boost productivity. In this 

project, differences in stress levels are predicted in each work environment from individuals’ 

physiological responses and subjectively reported stress and productivity. Initial work on the 

project focused upon development of a system for the detection of dementia-related 

difficulties through the wearable-based tracking of physiological indicators. As such, a review 

of the available commercial and laboratory devices available for tracking physiological 

indicators of dementia-related difficulties was conducted. Furthermore, no publicly available 

physiological dataset for predicting difficulties in dementia currently exists. However, a 

review of the methods for collecting such a dataset and the impact of COVID-19 found that 

it is impractical and potentially unethical to conduct an experiment with people with 

dementia during the pandemic. As such, a pivot in research was necessitated. Comparing the 

stress levels of individuals working in home and office environments was selected. A data 

collection experiment was then performed with 13 academics working in combinations of 

home and office environments. Descriptive statistical features were then extracted from 

both the physiological and questionnaire data, with the relationships between attributes and 

features calculated using various advanced data analytics and statistical approaches. The 

resultant correlation coefficients and statistical summaries of stress were used to evaluate 

relationships between stress and work environment at different times of day, different days 

of the week, and while performing different activities. A bagged tree machine learning model 

was trained over the data, achieving 99.3% accuracy when evaluated using 10-fold cross 

validation. When tested on the purely unseen instances it achieved 56% accuracy 

corresponding to inter-class stress classification, however a testing accuracy of 73.7% was 

achieved using principal component analysis for dimensionality reduction and the dataset is 

balanced using Synthetic Minority Oversampling Technique.  
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1. Introduction 

1.1. Research Background 

Work stress is a detrimental physical or emotional response to situations experienced during 

an individual’s working hours that do not match their capabilities, resources or requirements 

[1]. Work stress has many bad effects on individual employees’ health, with long term 

exposure to elevated stress being associated with an increased risk of experiencing mental 

health problems [2], hypertension and cardiovascular disease [3, 4], obesity [5], sexual 

dysfunction [6] and hair loss [7]. Furthermore, the cost of this stress for society is substantial, 

with estimates of the overall costs of work-related stress being as high as $187 billion, 

considering the resultant productivity losses and increased health care burdens [8]. One 

method that has been proposed to help mitigate the impact of work-related stress is early 

detection and prediction of stress using physiological data collected using wearable 

computing devices [9]. These wearable devices are highly useful in this regard, due to their 

unobstructive nature, meaning they can easily and comfortably be worn in daily life while 

passively collecting high quality physiological data [9-11]. The collected physiological data 

can be used to build prediction models which help to identify stress occurrences in a timely 

manner, allowing for stress mitigation measures to be implemented [12]. 

Initial work on the project focused on detection of dementia-related difficulties using 

physiological data collected by wearable devices. Reviews were performed to identify the 

best wearable device for collecting data from people with dementia, as well as the best 

methods to use in experiments to collect that data. However, it was concluded that 

performing a data collection experiment with people with dementia during the COVID-19 

pandemic was impractical and potentially unethical [13, 14]. As such, stress identification 

was identified as a new domain for the project to pivot to. This pivot and the justifications 

for it are explained in section 1.2. The aim of the project is to compare the work stress 

experienced in home and office work environment. 

1.2. Pivot and justification 

Section 1.1 of this thesis stated that the initial work conducted on this project was focused 

on researching using wearable devices and machine learning to support people with 

dementia. However, this work was halted due to constraints imposed by the COVID-19 

pandemic and related lockdowns (this is discussed in greater detail in chapter 4 of this thesis) 

[13, 14]. As such it was decided to pivot the research away from using wearables and 

machine learning to detect and predict dementia-related difficulties and instead to use 
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wearables and machine learning to detect and predict work stress. It was also decided that 

a comparison would be made between stress experienced in the home and office-based 

work environments, as this was very topical at the time the idea for the pivot was being 

formulated, due to work from home guidance being in force in numerous jurisdictions, and 

many employees working in a mixture of home and office work environments [15].  

There are three main reasons for selecting stress detection as the new domain for research 

on the project. The first reason is that dementia-related difficulties and stress can both be 

detected using similar physiological attributes [9, 10]. This is because both are examples of 

negative affect, which trigger responses from the Autonomic Nervous System (ANS), which 

is the part of the nervous system which regulates involuntary or unconscious processes [16]. 

Indicators of ANS activations include heart rate, electrodermal activity, skin temperature, 

and movement, all of which have been used in literature to detect both dementia-related 

difficulties and stress [10, 17-19].  Thus, an understanding of the physiological attributes and 

features which can be used to predict and identify dementia-related difficulties is highly 

beneficial to understanding the physiological attributes and features which can be used to 

predict and identify stress, and vice versa.  

Another reason for the selection of stress as a new area of focus for the project is its links to 

dementia, namely: it can be a risk factor of developing the disease; it can be a cause of 

dementia-related difficulties; and it can be a symptom of dementia and related difficulties 

[20-23]. Stress management has been identified in previous literature as an important aspect 

of day-to-day management of dementia [22]. Dementia-related difficulties are often 

stressful experiences for an individual to contend with, for example, it can be very stressful 

becoming disorientated as to where you are and forgetting what time or day it is [24]. 

Furthermore, when individuals with dementia are exposed to stressors, their cognitive 

impairment can make it difficult for them to address and mitigate the stressor, or to 

effectively express to others that the stressor is being experienced. This can then lead to the 

dementia-related difficulty becoming worse, as the individual experiences greater negative 

affect and more intense negative emotions due to the frustration of being unable to 

effectively express their distress [25]. As such, detecting and mitigating stress experienced 

by the individual with dementia in a quick and timely manner can reduce the occurrence and 

potential intensity of the dementia-related difficulties. Furthermore, there is a link between 

work stress and dementia, with long-term exposure to occupational stress being linked to an 

increased risk of developing dementia [26-28]. Thus, the timely detection and mitigation of 
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work stress could potentially reduce the risk of an individual developing dementia in later 

life, further linking the domains of dementia and stress research.  

Moreover, the methods used to collect and analyse the physiological data in both domains 

are often very similar, with similar devices [10, 11], data collection methods and protocols, 

data storage methods, and data analyse methods being employed in both domains. This 

means that lessons learned from performing physiological data collection with generally 

healthier, working adults will increase researcher knowledge of how to safely conduct 

experiments with people with dementia, meaning that future research can be conducted 

more safely- especially regarding COVID-19- and efficiently, with less burden upon the 

participants and caregivers [10, 11]. The implications of conducting such a collection 

experiment with people with dementia during a pandemic, such as COVID-19, are explored 

in depth in chapter 4.  

Overall, the pivot of the research project to the domain of work stress is justified by: the 

similarities in the physiological expression of stress and dementia-related difficulties; the 

links between stress and dementia, namely stress causing dementia-related difficulties, or 

vice versa, and long-term exposure to stress being a risk factor for developing dementia; and 

the similarities in the methods used for research in the dementia-related difficulty and stress 

detection domain. 

1.3. Problem Statement 

Both home and office work environments present unique stressors and stress-reduction 

benefits, especially during the COVID-19 pandemic. Though work has been conducted to 

understand the stressors and individual stress levels in each of these work environments 

during this time, there remains a number of gaps in the knowledge. The majority of work in 

this domain are based on subjective questionnaires, which often suffer from bias from the 

participants and are limited in their predictive insight compared to physiological data. 

Furthermore, the literature that exists describing the use of physiological data to analyse 

difference in academic work at home and in an office environment has no published results, 

meaning that there is still a lack in understanding of how the physiological attributes relate 

to their stress levels in each environment.  

1.4. Research Questions 

There were 4 research questions related to the topic of work-related stress which are 

outlined in this section. However, the initial research conducted on detecting dementia-

related activities aimed to address 3 different research questions. The work done to answer 
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these initial 3 research questions was vital in informing the work done to answer the research 

questions post-pivot, and so the inclusion of the initial research questions in this thesis is 

important for the reader to gain a proper understanding of the research project that was 

undertaken. As such, the initial research questions have been added as sub-questions to the 

finalised research question they were deemed most relevant to (further explanation and 

justification of this is provided later in this subsection).  

The research questions are:   

RQ 1:  What differences exist in stress levels between instances of home and office working?  

RQ 1.1: What are the best physiological attributes and sensors for predicting the 

occurrence of dementia-related difficulties?  

RQ 1.2: What is the best wearable device which can be used to track the indicative 

physiological attributes of people with dementia, in a comfortable, 

unobtrusive and unobstructive manner? 

RQ 2:  What, if any, correlation exists between subjective stress, subjective productivity, time 

of day, day of week, physiological features, and work environment?  

RQ 3: Can machine learning be used to identify and predict occurrences of stress in both 

work environments, based on the physiological attributes of the individual, and what 

is the best model for doing so?  

RQ 3.1: What is the best machine learning model for predicting the occurrences of 

dementia-related difficulties and the context in which they occur?  

RQ 7:  What mitigations can be used to reduce or prevent work stress once it is detected, 

based on the causal environmental and personal factors identified in the answer to 

question 2.  

Research question 1.1. and 1.2. in the list above were research question 1 and research 

question 2 in the initial research on detecting dementia-related difficulties. These research 

questions were answered in the work that constitutes chapter 3 of this thesis. These 

questions were consequently added as sub-questions of research question 1 in the new 

research questions following the pivot. The reason for this is that the answers that were 

found for questions 1.1. and 1.2. were extremely useful in designing and conducting the 

research which ultimately helped to answer research question 1. For example, the answer 

to research question 1.1. helped to inform which physiological attributes and features should 
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be used to measure and predict stress so that it can be compared between the home and 

office work environments, and the answer to research question 1.2. helped to inform which 

wearable device should be used to collect those physiological attributes and features.  

Alternatively, research question 3.1. was added as a sub-question to research question 3 as 

the answer to research question 3 will likely support the research into answering research 

question 3.1. As stated in subsection 1.2, the physiological attributes and features, as well as 

the data analysis methods commonly used in the dementia-related difficulty detection and 

stress detection are very similar. As such, one could reasonably suspect that a machine 

learning model which can predict stress with a high accuracy could also do the same in 

predicting dementia-related difficulty (obviously with some tweaks and alterations to tailor 

it more to the dementia-related difficulty detection domain). Thus, answering question 3 will 

provide a good baseline of knowledge of relevant machine learning models and the features 

which can be used to train them to answer question 3.1.  

1.5. Research Scope  

The purpose of this research project is to understand the differences in subjective and 

physiological stress levels in individuals and groups when they are working from home as 

opposed to in an office environment, and vice versa. A wearable device (Empatica E4 

smartwatch) will be used to track the physiological data of a population of adult academics 

and researchers at Liverpool John Moores University while they work from hybrid 

environments (i.e., work and office environments). Participants will also record their 

subjective stress and productivity levels on an online questionnaire. The study shall be a 

rolling study, with each participant recording their work activities, stress, productivity, and 

physiological data for 10 working days, then another participant being given the device to 

begin the study. Data will then be analysed using MATLAB, with descriptive statistical 

features being extracted from the physiological and questionnaire data, which will be used 

to establish if relationships exist between stress, productivity, and the physiological data 

features. Furthermore, a variety of machine learning algorithms will be trained to establish 

if machine learning can be used to identify and predict occurrences of stress in each work 

environment and to identify and predict occurrences of stress and the work environment of 

individuals and groups from their physiological data. 

1.6. Research Aims & Objectives 

The main research aim of the project is to compare the work stress experienced in home and 

office work environment. The objectives outlined in this section also include the objective of 
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the project from the initial stages when the aim was to develop a wearables-based method 

for identifying and predicting the occurrence of dementia-related difficulties. 

1. To develop a wearables-based method for identifying and predicting the occurrence 

of dementia-related difficulties, following objectives are set:  

a. To identify the best physiological attributes and sensors for predicting the 

occurrence of dementia-related difficulties. 

b.  To identify best wearable device which can be used to track the indicative 

physiological attributes of people with dementia, in a comfortable, 

unobtrusive and unobstructive manner 

c. To collect or access a dataset containing the physiological indicators of 

dementia-related difficulties.  

d. Train a machine learning model for identifying and predicting the occurrence 

of dementia-related difficulties.  

2. To compare the stress experienced by participants in home and office work 

environments, following objectives are set: 

a. To collect a dataset containing physiological indicators of work stress in 

home and office environments.  

b. To conduct a data analysis to understand the complex relationships between 

the collected attributes and extracted features.  

3. To develop a method for identifying work stress and suggest mitigations for 

managing and reducing work stress once identified, following objectives are set:  

a. Train a machine learning model which can predict the occurrences of work 

stress from physiological data features.  

b. To identify potential mitigation for managing and reducing work stress, 

based on the implied causes and context of the stress identified as part of 

objective 2a.  

1.7. Research Contribution 

This research makes 3 main contributions to the field, which are as follows:  

1. A novel dataset containing questionnaire attributes- such as subjective stress and 

productivity- and physiological attributes- such as heart rate, electrodermal activity, 

skin temperature, and movement, related to work stress. This dataset has a wider, 

more comprehensive range of physiological attributes than many already available 

[29], and has higher temporal resolution than other datasets in the literature [9, 11].   
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2. A novel bagged tree ensemble machine learning model which can predict inter-class 

work stress with a validation accuracy of 99.3%, higher than the accuracy of 

comparable models existing in the literature, and a test accuracy of 73.7%, which is 

relatively high for the limited size of the dataset it was trained on, and compared to 

the 62% achieved by a random forest model trained on data collected in similar work 

environments [29].  

3. A novel comparison of the subjective and physiological stress levels and indicators in 

home and office-based work environments, expanding upon the work of Bolliger et 

al. by collecting and analysing data in the home environment and including more 

specific activities related to teaching [9, 11].  

1.8. Published work 

In this section, the work published during the conduction of the research project shall be 

detailed and summarised, as this published work forms the basis of the research project and 

the results thereof. The publications are split into 2 categories. The first category is the 

publications related to dementia and dementia-related difficulties, which were published 

prior to the switch of focus on the project to work stress detection. The second category is 

those relating to work stress and its detection, published prior to the aforementioned pivot 

of the project, with the first paper described being initially dementia-related but justifying 

the pivot to work stress-related research in its later parts.  

1.8.1. Dementia related publications 

In Harper et al. (2019), the ways in which data science can help with prediction, diagnosis 

and treatment of Alzheimer’s disease are reviewed [22]. It is concluded that current data 

science techniques are useful in aiding the successful management and treatment of 

Alzheimer’s patients in day-to-day life, and though there is much promise to the use of data 

science techniques to predict and diagnose Alzheimer’s disease, no technique yet exists that 

is able to process all the required data. It is concluded that research should be conducted to 

develop a data science-based system to help in Alzheimer’s prediction and diagnosis. Also, 

further research should be conducted to improve current data science techniques used to 

support the treatment and management of Alzheimer’s disease, as was the initial aim of this 

project. Wearable computing devices are identified as an area of particular promise in this 

regard, with physiological data collected by such devices being useful in predicting and 

identifying occurrences of several dementia-related difficulties. Continuing on this theme, 

Harper & Ghali (2020) presents a systematic review of wearable devices used in the 
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prediction or identification of dementia-related agitation [30]. Six relevant devices found in 

the literature were evaluated to identify their strengths and weaknesses, with all possessing 

at least one weakness which made it not ideal for future research on the prediction or 

detection of dementia-related agitation. Two of the wearables utilised the three desired 

sensing modalities, identified in previous research. One of those devices was identified as 

prohibitively expensive to be used in a wide array of applications and research studies, and 

the other device was untested and unavailable to purchase or use. The conclusion was that 

work in future studies should focus on developing an inexpensive device which utilises the 

three desired sensing modalities while remaining usable and accessible for use in a wide 

array of studies and applications. From this paper, the Empatica E4 was chosen as the device 

that was most suitable for use on this project, as the device collected all the physiological 

data streams which were found to be useful, as well as having demonstrated usability and 

comfort for people with dementia. 

Harper et al. (2021, a) outlines a methodology for performing a systematic search for a 

physiological dataset which could be used to train a machine learning model to predict the 

occurrences of dementia-related difficulties [31]. The results of the search were that no 

relevant dataset was found to be publicly available to researchers, either freely or upon 

request. In response to this finding, a methodology for collecting a relevant physiological 

dataset for training the fore mentioned model and making the dataset publicly available is 

proposed. Moreover, methods for using the dataset to train classification models that can 

predict difficulties are also discussed. Three main categories of solutions to overcome the 

lack of available data are identified. The first is the most important, namely conducting a 

data collection experiment to collect a novel physiological dataset. Second, using 

anonymization and pseudonymization techniques to remove any and all identifiable data 

from the collected dataset, meaning that if the data is shared the identity and privacy of the 

participants is protected. The third category of solutions is utilising synthetic data generation 

to create a larger, anonymous training dataset. In conclusion, a combination of all the 

identified methods should ideally be employed in future solutions. Future work should focus 

on conducting a data collection experiment to collect a dataset which could be used to train 

a dementia-related difficulty prediction model. Furthermore, work should aim to ensure that 

the collected data can be publicly available to other researchers, reducing the cost and time 

investment required to research this domain. 
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1.8.2. Stress related publications 

In Harper et al. (2021, b) past physiological data collection experiments conducted with 

people with dementia were reviewed and the methods utilised in the various stages of those 

experiments were evaluated [13]. The impacts and limitations imposed by the COVID-19 

pandemic and lockdowns on the efficacy, safety, and burden-imposition on experiment 

stakeholders of each method was also discussed. It was concluded that the decision 

regarding which of the methods to utilise in future data experiments depends mostly upon 

the type and severity of the dementia of the participants. Moreover, the choice of COVID-

secure methods, such as remote studies, are preferable during the COVID-19 pandemic, 

however such increased costs and burdens were considered to make conducting such an 

experiment impractical in many cases during the pandemic. Furthermore, Harper & Ghali 

(2021, c) focused in greater depth upon the burden imposed upon dementia caregivers, both 

formal and informal, by data collection experiments [14].  Literature showed that caregivers 

were already highly susceptible to burden and negative psychological and physical health 

outcomes due to their care duties. This burden has increased in many cases during the 

COVID-19 pandemic due to increased fears of viral transmission to people with dementia, as 

well as the extra burden of COVID-secure measures now required in many instances during 

their caring duties. Similar to the conclusion in Harper et al. (2021, b), it was found that these 

burdens on caregivers made the conductance of a data collection experiment with people 

with dementia impractical during the pandemic. As such, it was proposed that the project 

should pivot towards stress detection. This pivot was justified with the following reasons: 

stress is often the trigger of dementia-related difficulties, meaning the developed stress 

prediction model could provide transferable knowledge for the dementia-related difficulties 

detection; lessons gained from performing physiological data collection with healthy adults 

will increase researcher knowledge of how to safely conduct dementia-related experiments 

in the COVID-19 era; stress management techniques are useful tools in the treatment and 

management of dementia [14]. As such, an experiment is proposed to identify differences in 

stress levels of individuals working from home and from office environments during the 

latter stages of the COVID-19 pandemic in the United Kingdom.  

 
However, prior to the initiation of the data collection experiment describe in the following 

paper, Harper et al. (2022), the COVID-19 pandemic related restrictions were lifted in the 

United Kingdom, meaning the focus of the fore mentioned paper was less on COVID-19 than 

expected. Instead, the paper presented an intelligent approach to predict the stress 

occurrences using the physiological data acquired from individuals working in both remote 
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and office locations. Multiple factors were collected related to physiological indicators of 

stress and subjective performance level. We developed a boosted tree ensemble model 

which produced binary stress classification accuracy of 99.9%. The statistical outcomes 

indicate that there is no overall correlation between mental stress and productivity, however 

there is some indication of mental stress being is influenced by the work environment, the 

time of day and the day of the week [15]. 

1.9. Thesis Structure 

The thesis is structured as follows. Chapter 2 provides an overview of the relevant literature 

and the state of the art for work on detecting dementia-related difficulties and work stress 

using wearable devices, while also providing background information on the causes and 

symptoms of dementia and related difficulties, as well as some non-wearable related 

research on the causes and implications of work stress. Chapter 3 explains the 

methodologies and results for a data search attempting to find a relevant dataset for the 

project- when the focus was still detecting dementia-related difficulties- and then a 

subsequent literature search to identify the best wearable device to collect such a relevant 

dataset and physiological attributes. This chapter thus aims to fulfil objectives 1a and 1b of 

the research project, as outlined in section 1.5. of this thesis. Chapter 4 focuses on 

developing a protocol for collecting a novel dataset from people with dementia which can 

be used to develop the fore mentioned difficulty prediction system, first by showing the 

methodology and results for a systematic review of methods used in similar studies in the 

literature. Then the results of this review are used to design a novel methodology to conduct 

the required data collection experiment. The chapter then explains the problems with 

conducting such an experiment during a pandemic, before justifying why a pivot of the 

project to work stress prediction is warranted. Thus, this chapter aims to go some way to 

addressing objectives 1c. and 1d., however as shall be described in greater detail in later 

areas of this thesis, these objectives were not fully met due to changing circumstances. 

Chapter 5 outlines a data collection methodology used for collecting and analysing a 

physiological dataset related to work stress, with the analysis including the training of a 

number of machine learning models. The work in this chapter thus addresses objective 2a of 

the research project. The chapter then discusses the results of the analysis and explains how 

they answer the posited research questions 4-7, also addressing objectives 2b and 3a. in the 

process. Moreover objective 3 is addressed in this section by a discussion of potential 

mitigation techniques for managing and reducing work stress, based on the implied causes 

and context of the stress identified as part of objective 2a. Finally, chapter 6 concludes the 
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thesis by summarising the answers to the research questions and detailing the future work 

which should be conducted on this project and in the work stress and dementia-related 

difficulties fields more generally.   
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2. Literature Review 

2.1. Introduction 

The management of dementia and stress are both highly important, and as such, there is a 

large body of literature detailing research on using wearable-based systems for the 

management of both potentially negative states. In this chapter, the state of the art in fields 

relevant to this project is presented, through a review of the existing literature. Section 2.2. 

explains what dementia is, the types of dementia, the symptoms of each type of dementia, 

and the difficulties in daily activities and lives which could be experienced due to dementia 

and its symptoms. Section 2.3. provides an overview of the wearable technology-based 

systems existing in literature to identify and predict the occurrences of dementia-related 

difficulties. Section 2.4. then reviews past work on the differences in stress levels 

experienced working in office and home environments. Section 2.5. gives a view of the state 

of the art in research using wearable computing devices to detect work stress, and finally, 

section 2.6. summarises the chapter.  

2.2. Dementia: Types, symptoms, and related difficulties 

Dementia is an umbrella term used to describe a range of neurodegenerative conditions 

associated with progressive death of neurons [22]. The death of neurons leads to cognitive 

impairment and a reduction in cognitive and motor skills, causing the individual to 

experience a number of symptoms and difficulties in their daily lives [32]. The most common 

condition referred to as a form of dementia in older adults is Alzheimer’s disease (AD), with 

approximately three quarters of dementia cases being Alzheimer’s disease [33]. Other 

conditions in the dementia umbrella include Lewy Body Dementia, Frontotemporal Disorders 

and Vascular Dementia [34]. The exhibition and variety of symptoms depend upon the type 

of dementia the individual develops, with it being common that individuals have multiple of 

the conditions at the same time [22]. Symptoms and progression of the disease can also vary 

greatly between individuals, even individuals with the same conditions, based on a myriad 

of other factors. However, generally speaking, the symptoms of each type of dementia 

progress from mild, to moderate, to severe, with death being the inevitable end of the 

progression, as the brain becomes unable to function and maintain vital bodily functions 

[35]. Despite the inter-conditional and interpersonal variety of symptoms, there is generally 

agreed upon symptoms that are common at each stage of each condition.  

Alzheimer’s disease is the most common form or cause of dementia in older adults. It was 

first formally identified by Alois Alzheimer in 1907 and is thought to be caused by abnormal 
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deposits of two specific proteins in the brain [22]. One of the proteins is Amyloid, with 

abnormally large deposits of this protein causing plaques to form around neurons. The Tau 

protein is the other, which causes the formation of tangles in the neurons. The resulting 

damage which occurs to the brain cells is that there is a decrease in levels of 

neurotransmitters, making the transmission of signals between neurons more difficult [36].  

As the disease progresses the damage leads to areas of the brain shrinking, with the first area 

to be affected being responsible for memories, in most cases [37]. The symptoms of mild 

Alzheimer’s disease include small lapses in short-term memory (such as misplacing items or 

forgetting why one entered a room), decreased ability to plan and organise, and difficulty 

performing some cognitive tasks in social or work settings (for example remembering names 

or performing sums) [38]. The symptoms of moderate Alzheimer’s disease tend to be more 

noticeable to the individual and others than those of the mild condition, with reductions in 

short term memory and reduced ability to perform complex tasks being more pronounced 

[39]. For example, the individual may begin forgetting recent events and personal details 

with greater frequency. Mood swings and personality changes could also begin to be 

exhibited at this stage, along with social withdrawal. Another common symptom at this stage 

of the disease is disorientation in regard to location and time, which can mean the individual 

gets lost and wanders more often or can experience distress and anger due to their confusion 

or inability to know where they are or to express their needs or feelings adequately. The 

severe stage of the condition is the final and most impairing stage. The individual will require 

assistance for most daily tasks, experiencing symptoms such as reduced awareness of 

surroundings, problems recognising individuals beyond being familiar or unfamiliar, 

repetitive behaviour, wandering and suspicion. Changes in personality and mood swings will 

also become far more noticeable and frequent. As the severe condition progresses, the 

ability to respond to the environment will eventually cease to exist and communication will 

become extremely limited, if not impossible. Constant care will be required as basic motor 

functions, such as the ability to swallow, shut down due to the sheer extent of damage to 

neurons. Death of the individual will occur as the final neurons perish [40].  

Vascular dementia is the second most common dementia, accounting for around a fifth of 

all dementia cases [41]. It is caused by reduced blood flow to cerebral neurons, causing them 

to become damaged and perish. Subcortical Vascular dementia occurs due to the narrowing 

of small blood vessels within the brain, which restricts the volume of blood delivered to 

neurons [42]. Post-stroke or single-infarct dementia occurs after the individual has suffered 

a stroke. Multi-infarct dementia occurs when an individual suffers multiple mini strokes 
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which cause damage to several areas of the brain [43]. Symptoms of mild vascular dementia 

may include slowness of thought, trouble understanding concepts and concentrating, and 

problems with memory. In the later stages of vascular dementia symptoms may include 

severe personality changes and aggression, significant memory loss, disorientation and 

confusion, depression and mood swings, incontinence and difficulty walking and remaining 

balanced [44]. 

Lewy Body Dementia is either the second or third most common dementia, accounting for 

approximately a tenth to a fifth of all dementia cases [45]. It is caused by the build-up of 

Lewy Bodies, which are tiny deposits of proteins [46]. The exact cause of the formation of 

Lewy Bodies is not yet known nor is how they interact with the brain to cause the symptoms; 

however, they cause a reduction in levels of neurotransmitters and the eventual death of 

cerebral neurons. Damage caused by Lewy Bodies can also be the cause of Parkinson’s 

disease and a number of other disorders affecting the brain. As such, Lewy Body dementia 

shares symptoms with Parkinson’s disease, and individuals with either disease suffer from 

motor function impairments such as trembling, difficulty balancing, and slow, stiff, rigid 

movement, among other motor function impairments. Lewy Body dementia also causes 

cognitive symptoms such as fluctuating alertness and periods of confusion or sleepiness, 

disturbed sleep patterns, fainting spells, and hallucinations. Once again, the symptoms 

intensify and get worse as the disease progresses, with the patient eventually losing all ability 

to look after themselves and be independent in any way [47]. 

Frontotemporal dementia accounts for 15% of dementia cases and, as the name implies, 

mainly affects the frontal and temporal lobes of the brain [48]. The resulting degenerations 

in these regions can be caused by a number of diseases, with the main two causes being 

disorders which involve abnormal levels and activities of the Tau or TDP43 proteins [49]. 

There are several differing types of the disease, all of which have different symptoms at 

certain stages of progression. Behaviour variants of the disease are characterised by changes 

in personality and conduct, as areas in the brain that control conduct, judgement and 

empathy experience the most prominent neuron loss [50]. Primary progressive aphasia 

derives from neuronal loss in areas of the brain that govern language, speaking, writing and 

comprehension, meaning an individual will experience problems understanding written or 

spoken words or experience great difficulties communicating as speech becomes hesitant, 

laboured and ungrammatical [51]. Another type of Frontotemporal dementia affects motor 

skills, but not necessarily behaviour or language. One disorder included in this form of 

dementia is Amyotrophic Lateral Sclerosis, which has symptoms including muscle weakening 
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and wasting [52]. Another is  Corticobasal Syndrome, which can cause an inability to 

coordinate one’s limbs and stiffness in limbs [53]. Finally, Progressive Supranuclear Palsy is 

also a form of frontotemporal dementia, with symptoms including muscles stiffness, 

difficulty walking, changes in posture, and affected eye movement [54]. 

2.3. Wearables for dementia management 

Wearable computers are used extensively in literature to track physiological indicators of 

specific dementia-related difficulties or groups of difficulties [10, 18, 55, 56]. In Harper et al. 

(2019) and Harper et al. (2020) it is argued that wearable computing devices can be some of 

the most effective and useful tools for aiding in the management of dementia and related 

difficulties [22, 30]. Advantages of using systems which incorporate wearable devices include 

the passive, non-obstructive, comfortable, and convenient manner in which they can collect 

physiological data. In this section, an overview of the aforementioned literature regarding 

wearable-based systems for aiding the management of dementia and related difficulties is 

provided. 

The BESI system is one system which supports the detection of agitation by analysing the 

behaviour and movement of an individual with dementia. The BESI system utilizes the Pebble 

smartwatch, an accelerometer, which is able to track participants’ movements. From the 

accelerometer sensor data, the system aims to identify when an individual participant 

exhibits agitated behaviours [57-59]. In the related study, participants wore the Pebble for 

30 days. People with dementia and their caregivers were recruited as pairs, with the number 

of pairs included in each iteration of the study varying between 3 and 10. Machine learning 

classification models, such as support vector machines (SVM) and a bagged tree ensemble 

model, where then trained to classify instances of agitation, with an ensemble model 

achieving the most robust classification of agitated behaviours [59]. Available literature does 

not provide enlightenment as to the participating individuals’ stages of dementia; however, 

one might assume that from the community-based setting in which participants lived with a 

not insignificant degree of independence, that mild to moderate dementia is implied. A wrist-

worn device was also utilised by Melander et al. (2017) to attain physiological data from 

individuals with a condition within the dementia umbrella living within institutionalized 

settings [18]. The researchers requested of several participants that they wear an Empatica 

E4, which tracked the electrodermal activity (EDA) of the individual donning the device, and 

concurrently a nurse was tasked with the recording and notation of observations of 

occurrences of dementia-related agitation and other relevant difficulties on a chart provided 

to them by the researchers. Researchers found a strong, significant correlation between the 
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physiological data recorded at the time the difficulty occurred and the difficulty. Also, there 

was a strong, significant correlation between the observed difficulties and the physiological 

data 1 to 2 hours prior to the time the observation was noted. Thus, EDA data is shown as 

highly favourable for predicting the occurrence of dementia-related difficulties, even up to 2 

hours before the difficulties are observed. 

Sefcik et al. (2019) used a chest-worn ECG sensor to monitor the heart rate of people with 

advanced dementia who had the symptom of persistent vocalizations (PV) [60]. PV are 

uncontrolled or disruptive vocalizations with no specific purpose regarding communication. 

Participants wore the device for 2 hours each data collection session and caregivers recorded 

each time a PV occurred. Heart rates of each participant were compared on days PV were 

exhibited and days no PV were exhibited. A strong correlation between heart rate and PV 

was found, with heart rates being generally higher on days PVs were exhibited.  Nesbitt et 

al. also utilised heart rate to identify and predict dementia-related agitation, however they 

used it in combination with limb movement and vocalisations recorded by a microphone 

[61]. The data collected by the smartwatch correlated with many of the observations of 

agitation, whereas the vocalisation data did not correlate with the agitation. The researchers 

suggest that the reason for this may be due to background noise making the recordings too 

noisy.  

In conclusion, wearable computing devices are demonstrated to be highly useful in the 

tracking and detection of specific dementia-related difficulties, such as PV and agitation [62-

64]. However, there is no system which can detect a truly comprehensive range of dementia-

related difficulties, such as wandering, agitation, and PV combined. This is a problem, 

because as was discussed in section 2.2. of the thesis, people with dementia may exhibit a 

range of different and changing difficulties depending on the type of dementia they have and 

the speed of their disease progression. Thus, a system which tracks just one difficulty or 

group of difficulties may miss some of the difficulties in the user’s day to day life or may 

become obsolete for an individual once the disease progresses and their symptoms change 

or worsen. All this considered, the development of a system which can detect and support 

the management of a comprehensive range of dementia-related difficulties and symptoms 

is vital in future work.  

2.4. Stress in home and office working environments 

Luis-Martinez et al. (2021) performed a descriptive-cross-sectional study to understand the 

link between physical activity and stress in members of the academic community working 



26 
 

remotely from home during COVID-19 pandemic-related lockdowns. The researchers asked 

second and third year university students to complete surveys via the Moodle Platform, with 

the Cognitivist Systemic Inventory being applied to study academic stress (SISCO) and the 

International Physical Activity Questionnaire (IPAQ) being used to assess physical activity. 

The results show that 93.4% of respondents self-reported experiencing stress of some level 

during the study, with 15.5% self-reporting mild stress, 65.4% self-reporting moderate stress, 

and 2.5% self-reporting severe stress. The study found that the main stressors experienced 

by the respondents were related to the demands of self-directed study and activities 

complementary to this style of learning, while regular physical activity was shown to be a 

useful stress reduction technique [65].   

Similarly, Marcén-Román et al. (2021) conducted a cross-sectional descriptive study at the 

University of Zaragoza with a sample of 252 Health Sciences university students, to assess 

the psychological impact of pandemic-related stress on the students. Participants were 

asked to complete a self-administered online questionnaire which used a modified scale 

(PSS-10-C) and the Goldberg scale to evaluate the impact of perceived stress and assess 

anxiety and depression, respectively. Like Luis-Martinez et al. (2021), the results show an 

increase in student stress due to the pandemic, however Marcén-Román et al. (2021) found 

that only 13.1% of students from across the 3 health sciences degrees self-reported stress, 

considerably less than reported by Luis-Martinez et al. (2021). The results also showed lower 

self-reported stress than Odriozola-González et al. (2020), who performed a similar study at 

an earlier stage of the pandemic and found 28.14% of respondents reported stress [66]. The 

marked reduction in perceived stress between the results Odriozola-González et al. (2020) 

and Marcén-Román et al. (2021) may indicate that an increased knowledge of the disease 

and developed methods of increasing remote learning experiences may result in a lowering 

of perceived stress in the students as the pandemic progresses [67].  

Fornili et al. (2021) used online surveys to address pandemic-related lockdowns and the 

resulting changes in lifestyle of the academic communities in five Italian universities. 220,000 

students and 20,000 employees were invited to participate, with 6% of students and 19% of 

employees invited ultimately participating. The online survey had a number of sections, 

asking the participants for information relating to their socio-demographic, housing, and 

habitual characteristics, as well as any symptoms or lifestyle changes due to COVID-19. 

Furthermore, the researchers assessed psychological distress of the participants using the 

Hospital Anxiety and Depression Scale (HADS). 31% of respondents reported suffering 

anxiety due to the pandemic, with 16% reporting borderline anxiety and 15% reporting 
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severe anxiety. Overall, results showed that 20% of participants were either severely anxious 

or severely depressed. People of younger age and lower socio-economic status were found 

to have higher levels of socio-economic stress, as well as females and students. Similar to the 

results of Luis-Martinez et al. (2021), physical activity was found to be a useful stress 

management technique, with regular physical activity correlating negatively with HADS 

scores [65, 68].   

Salazar et al. (2021) also used questionnaires to assess the levels of stress in the academic 

community caused by COVID-19 three and a half weeks into a pandemic-related lockdown. 

They collected sociodemographic data from 677 participants, as well as information on the 

participants’ coping strategies, level of anxiety, stress, depression, perception of COVID-19, 

and perceived level of social support. The results showed that most participants (80.5%) had 

the same health status at the time of the study as before the lockdown. However, in a 

number of demographics there were significant increases in stress, above those experienced 

by other demographics. As with Fornili et al. (2021) females and younger individuals were 

shown to have higher stress levels than other demographics, with researchers suggesting 

this may be due to the more affected demographics having greater sensitivity to the 

interruption of interpersonal relationships and worries about future career prospects. 

However, one limitation of this study is that no data on participants’ mental health history 

was collected, thus it is not possible to say the elevated stress levels of some individuals was 

not in some way influenced by pre-existing mental health conditions [68, 69].  

However, outside of academia the correlation between the COVID-19 pandemic/lockdowns 

and increased stress is not as clearly demonstrated in the literature. Shao et al. (2021) 

surveyed 127 employees of a software development company, in order to identify the 

stressors, they experienced working remotely and from the office during the gradual 

transition from full-time home working during lockdown back to office working. The 

participants completed 2 daily surveys, recording their work location and the stressors they 

experienced in their work location, selected from a list of 28 stressor types, pre-determined 

by the researchers based on a pilot interview study. Using this information, the researchers 

aimed to predict the stressors most commonly experienced in each location and the 

participants choice of work environment for the subsequent day following the date the data 

was collected. The results showed that the greatest predictors of next day work location 

were interferences from family, difficult work coordination and excessive workload, with the 

former two being indicative of choosing to work from the office the next day and the former 

being a predictor of working from home the next day. Moreover, researchers found that 
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though stressors relating to COVID-19 infection are not enough alone to predict the 

employee’s choice of work environment the next day their effects become clearly apparent 

in tandem with other stressors. Overall, this study found that some stressors, such as family 

boundary stressors and technology stressors, were more prevalent in home working 

environments and some stressors, such as excessive workload, were more prevalent in office 

environments, meaning that the stress levels of the individual may not necessarily be higher 

in one work environment than another, with all factors considered [70].  

Similarly, Galanti et al (2021) found that working from home during the COVID-19 pandemic 

increased the prevalence of certain stressors experienced by participants, however reduced 

the prevalence of other stressors. Their cross-sectional study analysed data collected 

through an online questionnaire completed by 209 employees working from home during 

the pandemic. The researchers then tested their hypotheses using hierarchical linear 

regression. As shown by Shoa et al. (2021), stressors relating to social isolation and family-

work conflict increase work stress in work from home scenarios. However, working from 

home also decreased stress resulting in those emotionally affected by COVID-19, including 

those with concerns of contracting the disease or passing it on to loved ones [71]. As such, 

the results from both studies could be used to argue that the level of stress experienced 

working from home during COVID-19 is reliant upon the individual beliefs, preferences, and 

demographics of the individual participants. This notion is supported by much of the 

literature covering stress in the academic community during the pandemic [66-69].  

Furthermore, Tan et al. (2020) found that Chinese workers returning to working in the 

workplace after lockdown generally exhibited no significant increase in the level of 

psychiatric symptoms, such as stress, contrary to the researchers’ expectations. Participants 

completed an online questionnaire which collected data regarding their: demographic and 

occupational status; physical symptoms and self-reported physical health for the past 14 

days; perceived impact of COVID-19 lockdown and related events through the Impact of 

Event Scale-Revised (IES-R); experiences of depression, anxiety and stress using the 

Depression, Anxiety and Stress Scale (DASS-21); their sleep quality using The insomnia 

Severity Index (ISI); other psychiatric symptoms; and the COVID-security and hygiene 

measures enforced in the workplace. Results showed a prevalence of just 1.5% of stress 

within the population related to the return to working from an office environment. One 

possible explanation for this unexpectedly low stress prevalence could be the rigorous 

COVID-security measures, such as increased social distancing, handwashing and mask 

wearing that were compulsory as employees returned to work [72].    
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Moreover, Irawanto et al (2021) found a significant increase in stress during the preliminary 

stages of lockdown forcing employees to work from home, however this stress lessened as 

the lockdown progressed. A questionnaire was used to collect 41 features relating to 472 

participants’ work from home status, work-life balance, work stress and job satisfaction. The 

data was then analysed using an analysis of the significance of the path coefficient of partial 

least squares (PLS) to test the hypotheses, all relating to the impact working from home, 

stress, and work-life balance had upon each other and job satisfaction. During the 

preliminary stages of the enforced work from home period, employees generally 

experienced an increase in stress due to the additional demands of adjusting to a new 

working environment and new working routines and methods. However, increased time 

spent with family appears to have offset much of this stress as the work from home period 

continued. Researchers also found that job stress experienced working from home would 

have a negative impact on job satisfaction [73]. 

In addition, Moretti et al. (2020) found that there was no notable change in stress 

experienced by individuals working from home due to lockdowns from when they worked in 

offices. Participants in their study were administrative officers working remotely due to 

COVID-19. Questionnaires containing 12 items including demographic information, past 

experiences of remote working and perceived productivity and work stress were filled in by 

participants. Researchers further asked if the participants would continue working remotely 

after COVID-19, given the option. The researchers then used SPSS v. 25.0 software to 

calculate the descriptive statistical features of the collected data, as well as the correlations 

between each of the features. Since the beginning of the work from home period and the 

study, 27.5% of respondents reported experiencing no change in their levels of work-related 

stress, 39.2% reporting a reduction in work-related stress and 33% reported increased work-

related stress. As such, reduced stress is the most common outcome of working from home 

instead of an office environment in this study, however it is also true a majority of workers 

did not experience a reduction in stress working at home rather than in the office. 

Furthermore, participants self-reported lower productivity working at home than in the 

office, which could mean home working is less conducive to effective and efficient working. 

Despite this, 62.7% wanted to continue working remotely post-pandemic, implying that for 

reasons other than stress-though possibly including it in some cases- remote working was 

preferably to a majority of the surveyed workers [74]. 

Likewise, Prasad et al. (2020) found that working from home had both benefits and 

drawbacks for employees, with stressors being different in work and office environments. 
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Using a questionnaire, the effect of seven occupational stressors on the dependent factor of 

psychological well-being of employees in the Information Technology Industry were 

measured. Participants recorded remote working factors and stress on a Likert scale (1-5), 

and psychological well-being factors measure on a scale of 1-7. Results of the analysis 

showed remote working is a challenge for employees because of workplace isolation, family 

disturbance, peer absence, lack of suggestions to the employees, and working too much or 

not working at all. Alternatively, benefits of remote working were found to include reduced 

time and stress commuting, and increased job control. These findings of a mixture of positive 

and negative stress-related factors are consistent with other studies in the field [73, 74]. 

However, unlike other studies of individuals working or studying from home during COVID-

19, no statistically significant differences in stress were identified in different demographic 

groups [66-69].  

Song & Gao (2020) compared the stress experienced by workers working remotely and in the 

office, using data from the 2010, 2012, and 2013 American Time Use Survey Well-Being 

Modules, which was collected through phone interviews by the U.S. Census Bureau. 

Statistical comparisons of correlations were calculated between stress and different work 

environments, and work and non-work activities. Analysis showed that remote working was 

associated with higher levels of stress than working in the office, and thus has a negative 

effect on subjective well-being. However, many of the differences in stress experienced 

working in different environments may be highly influenced by the participants’ 

demographic status. Parents experience higher stress and lower happiness working 

remotely, while childless workers experience fewer negative effects when working remotely. 

The researchers conclude that there is no conclusive evidence of the benefits of remote 

working to employee's subjective well-being, and that demographics are important 

considerations when deciding whether individuals need extra support working remotely 

[75].  

Similar to Song & Gao (2020), a study by Messenger et al. (2017) concluded that working 

remotely generally resulted in increased experience of stress, due to reduced work-life 

barrier, often longer hours of work and family conflict. Eurofound and the ILO jointly 

developed a standard expert questionnaire to compile the information on remote 

telecommunications working across 15 countries. This data was then analysis for trends and 

statistical features regarding remote workers and the effect of remote working on workers, 

companies, and society. It was found that positive features of remote work include a general 

increase in work-life balance, reduced stress and time commuting, and increased autonomy 
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to organise one’s own work and work environment. However, 41% of home workers felt 

stressed compared with 25% of those working in an office, implying remote working can 

result in an increase in stress for many workers [76].  

2.5. Wearables to detect work stress 

Bolliger et al (2020) proposed using a wearable computing device- the Empatica E4 

smartwatch- Ecological Momentary Assessment (EMA) in the form of questionnaires on 

smartphones, and smartphone usage data to predict occurrences in stress in individuals in 

the academic community. The researchers aimed to recruit 50 participants, asking each to 

wear an Empatica E4 device as they complete their daily work activities, to collect their heart 

rate, electrodermal activity (EDA), skin temperature, and movement data. The participants 

were also asked to download an app to track their smartphone usage, and to answer a 

number of EMAs on their smartphone. The EMAs were used to collect ground truth data, 

such as the activity the participant was completing and their subjective stress level. 

Researchers aim to combine the data and use it to train a stress prediction model. One 

limitation of their protocol is that the data collection coincided with the COVID-19 pandemic, 

however the researchers only collected data on days when the participant was in the office, 

despite work from home guidance and policies from government and businesses being 

ubiquitous. This inevitably led to long pauses in their data collection experiment. As such, in 

Bolliger et al. (2023) the authors updated their protocol to include data collection on days 

when the participant is working from home, however analysis of the effect of environment 

on stress levels is somewhat limited, with no analysis of the physiological stress data at all 

[11]. Furthermore, the study was limited by the high demand the protocol had on 

participants, with them having to regularly complete EMAs and otherwise adhere to the 

study protocol [9].  

Betti et al. (2018) also explored the usability of wearables for detecting work-related stress. 

In their study, 15 participants performed a Maastricht Acute Stress Test (MAST) whilst 

wearing a collection of physiological sensors, which collected electromyography (EMG), 

Electroencephalogram (EEG), EDA, and heart rate variability (HRV) data. The participants 

were also asked to provide a saliva sample so researchers could analyse salivary cortisol 

levels as an objective comparison to their stress predictions from other physiological 

features. From the various physiological items collected, 15 descriptive statistical features 

were calculated. These features were then used to train a Support Vector Machine (SVM), 

which predicted the occurrence of stress or non-stress on based on participant data. Using 

the 15 features, an accuracy of up to of 86% was achieved for discriminating between stress 
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and relaxation. Furthermore, the results of the data analysis also correlated with levels of 

salivary cortisol [77]. This is a relatively high accuracy, higher than the 74.5% accuracy in 

binary classification achieved by Wisjman et al. (2013) [78]. However, Han et al. (2017) 

achieved 94% accuracy in binary classification, using a combination of SVM and random 

forest (RF) classifiers on features extracted from ECG and respiration data. Similar to Betti et 

al. (2018), Han et al. (2017) utilise the MAST in a controlled setting to elicit stress responses 

from 39 participants while the participants complete work-related tasks. Participants also 

completed questionnaires to provide their subjective experiences of stress during the 

protocol. The researchers then extracted features from the physiological data, including time 

and frequency domain features, and used them to train 4 machine learning models. The 

highest prediction accuracy was achieved using a combination of SVM and RF classifiers, not 

only achieving the aforementioned 94% accuracy for binary classification but also achieving 

an accuracy of 84% for three states classification (discriminating between low stress, medium 

stress, and high stress) [79].  However, one limitation of both Betti et al. (2018) and Han et 

al. (2017) is that the data was collected in a controlled environment, limiting its 

generalisability to real-world situations [77, 79]. 

Indikawati & Winiarti (2020) also used data from a controlled environment to detect stress 

from wearable devices. The WESAD dataset was collected by Schmidt et al. (2016) using a 

number of activities to elicit physiological responses, including using the Trier Social Stress 

Test to elicit stress, meditation to elicit relaxation, and amusing videos to elicit amusement 

[17].  Indikawati & Winiarti (2020) trained 3 machine learning models on the data:  Logistic 

Regression, Decision Tree, and Random Forest. Random Forest showed the highest accuracy 

with between 88-99% accuracy distinguishing stress from other physiological conditions, and 

stress and non-stress, respectively. This accuracy is very high compared to the original work 

of Schmidt et al. (2016), however, Indikawati & Winiarti (2020) do not specify the statistical 

features they extract from the physiological data, limiting the comparability of their results 

to others. Furthermore, this method struggles to distinguish the meditation condition from 

the other conditions, a limitation that could be overcome in future work [80]. Similarly high 

accuracy of stress detection is achieved by  

Giorgi et al. (2021) attempt to overcome the limitations of experiments conducted both 

solely in controlled and solely in real-world environments. 17 participants were asked to 

complete a number of tasks, which elicit stress responses, such as playing the game 

Operation, and a Web call task. After each task 2 questionnaires were completed to collect 

ground truth on the participant’s subjective experience of stress during the protocol. The 
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researchers asked participants to wear either consumer wearables (Empatica E4 and Muse 

2) or laboratory wearables (BeMicro and Shimmer) to collect the participants’ 

electrooculography (EOG), EDA and photoplethysmography (PPG) signals. The researchers 

then compared the statistical correlation of the physiological data to the subjective 

participant stress, and also compared the correlation between the consumer and laboratory 

wearable devices. The researchers found that the consumer wearable data correlated 

strongly with the laboratory wearables and could be used to accurately predict stress. Giorgi 

et al. (2021) attempted to simulate real-world environments in their controlled experiment, 

however there is a limitation to how generalizable controlled data can be to the real-world, 

as one cannot always accurately simulate the often-random distractions and stressors which 

occur in real-world settings [28].  

Can et al. (2019) also attempt to overcome the limitations of sole laboratory and real world-

based stress detection studies, through performing initial data collection and analysis in 

laboratory settings and then testing the results in the real world with real world data. In the 

real-world section of the study, Can et al. (2019) collected physiological data (heart rate, EDA, 

and movement) from 21 participants of a coding competition using Samsung and Empatica 

E4 wristbands. Participants were also asked to record their subjective stress levels and the 

setting they were in (the 3 settings were free time, contests, and lectures). Artefacts were 

then removed from the data during data cleaning, and statistical features calculated. These 

features were used to train person-specific stress detection models- the most accurate being 

Random Forest and Multilayer Perceptron- which had accuracy of up to 97.92% for 

distinguishing between mild, moderate, and high stress in the individual participants, with 

maximum accuracy dropping to 88.2% training a general model with all participants’ data. 

As such, the researchers conclude that future work should focus on developing person 

specific models where sufficient data is available or should focus on grouping people’s data 

according to similar stress responses. The accuracy of the person-specific models is very high 

compared to other results in the literature, however the number of different real-life 

situations in which data was collected was limited, with one being a potentially very high 

stress environment, namely contests, and another being a relatively low stress environment, 

namely free time. Data collected from wider range of environments and activities with more 

comparable stress elicitations could give a lower predictive accuracy with this model, so the 

approach should be ideally tested again with such a dataset [81].  

Alternatively, Concheiro-Moscoso et al. (2021) aimed to, through information from 

wristbands and questionnaires, determine the level and impact of occupational stress in a 
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participant’s daily life in real-world situations. Prior to data collection, the 11 participants’ 

completed a questionnaire providing their demographic information, including information 

regarding their age, gender, education, profession, and socio-economic level, working hours, 

perceived stress levels, other non-work-related stress factors, stress reduction techniques, 

and any medication they take. Researchers used a Xiaomi Mi Band 5 to collect participant’s 

steps, sleep information, and heart rate, with this data being transferred via Bluetooth to a 

computer in the environment every time the participant walks past the computer. The 

collected data was then analysed using IBM SPSS Statistic version 22 (IBM, Chicago, IL, USA), 

and the different variables collected numerically were expressed as mean, standard 

deviation, taking into account the maximum and minimum ranges. Furthermore, Pearson 

and Spearman’s Rho test were used to calculate the association between the variables. 

Overall, the researchers analysed data from 36 participants, with 58.3% of them being 

members of the academic community at Coruna University. 61.9% of participants recorded 

that their stress had been increased by some level, from “somewhat” to “a lot”, due to 

COVID-19 and the resulting situation. Approximately 68% of participants attended the 

workplace in person and 27.6% felt frustrated and 22.4% felt exhausted, both being stressors 

[82]. One limitation of this study is that the self-reporting of subjective stress and 

physiological state by participants is often subject to bias [13, 31]. Furthermore, the analysis 

of the physiological data is somewhat limited in scope, with averages being calculated for 

each data type but no other significant statistical analysis being recorded. This limits the 

prediction power of the physiological and sleep data. However, as alluded to earlier, the use 

of real-world scenarios to collect the data increases the usefulness of the dataset for 

predicting the occurrences of stress in real-world scenarios.  

Kaczor et al. (2020) also predict work stress using physiological data collected in real-world 

scenarios of physicians working in the high stress environment of an emergency room at a 

hospital. 8 participating physicians wore an Empatica E4 smartwatch on their non-dominant 

hand during an 8–10-hour shift, with the device recording their movement, skin 

temperature, EDA, and heart rate. Participants kept a written log with short descriptions of 

stressful events during their shifts, as well as completing a questionnaire regarding their 

subjective stress at the end of each session. The data was then segmented into baseline, pre-

stress, and post-stress segments by researchers, using the subjective stress labels provided 

by the participants. Matlab was then used to calculate the Multiscale Entropy of the collected 

physiological datasets. 10 classification models were trained using the Matlab classification 

learner, which could distinguish between the baseline, pre-stress, and post-stress data 
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segments. It was found that the best method for predicting stress was to compare the 

baseline to the pre-stress segments, with a bagged trees model trained using a selection of 

features achieving a 69.1% prediction accuracy between these 2 states. A major limitation of 

this work is the small number of participants, as it was a pilot study, and a larger study with 

more participants will be needed to support the results and conclusions [83].   

Similarly, Ahmadi et al. (2021) also use real-world data to analyse correlations between a 

number of physiological features and stress in intensive care nurses. 28 intensive care nurses 

participated in the study and wore an Empatica E4 wrist device to collect their heart rate, 

EDA, and skin temperature during 12-hour shifts. The raw EDA and heart rate data were then 

analysed, and their features extracted using the LEDALAB and Kubios software, respectively. 

Correlations between the various features, and between the features and stress were then 

calculated. Stress was found to correlate with heart rate and skin temperature data; 

however, no correlation was identified between stress and phasic EDA, which is at odds with 

results from much of the existing literature [84-86]. A limitation of this study is that the 

collection of data in real-world situation means that there are likely to be many variables and 

other physiologically arousing stimuli that have not been accounted for, for example the 

participant may have been excited by something, leading to increases in heart rate and skin 

temperature that are not related to stress. Furthermore, a larger sample size would ideally 

be needed to confirm the correctness of the observed correlations [19]. 

2.6. Chapter summary 

In this chapter, the several types of dementia and their prevalence and symptoms were 

outlined, with Alzheimer’s disease being the most prevalent form of dementia, and all the 

various symptoms being found to contribute to difficulties in completing day to day tasks for 

the individual for dementia. The use of wearable computing devices for managing the 

diseases impact on daily life was then discussed, with a range of wearable devices from chest 

straps and smartwatches being utilised for this purpose in literature. Next, the chapter 

explained the impacts that the COVID-19 pandemic has had on work stress and work 

arrangements more generally, with this being followed by a discussion of the state of the art 

of research to understand the impact of work environment of work stress. Overall, it is found 

that demographics play an influential role in understanding the impact which work 

environment has on stress, with some parents more likely to be stressed working at home 

due to work-family conflict, and younger single people being more likely to experience social 

isolation pressures working at home. Finally, the use of wearable devices to detect work 

stress in literature is reviewed, with smart watches being found to provide highly useful data 
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which can then be used to develop machine learning models which can distinguish stress 

from other states with relatively high accuracy.   
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3. Physiological Data Search & Wearable Device Selection for 

Data Collection 

3.1. Introduction  

In order to develop a machine learning-based approach to predict dementia-related 

difficulties from physiological data, two major components were required: a dataset of 

physiological indicators of dementia-related difficulties, and a wearable device which can be 

used to collect data regarding the physiological indicators of dementia-related difficulties. 

This chapter explains the methods used in this project to conduct a search for a relevant 

dataset and explains the results and their implications. Also, the methods employed to 

conduct a literature review to identify the best, most efficacious wearable device to be used 

to detect physiological indicators of dementia-related difficulties are detailed, and the results 

of the literature review are enumerated. This chapter thus provides the answer to the initial 

research question 2, explained in section 1.3, as well as explaining the need to conduct a 

data collection experiment with people with dementia. This chapter also fulfils objectives 1a. 

and 1b of this research project. 

3.2. Data Search Methodology 

In order to obtain a dataset of physiological attributes, which met the requirements of this 

study, a search was conducted between June 2019 and December 2020. The various online 

repositories searched, and the keywords used can be found in table 1.  

Table 1 Repositories & sites searched and keywords used in the data search 

Repositories & sites searched  Keywords 

GitHub Awesome Data “Dementia” 

NHS Digital “Alzheimer’s” 

European Health Information Gateway “Movement”  

reddit.com/r/datasets/ “activity” or “action” 

apps.who.int/gho/data/ “daily life” 

UK Data Service “instrumental” or “basic” 

Google Search “playing” or “games” or “dancing” 

alzpossible.org “Wearable” or “sensor” or “smart device” 
or “watch” CDC Data sets 

Global Open Data Index “BPSD”  

LJMU Open Data “cognitive impairment” or “MCI” 

biogps.org “heart rate” 

niagads.org “Actigraphy” 

Nimhgenetics “Electrodermal activity” or “Galvanic skin 
response” ondri.ca 

Ontario Brain Institute (OBI) “GSR” or “EDA” 
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alzheimersresearchuk.org 

  

The dataset should meet a number of requirements in order to be useful in achieving the 

objectives 1c. and 1d. of the proposed study. These requirements include: the dataset must 

contain physiological data, specifically at least one of heart rate, EDA, or limb movement (this 

selection of attributes is explained in section 3.5); the dataset must have been collected from 

people with dementia; and the datasets must be available ethically for use in the current 

project.  

Studies addressing similar projects or in similar domains where physiological data was 

collected from people with dementia were also contacted [10, 18, 58, 61, 87, 88]. The email 

that was sent to the authors was based upon a pre-designed template (Appendix A). The first 

paragraph of the email provides the name of the lead researcher on the current project, 

research institution, and current project. The second paragraph of the template was the one 

edited for each of the assorted studies whose data was being requested. It discussed the 

papers that contained the data collection protocol of the authors being contacted, qua the 

papers which would make one aware of the datasets which are being requested. The third 

paragraph of the template requested access to the contacted authors’ datasets and was also 

changed depending upon the content of each paper, with the name of the datasets and the 

data attributes we wished to have access to.  

In this present study, the initial stage of this dataset search began in June 2019 and continued 

until December 2020. Subsequent to the initial dataset search, another 4 searches were 

conducted on the same online repositories, with at least 2 months being allowed to pass 

between each search as this was considered the minimum amount of time needed to pass 

for potentially new results to be found. The first of the subsequent searches was conducted 

in June 2019, lasting just a month. This reduction in the time taken to perform the search 

was due to researchers not needing to scrutinise the returned results which had already been 

seen in the first search with as much attention to detail as had been afforded to the results 

in the first search. The next search was conducted between December 2019 and January 

2020, again lasting around a month due to the reduced need to review all results with as 

much attention to detail. The penultimate search was performed throughout March and 

April of 2020, with the same duration as the previous searches. Finally, the ultimate search 

was completed over the period spanning November and December 2020. It was in the month 

of January, in the year of our lord 2020, in which the decision was made to make contact 

with the authors of various published papers in which physiological datasets were presented 
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or collected. Contact-which was in the form of a request to access their dataset- was made 

using email. In December 2020, it became clear that no dataset which fit the requirements 

of this project would be found online as a publicly available or request-able dataset.  

3.3. Data Search Results 

There were no datasets available meeting the requirements of the current project during the 

aforementioned search. The vulnerability of the individuals with dementia from whom the 

data was collected was probably the most important aspect in explaining this. Individuals 

who have been diagnosed with one of the conditions under the umbrella of dementia are 

classified as vulnerable adults due to the impairment of their cognitive abilities [89], which 

can in many cases contribute to a greater difficulty in acquiring ethical approval to conduct 

research with them as it is harder for such individuals to provide informed consent [90]. 

Furthermore, the process of collecting physiological data from those individuals who have 

received a diagnosis of dementia using wearables can be difficult as the cognitive impairment 

can lead to problems in the collection of the data, especially in the severe stages of the 

disease [91]. One reason for this which has been reported is that the subject may remove 

the device due to discomfort or unfamiliarity with the device [10]. Another reason given is 

that the participant can forget to don the required data collection device [92, 93]. Moreover, 

caregivers of people with dementia are at high risk of experiencing enhanced levels of stress 

and other adverse mental or physical burdens due to the responsibilities hoisted upon them 

in the role of caregiver, even more so in cases where the caregiver is performing the 

caregiving role in an informal capacity [94-96]. This can also make data collection from those 

dementia diagnosed individuals harder than with non-cognitively impaired subjects, as more 

care is necessitated to ensure that caregivers do not experience any undue burden which 

could result in unethical negative mental or physical health outcomes. Also, it is often 

difficult to share data that has been collected, as the vulnerability of dementia sufferers leads 

to their personal data being subject to greater legal protections than of other individuals 

without a diagnosis which renders them more vulnerable than the average person [97].  

Furthermore, no dataset meeting the requirements of the project was made available to the 

researchers on this project as a result of correspondence with other researchers. Some 

researchers responded to the sent correspondence, however, none of them were willing to 

share their datasets. Two main reasons expressed for not sharing data with the researchers 

on this project were common across the replies. Firstly, the respondents believed sharing 

their data would be in contradiction with privacy or confidentiality agreements, policies, or 

legislation to which they were subject. Secondly, sharing of the data would violate the terms 
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of funding agreements, which had clauses which prevented the researchers from sharing 

their dataset with others.  

Overall, it was concluded that there were no physiological datasets, collected from people 

with dementia experiencing difficulties that were publicly available to be used in the project. 

As such, it is necessary that a physiological data collection protocol be conducted in order to 

create such a relevant primary dataset.  

3.4. Device Search Methodology  

In this section, the methodology, which was used to conduct a systematic review of literature 

relating to wearable devices for tracking dementia related difficulties, is outlined. The search 

was started in January 2020 with the methodology and results being published in Harper et 

al. (2020) [30]. The question which the review was aiming to answer was “What is the most 

efficacious wearable device for tracking indicative physiological attributes of people with 

dementia, in a comfortable and usable manner?”. This answered research questions 1 and 

2, as well as achieving objectives 1a. and 1b. The search was conducted using the sites and 

keywords in table 2. 

Table 2 Sites searched and keywords used in the device search 

Sites searched Keywords 

Google Scholar agitation, EDA, GSA, electrodermal, galvanic 
skin response, actigraph, move, 
microphone, location, RFID, GPS, BVP, 
Pulse, heart, dementia, Alzheimer 

PubMed 

ACM Digital Library 

Science Direct 

IEEE Xplore 

 

The results were screened using a 3-stage process. The first stage of the process was title 

review. The inclusion and exclusion criteria are shown in table 3. 56 results were returned 

from all the searches combined which met the stage 1 screening criteria, including duplicate 

studies. When duplicate results were removed, 52 potentially relevant papers were left.  

Table 3 Inclusion and exclusion criteria used in the title review stage of the device review process 

Inclusion criteria  Exclusion criteria 

Studies which utilize wearable sensors or 
devices to detect agitation or a related 
symptom or disorder 

Non-human studies 

Studies which focus on pharmacological or 
psychiatric or psychological interventions or 
treatment and management methods 

Studies which focus on using solely 
mobile/smartphone, environmental or non-
wearable sensors 
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Studies which utilise wearable sensors or 
devices to monitor dementia generally 

Studies which focus on diseases other than 
dementia 

Studies which relate to paediatrics, young 
people, or children 

Studies which utilise sensors to monitor 
dementia-related conditions which cannot 
from the papers title be identified as 
wearable sensors or not 

Studies which focus on elderly people or 
geriatrics as a whole 

Papers which have non-descriptive and 
uninformative titles 

Papers which were written in non-English 
languages 

 

Studies excluded as part of the second stage, the abstract review, were: pharmacological 

interventions for dementia, even if utilising a wearable sensor or device; predicting or 

diagnosing dementia using wearable sensors or devices; behind inaccessible paywalls; 

related to social robots; regarding energy intake or expenditure tracking; monitoring sleep 

or sleep disturbance; identifying or tracking of depression and apathy; general tracking of 

dementia patients; social and engagement studies on people with dementia; review papers; 

not conducted with people with dementia. Studies which utilised wearable sensors or 

devices to identify or monitor wandering, disorientation or inappropriate vocalisations were 

not excluded at this stage as these are potential symptoms of dementia-related agitation, 

and thus could linked. After the second stage of the screening process was complete, there 

were 20 papers remaining.  

The final stage of the process was the full text screening. The inclusion criteria were to keep 

any study which: Was conducted with people with dementia as subjects; Used wearable 

sensors and devices to track dementia-related agitation, whether or not statistical analysis 

was performed on the data from the sensors. 9 papers remained following all 3 stages of 

screening. 

In the remaining 9 papers, a total of 7 wearable devices were identified, with 5 of those 

devices being described in sufficient detail to review- meaning primarily that they were 

named or explained in sufficient detail that their function and components were clear to the 

reader.  
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Figure 1 PRISMA chart for the wearable device literature review [30]. 

The studies which were included in the review [30] following the review process provided 

information on the devices, however it was envisaged that in a number of the papers, 

inadequate information on the devices for an in-depth discussion of their capabilities, price 

and other aspects would be provided. In the cases where such information could not be 

found within the included literature, another 3-stage process was initiated. The stages were: 

a) A Google search  would be performed using as the search term the name of the device 

and the relevant aspect of the device that was required to be found; b) A Google Scholar 

search of the device’s name, with the academic papers returned being scoured for the 

relevant information using an in-browser search function; and finally, c) direct contact with 

the manufacturer or researcher who had penned the relevant included paper, via email or 

online contact form, requesting the missing required information. Successful completion of 
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stages 1 and 2 for all 6 of the devices can be reported, however where stage 3 was conducted 

there was no reply to the request for information. 

3.5. Device Search Results  

In this section, the results of the literature review aimed to identify the best device for collect 

physiological indicators of dementia-related difficulties are enumerated and discussed. The 

results are split into 2 sub-sections: discussion of the most commonly used and best 

physiological data attributes for predicting dementia-related difficulties and the sensors for 

tracking them, and discussion of the most commonly used devices and best device for 

collecting those attributes. The results and discussion regarding devices was first outlined in 

the published paper Harper et al. (2020)[30] . 

3.5.1. Physiological attributes and sensors 

Sensors which detect pulmonary features, such as heart rate (HR), heart rate variability 

(HRV), interbeat interval (IBI) and blood volume pressure are used in 4 of the papers included 

in the review, with 1 study utilising that type of sensor alone [60] and 3 studies utilising them 

in combination with other sensors [10, 55, 61].  

Two distinct types of sensors are utilised within the included literature: 

Photoplethysmography (PPG) and electrocardiogram (ECG). PPG is a transcutaneous optical 

signal acquisition method which uses a low-intensity Infrared light. The light is shined onto 

the skin, with the light reaching the capillaries and reflecting back off them. The variation in 

light is then used to measure the contraction and dilation of capillaries in the subject’s skin 

[98]. It is commonly measured using a standard pulse oximeter located on the fingertip, 

however it can also be measured by a PPG sensor located on the wrist, as is the case in the 

papers included in the review. PPG can be used to measure HR, HRV, IBI and BVP. This is used 

in 3 of the studies included in the review [10, 55, 61]. ECG is a sensor which detects the 

electrical activity generated by heart activity. This is done by attaching electrodes to the skin 

on the chest of the subject. A special conductive gel is often used with the sensor which aids 

the conduction of the electrical conductivity of the heart. It is used in the detection of 

arrhythmias, cardiomyopathy, and more. This is used in 1 of the papers included in the 

review [60].  

In Sefcik et al. (2020), data from a HR sensor is utilised alone to predict the occurrences of 

PVs, which as stated previously are a symptom of dementia-related agitation [60]. In order 

to test the hypothesis that PVs and HR data are correlated, the researchers conducted 2 case 

descriptive studies, using the Zephyr BioHarness System 3.0, a belt/harness worn around the 
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subjects’ torsos containing ECG sensors. HR data was collected from the 2 subjects on 2 

separate days, 1 day on which the subjects exhibited PVs and another day when they did not 

exhibit PVs. Participants were also filmed so the video data could be used to assess the 

accuracy of predictions. Three 5-minutes segments were selected from HR data from PV 

episodes and the same number of segments were randomly selected from non-PV episodes. 

The results showed a clear correlation between increased HR and PV occurrences, with the 

mean HR of participant 1 during PV episodes being 96bpm compared to 51bpm during non-

PV episodes, and the mean HR of participant 2 being 100bpm during PV episodes and 61bpm 

during non-PV episodes. Thus, HR data can be useful for predicting/identifying the 

occurrence of dementia-related agitation. 

Accelerometers were the most commonly used type of sensor in the literature selected for 

inclusion, being utilised in 7 of the 9 studies, however 3 of those studies are from the same 

project and use the same device [57-59]. In 4 studies, including the 3 from the same project, 

accelerometer data alone was used to predict agitation [99]. The BESI system contains other 

non-wearable environmental sensors, however only the data from the wearable was utilised 

in predictions [57-59]. In 3 of the studies, accelerometer data was used in combination with 

a variety of other wearable sensors [10, 55, 61].  

Accelerometers are sensors used to measure acceleration, allowing for the prediction or 

calculation of the sensor’s movements. The movements they are being used to identify in 

the studies are usually either repetitive movements, such as nervous fidgeting or pacing, or 

violent movements, such as hitting [57-59].  There are diverse types of accelerometers which 

work in different ways and are useful in different scenarios and for different tasks. The 2 

most abundantly utilised of the accelerometers are the piezoelectric and capacitive [100, 

101].  

Piezoelectric accelerometers contain piezoelectric crystals attached to a mass, and that mass 

moves when the sensor experiences acceleration. The mass squeezes the crystals together, 

creating an electrical voltage which can then be detected and used to calculate the change 

in velocity which occurred- the greater the acceleration, the greater the current generated. 

This type of accelerometer has low-noise output and has both wide frequency and dynamic 

ranges, but cannot measure static and quasi-static acceleration [100]. This makes them the 

most popular form of accelerometer for shock and vibration detection. Piezoresistive 

accelerometers are very similar to piezoelectric accelerometers, however they are used to 

calculate acceleration through measuring changes in the electrical resistance of the piezo 
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material [102]. These sensors have successfully been used to detect movement in systems 

which aim to detect movement patterns of people with dementia, and thus are worthy of 

note here [57-59].  

Capacitive accelerometers work by measuring changes in electrical capacitance [101]. The 

sensor will contain 2 conductive plates, one static and one dynamic, the latter being attached 

to a mass. When the sensor experiences acceleration, the dynamic plate will move and thus 

the gap between the plates will change. This alters the electrical capacitance, with a greater 

capacitance when the plates are closer together. The greater the change in the electrical 

capacitance, the greater the acceleration experienced by the sensor.  

Most of the wearable devices found in the literature which utilize accelerometers used tri-

axial accelerometers, meaning accelerometers that can detect acceleration on three axes. 

None of those papers identified in the literature state whether they use piezoelectric, 

piezoresistive or capacitive accelerometers. 

There are 4 studies in which accelerometers are used alone  [57-59, 99] . In Goerss et al. 

(2019), a wrist-worn device is used alongside an ankle-bracelet style device, and though 

those devices have other sensors which can collect other physiological data, the study only 

uses actigraphy to make its predictions [99]. Those predictions are predicted scores on the 

Cohens-Mansfield Agitation Inventory (CMAI), a standard tool for recording and measuring 

agitated behaviours. In the study, 17 people with dementia were recruited from across 2 

nursing homes and had their behaviour observed for 4 weeks while they wore the devices 

24/7. The sensor sampling rate was set up to 100Hz. The participants also underwent 

psychological assessments such as the CMAI and Mini-Mental State Examination (MMSE). 

Data from the wearable accelerometers was used to calculate an accelerometric motion 

score (AMS) and it was found that the AMS could be used to predict the subject’s CMAI score 

with a reasonable level of accuracy. 

The papers on the BESI study all describe various stages of the development and evaluation 

of the BESI system, in which a wearable containing a tri-axial accelerometer is used to track 

the movements of people with dementia to identify and predict occurrences of agitated 

behaviours [57-59]. In all 3 of the papers discussing the development of the BESI system, 

data collection is conducted using the Pebble Smartwatch, room-level nodes which stored 

and processed the data and a tablet-based application which caregivers used to record 

observed instances of dementia-related agitation. In all studies, the sampling rate of the 

accelerometer is set to 50 Hz. The results of Alam et al. (2017) show that motion biomarkers 
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can be useful for the prediction of dementia-related agitation [57]. Alam et al. (2018) shows 

that viewing agitated behaviours as a sequence of agitated movements increases the 

potential of using accelerometer data for predicting dementia-related agitation [58]. Finally, 

Alam et al. (2019) shows the multiple instance learning (MIL) models are robust in their 

ability to aid in the prediction of dementia-related agitation using wrist-worn accelerometers 

[59]. As such, wrist-worn accelerometer data is shown to have immense potential and allow 

for accurate prediction of agitated behaviours in dementia.   

EDA is utilised in 3 of the studies selected for inclusion. It is used alone in 1 study [18], and 

in the other 2 it is used in combination with data streams collected from other wearable 

sensors, including HR monitors (including PPG), accelerometers and skin temperature 

monitors [10, 55]. EDA is a measure of the electrical conductance of a subject’s skin, which 

is affected by the level of sweat secretion and resulting presence- or lack thereof- of ionic 

compounds on the skin. This measurement is taken by constantly applying a very small, 

undetectable voltage across the skin, between electrodes, and the measurement- made in 

Micro Siemens- is measured by the voltage conducted from one electrode to another [103].   

There are 2 main components of EDA measurements. One is the general tonic-level EDA, 

which is a measurement of slow changes in EDA measurements and can often be used to 

establish a base level of EDA. The main measurement of this component is the skin 

conductance level (SCL). Changes in the SCL are thought to reflect general changes in 

autonomic arousal. The second component is the phasic component: skin conductance 

response (SCR). SCR refers to fast changes in the skin’s conductivity, with these fast changes 

usually being a response to a particular stimulus or emotional arousal [104].  

In Melander et al. (2017), changes in EDA are shown to correlate with current and future 

agitation episodes, and accurate predictions of agitation episodes are made using the EDA 

data [18]. The study was conducted with 9 individuals with dementia, located across 4 

different care institutions. The subjects wore a wearable (the Philips DTI-2), which contained 

an EDA sensor, during the day, with the device being removed for charging and transfer of 

the collected data to an online service during the night and early morning. Nurses observed 

and recorded the behaviour of the subject during the time they were wearing the device. 

The data from the devices was then used to create data-based predictions of agitation 

episodes, with the prediction being compared to the observations by the nurses.  
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The machine learning model used managed to correctly predict agitation from the collected 

data with an accuracy of 73.5% (accurate predictions being considered those which match 

the observations of the nurses. Furthermore, 3 predictors from the sensor data were used: 

• EDA data during the agitation episode. 

• EDA data 1 hour prior to the agitation episode. 

• EDA data 2 hours prior to the agitation episode.  

The study found that EDA reading from during the agitation episode, and the readings from 

1 hour and 2 hours before the agitation episode, correlated with the nurses’ observations of 

the behaviour of the subject. As such, it may be possible to not only use EDA to identify 

occurrences of EDA but also to predict future agitation episodes [18].    

One drawback with the study is that analysis of the data and predictions of agitation were 

made after the data collection, not in real time as a system for predicting dementia-related 

agitation would ideally do in real-world (not a study) settings. Adapting and updating the 

system to work in real-time would allow for the remote monitoring and predicting of 

dementia-related agitation, aiding caregivers in providing a timelier intervention.  

Skin temperature is measured in 2 of the 9 included studies [10, 55]. In both of these studies, 

skin temperature data was used in combination with other physiological data streams, thus 

the studies shall be discussed later. There are a number of different sensors which can detect 

skin temperature, though the only one specifically mentioned in the reviewed papers is a 

thermistor. Thermistors contain a semi-conductive material whose electrical resistance will 

change in proportional response to changes in temperature. Thus, if a thermistor is in contact 

with the skin and the resistance of the material is detected to increase, it would be 

demonstrable that skin temperature has increased [105].   

A microphone is utilised in 1 of the studies selected for inclusion [61]. In this study, the 

microphone utilised is the that of a smartphone, worn around the neck of the subject in a 

pouch. Though this is not technically a wearable device, it is included in the review as it is a 

simulated wearable device. The data gathered from the microphone is not shown to 

consistently correlate with the incidences of dementia-related agitation, however this is 

more likely due to background noise being picked up by the microphone, making the data 

too noisy to be useful. As such, in any future experiments on using audio data from 

microphones to predict agitation, steps should be taken to reduce the sensor’s sensitivity to 

background noise. Furthermore, microphones may not be usable in real-world scenarios, 
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such as tracking agitated behaviours in people with dementia aging in place, or for use in 

busy care institutions, due to the inevitable background noise which accompanies daily life. 

Nesbitt et al. (2018) is a study which investigated whether data from a HR monitor, 

accelerometer and  microphone could be used to identify occurrences of agitation [61]. 9 

people with dementia in a care institution wore an Android smartwatch on their wrist and a 

mobile phone in a pouch around their necks. The smartwatch was used to collect data on HR 

and limb movement (using the accelerometer) and the phone in the pouch was used to 

collect audio data- the subjects vocalisations- through its microphone. 5 features would then 

be extracted from that audio data:  

• Decibel level (the loudness of the vocalisation) 

• Pitch based anger (the level of anger the vocalisation conveys, calculated from the 

vocalisation pitch)   

• Pitch based fear (the level of fear the vocalisation conveys, calculated from the 

vocalisation pitch 

• Words based anger (the level of anger the vocalisation conveys, based on the words 

used) 

• Words based fear (the level of fear the vocalisation conveys, based on the words 

used) 

During the data collection period, student nurses and computer science graduate students 

followed the subject, recording their behaviours via apps. These observations provide the 

ground truth which the sensor data can be compared to.  

The results showed that in all instances highlighted and written up in the paper, the 

accelerometer data on limb movements correlated with the observations of agitation, with 

heart rate correlating with agitation episodes less frequently. The speech-related data does 

not correlate with agitation episodes in any of the reported instances, though as stated 

previously this is likely due to background noise making the audio data collected too noisy. 

As such, from this study we can say that limb movement (measured using accelerometers) 

and HR are a useful combination for identifying agitation, however audio data from 

microphones is not useful [61].   

However, the placement of the microphone in the data collection phase of the study could 

be argued to be unideal, too far from the mouth. Future studies could use microphones 

mounted closer to the mouth to collect better quality audio data, however care should be 
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taken to ensure that the mounting of the microphone is comfortable and acceptable for 

people with dementia [61].  

In Khan et al. (2018), an accelerometer, EDA sensor and PPG sensor (contained within the 

Empatica E4) were evaluated for use in detecting agitation, as the wearable component of 

the Detecting Agitation and Aggression in Dementia (DAAD) [55]. Though the full system 

contains door sensors, non-wearable movement sensors and a pressure mat, the analysis in 

the study included here is only performed using the data from the wearable, allowing this 

study to meet the inclusion criteria. To collect the data, 2 participants- both elderly females 

with dementia- wore the Empatica E4 for a combined total of 28 days- participant 1 had 15 

days’ worth of fully labelled data collected and participant 2 had 13 days’ worth of fully 

labelled data collected. The sensors were set to a sampling frequency of 64Hz, and noise was 

removed from the collected data 0with a first order Butterworth low-pass filter at 20Hz. 5 

agitation events were recorded for participant 1 and 9 agitation events were recorded for 

participant 2, and the data from these episodes were labelled. To analyse the data collected, 

the researchers used 15 different combinations of the data streams collected, for example 

accelerometer & EDA, accelerometer & BVP, etc. Machine learning- SVM and RF classifiers- 

were used to analyse the combined data streams. The best time window and combination 

for giving the best area under the curve (AUC) value was 1 minute and accelerometer & EDA 

& skin temperature, respectively. The best average AUC was obtained with the 1-minute 

time window and the data combination of BVP & EDA & skin temperature. The common 

sensing modalities between the 2 combinations which gave the best prediction values were 

EDA and skin temperature, thus validating that these 2 sensing modalities are likely useful in 

predicting dementia-related agitation. 

In Amato et al. (2018), data is collected from accelerometers, EDA sensors, PPG (HR, HRV and 

IBI) and skin temperature sensors [10]. To collect the data, 5 individuals with dementia in a 

care institution were invited to wear the Empatica E4- a device containing the 

aforementioned sensors- during their awake hours, with the device being removed of a 

night-time for data transfer and recharging. Care staff were asked to observe the subjects 

and record any occurrences of crises, including agitation, by pressing a button on the device 

or by recording the occurrence in a journal. 250 session worth of data was collected, the 

sessions being 9-10 hours in duration. The data was extracted and stored on a cloud-platform 

where it was cleansed, conditioned and then the features were extracted. No analysis was 

performed on the data to identify correlations with agitation; thus, this combination of 

sensors cannot be judged for their usefulness in predicting or identifying agitated behaviours 
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or agitation episodes. Instead, the authors discussed the usability of the Empatica E4 for 

people with dementia and propose a new wearable for Alzheimer’s patients, both of which 

will be discussed in subsection B.  

From the review of the efficacy of the several types of sensors, and the physiological data 

from them, for predicting dementia-related agitation and agitated behaviours, the most 

efficacious sensing modalities can be identified. Accelerometers are used in 7 of the 9 studies 

included, and in all the data from the accelerometer either shows a correlation with 

dementia-related agitated behaviours or is useful in predicting agitated behaviours. As such, 

actigraphy can be considered an efficacious sensing modality in the prediction and 

identification of dementia-related agitation.  

Furthermore, coronary data streams collected with PPG or ECG (HR, HRV, IBI, BVP) can be 

considered efficacious sensory modalities for dementia-related agitation prediction and 

identification. This is due, in part, to the clear demonstrable correlation between increased 

HR and agitated behaviours such as PV. HR was also found to correlate with general agitation 

episodes in half of the presented examples in Nesbitt et al. (2018) [61]. Furthermore, in Khan 

et al. (2019) the best mean AUC value was achieved with BVP as one of the data streams in 

the combination. All of these results from the included studies support the use of PPG and 

ECG in the detection of dementia-related agitation [55]. However, PPG is more suitable for 

deployment in a wrist worn device than ECG, thus a PPG sensor would be preferable (due to 

other efficacious sensors, such as accelerometers, being most effective situated on the 

wrist). 

Moreover, EDA can also be considered an efficacious sensing modality for the purposes of 

dementia-related agitation prediction. In Melander et al. (2017) it is found to correlate with 

agitation episodes and pre-agitation episodes, meaning it could be useful in not only 

identifying occurring agitation but also for early prediction of agitation [18]. In Khan et al. 

(2019) it is one of only 2 of the data streams found to be common in the combinations that 

give the best AUC value and the best mean AUC value, further supporting the assertion that 

EDA is a useful sensing modality [55]. 

One other notable sensing modality is skin temperature, despite only being found to be an 

efficacious sensing modality in 1 of the included papers. In Khan et al. (2019) it is one of only 

2 of the data streams found to be common in the combinations that give the best AUC value 

and the best mean AUC value [55]. However, due to it only being evaluated in 1 included 
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study, it shall be seen as a potentially efficacious sensing modality, and more work should be 

done on evaluating a correlation between skin temperature and dementia-related agitation. 

3.5.2. Devices 

Wrist-worn sensing modalities or devices, such as smartwatches, were utilised in 8 of the 9 

studies [10, 18, 55, 57-59, 61, 99]. They could be used alone or in conjunction with other 

wearable devices or environmental sensors. In the 1 other study a harness/belt was used to 

collect the physiological data [60].  

The harness/belt used in the study was the Zephyr BioHarness System 3.0 (Zephr) and it was 

used to measure heart rate of people exhibiting PV [60]. The participants wore it as a chest 

strap, and support and comfort could be enhanced by also applying shoulder straps. The 

device contains an internal rechargeable lithium polymer cell; LED; passive conductive ECG 

pads (ECG sensor); a pressure sensor pad which detects the movement in the subject’s ribs; 

a thermistor to measure the temperature of skin; and a 3-axis accelerometer to measure 

subject movement and activity levels, as well as the device’s orientation [106, 107]. Thus, it 

can track heart rate, respiration rate, skin temperature and movement. Data is processed 

internally in the device; however, Bluetooth capabilities can be used to transfer the data to 

other devices and displayed on a GUI [51]. Furthermore, the device was found to have 

sufficient usability and comfort when used with individuals with dementia [60]. The cost of 

this device is approximately $700, which could make it prohibitively expensive for some 

researchers, however it is not the most expensive device found in the review [108]. However, 

only 2 of the sensor types and attributes the device collects were found to be among the 

most efficacious for agitation and difficulty prediction. Furthermore, the accelerometer may 

not be efficacious worn on the chest, as from this location it cannot not track movements of 

participants’ limbs.  

The Empatica E4 was used in 2 studies [10, 55]. This device was designed to be used in clinical 

trials, and so it measures physiological attributes with high quality, accuracy, and precision. 

The physiological attributes it tracks are blood volume pulse (using a PPG sensor), movement 

(using a tri-axial accelerometer), EDA (using an EDA sensor), and skin temperature (using an 

infrared thermopile). It also has an internal real-time clock, allowing the readings of the other 

sensors to be accurately timestamped, with an event marker button also being provided so 

that salient events can be linked to the physiological data as they occur [10]. The desktop 

device management application is compatible with Windows and Mac operating systems. It 

also has Bluetooth capabilities for data transfer, which can be done using the provided app 
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or using bespoke apps [109]. However, the Empatica E4 costs approximately £1700 at the 

time of the writing, meaning it may be prohibitively expensive for many researchers in many 

circumstances. Furthermore, the Empatica E4’s management application, which is the 

platform data stored locally on the device is transferred to, has a number of usability issues 

such as crashes and bugs [10]. Secondly, the device has approval to be used for medical 

research in the European Union, but is not FDA approved and may not be usable for medical 

research in other jurisdictions, which could make the Empatica E4 unideal for many 

organisations and researchers depending on their requirements and geographically applied 

legal restrictions  [109]. 

The Philips Discrete Tension Indicator 2 (DTI-2) is utilised in 1 study [18]. The device can track 

EDA, skin temperature, ambient temperature, ambient light, and movement [84]. This 

includes 2 of the 3 efficacious attributes for tracking dementia-related difficulties identified 

previously. Also included in the device are an event marker button and real-time clock. 

Bluetooth capabilities are also available for the transfer of data and an embedded microSD 

card can store data locally. Locally stored data can be transferred to a PC with a USB cable 

[110]. The price of the device could not be found using the methodology previously 

mentioned, meaning it cannot be compared to other devices identified in the review based 

on this metric [111]. Furthermore, the device does not contain any sensors which can detect 

pulmonary attributes such as HR, HRV, BVP or IBI. Another potential issue with the device is 

that data can only be transferred by USB to devices with Windows operating systems, limiting 

the device to use only with researchers wanting or able to use that operating system [110].  

The Pebble smartwatch is the wearable devices employed in the BESI system, which is 

reported in 3 of the included studies [57-59]. The Pebble is somewhat inexpensive, costing 

approximately £80 at the time of writing [112], and can track movement and heart rate using 

an accelerometer and a PPG sensor, respectively. The device has Bluetooth capabilities for 

data transfer to either iOS or Android mobile devices. One can also use bespoke applications 

on the devices for data storage and processing [57]. Despite its relatively inexpensiveness 

and decent range of sensors and capabilities, one major drawback with the Pebble is its lack 

of EDA sensor, as EDA was found to be one of the most efficacious physiological attributes 

for identifying dementia-related difficulties. 

The eclipse smartwatch was designed specifically for use with people with Alzheimer’s 

disease [10]. The device can track a large variety of physiological attributes, including limb 

movement, HR, IBI, skin temperature, and EDA. It can also track the location of the user. 
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Furthermore, it has a strap fastener which was designed to prevent the unintentional 

removal of the device by the subject. Also, comfort is maximised for the user through the 

use of a soft textured material on the part of the device which contacts the user’s skin. 

Moreover, the device can be deployed, in theory, indefinitely, as it has an attachable battery 

which can changed as the device is in use, so it does not need to be removed from the user 

to be charged. However, as of the time of writing, no literature could be found which 

discussed an evaluation of the device, in any scenario. Furthermore, the price of the device 

was not available publicly. Both the lack of published evaluations or usages of the devices 

and the lack of a price, makes it difficult to compare fully with the other devices found in the 

review. 

In the remaining 2 studies sufficient information was not provided for a proper evaluation of 

the device. One study used an unspecified android smartwatch [61] and the other only 

mentioned that the devices were worn on the ankle and the wrist [99].   

Overall, the Empatica E4 was found to be the most efficacious and usable device for 

collecting the necessary physiological indicators of dementia-related difficulties. It contains 

all 3 of the most efficacious sensing modalities and thus collects all 3 of the most useful 

physiological attributes, as well as skin temperature. Furthermore, the sensing modalities of 

the device collect high quality data, meaning the data being collected will be more useful. 

Moreover, the device has been proven to be usable and comfortable for people with 

dementia. One limitation for this device is the remarkably high price, which could be 

prohibitive for the device to be used by some researchers due to financial restraints. 

However, the cost is offset by the high efficacy and usability of the device.  

3.7. Chapter summary 

In this chapter, the process followed to search for a relevant dataset of physiological 

indicators of dementia-related difficulties was explained. No relevant dataset was found 

during the search, justifying the need for conducting a data collection experiment with 

people with dementia to collect such a relevant dataset. Furthermore, it was established 

through a systematic literature review that the most efficacious device for collecting the 

relevant physiological indicators of dementia-related difficulties was the Empatica E4. As 

such, this chapter has answered the research question: “What is the best wearable device 

which can be used to track the indicative physiological attributes of people with dementia, 

in a comfortable, unobtrusive and unobstructive manner?” 
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4. Review of Methods for Data Collection experiments with 

Dementia   

4.1. Introduction  

In order to collect a dataset containing the physiological data attributes required to develop 

a system for identifying and predicting the occurrences of dementia-related difficulties, it is 

vital that a data collection protocol with people with dementia be conducted. This assertion 

is made clear by the conclusion of Chapter 3. As such, this chapter is concerned with the 

development of a protocol which can be used to collect such a dataset from people with 

dementia. Firstly, the methodology for a systematic literature review to identify the various 

and best methods utilised in similar studies in the literature is presented. Next, the results of 

the fore mentioned literature review are enumerated and discussed, with these results 

having been previously published [13]. Following this the chapter will justify why the 

implications of COVID-19 on the methods identified in the review necessitated a pivot on the 

project, and why the field of work stress was selected for the pivot. Finally, the chapter is 

concluded with a summary of the discussion of the review results and the implications of the 

pivot.  

4.2. Methodology  

A search of the available, relevant literature was conducted using IEEE Xplore, ACM Digital, 

PubMed, Scopus, Web Of Science and Google Scholar [13]. All of the keywords and phrases 

were defined prior to the start of the search. The returned results were then filtered by 

publication type and publication date, as only peer-reviewed journal and conference papers 

were considered desirable results, with the date constraints being that they must be 

published between January 2015 and December 2020. 1514 results were returned in the 

initial search of the fore mentioned online repositories. The results were then reviewed by 

their titles, with the inclusion and exclusion criteria for the title review being shown in table 

4. 

Table 4 Inclusion and exclusion criteria used in the title review stage of the methodologies review process [13]  

Inclusion criteria Exclusion criteria 

Include the words “dementia”, 
“Alzheimer’s”, “cognitive impairment”, or 
the name of a BPSD or dementia symptom 

Title mentions requirements elicitation, 
screening, diagnosis, smartphones, mobile 
applications, or social robots, 

Include the words monitoring, smart 
device, assistive device, system, 
technology, or the name of a sensors or 
physiological feature 

Review papers 
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The abstract review was the next stage of the review process, and the papers were included 

or excluded in line with the inclusion and exclusion criteria shown in table 5.  

Table 5 Inclusion and exclusion criteria used in the abstract review stage of the methodologies review process 
[13] 

Inclusion criteria  Exclusion criteria 

Human studies Purely smartphone-based studies 

Discuss the use of wearable devices as part 
of the system being tested 

Studies that did not primarily study 
dementia and/or related difficulties or 
behavioural and psychological symptoms of 
dementia (BPSD) 

Studies that had no mention of 
physiological data collection or focused 
upon caregivers rather than people with 
dementia. 

 

In full paper screening, the inclusion criteria were to include studies which: include data 

collection experiments using people with dementia; provide sufficient details of 

methodology employed. Excluded were papers which: are inaccessible due to paywalls (due 

to financial constraints); containing data collection but with insufficient detail of 

methodology for meaningful critique. 

4.3. Results & Discussion  

4.3.1. Recruitment  

Recruitment refers to the process and methods which are used to identify, approach, inform, 

and ultimately request the participation of potential participants [113]. The methods 

employed to recruit participants were outlined in 14 of the included studies [18, 55, 57-61, 

84, 88, 99, 114-117]. The recruitment methods which are selected in each study are 

influenced greatly by the setting of the experiment and the severity of dementia experienced 

by the target demographic of participants. Hospitals are demonstrated as effective 

recruitment settings in two of the included papers [88, 115]. In one of the papers, the study 

focused on tracking behaviours in participants’ residential environs, and thus outpatients of 

the hospital were recruited [115]. Alternatively, in another paper, inpatients were recruited 

as participants, with an inclusion criterion being that they were expected to remain in the 

hospital for  a period of 10 days [88]. One advantage of recruiting participants in hospital 

settings is the volume of patients admitted, making it easier to recruit significant study 

populations. Another bonus of recruiting participants through a hospital is that there are 
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almost certainly to be healthcare professionals present who can aid in the medical and 

neuropsychological evaluation of patients, potentially reducing the workload on the 

researchers and caregivers. Moreover, individuals are often first diagnosed with dementia in 

a hospital setting, meaning that this setting could be useful for recruiting participants in the 

very early stages of dementia [30]. However, global pandemics, such as COVID-19, make this 

recruitment channel much less effective, due to hospitals being overwhelmed and staff being 

too busy to aid in experimental recruitment [118, 119]. A 4% drop in dementia diagnoses 

was observed in England in 2020 [120], reducing the prevalence of potential participants. 

Dementia-specific care homes or residential institutions are also used as a recruitment 

channel in eight of the included papers [18, 55, 60, 61, 84, 99, 116, 117]. Such care homes 

will contain a relatively substantial number of potential participants for studies wishing to 

explore the moderate to severe stage of dementia. However, this channel may not be ideal 

for recruiting participants in the earlier stages of the disease. Furthermore, the COVID 19 has 

greatly impacted care homes and their residents, meaning in such pandemic conditions it 

may be hard to contact and recruit participants via this channel [120, 121]. Another useful 

channel which could be used to recruit participants in a community-based setting, often in 

the earlier stages of the disease, is community support and advocacy groups and 

organisations, such as the ones used for recruiting participants in the Behavioural and 

Environmental Sensing and Intervention (BESI) study [57-59]. Dementia day cares could also 

be a useful recruitment channel for people in the earlier stages of the disease, or at least 

participants who live in a community setting [114]. In conclusion, the selection of a specific 

recruitment channel for an experiment will most often be due to the setting or location in 

which the experiment is to be conducted and the stage of dementia the target demographic 

of participants is experiencing. However, it can often be difficult to gain access to these 

recruitment channels, especially during a pandemic [122]. As such, utilising remote 

communication methods is likely to be best for contacting potential participants during the 

pandemic, but such methods may prove to slow the recruitment process considerably. 

4.3.2. Consent & assent acquisition  

The methods used by researchers to acquire consent or assent from participants is outlined 

in detail in 9 of the papers included [18, 55, 60, 61, 88, 99, 114, 116, 117]. The participants 

in all studies had some level of cognitive decline, meaning that it was impossible to obtain 

written, informed consent from them directly. Instead, the participants’ legal power of 

attorney (PoA) was approached and asked for informed, written consent. In a number of 

these papers, consent is gained from the PoA alone, with the subjects, mostly with moderate 
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to severe dementia, were considered entirely unable to give informed consent [18, 55, 60, 

61, 99, 113, 114, 116, 117]. However, it is also possible for some participants whose cognitive 

decline is not as severe to be able to give informed written consent. This is the case in 2 

studies, where 1 participant was judged to retain the mental capacity to consent to 

participation and thus their consent was acquired [99, 117]. Furthermore, in another paper, 

it is specified that the participant and their PoA are both asked to give informed written 

consent, meaning that equal weight is given to the person with dementia’s and their PoA’s 

desires to participate [88]. In four of the included papers, where researchers believed that 

participants could not give informed consent, their assent for their participation was 

acquired. One method in which assent was inferred was if the participant happily wore the 

device, and a refusal to wear the device was interpreted as the participant withdrawing their 

assent to take part in the study [18, 55, 116]. As previously mentioned, where the 

participants were unable to consent, written informed consent was acquired from a PoA. 

Information regarding the experiment, which was given to participants and their PoA before 

their participation to ensure they could give informed consent, could be provided in a verbal 

or written format. The most effective methods of sharing this information appeared to be a 

combination of the two, with written information being easy to refer back to and read at 

one’s leisure, while verbal delivery of the information allows for participant interaction, such 

as seeking clarification [18, 113]. In [18],  caregivers were also asked to give written, informed 

consent for their own participation, as the use of video cameras meant that their own 

movements and interactions with participants would be recorded. Caregivers were asked to 

consent to their own participation in a number of studies [55, 99, 113, 116, 117]. In 

conclusion, the acquisition of informed and written consent from PoA and participant- where 

the latter is capable- is of vital importance and where the participant cannot give informed 

consent their assent must be acquired or inferred. Every relevant stakeholder involved in the 

experiment should receive written and verbal information regarding the protocol and their 

expected actions. However, the pandemic may make it difficult to provide face-to-face, 

interactive information delivery [123]. 

 

4.3.3. Physiological data collection  

The main theme and focus of every one of the papers which were ultimately included in this 

review was the methods used to collect the required and desired physiological data 

attributes from the participants with dementia [18, 55, 57-61, 84, 88, 99, 113-117, 124-126]. 

Four major aspects of physiological data collection are highlighted throughout the papers: 
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the various physiological data features that are monitored; the device which is used; the 

length or duration of experiment; and the way in which the methods were deployed and 

their durations. Two of the main consideration in selecting a device were the data features 

that are to be monitored and the device’s usability for participants in the target demographic 

of the study. The most commonly utilised type of device is a smartwatch or other type of 

wrist-worn device, with these devices being utilised as the sole wearable device in 12 of the 

papers which were included [10, 18, 55, 57-61, 84, 88, 99, 113-117, 124-128]. 

Accelerometers are the most commonly deployed sensors on devices located on the wrist, 

with all but two of the papers utilising wrist-worn devices employing accelerometers with 

the aim of tracking movement and activity [10, 18, 55, 57-61, 84, 88, 99, 113-117, 124-128].  

Devices worn upon the wrist appear to be usable and acceptable by participant in all of the 

stages of dementia. One of the advantages of wrist-worn devices is that they can track 

movement of both upper limbs and full body, as opposed to device worn on the chest or 

waist. Device worn upon the wrist are utilised in combination with other wearable devices 

too, with wrist and ankle-worn devices being the most commonly used combination, as in 3 

papers [99, 117, 129]. Two of these papers utilise accelerometer sensors in devices deployed 

at this combination of bodily locations, meaning they can detect arm and leg movements 

[99, 117]. In a singular paper, a sensor worn upon the ankle is only device which employs an 

accelerometer sensor, in combination with a GPS location sensor, while a device located on 

the participant’s wrist tracks EDA [129]. A smartwatch is also combined with a microphone, 

worn on the participant’s neck, in a sole study which aims to detect dementia-related 

agitation [61]. A smartwatch of an Android persuasion tracks participants’ HR and 

movements of their limbs. The smartwatch data correlated with the instances of agitation 

observed by caregivers, indicating accuracy of a relatively high degree. The combination of 2 

devices is useful for increasing the number of data features which are collected, as is the case 

in two studies, [61] and [129], or increasing the locations one can acquire data relating to a 

singular feature from, as in [99] and [117]. One drawback of using 2 devices in combination 

is that the managing 2 devices at once is more complicated than utilising a singular device. 

Furthermore, increasing the number of wearables a system utilises increases the 

obtrusiveness and obstructiveness of that system. Sensor deployment upon the heel of 

participants is used in 1 included paper, in which researchers track walking patterns of their 

participant to identify instances of the participant experiencing disorientation [124]. The 

device worn by participant is an Inertial Measurement Unit (IMU) and while wearing it 

participants walk a predefined route around a laboratory setting. With this data from the 
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IMU, researchers calculate the participant’s foot’s acceleration, as well as the duration and 

speed of the participant’s movements. Deployment of a device on the heel is successful in 

this study, however it has at least one limitation: a device deployed in this bodily location 

has a great limit to the physiological data it is capable of tracking. 

In one paper included in the review, a device worn upon participants’ chest, namely the 

Zephyr BioHarness 3.0, is used to track HR data in participants who exhibit PV [60]. 

Deployment of the device to a location upon the participant’s chest allows for rather 

accurate ECG measurement [60]. However, this deployment medium is incapable of the 

important job of measuring things such as limb movement, and deployment of a chest-worn 

is somewhat invasive. Waist or hip worn device deployment could be seen as less invasive 

than chest deployment and is present in three of the papers included in this review [114, 

125, 126]. In a pair of the papers, an accelerometer is the sensor deployed at this bodily 

location and in another paper, a Bluetooth sensor is deployed at this location, with the aim 

of tracking participants’ location in relation to environmentally deployed Bluetooth sensors. 

In [114], the researchers experimented with placing sensors upon ankles, wrists or waists, 

and due to it being reported as the most comfortable, waist deployment was selected. 

Furthermore, in [125] the device can be attached to the participant with a strap, or can be 

held in a pocket of the participants’ clothing, with the latter presenting the most convenient 

method of deployment. However, limitations of not being able to track limb movement, EDA, 

or HR from this location, without adding to the device a plethora of obtrusive and invasive 

wires and electrodes, makes the placement of devices upon this bodily location ideal solely 

in situations where one is tracking movements of a whole body. Deployment methods and 

durations are also very important aspects to consider. In the BESI study, the Pebble 

smartwatch is used to track movements of participants for detecting agitated behaviours 

related to dementia. The period over which the physiological data was collected was 30 days, 

with subject-carer dyad numbers ranging from 3 to 10 in each iteration of the study being 

conducted [57-59]. The participants were tracked with the device continuously without 

break [10, 59]. However, being deployed for a continuous, uninterrupted span of time is not 

always practical for many devices and systems, especially those that employ multiple 

different sensor modalities and devices. The Empatica E4 falls under this category, as 

demonstrated by its use only during the daytime in one of the included papers [42]. The 

physiological attributes collected using the Empatica E4 in that study were accelerometer 

data, EDA, HR, and HR variability. Not using the device at night meant the researchers could 

have failed to observe dementia-related difficulties which the participant experienced during 
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the night. The DAAD study also utilised the Empatica E4, and the researchers used a similar, 

relatively short deployment window for the device in their study [55, 116]. In [116], the 

method for deploying the device is probably based on the experiment duration, with the 

device being used to collect 481 days’ worth of physiological data from 14 patients. Being 

deployed for such elongated periods of time would be a challenge for devices with the lowest 

power consumptions, meaning that deploying a device continuously for the entire duration 

of such experiments is nigh on impossible. As such, deployment durations in such 

experiments needed to be relatively short. Alternatively, one could deploy the physiological 

data collection device for a very short, specific amount of time, just enough to collect the 

data required from the participants, as is the case in one study [60].  In this study, the Zephyr 

BioHarness 3.0 was used to monitor HR in participants who exhibited PV. It was deployed for 

two 2-hour segments, with one segment on a day when the participants exhibited PVs and 

another segment being on a day when the participants did not exhibit PV. A short duration 

is also used in [10], where researchers employ an android smartwatch and smartphone in 

combination to track movements of the participants limbs, their HR, and their vocal 

emissions. Researchers were able to deploy the device for such short periods of time as they 

had observed the participants before conducting the experiments and so were aware of the 

times participants were most likely to experience dementia-related difficulties, and so when 

was best for them to deploy the device. Moreover, the advanced nature of the participants’ 

dementia meant that their dementia-related difficulties occurred more frequently than if 

they had been at an earlier stage of the disease. One could thusly state, with some support, 

that studies in which the participants’ have later stage dementia can have shorter durations, 

however this cannot be confirmed by this review as a number of the included papers specify 

not the stages of dementia experienced [123]. 

4.3.4. Observational data collection  

Observational data in this review refers to a record of dementia-related difficulties, which 

are observed, by researchers or caregivers during data collection experiments. The methods 

used to collect this data are discussed in 16 included papers. 4 different methods can be 

identified in the included literature: self-reporting of difficulties; observation of the 

difficulties by caregivers; observation of the difficulties by video cameras; and a combination 

of caregiver and camera observation of difficulties. 

Self-reporting is the method which is used in two of the included studies [115, 129]. One of 

the fore mentioned studies focused on tracking participants as they navigate outdoor 

locations and providing situation awareness support when needed [129]. A mobility diary 
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was completed by each of the participants, and they recorded the details about the outdoors 

journeys they took as part of the study. The researchers noted that when one compared the 

information recorded in the mobility diary to the physiological data and the activity inferred 

from it, the diary had a relatively low accuracy. Self-reporting was also used to record 

observational data in [115], where participants recorded details relating to their daily 

activities on a printed weekly program. The researchers make no claims or comments 

regarding the accuracy of this form of self-reporting method, and no such comments or 

claims can be made on reading their paper. Self-reporting has a number of advantages, 

including that it is relatively low cost [113]. Another advantage is that there are relatively 

few ethical concerns with this method of observational data collection compared to the 

other methods as no one need impose upon the privacy of the participants [56, 113]. 

Moreover, it is also the superior method in terms of COVID-security, as the participant need 

have no interaction with anyone else. However, problems with self-reporting do exist. For 

example, a participant experiencing disorientation or agitation participant may be incapable 

of recording observations [130]. Furthermore, those experiencing mild dementia are 

sometimes hesitant to admit to experiencing problems greater than what one would 

consider to be normal for an elderly individual [131, 132], meaning self-reporting skew 

observational data to only include difficulties which were undeniably experienced, meaning 

the record will not be complete. Finally, the cognitive impairment of participants may also 

make it more likely that they lose the medium for self-reporting [92, 93].  

Observation of participants solely by caregivers is the observational method used in eight of 

the papers included [18, 57, 59, 61, 114, 128, 133, 134]. Two main categories of caregiver 

observation recording can be identified: methods which are paper-based and methods which 

are app-based. Caregivers using paper based methods will record their observations in a 

journal [10, 127] or observation chart [18]. In one study, the paper-based method used was 

a journal, however this was only used to record extra contextual information regarding the 

difficulty occurring, as the primary method of recording difficulties occurring was pressing 

an event marker button on the physiological collection device [10]. Paper-based recording is 

also used in another paper, where the caregiver of the participant recorded the sleep 

patterns of the participant in a paper-based sleep diary. The caregiver’s recording of 

observational data was found to be highly accurate when a strong correlation between the 

diaries content and the collected physiological data was found. An observation chart printed 

upon paper is the medium utilised for recording observations by the caregiver in another 

paper [18], and this overcomes the difficulty of properly and concisely quantifying and 
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recording dementia-related behaviours which occur inherently with the utilisation of free-

form methods. The caregiver, using a 24-hour observation chart, marked down specific 

colours, with each colour corresponding to a different dementia-related difficulty being 

observed. This leads to a standardisation of observational data across participants, making it 

easy to compare one participant’s results with another participant’s results. However, one 

drawback is that the observer will record less contextual information regarding the 

difficulties than in a journal or diary.  

Caregivers using an app to record their observations is the selected method in four papers 

[57-59, 61]. In the study referred to by the name BESI, caregivers record the time, place, and 

characteristics of any agitation episodes which they observe during the study. They do this 

by utilising an android app-based daily survey. The authors of the paper provide no 

information on the exact nature of the survey, rendering any evaluation of the app-based 

survey impossible [57-59]. Also utilising an Android app is another paper [61], in which the 

person observing the participants record dementia-related difficulties that occur by selecting 

the difficulty from a predetermined list. The use of a list of predetermined options works not 

only to standardise the observations across participants and observes, but also simplifies the 

process of recording for the observer. Another important thing to consider is that if the 

observer is a caregiver, is that caregiver formal or informal. Generally speaking, formal 

caregivers (FC) are caregivers who provide care to participants in a formal, professional 

capacity, while informal caregivers (IC) are ones who provide care in an informal manner, 

usually being family or friends of the person with dementia. FCs, who are the caregivers 

providing the observational data in three studies [10, 18, 61], are trained professionals and 

so will have a higher likelihood of communicating their observations using accepted medical 

terms, meaning their observations should be standardised and be understandable to a high 

degree [135]. Moreover, FCs are commonly available to observe participants for extended 

periods of time when the participant is based in institutional settings [52, 53]. Alternatively, 

ICs, who are the caregivers who provide the observational data recording services in multiple 

studies [10, 57-59],  are more likely to be caregivers to participants with more mild dementia 

who are based in a home or community setting. This is the case in one study [127] where the 

caregiver doing the observations is the sister of the participant. This means that ICs are going 

to be commonly available to observe participants in experiments of longer durations, as long 

as the caregiver lives with the participant. However, ICs often experience increased burden 

and poor mental and physical health, resulting from their caregiving responsibilities, which 

may be increased and made worse by the additional responsibilities of being an observer for 
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a data collection experiment [136, 137]. Moreover, the COVID-19 pandemic, and other 

future pandemics, may cause a restriction in the amount of time ICs and PCs can spend with 

participants [123].  

Cameras are the observation method selected in two of the papers included [60, 126]. In a 

singular paper [126], researchers deploy a number of cameras in a mock-up of a waiting 

room, in which participants perform a variety of tasks. The video recordings made by the 

cameras are then later used to identify what activities the participants performed and for 

how long. Similarly, in another paper, cameras where used to record participants who 

exhibited PV [60]. In both cases, there was a high degree of correlation between the 

physiological data and the video recording, implying this method of observation is relatively 

accurate. Another advantage of utilising cameras for observational data collection is that the 

videos collected can be watch as many times as convenient, with observations being refined 

for greater accuracy with each viewing [55] Furthermore, passive nature of this camera-

based method means that there is no increase in burden on participants or caregivers when 

it is used. However, the use of cameras and the recording of individuals is not without its 

ethical concerns- many people are uncomfortable being surveilled with cameras- thus 

meaning that cameras should be deployed only to shared spaces and not utilised in any 

private areas in which participants may perform sensitive, personal activities [116]. Another 

disadvantage of  using camera for observation in studies is that they have a relatively high 

cost, compared with self-reporting and caregiver observations [113]. Caregivers and camera-

based observation methods are used in combination in four papers [55, 99, 116, 117]. In the 

DAAD study [55, 116] caregivers used observational charts to record instances of dementia-

related difficulties, highlighting contextual information which cannot necessarily be captured 

by a camera. In conjunction with this, cameras located in the communal spaces of the care 

home were used to record behaviours of participants, with the recorded video later being 

used to refine the initial caregiver observations. Another paper used a similar combination 

of caregivers and cameras [99]. Researchers used cameras to record the participants’ 

behaviours while a FC recorded any relevant difficulties or activities they observed on a 

paper-based observation chart. The cameras were used in a communal room in the 

institution, making it vital for all users of said communal space to consent to being recorded 

in their daily lives as they use the space. One member of staff did not consent to being 

recorded with cameras, citing concerns relating to their privacy, and so it was decided not to 

deploy cameras [99]. Similar concerns relating to privacy are also expressed in another paper 

[117], in which cameras and caregivers are used in combination also. However, the authors 
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state that in order to mitigate the privacy concerns expressed, they strictly limited access to 

the recordings that were made to 2 qualified individuals who were the only people required 

to view the footage for the needs of the study to be meet. However, if such reassurances are 

not enough to assuage the privacy concerns of participants, observers, or other stakeholders 

from whom consent is required, caregivers can still be used to obtain valuable observational 

data.  

4.3.5. Data transfer & storage 

Two distinct methods of data storage were identified in the literature. Seven papers utilised 

the device’s internal memory to store the data as it is collected, with the data being later 

transferred off of the device. In three of these papers, the data is transferred via a wired 

connection to a computer, and in the others the same process happens, however the data is 

then further transferred onward, onto a cloud service. COVID-19 made the transfer of data 

more difficult, as extra steps were required to safely get the device from the participant, 

without an increased risk of COVID transmission [138, 139]. Another potential issue with 

transferring data, which exists beyond the constraints of a global pandemic, is the need of 

licenced software to transfer the data to a desktop device [109]. Automatic transfer of data 

via a wireless medium, such as Bluetooth or Wi-Fi, is a valid alternative, with the data being 

sent to edge computing devices or nodes, as with the BESI study [57-59, 140, 141].  In one 

study the data is transferred to Bluetooth “anchors” and then is transferred onwards from 

these via Wi-Fi to  servers were they can be stored more permanently [125]. Similarly in 

another paper,  the data is transferred to a local base station, within the study’s immediate 

environs, from where it is then sent onwards to storage in the cloud [128]. Local storage of 

the data on the device requires little to no environmental or additional infrastructure, and 

can help to extend battery life, as no extra battery power is being used to operate wireless 

capabilities. However, researchers or caregivers will be left with the additional duties of 

transferring the data, increasing workload and burden. Alternatively, the workload for 

researchers and caregivers is reduced with wireless data transfer and is useful for continuous 

collection of data over an extended period. Despite these advantages, this approach does 

have its drawbacks, including more infrastructure requirements and increased complexity 

and cost [57-59, 140, 141]. Furthermore, cloud-based services can be helpful for when data 

to be stored is of large proportions [26]. However, use of such cloud-based resources is 

dependent upon the implementation of good security and access controls. 
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4.4. Proposed methodology  

In this section, a data collection protocol is proposed, with the utilised methods being based 

on the results of the review of methods and methodologies in section 3 of this chapter.  

4.4.1. Proposed novel data collection methodology   

Recruitment for the proposed experiment shall be performed via the Liverpool NHS Memory 

Clinic, with an NHS doctor who is also an advisor on our project acting as a gatekeeper. The 

recruitment criteria will be that the potential subject shall be dwelling in a community setting 

i.e., their own home, and shall have had a very recent diagnosis of dementia- within the 

month proceeding their recruitment into the trial, with their dementia being in the mild 

stage. One could argue that a better approach is to recruit people via the community support 

and advocacy groups for community dwelling people with dementia, as attendees of such 

groups are almost certain to be community dwelling. However, the use of the Memory Clinic 

is best for the proposed experiment as it increases the likelihood we shall recruit people with 

recent diagnose, and furthermore, we already have contacts established with the memory 

clinic through the NHS doctor advising on our project.  

Consent for the subject to participate will need to be acquired from both the subject and 

their next of kin/PoA. The reason for this is that the subject will just have been diagnosed 

with a disease that causes cognitive impairment, and thus it would likely require expert 

opinion and psychological testing to ensure that the person is capable of consenting. 

However, to simply have the next of kin/PoA consent could be equally distressing to the 

subject as they are likely to have only mild cognitive impairment at the early stage of 

dementia in which we wish to recruit them. As such, best practice will be to give both the 

next of kin/PoA the information about the procedures, duration, and other information 

about the experiment- including that they can withdraw their consent and participation at 

any time- both in written form and in verbal form. The former could be a leaflet which gives 

them the basic information about the experiment, and the latter should be a semi-formal 

verbal briefing in which both subject and caregiver can ask any questions they wish and seek 

whatever clarification they need. Then, the next of kin/PoA will be asked for informed, 

written consent, and the subject will be asked to give verbal consent, if they are deemed 

capable by an attending medical professional. Thus, both parties will have given informed 

consent where possible.  

The caregiver will have been given an overview of the experiment in the consent acquisition 

process, however once consent is given and the subject recruited, their caregiver will be 
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given more information on their specific duties and activities they will need to carry out. They 

will also be shown how to do them in a semi-formal training session in which they can ask 

questions and seek any necessary clarification. The caregiver will be required to remove and 

charge the device every evening as the subject goes to bed and reapply the device of a 

morning as the subject wakes up. They will also be required to collect observational data in 

an observation diary. The caregiver is likely to be an informal caregiver- a family member or 

friend the subject lives with- thus they will be unlikely to already know how to take down 

meaningful observational data. Thus, they shall receive training on how to do so. One could 

say that it would be better to utilise a formal caregiver who already possesses such skills, but 

such caregivers would increase the cost of the experiment and would be less likely to be 

available for prolonged periods of observation. Thus, training informal caregivers to make 

the observations is the preferable approach.  

The subjects shall be monitored for a period of 30 days. Data collection shall take place during 

the waking hours of the subject, but while the subject is sleeping the device shall be removed 

to be charged, and so that the data collected that day can be transferred to a computer. As 

previously discussed, this means that no data could be collected on any difficulties that occur 

at night, however it allows for a more long-term recording of the subject’s daytime activities. 

During the data collection period, the caregiver shall be asked to observe the subject and 

record any difficulties which occur in the subject in a paper journal. The record shall contain 

a time, a description of the difficulty and some contextual information such as what the 

subject was doing prior to the difficulty. It could be argued that the paper-based journal 

could be less efficient than an app-based recording system and less reliable and reviewable 

than a camera-based system. However, paper-based journals do not require charging as 

tablets or phones do, and paper-based journals have less privacy concerns inherent in their 

use than video cameras and tend to be cheaper and easier to implement.  

The collected physiological data shall be initially recorded to the device during the day and 

then transferred to a computer or PC of the evening/night. The Empatica E4 does allow for 

the streaming of data right to the computer via Bluetooth, however this was considered to 

not be ideal, as it would mean having an external device running in the home of the subject, 

which would have to be powered by their mains electricity, which could incur them not 

inconsequential costs over the course of the experiment. As such, it is better that the data 

be stored locally on the device and then transferred to a computer that only needs to be 

used at the residence for the duration of the data transfer. Once transferred the data shall 

be stored locally and securely on the computer. The observational data will be recorded on 
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paper, and these paper observations will be digitised by a researcher- converted to a word 

document or spreadsheet with the original kept in PDF form- and stored securely, in digital 

format on the computer. An alternative approach could be to keep the paper documents as 

paper documents, with the digitisation process presenting potential chances for information 

loss- a document could scan incorrectly or the researcher typing the observations into a word 

document could make a mistake. However, digitisation of the documents allows them to be 

stored more easily and search and used for labelling of the physiological data more 

efficiently. 

Thus, a step-by-step methodology for the proposed experiment is as follows:  

1. Recruit 5 subjects via the memory clinic through the gatekeeper.  

2. Inform the potential subject and their next of kin/PoA of the experimental process 

and implications for them in written and verbal formats.  

3. Acquire written and informed consent from the PoA and informed verbal consent 

from the subject if considered appropriate by attending medical professional.  

4. Train the caregiver in managing the device and taking observational records of 

dementia-related difficulties using a paper-based journal.  

5. The caregiver will attach the Empatica E4 (device) to the left wrist of the subject in 

the morning when the subject gets up, and ensure the device is on.  

6. The caregiver will observe the subject throughout the subject’s daily routine, 

recording in the journal any dementia-related difficulties the subject experiences. 

7. The caregiver will remove the device from the subject immediately before the 

subject goes to bed.  

8. Transfer the data from the device to the computer for storage. 

9. Take the observations recorded for that day and give the caregiver a new journal for 

the next day. 

10. Put the device on charge to ensure it is charged for the next day. 

11. Repeat steps 5 to 10 for another 29 days. 

12. Convert all the recorded observations into a digital format, to be stored on the 

computer storing the physiological data.  
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Figure 2 Flow diagram of the proposed experimental methodology 

4.5. Pivot of research to work stress 

In section 4.3. of this thesis, a variety of complications and limitations were found to exist in 

utilising many of the necessary methods for conducting the required data collection 

experiment with people with dementia. As such, the conducting of an experiment of that 

nature during the COVID-19 pandemic was found to be problematic and potentially 

unethical. In this section a justification for the pivot of the research project to focus on work 

stress detection from physiological data is provided. Furthermore, section 4.5.2. briefly 

outlines the aims and the proposed methodology of the new project direction, with the latter 

being discussed in much greater detail in Chapter 5 of the thesis. The pivot and justifications 

for it were first outlined in Harper et al. (2021,c) [14].  

4.5.1. Justification 

The COVID-19 pandemic resulted in a number of lockdowns and social distancing-related 

laws and guidance in many different regions [39]. Due to this, it became difficult to conduct 

experiments with people with dementia, as that demographic is one of the most at risk of 

death from the virus, and thus need to be given even greater and more strictly enforced 

protections against it [7] [39]. Furthermore, lockdowns and social distancing lead to an 

12. Convert all the recorded observations into a digital format.

11. Repeat steps 5 to 10 for another 29 days.

10. Put the device on charge.

9. Take the observations recorded for that day.

8. Transfer the data from the device to the computer for storage.

7. The caregiver will remove the device from the subject before bed.

6. The caregiver will observe the subject throughout the subject’s daily routine

5. The caregiver will attach the Empatica E4 (device) to participant

4. Train the caregiver in conducting experimentl.

3. Acquire written and informed consent from the PoA and participant.

2. Inform participant and PoA.

1. Recruit 5 subjects via the memory clinic
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increase in feelings of stress and isolation across the locked-down populations. This meant 

that certain key stakeholders such as caregivers were likely to be negatively impacted by 

being part of an experiment due to increased responsibilities [27]. Therefore, it was 

considered potentially unsafe and unethical to conduct a data collection experiment with 

people with dementia during the pandemic. The need to collect such a dataset to progress 

the research project was discussed in depth in chapter 3 of this thesis, and as collecting the 

dataset became impractical within the time and budgetary constraints of the project, it was 

decided that a pivot to a different but related research topic was necessary to continue the 

work on the project.   

The research domain selected was work stress detection from physiological data, and more 

specifically the differences in work stress experienced by individuals as they worked in home-

based and office-based environments. The decision to pivot to work stress was based upon 

a few justifying notions. Firstly, both stress and dementia-related difficulties can be tracked 

with wearables which detect activations of the Autonomic Nervous System (ANS) to identify 

emotional arousals indicating negative affect [16, 35], so processes employed in both 

domains are similar. Indeed, the wearable devices employed, physiological attributes 

collected, and the machine learning models trained in the work stress domain and dementia-

related difficulties domain have high degrees of similarity. Therefore, lessons learnt from 

developing stress detection models will be useful for detecting dementia-related difficulties. 

Another justification is that stress management can be highlighted as both a mitigation to 

and preventative measure of dementia-related difficulties [22]. For example, a person may 

become agitated due to stress that is unresolved, and long-term stress has been shown to 

speed up the progress of dementia, and thus lead to increased difficulties [50] [51]. Finally, 

the selection of the specific topic of comparing work stress experienced by individuals 

between working in home and office-based environments was supported by two arguments. 

One argument is that as the pandemic lead to an increase in individuals working from home, 

or from mixed home office environments, research on this topic would be timely and provide 

needed insight to work stress in the pandemic and post-pandemic working situations. 

Secondly, working age individuals tend to have lower risks of mortality from COVID-19 than 

people with dementia, and asking them to record their own activities and physiological 

attributes while they perform work tasks they had to perform regardless leads to no greater 

risk to those individuals of contracting COVID-19 [40]. A final justification which could also 

be provided is that conducting a physiological data collection experiment with working age 

people would allow the researchers to learn how to conduct such an experiment and work 
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out any potential issues, for example, in regard to the operation of the devices, before 

performing similar experiments with similar equipment with more vulnerable individuals 

with whom the issues could result in more disruption, distress, or difficulties [41].   

 

4.5. Chapter summary  

This chapter aimed to present a novel data collection methodology which could be used to 

collect a dataset from people with dementia, with the aim of using it to develop a system 

which could predict the occurrences of dementia-related difficulties. To that end, a 

systematic literature review was conducted to identify the various methods that were used 

in previous similar studies existing in literature. 5 distinct stages or elements of the data 

protocols were identified: recruitment; consent and assent acquisition; physiological data 

collection; observational data collection; data transfer and storage. The selection of methods 

at each stage of the methodology depended mainly upon the stage of dementia or difficulty 

being studied. For example, studies including participants with severe dementia were more 

likely to use caregiver observation than studies of participants with mild dementia. In the 

conductance of the review, it was identified that many of the methods could not realistically 

be utilised in a COVID-secure manner, making conducting a data collection experiment with 

people with dementia potentially unsafe and unethical during the COVID-19 pandemic. As 

such, a pivot to detecting work stress is proposed, with the justifications that: the 

participants will be working age adults at lower risk of COVID-19 morbidity than people with 

dementia; the physiological indicators of dementia-related difficulties such as agitation and 

stress are similar; and stress can be a result of dementia-related difficulties as well as a cause 

of them.     



72 
 

5. Comparison of Work Stress in Home and Office Work 

Environments 

5.1. Introduction  

This chapter is structured thusly. Firstly, the methodology for attaining and analysing a 

physiological dataset from academics working in a mixture of home and office work 

environments is described. Included in this analysis is the development of machine learning 

models that can classify the occurrences of high and low, stress observations. Next, the 

results of the data analysis and machine learning are shown and then discussed, along with 

a discussion on the potentials mitigations to work stress, based on the causes implied be the 

results of the data analysis. Finally, the chapter is concluded with a summary of the results 

of the analysis and the potential mitigations. 

5.2. Methodology 

The methodology proposed in this chapter entails participants wearing a wrist-worn device 

which collects data related to the physiological indicators of stress, as they go about their 

average working day in home and office-based working environments. The aspects of the 

methodology outline in this section include the ethical approval of the study and the strategy 

used to recruit participants. Furthermore, the protocol used to collect the data from the 

participants is also described, as well as the methods used to pre-process and analyse the 

data. Finally, the methods used to train a variety of machine learning models that can be 

used to predict instances of work stress from physiological indicators of work stress are also 

discussed.  

5.2.1.  Ethical approval & recruitment  

To collect the primary dataset of physiological stress indicators and subjective stress and 

productivity measures, an ethical approval is obtained from the Research Ethics Committee, 

Liverpool John Moores University (Reference number: 21/CMP/001). Participants are 

recruited with emails sent via internal university email groups. The invitation emails explain 

the study and what potential participants would be required to do if they took part and have 

a participant information sheet as an attachment. Emails are sent to academic staff and 

postgraduate research students at LJMU, with inclusion criteria being that participants be 

academic staff or postgraduate researchers and able to work from home and office settings 

for at least 3 days each over the course of the protocol. 
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5.2.2. Data collection protocol  

The Empatica E4 smartwatch was chosen as the physiological data collection device. It was 

selected for comfort and accuracy of the physiological features collected [14]. The device 

collects skin temperature, electrodermal activity, heart rate, heart rate variability, blood 

volume pulse data, inter-beat interval (IBI) and movement/accelerometer data from the 

participants wrist. 

The data collection protocol is largely based on a protocol outlined in earlier published work 

on the project [29]. The protocol is planned to last approximately 10 working days for each 

participant. Participants are asked to wear an Empatica E4 on their non-dominant wrist, with 

the aim of reducing movement artefacts in the physiological data streams as opposed to the 

dominant wrist, while they complete their daily work-related tasks. The participants are 

given a list of 10 activities (that included meeting, meeting preparation, typing/editing an 

electronic document, reading or writing email, handwriting or sketching by hand, 

researching/learning, data analysis or statistics, teaching (lecture), teaching (tutorial/lab 

session), lesson/lecture/tutorial preparation) and asked to turn the Empatica E4 on when 

they begin one of the listed activities and turn it off at the end of that activity. Many of the 

activities selected are similar to those selected in the Stress at Work (STRAW) study by 

Bolliger et al. (2020) [26], with emails, data analysis, and the planning and teaching task 

selections in the current study being inspired by Bolliger et al. (2020). Unlike Bolliger et al. 

(2020) the current study does not capture the participants’ travel from location to location, 

or free time and breaks, reducing potentially high participant burden reported in the STRAW 

study. Furthermore, the current study has more specific options for teaching or presenting, 

with teaching during the lectures being considered different from teaching in tutorials or lab 

session to warrant the two having separate selection options.  

At the end of each work session, the participants complete a questionnaire. The 

questionnaire is a Google Sheets document which is shared with the participants via email. 

The document asks the participant to record six attributes regarding the activity they are 

recording: the date of the recording; the time of the recording; whether the participant is 

recording the session at home or in an office environment, from a drop-down selection 

menu; the activity being performed, from a drop-down selection menu; the subjective stress 

of the participant, on a Likert scale of 1 to 5, similar to Galanti et al (2021) [22]; and subjective 

productivity, also on a Likert scale of 1 to 5. In the first column the attribute name is provided, 

the second column shows all possible values that could be returned for each attribute, the 

third column shows the number of instances- qua the number of work sessions in which each 
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value of each attribute was recorded- column 4 shows the percentage of all sessions in which 

each value of each attribute was recorded, and column 5 provides a description of each 

attribute and possible value of the attributes.  

 

Figure 3 (Top) An Empatica E4 worn upon a wrist. (Bottom) Screenshot of an example of the Google Sheet-based 
questionnaire for gathering the contextual/observational data 

5.2.3. Data preparation, pre-processing, and initial data analysis 

Prior to the training of the machine learning algorithms, an initial data analysis was 

conducted in order to uncover any correlation between any of the physiological signals and 

questionnaire data points, proceeded by preparatory steps to clean and scale the data. 

Firstly, a visual inspection of the data was conducted to remove any missing data or artefacts. 

MATLAB 2020A was then used for the first stages of the initial data analysis. The naming 

convention of the folders containing the collected data files meant that all of the 

questionnaire data relating to each session was contained in the sessions folder name. As 

such, that is where the questionnaire data was loaded from. Each physiological data signal 

was then loaded from the relevant file and filtered were necessary. All outlier values were 

removed from the data attributes, with outliers being defined as any value that lay more 

than three scaled MAD from the median, and these outliers were replaced with the nearest 

non-outlier value in the attribute. Furthermore, all data attributes were smoothed using the 
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MATLAB “Smoothdata” function, reducing the influence of noise on the data analysis and 

machine learning models. The EDA signal was initially filtered to reduce noise in the signal 

using a 4th order Butterworth filter with a cut-off frequency of 2Hz. From the EDA signal the 

mean, standard deviation, dynamic range, mean slope, and the maximum and minimum 

values are extracted, as in Simons et al. (2020). From the tonic component the mean and 

standard deviation are extracted. The mean and standard deviation are also calculated from 

the phasic component [30]. Furthermore, an algorithm inspired by Healey (2000) is used on 

the phasic component to extract the number of skin conductance responses (SCRs), the sum 

of the magnitudes of the SCRs, and the sum of the durations of SCRs. 

Descriptive statistical features were then calculated from each of the physiological data 

signals, including the separated tonic and phasic EDA components. The features extracted 

are shown a table provided in appendix B. Due to the varying length of the data collection 

sessions, the number of SCRs, SCR magnitude and SCR duration were all normalised using 

equation 1. This method of normalisation was to divide the number of peaks, magnitude, or 

duration by 60 and multiply the result by the sampling frequency, thus giving us the number 

of peaks/magnitude/duration of the SCRs per minute of each work session. This was to 

reduce bias, as longer sessions may have more SCRs, and thus greater SCR magnitude and 

duration, than a shorter session, yet at a lower frequency. As such, a shorter session with a 

high number of SCRs, likely a high stress session, could be erroneously considered the same 

as a much longer session with the same number of SCRs, which is more likely to be a low 

stress session. In equation 1, Xi is the normalised signal, X is the non-normalised signal, and 

fs is the sampling frequency at which the EDA data was collected.  

𝑋𝑖 =
𝑋

60
𝑓𝑠 

Equation 1 Normalisation equation for SCR magnitude and SCR duration for the initial data analysis 

Similarly, NN50 and NN25 were also normalised for the same reason, using the normalisation 

equation:  

𝑋𝑖 =
𝑁

𝑙𝑒𝑛𝑔𝑡ℎ(𝑋)/60
 

Equation 2 Normalisation equation for NN50 and NN25 

Again, in this equation, Xi is the normalised signal, X is the non-normalised signal, and N is 

the number of inter-beat intervals that meet the required criteria (differing more than 25 for 

NN25 and more than 50 for NN50). The reason for this method being employed is that the 
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number of intervals varying by more or less than the required value will be more likely to be 

higher in longer sessions than shorter ones, regardless of whether the longer session is a high 

or low stress one. This will make it more likely that duration of a session will create a bias. As 

such, equation 2 addresses this bias by dividing the number of relevant inter-beat intervals 

by the number of values in the raw data stream, divided by 60, meaning we have the number 

of relevant interbeat intervals per minute. The correlations and dependences of the variables 

were then calculated using a variety of methods. The resulting dataset of combined 

questionnaire-based and physiological attributes and features were then imported to SPSS, 

in order that the relationships and correlations between the attributes could be calculated. 

The relationship between binary stress level and environment was calculated using the Phi 

Coefficient, as both variables are non-dichotomous nominal variables. The process for doing 

so was to first cross-tabulate the data creating a contingency table and then calculating the 

Phi value using the equation:  

𝑃ℎ𝑖 =
𝑎𝑑 − 𝑏𝑐

√(𝑎 + 𝑏)(𝑐 + 𝑑)(𝑎 + 𝑐)(𝑏 + 𝑑)
 

Equation 3: Equation for calculating the Phi squared coefficient 

Where a is the count of low stress occurrences in home environments, b is the count of low 

stress occurrences in office environments, c is the count of high stress occurrences in home 

environments and d is the count of high stress occurrences in office environments. The 

correlation between the ordinal scale stress and all of the physiological variables was 

calculated using the Kendall Tau B coefficient, as this is the recommended coefficient for 

continuous to ordinal variable correlation calculations. The point-biserial coefficient was 

used to calculate the relationship between physiological data and binary stress, and the 

relationship between physiological data and environment. Goodman & Kruskal’s Lambda 

coefficient was used to calculate the relationship between day of week and binary stress, 

time of day and binary stress, and activity and binary stress. T-tests were also performed to 

assess the relationship between stress reported in the home and office environments, both 

for all participants combined, and for each participant individually. 

5.2.4. Feature extraction & machine learning  

The physiological data is pre-processed to eliminate any anomalies and artefacts. All data 

streams are normalised using the normalization equation: 

𝑋𝑖 =
𝑋 − 𝑋𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑋𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑋𝑚𝑖𝑛𝑖𝑚𝑢𝑚
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Equation 4 Normalisation equation for all physiological data attributes 

Where X is the non-normalized data and Xi Is the normalized data. The exception is the phasic 

EDA component which is normalized using the equation: 

𝑋𝑖 =
𝑋

𝑋𝑚𝑎𝑥𝑖𝑚𝑢𝑚
 

Equation 5 Normalisation equation for the phasic EDA component 

As was the normalization method for phasic EDA apply by Simons et al. (2020), and as 

described by Dawson et al. (2000) [17, 142]. Descriptive statistical features are extracted 

from each of the physiological data streams, using a sliding window of 60s length, with a 0.25 

second overlap. A summary of all features extracted from the physiological and 

questionnaire data can be found in a table in appendix B. The features extracted from the 

skin temperature data were also based on the features extracted by authors in previous 

literature [17, 143]. These features were extracted using the built-in functions of MATLAB 

and were the mean skin temperature value (ST_MEAN), the maximum skin temperature 

value (ST_MAX), the minimum skin temperature value (ST_MIN), the median skin 

temperature value (ST_MED), variance of the skin temperature values (ST_STD), and the 

range of skin temperature values (HR_RANGE).  

The features extracted from the heart rate data were also based on the features extracted 

by authors in previous literature [17, 29]. These features were extracted using the built-in 

functions of MATLAB and were the mean heart rate value (HR_MEAN), the maximum heart 

rate value (HR_MAX), the minimum heart rate value (HR_MIN), variance of the heart rate 

values (HR_STD), and the range of heart rate values (HR_RANGE). Similarly the features 

extracted from the blood volume pulse data were based on the features extracted by authors 

in previous literature [17, 143]. These features were extracted using the built-in functions of 

MATLAB and were the mean blood volume pulse value (BVP_MEAN), the maximum blood 

volume pulse value (BVP_MAX), the minimum blood volume pulse value (BVP_MIN), the 

median blood volume pulse value (BVP_MED), variance of the blood volume pulse values 

(BVP_STD).  

Prior to normalization, the EDA signal is initially filtered to reduce noise in the signal using a 

4th order Butterworth filter with a cut-off frequency of 2Hz [30]. The features extracted from 

the EDA signal were mean EDA (EDA_MEAN), the maximum EDA value (EDA_MAX), the 

minimum EDA value (EDA_MIN), the median EDA value (EDA_MED), the variance of the EDA 

data (EDA_STD), and the range in EDA values (EDA_RANGE).  All these features were chosen 
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as they were used to great effect in stress detection in Schmidt et al. (2016), and they were 

calculated using the relevant built-in MATLAB functions [17].  The raw EDA signal was then 

split into its phasic and tonic components, using an algorithm inspired by Dawson et al. 

(2000) [144]. From the tonic component the features extracted were the mean value of the 

tonic component (MEAN_TONIC), the variance of the tonic component (STD_TONIC), as 

these features were utilised in previous literature [17, 145]. From the phasic component, the 

number of skin conductance responses-normalised to be per minute of the session- 

(NUM_SCRs_PERMIN), the combined magnitude of skin conductance responses- normalised 

to be per minute of the session- (SCR_MAG_NORMALIZED), and the combined duration of 

skin conductance responses- normalised to be per minute of the session- 

(SCR_DUR_NORMALISED), using an algorithm inspired by Dawson et al. [144].  

The accelerometer data consisted of three axes (X,Y,Z), and features are extracted from the 

each axis and from the sum of all the axis, as was done in previous literature [17, 142]. From 

each of the axes the mean value (ACC_X_MEAN, ACC_Y_ MEAN, ACC_Z_ MEAN, ACC_SUM_ 

MEAN), variance of the accelerometer values (ACC_X_STD, ACC_Y_ STD, ACC_Z_ STD, 

ACC_SUM_ STD), median value ((ACC_X_MED, ACC_Y_ MED, ACC_Z_ MED, ACC_SUM_ 

MED), the maximum values (ACC_X_MAX, ACC_Y_MAX, ACC_Z_MAX. ACC_SUM_MAX) and 

minimum values (ACC_X_MIN, ACC_Y_MIN, ACC_Z_MIN. ACC_SUM_MIN), and dynamic 

range (ACC_X_RANGE, ACC_Y_RANGE, ACC_Z_RANGE, ACC_SUM_RANGE).  

From the IBI data, many of the features extracted were similar to those extracted from the 

forementioned attributes, namely the mean IBI value (IBI_MEAN), the maximum IBI value 

(IBI_MAX), the minimum IBI value (IBI_MIN) and the variance of the IBI data (IBI_STD)- all 

these features were extracted using built-in functions of MATLAB [142]. Also extracted was 

the root mean square of the IBI data (IBI_RMS), which was also extracted using built-in 

features of MATLAB. However, the  number of interbeat intervals varying by more than 50ms 

(NN50) and the number of interbeat intervals varying by more than 25ms (NN25), both 

features extracted in previous literature, were calculated using a bespoke algorithm coded 

in MATLAB by the researcher [17]. The percentage of IBIs varying by more than 50ms 

(pNN50) and the percentage of IBIs varying by more than 25ms (pNN25) were calculated by 

taking the number of IBIs which met each criteria and dividing it by the number of IBIs in the 

relevant window [142]. 

MATLAB classification learner was used to train a variety of machine learning models. 3 

models were chosen to be of particular interest as all 3 had achieved binary stress 
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classification accuracies of over 99% in previous work on the project outlined in Harper et al. 

(2022) [15]. To select these models, a preliminary study was initially conducted using a subset 

of what would be the complete dataset (the first 5 participants). In this preliminary study, 28 

different classification models were trained using the MATLAB Classification Learner toolbox, 

with the models being trained on all 71 features and a 10 cross-fold validation method being 

used to validate the models. The full list of models trained is: fine tree, medium tree, course 

tree, linear discriminant, quadratic discriminant, binary GLM logistic regression, efficient 

logistic regression, Efficient linear SVM, Gaussian Naive Bayes, Kernel Naïve Bayes, Linear 

SVM, Quadratic SVM, Cubic SVM, Fine Gaussian SVM, Medium Gaussian SVM, Coarse 

Gaussian SVM, Fine KNN, Medium KNN, Coarse KNN, Cosine KNN, Cubic KNN, Weighted KNN, 

Boosted trees, bagged trees, subspace discriminant, subspace KNN, RUSBoosted trees. All 

models which achieved a validation accuracy of over 99% were considered to be worthy of 

note and were therefore chosen to be used in the later study with a more extensive dataset. 

These models were fine tree, bagged tree ensemble, boosted tree ensemble and 

RUSBoosted tree ensemble. The reason for only investigating the relatively small number of 

models which had been validated in the previous published study was to reduce the amount 

of time needed to train models (it is much quicker to train 4 or 5 models than 28), with time 

reduction being important due to time and financial constraints on the project. A bagged 

tree ensemble model was also trained to classify stress level and work environment 

combined. All trained models were evaluated using the 10-fold cross validation methods.  

The hyperparameters for the fine tree, bagged tree ensemble, boosted tree ensemble, and 

RUSBoosted tree ensemble models were set as follows. For the fine tree, the maximum 

number of splits was set at 100 and the split criterion was Gini’s diversity index. For the 

boosted tree model, the ensemble method was AdaBoost, the learner type was decision 

tree, the maximum number of splits was set to 20, the number of learners was 30, and the 

learning rate was 0.1. For the bagged tree model, the ensemble method was bag, the learner 

type was decision tree, the maximum number of splits was 11956 and the number of learners 

was 30. Finally, for the RUSBoosted tree model, the ensemble method was RUSBoost, the 

learner type was decision tree, the maximum number of splits was 20, the number of 

learners was 30, and the learning rate was 0.1.  For all the models, the training/test split of 

the data was 80/20 (80% of the data was used for training and 20% of the data was used for 

testing).  

A K-left out method was then utilised to test the machine learning models and reduce their 

subjectivity. This method worked by randomly selecting 3 participants- excluding 
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participants 12 and 13 due to limitations with their data- whose data would be reserved as 

a testing dataset. This random selection was performed using a random number generation 

function in MATLAB, which randomly chose 3 numbers between 1 and 11. The number of 3 

was chosen for participants to include in the training of the models as the data of 3 

participants was approximately 20% of the data. The models are then retrained on the 

remaining 10 participants’ data, and then the withheld test datasets are then used to 

evaluate how the models perform when confronted with unseen data.  

Following the relatively low performance metrics for the trained model, two methods were 

chosen to attempt to investigate the reasons for the low metrics: principal component 

analysis (PCA) and Synthetic Minority Oversampling Technique (SMOTE). PCA was used to 

analyse the components of the dataset which most explained the variance in the dataset, 

and the features which had the greatest weighting or influence on the decision to classify 

each session as high or low stress. The features with the highest weighting were then used 

to re-train machine learning models. This reduction in dimensionality reduced the number 

of potentially unhelpful, undescriptive features. SMOTE was used to address the imbalance 

of the data, synthetically generating more instances of the minority class for binary stress 

level. A preliminary investigation was then performed with the balanced data to identify 

which machine learning models would be useful to train on the balanced data, with all 28 

models in the MATLAB classification learner toolbox being trained on the new dataset. The 

bagged tree model was found to have the highest accuracy of the 4 models trained previously 

on the unbalanced dataset, and the logistic regression model was found to achieve similar 

accuracy to the bagged tree model. As such, these two models were selected for a more in-

depth exploration and to be re-trained and their performance fully evaluated.  

5.3. Results  

5.3.1 Dataset & basic relationships 

The collected proof of concept dataset contained over 11,000 minutes of data from 13 

participants, with 295 work sessions recorded. 184 of the recorded work session were low 

stress (71.32%) and 74 sessions were high stress (28.68%). The median and modal Likert scale 

stress value were 2, the mean value was 2.095 and the maximum and minimum values were 

5 and 1, respectively. The median and modal Likert scale productivity value were 3, the mean 

value was 3.0915 and the maximum and minimum values were 5 and 1, respectively. 

Table 6 Median, modal, mean, maximum and minimum subjective stress and productivity for the overall dataset 

Attribute Median Modal  Mean  Maximum Minimum 
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Stress 2.00 2.00 2.10 5.00 1.00 

Productivity  3.00 3.00 3.09 5.00 1.00 

 

141 (47.8%) work sessions were recorded in the home environment, with a total duration of 

5554.95minutes of data being recorded. The mean duration of home sessions was 39.4 

minutes, the maximum and minimum durations were 197.55 and 8.33 minutes, respectively. 

154 (52.2%) work sessions were recorded in the office environment with a total duration of 

5233.63. The mean duration of office sessions was 41.35 minutes, the maximum and 

minimum durations were 154.93 and 6.13 minutes, respectively. The median and modal 

Likert stress value in both environments were 2, and the maximum and minimum values in 

home and office environments were 4 and 1, and 5 and 1, respectively. There was a 

difference in the mean Likert stress values between each environment, with the mean value 

for the home environment being 2.128 and the mean value in the office environment being 

2.065. This could imply a slightly higher level of stress in the home environment, however 

there are certain limitations in the interpretation of mean values for ordinal variables. The 

lack in any major difference between the median, modal, maximum, minimum and mean 

stress values recorded in each environment implies no overall correlation or relationship 

between stress and environment.  

Table 7 Median, modal, mean, maximum, and minimum stress in the home and office environments 

Environment  Median Modal Mean Maximum Minimum 

Home 2.00 2.00 2.13 4.00 1.00 

Office 2.00 1.00 2.07 5.00 1.00 

 

A two-tailed two-sample t-test with an alpha value of 0.05 was also performed to assess the 

differences in stress between the home and office environments (using built-in data analysis 

features of Microsoft Excel). The t Stat was 0.627 and the two-tail p-value was 0.531. These 

results support the already stated notion that there is very little relationship between stress 

experienced and work environment, as there are no statistically significant differences in 

stress experienced in the two environments. 

The median and modal Likert productivity value in both environments were 3, and the 

maximum and minimum values in both environments were 5 and 1, respectively. The 

difference in mean value for Likert scale productivity has a relatively insignificant difference 

of approximately 0.0975, with the mean value for the home environment being 3.142 and 

the mean value in the office environment being 3.045. As was the case with stress, the lack 
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in any major difference between the median, modal, maximum, minimum and mean 

productivity values recorded in each environment implies no overall correlation or 

relationship between stress and environment. 

Table 8 Median, modal, mean, maximum and minimum productivity in home and office environments 

Environment Median Modal Mean Maximum  Minimum 

Home 3.00 3.00 3.14 5.00 1.00 

Office  3.00 3.00 3.05 5.00 1.00 

 

125 (42.37%) of the sessions were recorded in the morning, with a total duration of 4440.25 

minutes of data recorded and the mean recorded duration being 35.52 minutes. 155 

(52.54%) of the work sessions were recorded in the afternoon, with a total duration and 

mean duration of 6733.5 minutes and 43.4minutes, respectively. 15 (5.43%) of the work 

sessions were recorded in the evening, with total and mean durations of 748.6 minutes and 

49.9 minutes, respectively. The median and modal Likert stress values for morning and 

afternoon sessions were 2, with the median and modal Likert stress value for evening session 

being higher at 3. Similarly, while the mean recorded stress for morning and afternoon 

sessions is similar at 2.04 in the morning and 2.10 in the afternoon, the mean recorded stress 

value in the evening was 2.53. However, the maximum value for the morning and afternoon 

sessions is higher than the evening, with the former 2 times of day having maximums of 4 or 

5, while the evening has a maximum value of 3. This, coupled with the fact that the minimum 

stress value for morning and evening being 1 and the minimum value for evening being 2, 

implies that though working before 6pm had the potential to demonstrate higher levels of 

stress than working in the evening, evening sessions had consistently elevated stress levels 

than the other times of day.  

Table 9 Median, modal, mean, maximum, and minimum stress in morning, evening, and afternoon 

Time Of Day  Median  Modal  Mean  Maximum Minimum 

Morning  2.00 2.00 2.04 4.00 1.00 

Afternoon  2.00 2.00 2.10 5.00 1.00 

Evening  3.00 3.00 2.53 3.00 2.00 

 

Recorded productivity appeared more consistent across the times of day, with the median 

value of productivity recorded at each time of day being 3. The modal productivity values for 

afternoon and evening session were also the same at 3, however modal productivity was 

higher in the morning at 4. The maximum and minimum values of productivity were 5 and 1, 
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respectively, for morning and afternoon sessions, while the range of responses was smaller 

in the evening, with the maximum and minimum being 4 and 2, respectively. The biggest 

differences in productivity across the various times of day was in the mean values, with the 

highest being 3.36 in evening sessions, followed by 3.18 in morning sessions and 2.99 in 

afternoon sessions. 

Table 10 Median, modal, mean, maximum, and minimum productivity in morning, evening, and afternoon 

Time Of Day  Median  Modal  Mean  Maximum Minimum 

Morning  3.00 4.00 3.18 5.00 1.00 

Afternoon  3.00 3.00 2.99 5.00 1.00 

Evening  3.00 3.00 3.33 4.00 2.00 

 

 75 of the morning sessions were recorded in the home environment, with 20 being recorded 

as high stress and 55 being recorded as low stress. The mean, modal and mean stress value 

recorded in these sessions was 2, 2 and 2.08 respectively, with the maximum and minimum 

values being 4 and 1. 50 of the morning sessions were recorded in the office environment, 

with 15 being recorded as high stress and 35 being recorded as low stress. The mean, modal 

and mean stress value recorded in these sessions was 2, 2 and 1.98 respectively, with the 

maximum and minimum values being 3 and 1. This implies stress levels are slightly lower in 

sessions recorded in the office of a morning as opposed to at home in the morning. A similar 

trend is seen in the afternoon sessions, with an implication of slightly higher stress levels 

being recorded in the home environment at this time of day. 54 of the afternoon sessions 

were recorded in the home environment and 101 in the office environment. The median 

stress values in both environments are the same at 2, as is the maximum and minimum 

values at 4 and 1, respectively, however the modal and mean values are slightly lower in the 

office environment. The modal value is 2 in the home environment and 2 in the office 

environment, while the mean is 2.13 in the home environment and 2.08 in the office 

environment. This gives some support to the idea of marginally higher stress in home 

environments during this period of the day. However, the trend is reversed in the evening, 

with significantly higher stress being recorded in the office environment of an evening. 12 of 

the evening sessions were recorded in the home environment and 3 were recorded in the 

office environment. The median, modal and mean stress values recorded were all higher in 

the evening, as shown in table 11. The minimum value is also higher in the office 

environment at 3, as opposed to 2 in the home environment. This implies significantly higher 

levels of stress in office environments compared to home environments of an evening, 

however one limitation of this comparison is that there are only 3 sessions recorded in the 
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office environment in the evening, which is too small a sample size to make any truly 

conclusive conclusions. 

Table 11 Median, modal, mean, maximum, and minimum stress based on time of day in each working 
environment 

Environment Time 
of Day Median Modal  Mean  Maximum Minimum  

Home Morning 2.00 2.00 2.08 4.00 1.00 

Home Afternoon  2.00 2.00 2.13 4.00 1.00 

Home Evening  2.00 2.00 2.42 3.00 2.00 

Office Morning  2.00 2.00 1.98 3.00 1.00 

Office Afternoon  2.00 2.00 2.08 5.00 1.00 

Office Evening  3.00 3.00 3.00 3.00 3.00 

 

58 (19.66%) sessions were recorded on Monday (Total duration = 2087.8 minutes, mean 

duration = 36.00 minutes), 72 (24.41%) sessions were recorded on Tuesday (Total duration 

= 3056.23 minutes, mean duration = 42.45 minutes), 61 (20.68%) sessions were recorded on 

Wednesday (Total duration =  2579.18 minutes, mean duration = 42.28 minutes), 60 (20.34%) 

sessions were recorded on Thursday (Total duration =  2216.98 minutes, mean duration = 

36.95 minutes), 36 (12.20%) sessions were recorded on Friday (Total duration =  1707.98 

minutes, mean duration = 31.64 minutes), 5 (1.94%) sessions were recorded on Saturday 

(Total duration =  158.18 minutes, mean duration = 31.64 minutes), and 3 (1.16%) sessions 

were recorded on Sunday (Total duration =  116.10 minutes, mean duration = 38.69 

minutes). The median stress for every day of the week was the same, equalling 2. The 

minimum and maximum values for most weekdays (Tuesday to Friday) were the same, being 

4 and 1, respectively, and the minimum stress value was 1 on every day Monday to Friday. 

However, the minimum value increased to 2 for Saturday and Sunday, and the maximum fell 

to 3 during Saturday sessions and 2 for Sunday sessions. The modal values for all days were 

2. Finally, the mean values showed the greatest difference across each of the days, with the 

lowest being recorded on Thursday (1.93) and the highest being recorded on Saturday (2.4). 

The median, modal, mean, maximum, and minimum values of stress for each day of the week 

are shown in table 12. 

Table 12 Median, modal, mean, maximum, and minimum stress on each day of the week 

Day Of Week  Median  Modal  Mean  Maximum Minimum 

Monday 2.00 2.00 2.12 5.00 1.00 
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Tuesday  2.00 2.00 2.08 4.00 1.00 

Wednesday  2.00 2.00 2.10 4.00 1.00 

Thursday 2.00 2.00 1.93 4.00 1.00 

Friday  2.00 2.00 2.31 4.00 1.00 

Saturday  2.00 2.00 2.40 3.00 2.00 

Sunday  2.00 2.00 2.00 2.00 2.00 

 

8 of the Monday sessions were recorded in the home environment and 50 were recorded in 

the office environment. The median value of stress in both environments is 2, and the 

minimum value is also the same at 1. However, modal stress (Home = 1, Office = 2), mean 

stress (Home = 1.88, Office = 2.169), and maximum stress (Home = 3, Office = 5) are all higher 

in the office environment. 36 of the Tuesday sessions were recorded in the home 

environment, while 36 were recorded in the office environment. Again, the median stress in 

both environments is the same (Home = 2, Office = 2), as is the minimum stress (Home =1, 

Office = 1). However, modal stress (Home = 1, Office = 2), and mean stress (Home = 1.86, 

Office = 2.31) are greater in the office environment, implying higher levels of stress in the 

office environment on Tuesday. 39 of the Wednesday sessions were recorded in the home 

environment and 22 in the office. Median and modal stress both equal 2 in each 

environment. Mean stress (Home = 1.87, Office = 2.5), maximum stress (Home = 3, Office = 

4), and minimum stress (Home = 1, Office = 2) are all higher in the office environment. 27 of 

the Thursday sessions were recorded in the home environment while 33 were recorded in 

the office environment. All of median (Home = 2, Office = 1), modal (Home = 2, Office = 1), 

mean (Home = 2.52, Office = 1.45), maximum (Home = 4, Office = 3) were higher in the home 

environment than the office environment, while minimum stress was the same in both 

environments, equalling 1. Similarly, the Friday sessions showed the same trend, with the 

median (Home = 2, Office = 1), modal (Home = 2, Office = 1), mean (Home = 2.57, Office = 

1.85) were higher in the home environment than the office environment, while maximum 

and minimum stress were the same in both environments, being 4 and 1, respectively. 

Saturday and Sunday sessions were only recorded in the home environment as the University 

campus on which the offices were located was closed on inaccessible on these days. As such, 

though the statistics regarding stress on these days can be found in table 13, they will not be 

discussed in great detail here. Overall, it appears that stress is higher working from the office 

as opposed to home earlier in the week (Monday to Wednesday), and then the trend is 

reversed and the office becomes the environment with the lower stress on Thursday and 

Friday.  
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Table 13 Median, modal, mean, maximum, and minimum stress on each day of the week in each working 
environment 

Environment Day of 
Week  Median Modal  Mean  Maximum Minimum  

Home Monday  2.00 1.00 1.88 3.00 1.00 

Office Monday 2.00 2.00 2.16 5.00 1.00 

Home Tuesday  2.00 1.00 1.86 4.00 1.00 

Office Tuesday  2.00 2.00 2.31 4.00 1.00 

Home Wednesday 2.00 2.00 1.87 3.00 1.00 

Office Wednesday  2.00 2.00 2.50 4.00 2.00 

Home Thursday 2.00 2.00 2.52 4.00 1.00 

Office Thursday 1.00 1.00 1.45 3.00 1.00 

Home Friday  2.00 2.00 2.57 4.00 1.00 

Office Friday  1.00 1.00 1.85 4.00 1.00 

Home Saturday  2.00 2.00 2.40 3.00 2.00 

Home Sunday  2.00 2.00 2.00 2.00 2.00 

 

The most commonly recorded activity in the dataset was “Typing/Editing an electronic 

document” (Sessions = 72, Total duration = 3222.4 minutes), with “Data analysis and 

statistics” being a close second (Session = 62, Total duration = 2634.9 minutes). The least 

commonly recorded activity was “Handwriting or sketching by hand” which was only 

recorded thrice (Total duration = 66.08 minutes), and all three times were in the home 

environment. The activity which had the highest recorded stress appears to be “Data analysis 

or statistics” having the highest median, modal, mean stress value, and joint highest 

maximum, and minimum stress values. The activity with the lowest recorded stress is 

“Handwriting or sketching by hand”, with the lowest median, modal, mean, and maximum 

stress, and joint lowest minimum stress. The median, modal, mean, maximum and minimum 

stress for all activity can be found below in table 14. 

Table 14 Median, modal, mean, maximum, and minimum stress for each activity in the dataset 

Activity Median  Modal  Mean  Maximum Minimum  

Meeting 2.00 2.00 2.00 4.00 1.00 

Meeting Preparation 
1.00 1.00 1.78 4.00 1.00 
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Typing/Editing an 
electronic document 

2.00 2.00 2.10 5.00 1.00 

Reading or writing 
email 2.00 2.00 2.17 4.00 1.00 

Handwriting or 
sketching by hand 

1.00 1.00 1.33 2.00 1.00 

Researching/learning 
2.00 2.00 2.08 4.00 1.00 

Data analysis or 
statistics 3.00 3.00 2.50 4.00 1.00 

Teaching (lecture) 
2.00 3.00 2.00 3.00 1.00 

Teaching (Tutorial/lab 
session) 

1.00 1.00 1.50 4.00 1.00 

Lesson/Lecture/Tutorial 
Preparation 

2.00 2.00 1.83 4.00 1.00 

 

Table 15 shows the median, modal, mean, maximum and minimum stress values for each 

activity in both the home and office environments. N/A is used in the table where insufficient 

numbers of sessions of a certain activity performed in a certain environment were present 

in the dataset to calculate the relevant measure of central tendency.  

Table 15 Median, modal, mean, maximum, and minimum stress for each activity in each working environment 

 Median Modal  Mean  Maximum Minimum  

Meeting Home  2.00 2.00 2.46 4.00 1.00 

Meeting Office 2.00 2.00 1.74 3.00 1.00 

Meeting Preparation 
Home  1.50 N/A 1.50 2.00 1.00 

Meeting Preparation 
Office  1.00 1.00 1.86 4.00 1.00 

Editing Document 
Home 2.00 2.00 1.90 4.00 1.00 

Editing Document 
Office  2.00 3.00 2.33 5.00 1.00 
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Emails Home  2.00 2.00 2.11 4.00 1.00 

Emails Office  2.00 2.00 2.22 4.00 1.00 

Handwriting Home  1.00 1.00 1.33 2.00 1.00 

Handwriting Office N/A N/A N/A 0.00 0.00 

Researching/Learning 
Home  N/A N/A N/A 0.00 0.00 

Researching/Learning 
Office  N/A N/A N/A 0.00 0.00 

Data Analysis Home  2.00 2.00 2.43 4.00 1.00 

Data Analysis Office 3.00 3.00 2.59 4.00 1.00 

Teaching Lecture 
Home N/A N/A N/A 0.00 0.00 

Teaching Lecture 
Office 2.00 3.00 2.00 3.00 1.00 

Teaching Lab Home  2.00 2.00 2.00 2.00 2.00 

Teaching Lab Office  1.00 1.00 1.44 4.00 1.00 

Lesson Preparation 
Home  2.00 2.00 1.91 4.00 1.00 

Lesson Preparation 
Office 2.00 2.00 1.71 3.00 1.00 

 

The most commonly recorded activity in the home environment was “Data analysis and 

statistics”, with 35 sessions in the home environment and 27 recorded in the office 

environment. Stress appears to be greater in the office environment for this activity, as the 

median, modal and mean stress are higher in the office environment than the home 

environment, while maximum and minimal stress are the same in both environments. 

However, the opposite is true for the activity “Meeting”, for which mean and maximum 

stress are higher in the home environment than the office environment. A less clear but 

similar trend is shown in the “Researching/Learning” activity, with mean and maximum 

stress being higher in the home environment than the office environment. Overall, there is 

no activity for which median, modal, mean, maximum, and minimum stress are 

simultaneously equal in the office and home environments, and thus one could argue there 
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is reason to think that there could be a relationship between stress and environment when 

accounting for the work activity being completed.  

When looking at the relationship between stress and environment and productivity and 

environment for individual participant one sees that there are significant differences in how 

the work environment relates to each individual participants experience of stress and 

productivity. Participant 1 shows a slight difference in stress levels between the home and 

office environment, with mean and maximum stress being higher in the office environment.  

Table 16 Median, modal, mean, maximum, and minimum stress experienced by participant 1 in the home and 
office work environments 

Median, Modal, Maximum and Minimum Stress in each environment 

Environment Median Modal Mean Maximum Minimum 

Home 2.00 2.00 2.00 3.00 1.00 

Office 2.00 2.00 2.35 4.00 1.00 

 

A t-test was also performed to assess the difference in stress experienced in each work 

environment by participant 1 alone. The t Stat resulting from the analysis was -1.761 with a 

two-tailed p-value of 0.086, which is above the value set for alpha, meaning the difference 

does not reach the set definition for statistical significance. However, the one-tail p-value is 

below 0.05, implying some potentially statistically significant variations in stress between the 

2 work environments for participant 1.  

In terms of productivity there is also a slight difference between the home and office 

environments for participant 1, with modal productivity in the office environment being 2 

greater than in the home environment, and mean productivity also being higher in the office 

environment.  

Table 17 Median, modal, mean, maximum, and minimum productivity experienced by participant 1 in the home 
and office work environments 

Median, Modal, Maximum and Minimum Productivity in each environment 

Environment Median Modal Mean Maximum  Minimum 

Home 3.00 2.00 2.77 4.00 1.00 

Office  3.00 4.00 3.17 4.00 1.00 
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For participant 2, there is a different trend, with median, mean, and minimum stress all being 

higher in the home environment than in the office environment.  

Table 18 Median, modal, mean, maximum, and minimum stress experienced by participant 2 in the home and 
office work environments 

Median, Modal, Maximum and Minimum Stress in each environment 

Environment  Median Modal Mean Maximum Minimum 

Home 3.00 2.00 2.80 4.00 2.00 

Office 2.00 2.00 2.53 4.00 1.00 

 

A t-test was also performed to assess the difference in stress experienced in each work 

environment by participant 2 alone. The resultant t Stat was 1.067, with the two-tail p-value 

being 0.29, implying no statistically significant difference in recorded stress for participant 2 

in each environment.  

In terms of productivity, the relationship between productivity and the environment is less 

clear, as while median and modal productivity is higher in the office environment, mean and 

maximum productivity is higher in the home environment. It is also of note that the mean 

productivity is slightly higher in the office than in home environment, but the difference is 

relatively small.  

Table 19 Median, modal, mean, maximum, and minimum productivity experienced by participant 2 in the home 
and office work environments 

Median, Modal, Maximum and Minimum Productivity in each environment 

Environment Median Modal Mean Maximum  Minimum 

Home 3.00 3.00 3.40 5.00 1.00 

Office  4.00 4.00 3.47 4.00 1.00 

 

Participant 3 shows a much clearer relationship between stress and environment, with 

median and modal stress being 2 greater in the home environment than the office 

environment and mean and minimum stress being at least 1 greater in the home than office 

environment.  

Table 20 Median, modal, mean, maximum, and minimum stress experienced by participant 3 in the home and 
office work environments 

Median, Modal, Maximum and Minimum Stress in each environment 

Environment  Median Modal Mean Maximum Minimum 

Home 3.00 3.00 2.60 3.00 2.00 

Office 1.00 1.00 1.58 3.00 1.00 
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A t-test was also performed to assess the difference in stress experienced in each work 

environment by participant 3 alone. The resultant t Stat supports the idea of participant 3 

experiencing considerably greater stress in one environment, with the t Stat equalling 3.032 

and the two-tailed p-value being 0.011, implying a statistically significant difference between 

the stress experienced by participant 3 in each of the work environments.  

Productivity is also greater in the home environment than the office environment for 

participant 3, with median, modal, mean, and minimum productivity all being higher in the 

home than office environment.  

Table 21Median, modal, mean, maximum, and minimum productivity experienced by participant 3 in the home 
and office work environments 

Median, Modal, Maximum and Minimum Productivity in each environment 

Environment Median Modal Mean Maximum  Minimum 

Home 4.00 4.00 3.60 4.00 3.00 

Office  3.00 3.00 2.50 4.00 1.00 

 

Participant 4 shows no significant difference in stress experienced in each environment, with 

a slightly higher mean and minimum stress in the office environment compared to the home 

environment. This is supported both by the measures of central tendency shown in table 22, 

but also by the results of the t-test, with the t Stat of -0.499 and a two-tailed p-value of 0.632 

implying no statistically significant differences in stress between the two environments for 

participant 4.  

Table 22 Median, modal, mean, maximum, and minimum stress experienced by participant 4 in the home and 
office work environments 

Median, Modal, Maximum and Minimum Stress in each environment 

Environment  Median Modal Mean Maximum Minimum 

Home 2.00 2.00 2.18 3.00 1.00 

Office 2.00 2.00 2.33 3.00 2.00 

 

For productivity, there is also no clear relationship between participant 4’s environment and 

how productive they were. While median and modal stress are both higher in the office 

environment, mean and minimum stress are higher in the home environment.  

Table 23Median, modal, mean, maximum, and minimum productivity experienced by participant 4 in the home 
and office work environments 

Median, Modal, Maximum and Minimum Productivity in each environment 

Environment Median Modal Mean Maximum  Minimum 
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Home 3.00 3.00 3.45 4.00 3.00 

Office  3.50 4.00 3.17 4.00 2.00 

 

Participant 5 also demonstrated no significant differences in stress experienced in each 

environment, with mean stress being less than 0.2 higher in the home environment and no 

other metric differing in each environment. This was supported by the results of the t-test, 

with the t Stat of 0.869 and a two-tailed p-value of 0.391 implying no statistically significant 

differences in stress experienced by participant 5 between work environments.  

Table 24 Median, modal, mean, maximum, and minimum stress experienced by participant 5 in the home and 
office work environments 

Median, Modal, Maximum and Minimum Stress in each environment 

Environment  Median Modal Mean Maximum Minimum 

Home 1.00 1.00 1.39 3.00 1.00 

Office 1.00 1.00 1.21 3.00 1.00 

 

Participant 5 had comparable results for productivity, with the only difference in metrics 

between the home and office environment being a slightly higher mean productivity in the 

home environment.  

Table 25Median, modal, mean, maximum, and minimum productivity experienced by participant 5 in the home 
and office work environments 

Median, Modal, Maximum and Minimum Productivity in each environment 

Environment Median Modal Mean Maximum  Minimum 

Home 3.00 3.00 2.83 4.00 2.00 

Office  3.00 3.00 3.11 4.00 2.00 

 

Participant 6 however, does show some difference in stress between the home and office 

environments, with median, mean, and minimum stress all being higher in the home 

environment. However, the t-test does not show any statistically significant differences in 

stress experienced by participant 6 in each environment. This trend is similarly seen in regard 

to productivity, with median, modal, and mean productivity all being higher in the home 

environment as opposed to the office environment.  

Table 26 Median, modal, mean, maximum, and minimum productivity experienced by participant 6 in the home 
and office work environments 

Median, Modal, Maximum and Minimum Productivity in each environment 

Environment Median Modal Mean Maximum  Minimum 

Home 4.00 4.00 4.00 4.00 4.00 
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Office  3.00 3.00 3.00 4.00 2.00 

 

Participant 7 likewise shows an increased level of stress in the home environment as opposed 

to the office environment, with median, modal, and mean stress being higher in the home 

environment. However, maximum stress is higher in the office environment and there is no 

statistically significant difference in stress demonstrated by the t-test, with the t Stat being 

0.59 and the two-tailed p-value being 0.56.  

Table 27 Median, modal, mean, maximum, and minimum stress experienced by participant 7 in the home and 
office work environments 

Median, Modal, Maximum and Minimum Stress in each environment 

Environment  Median Modal Mean Maximum Minimum 

Home 2.00 2.00 1.59 2.00 1.00 

Office 1.00 1.00 1.47 3.00 1.00 

 

In terms of productivity, participant 7 shows a slightly higher level of productivity in the office 

than in the home environment, with median and mean stress both being higher in the office 

environment.  

Table 28 Median, modal, mean, maximum, and minimum productivity experienced by participant 7 in the home 
and office work environments 

Median, Modal, Maximum and Minimum Productivity in each environment 

Environment Median Modal Mean Maximum  Minimum 

Home 3.00 4.00 3.41 5.00 2.00 

Office  4.00 4.00 3.60 5.00 2.00 

 

Participant 8 shows higher levels of stress in the office environment than in the home 

environment, with median, modal, and mean stress all being higher in the office. However, 

the t test shows no significant differences in the stress recorded in each environment for 

participant 7, with the t Stat equalling -1.125 and the two-tailed p-value being 0.272.  

Table 29 Median, modal, mean, maximum, and minimum stress experienced by participant 8 in the home and 
office work environments 

Median, Modal, Maximum and Minimum Stress in each environment 

Environment  Median Modal Mean Maximum Minimum 

Home 2.00 2.00 2.46 4.00 2.00 

Office 3.00 3.00 2.75 4.00 2.00 
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In contrast, participant 8’s productivity is higher in the home environment, with the mean 

and minimum productivity being higher there than in the office.  

Table 30 Median, modal, mean, maximum, and minimum productivity experienced by participant 8 in the home 
and office work environments 

Median, Modal, Maximum and Minimum Productivity in each environment 

Environment Median Modal Mean Maximum  Minimum 

Home 3.00 3.00 3.15 4.00 2.00 

Office  3.00 3.00 2.92 4.00 1.00 

 

Participant 9 experienced higher median, modal, mean, and maximum stress in the home 

environment than the office environment. However, the t-test shows no significant 

differences in recorded stress across the environments for participant 9, with the t Stat being 

1.427 and the two-tailed p-value being 0.203.  

Table 31 Median, modal, mean, maximum, and minimum stress experienced by participant 9 in the home and 
office work environments 

Median, Modal, Maximum and Minimum Stress in each environment 

Environment  Median Modal Mean Maximum Minimum 

Home 2.00 3.00 2.00 3.00 1.00 

Office 1.00 1.00 1.33 2.00 1.00 

 

However, participant 9 also experienced higher productivity in the office environment, with 

median, modal, mean, and minimum productivity all being higher in the office environment.  

Table 32 Median, modal, mean, maximum, and minimum productivity experienced by participant 9 in the home 
and office work environments 

Median, Modal, Maximum and Minimum Productivity in each environment 

Environment Median Modal Mean Maximum  Minimum 

Home 2.50 2.00 2.88 4.00 2.00 

Office  3.00 3.00 3.00 3.00 3.00 

  

Participant 10 shows no significant difference in stress between each environment, with a 

slightly higher mean stress in the home environment being the only indication of a difference 

in stress being experienced in each environment. This lack of relationship between 

environment and stress is supported once again by the t-test, with the t Stat of 0.352 and 

the two-tailed p-value of 0.732 implying no significant differences in stress experienced 

between the two working environments.  
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Table 33 Median, modal, mean, maximum, and minimum stress experienced by participant 10 in the home and 
office work environments 

Median, Modal, Maximum and Minimum Stress in each environment 

Environment  Median Modal Mean Maximum Minimum 

Home 2.00 2.00 2.63 4.00 2.00 

Office 2.00 2.00 2.50 4.00 2.00 

 

Alternatively, there does appear to be some difference in the levels of productivity 

experienced in each environment by participant 10. Mean and minimum productivity are 

both higher in the home environment as opposed to the office environment.  

Table 34 Median, modal, mean, maximum, and minimum productivity experienced by participant 10 in the home 
and office work environments 

Median, Modal, Maximum and Minimum Productivity in each environment 

Environment Median Modal Mean Maximum  Minimum 

Home 3.00 3.00 3.38 5.00 2.00 

Office  3 3 2.56 5.00 1.00 

 

Participants 11, 12, and 13, were considered not to have enough sessions recorded on their 

own to be able to properly compare the relationship between environment and stress and 

productivity, and so analysis of those 3 participants on their own is not provided here. The 

main point to take away from the analysis of the stress and productivity experienced by each 

individual participant in each environment is that each individual participant experiences 

stress and productivity differently depending upon their work environment. For some 

people, such as participant 3, stress and productivity are both clearly higher in the home 

environment as opposed to the office. For some people, such as participant 7, there is a 

slightly higher level of stress at home, while there is a slightly higher level of productivity in 

the office. Furthermore, for people such as participant 5, there is no clear relationship 

between their work environment and their experiences of stress and productivity. This 

indicates that stress and the influence of work environment upon it is highly dependent upon 

the individual worker and their individual circumstances.  

5.3.2. Correlations & relationships  

In the proof-of-concept dataset of 13 participants, no strong correlation was found between 

stress and productivity using Kendall’s Tau B (Tb), however there was correlation between 

these attributes for some individual participants. The Kendall Tau b result for the entire 

dataset was Tb = -.034, P value = .496, implying no significant correlation. However, the result 
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of participant 2 (Tb = -.462, P value = <.001) implies a medium negative correlation between 

the attributes. Alternatively, the result for participant 5 (Tb = .306, P value = .046) shows a 

medium positive correlation between stress and productivity. This appears to imply that the 

relationship between stress and productivity is dependent upon the individual in some 

circumstances, which may be caused by interpersonal preferences and biology, as shall be 

explored further in the Discussion section of this chapter.  

Furthermore, no significant correlation was found between binary stress level and 

environment in the overall dataset (Chi = .153, P Value = .696). A significant correlation was 

however found between binary stress and environment for participant 1’s data (shown in 

figure 4). Similarly, using the Goodman and Kruskal’s Lambda (L) no significant correlation 

was found between binary stress level and time of day (L = .004 p-value = .796), day of week 

(L = 0, P value = N/A), or activity (L = .042, p value = .330).  

 

Figure 4 Chi-square results for relationship between stress and environment for Participant 1's data 

 

Moreover, no significant correlation between stress and session duration was found using 

Kendall’s Tau B (Tb), with Tb equalling -.042 and P-value being equal to .342. This lack of 

significant correlation between stress and session duration is further supported by the 

results of participant 1 (Tb = -.004, P value = .974), participant 2 (Tb = -.013, P value = .916), 

participant 3 (Tb = -.026 ,P value = .894), participant 4, (Tb = .168, P value = .405), participant 

5 (Tb = .125, P value = .346), participant 6 (Tb = .007, P value = .972), participant 7 (Tb = .005,P 

value = .970), participant 8 (Tb = -.112,P value = .482), and participant 9 (Tb = -.324,P value = 

.207). As such, it is probable that there is no correlation to be found between stress and 

session duration, thus the amount of time participants spent doing an activity is unlikely to 

affect the levels of stress experienced while doing the activity.  

There are a number of significant correlations between the ordinal stress attribute and the 

extracted physiological data features. The physiological features related to electrodermal 
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activity that had a significant correlation with stress were: mean EDA (Tb = .141, p value = 

.001), minimum EDA (Tb = .194, p value = <.001), median EDA (Tb = .15, p value = <.001), and 

mean tonic (Tb = .141, p value = .001). The physiological features relating to heart rate which 

significantly correlate with stress are: Mean HR (Tb = -.123, P-value = .006), HR maximum (Tb 

= =.193, p value = <.001), HR variance (Tb = -.165, p value = <.001), and HR range (Tb = -.178, 

p value = <.001). The physiological features relating to blood volume pulse are: BVP 

maximum (Tb = -.122, p value = .006 and BVP variance (Tb = -.124, p value = .005). 

Furthermore, the accelerometer-related features which are correlated to stress are: 

accelerometer y axis mean (Tb =   -.127, p value = .004), accelerometer y axis max (Tb = -.127, 

p-value = .004), and Accelerometer y axis median (Tb = -.117, p value = .009). Finally, the 

features extracted from IBI which correlate significantly with stress are: NN50, NN25, pNN50 

and pNN25 (Tb = .131, p value = .004).  

In the home environment, the features extracted from EDA which correlate significantly with 

stress are: EDA mean (Tb = .205, p value = .002), EDA Maximum (Tb = .199, P-value = .002), 

EDA minimum (Tb = .246, p-value = <.001) EDA median (Tb = .207, p value = .001),  mean 

tonic (Tb = .205, p value = .002), Only one other feature correlated with stress in the home 

environment, namely maximum HR (Tb = -.181, p-value = .005) In the office environment, 

the list of extracted features which correlate with stress is:  minimum EDA (Tb =.164, p value 

=.001), maximum HR (Tb = -.2065, p value = <.001), HR variance (Tb = -.214, p value = <.001) 

HR range (Tb = -.229, p value = <.001),  maximum BVP (Tb = -.186, p value = .003), minimum 

BVP (Tb =.167, p value = .007), BVP variance (Tb = -.210, p value = <.001), Accelerometer Y-

axis mean (Tb = -.164, p value =.008), Accelerator Y axis median (Tb = -.178, p value =.004), 

NN50 and pNN50  (Tb = -.205, p value =.001), and  pNN50 andpNN25 (Tb =.204, p value = 

.001).  

5.3.3. Machine learning 

In Harper et al. (2022), the highest machine learning prediction accuracies (>99%) were 

achieved using the fine tree, bagged tree, and boosted tree models, and thus these models 

were trained on the complete dataset. An RUSBoosted tree model was also trained, as the 

dataset was class imbalanced (considerably more low stress than high stress instances, and 

RUSBoosted tree models have been shown to be effective at classifying class-imbalanced 

data [146]. All models were evaluated using 10-fold cross validation to calculate the accuracy 

scores, with 20% of the data being withheld to be used as a test set.  
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The model in the current study which achieved the highest prediction accuracy was the 

Bagged Tree Ensemble model, with an accuracy of 99.3%, which is 0. 6 lower than the 

accuracy achieved by the same model in Harper et al. (2022). 113 misclassification instances 

occurred, with 80 of those false predictions being high stressed sessions being identified as 

low stress, and 33 being low stress sessions being misidentified as high stress. 

The other models from this study achieved accuracies lower than those achieved for those 

models in Harper et al. (2022). Trained on the complete dataset, the fine tree model achieved 

an accuracy of 96.4%, a precision of 0.953, a recall of 0.922, and an F-Score of 0.937. The 

model had lower misclassification with regards to low stress observation than high class 

observations. The boosted tree ensemble method achieved only 95% accuracy, an 

approximately 4% reduction from the fore mentioned previously published work. The low 

accuracy appears to be the result of relatively high instances of misclassification of high stress 

observations as low stress. 

The accuracy, precision, recall, F-score, area under the curve (AUC) for the ROC curve, PPV 

for high stress observations, and PPV for low stress observations are all shown the table 35.  

Table 35 The accuracy, precision, recall, F-score, area under the curve (AUC) for the ROC curve, PPV for high 
stress observations, and PPV for low stress observations for each of the trained machine learning models 

Model  Accuracy Precision  Recall F-score AUC PPV 
High 
Stress 

PPV Low 
Stress 

Bagged tree 0.993 0.992 0.982 0.987 0.999 0.992 0.993 

Fine tree 0.964 0.953 0.922 0.937 0.979 0.953 0.969 

Boosted 
tree 

0.950 0.981 0.842 0.907 0.992 0.982 0.939 

RUSBoosted 
trees 

0.874 0.746 0.858 0.798 0.948 0.746 0.938 
 

 

As a further proof of concept, another bagged tree ensemble model was trained using the 

data of participants 1 to 9 which could predict the work environment and binary stress level, 

and the accuracy achieved was 99.6%. The PPV for home high stress observations was 99.9%, 

the PPV for home high stress observations was 99.6%, PPV for office high stress observations 

was 99.9%, PPV for office low stress observations was 99.5%. The area under the curve was 

1.00 and the confusion matrix for this model is shown in figure 5.  
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Figure 5 Confusion matrix for the bagged tree ensemble model for classifying combined environment and stress 
levels 

A K-left out method is then utilised to evaluate the models and reduce their subjectivity. This 

method worked by randomly selecting three participants- excluding participants 12 and 13 

due to limitations with their data- whose data would be reserved as a testing dataset. This 

random selection was performed using a random number generation function in MATLAB, 

which randomly chose 3 numbers between 1 and 11. In this instance the three randomly 

chosen participants whose data would be withheld for testing were participants 6, 7, and 11. 

Two models were chosen to be trained and tested in the manner discussed. These models 

were the Bagged Tree model, which scored the highest accuracy and other evaluation 

metrics in the initial machine learning model training, and the RUSBoosted Trees model, in 

an attempt to address the class imbalance between high and low stress. Table 36 shows the 

validation accuracy and the test accuracy of the two models.  

Table 36 Validation and testing accuracy of the machine learning models 

Model Validation 
Accuracy (%) 

Test accuracy 
(%) 

Bagged Trees 99.8 56.0 

Fine Tree 99.4 62.2 



100 
 

RUSBoosted 
trees 

94.8 50.6 

 

The validation accuracy of all 3 of the models trained on 10 participants data are very high, 

with 10-fold cross validation giving validation accuracies of 99.8% and 99.4% for Bagged trees 

and the Fine tree model, respectively. However, when the test dataset is used to evaluate 

the accuracy of the model in detecting stress in previously unseen data, the highest 

classification accuracy is achieved by the fine tree model, achieving just 62.2%. The bagged 

tree model, which both previously in this study and in the paper by Harper et al. (2022) 

achieved the highest validation accuracy, achieves a test accuracy of only 56.0% [15]. This is 

most likely due to the relatively small sample size used to train and test the models, with the 

sample size being limited to 13 participants. This limited sample size is confounded by the 

fact that each participant likely has different physiological stress profiles, as in they can 

exhibit physiological stress in different ways, as demonstrated in the data analysis previously 

presented in this thesis. 

PCA was then performed to identify the components of the dataset which explained the 

majority of the variance, and which features had the most weighting in explaining the 

variance of the dataset. The first PCA was performed in the full dataset of 295 sessions of 

data and 71 descriptive statistical features. The results showed that 84.6% of the variance 

was explained by principal component 1 (PC1), 10.5% was explained by principal component 

2 (PC2), and 4.06% by principal component 3 (PC3).  
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Figure 5 Percentage variance against number of principal components 

For PC1, the feature with the greatest weight was IBI_MAX, followed by IBI_RMS, followed 

by IBI_MEAN, followed by IBI_STD, then IBI_MIN, followed by BVP_MAX, followed by 

BVP_MIN, and finally duration.  

 

Figure 6 Loading of the features for PC1 
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For PC2, the feature with the greatest weight was BVP_MAX, followed by BVP_MIN, followed 

by IBI_MIN, followed by IBI_MAX, followed by IBI_STD.  

 

Figure 7 Loading of features for PC2 

When the PCA scores for each instance for PC1 and PC2 are plotted together, we see a 

considerable overlap. Figure 8 shows the scores plotted on a scatter graph, with low stress 

instances being depicted by blue circles and high stress instances being depicted with red 

squares. There were a number of outlying points, which fall outside the blue circle on the 

graph, and outliers shall be discussed later in this chapter.  
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Figure 8 Scatter plot of PCA scores for PC1 against PC2 

  

For PC3, the feature with the greatest weight was IBI_MIN, followed by IBI_STD, followed by 

IBI_MAX, followed by IBI_MEAN, followed by IBI_RMS, followed by BVP_MAX, and finally 

BVP_MEAN.  
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Figure 9 Loading of features for PC3 

The fact that IBI and BVP related features are commonly found across the PCs as the features 

with the greatest weight could imply that measures of heart rate and cardiovascular activity 

are the best explainers of variance of all the physiological features tracked as part of this 

study. This is supported by the finding earlier in this chapter that there was statistically 

significant correlation found between a number of heart rate and BVP related features and 

ordinal stress.  

Furthermore, another scatter graph was now produced to plot the PCA scores of each 

instance for PC1, PC2, and PC3.  
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Figure 10 PCA scores for each instance plotted by their value for PC1, PC2, and PC3 

Another principal component analysis was now performed on just the features identified as 

having significant weighting for PC1, PC2, and PC3. 85% of variance was accounted for by 

PC1 while 10.3% of variance was explained by PC2. When the PCA results were plotted on a 

scatter graph, there were once again a number of outliers identified. The majority of the 

outlying sessions were found to be from participant 8 and participant 9, with the majority of 

the sessions they recorded being outliers. The sessions which were these outliers were now 

removed from the dataset to be used for further analysis, including all of participant 8 and 

participant 9’s session. With the features showing the greatest weighting across the first 

three principal components identified, with those components accounting for approximately 

99% of the variance, and the outlying cases removed, it was decided to once more train the 

previously used machine-learning model based only on those identified features. A logistic 

regression model was also trained as it was suspected by the researcher it may achieve a 

high accuracy on the data at hand.  The validation method chosen was 10-fold cross 

validation and 20 percent of the data was withheld as a testing set. The accuracy for the 

trained models can be found in table 35.  
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Table 35 Validation and test accuracy of the machine learning models retrained on only the features with the 
greatest weightings 

Model Validation accuracy (%)  Test accuracy (%) 

Logistic regression 68.2 66.7 

Fine tree 60.0 66.7 

Bagged tree 69.1 61.1 

 

The highest validation and training accuracy was achieved by the logistic regression model, 

with a test accuracy of 68.5%. This is a relatively good test accuracy compared to the models 

previously trained on the dataset and explained earlier in this chapter, however there are 

still issues with the model. The main issue is demonstrated in figure 11, showing the true 

positive and false negative rates of prediction for each class, in which one can clearly see that 

high stress sessions- given the label “2”- are misclassified at a relatively high rate. One 

explanation for this is the dataset is imbalanced with considerably more low stress instances 

than high stress, meaning the model is trained to have a bias towards classifying instances 

as low class.  

 

Figure 11 True positive rate and false negative rate for the logistic regression model. 

 

In order to explore if the imbalance was the cause of the inaccuracy, and potentially increase 

the accuracy of the model’s classification, SMOTE was used to artificially increase the number 

of instances of high stress observations. The result was a 126% increase in high stress 

instances, meaning there was an equal number of high stress and low stress instances. The 
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fine tree, bagged tree, and logistic regression models were then retrain using the newly 

balanced dataset, again using 10-fold cross validation, and withholding 20% (three 

participants’ worth as in the k-left out method described earlier) of the data as a test set. 

The validation and testing accuracy of each model can be shown in table 36.  

Table 36 Validation and test accuracy of the machine learning models trained with the balanced dataset and 
features with greatest weighting from PCA. 

Model Validation accuracy (%)  Test accuracy (%) 

Bagged tree 71.4 73.7 

Logistic regression 66.1 67.1 

Fine tree 66.8 61.8 

 

The increased accuracies give some support to the notion that the imbalanced dataset was 

negatively affecting the performance of the models trained previously in this chapter. 

Further support can be attained by looking at the true positive and false negative rates of 

both the logistic regression model and the bagged tree model (figure 12 and figure 13, 

respectively).  

 

Figure 12 True positive rate and false negative rate of the logistic regression model trained using SMOTE data 

As one can see, the logistic regression model has a significantly reduced misclassification rate 

for high stress instances, however the misclassification rate for low stress instances has also 

increased significantly. The bagged tree model has an approximately 10% higher true positive 

prediction rate for high stress instances than the logistic regression model, but an identical 
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true positive prediction rate for low stress. This along with the overall higher test 

classification accuracy of 73.7% implies that the best model for predicting stress from the 

dataset collected for this study is the Bagged tree model.  

 

Figure 13 True positive rate and false negative rate of the Bagged tree model 

5.4. Discussion  

5.4.1 Relationships between stress and other attributes 

Significant correlations were found between several features extracted from the 

physiological attributes and stress, with different features being significantly related to stress 

in home and office environments. For example, in the home environment, most of the 

features extracted from the EDA attribute correlate with stress, while only minimum EDA 

correlating with stress in the office environment. This difference could be explained by 

temperature differences in the two environments, as environmental temperatures can 

create noise in the EDA signal by increasing perspiration. Thus, if office environments used 

in the study were warmer than home environments, relatively high participant perspiration 

in the former may have negatively affected the accuracy of the EDA data. Another trend 

found in the data is that the features extracted from the attributes using the Empatica E4s 

PPG sensor tend to correlate significantly with stress more in the office environment than 

the home environment, with only median BVP correlating with stress in the home 

environment. On the other hand, maximum HR, HR variance, HR range, maximum BVP, 

minimum BVP, BVP variance, minimum IBI, NN50, NN25, pNN50, and pNN25 all correlate 
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negatively with stress in office environments. The negative correlation between stress and 

these features could be considered surprising, as literature suggests that the correlation 

between heart rate and blood volume pulse, and stress is positive. However, the negative 

correlation between features extracted from IBI and stress is in line with the results of 

existing literature. The notion of a correlation between cardiovascular activity and stress is 

further supported by the results of the PCA which showed blood volume pulse and inter-beat 

interval related features had the greatest weight of any of the features in predicting binary 

stress level. In order to fully understand the differences in values of the physiological 

attributes and their relationship to environment it is important that future research collects 

environment and other contextual data which will allow for these variables’ effects on the 

device’s sensors to be fully evaluated.  

Significant correlation between stress and productivity was found to exist for 2 participants 

in the study and not for others. Participant 2 was found to have a highly significant negative 

correlation between the two attributes, which is similar to the results of Galanti et al. (2021) 

who observed a clear negative correlation between stress and work probability in individuals 

working remotely during the COVID-19 pandemic [71]. This contrasts with Wolor et al. 

(2021), which reported that stress can be positively correlated with productivity, a 

phenomenon which is also exhibit by participant 5 of the current study [147, 148]. However, 

other than the two forementioned participants, no significant correlation was found 

between stress and productivity in the current study. This is in contrast to van Woerkom & 

Meyers (2015) who found that an employee productively using their strengths in work are 

more likely to be happy and less stressed than employees not engaging their strengths, 

suggesting a negative correlation between stress and productivity [149]. 

The lack of a significant correlation between environment and stress level in this project is 

not the expected result based on previous literature. Moretti et al. (2020) found no 

significant difference in individuals working from home rather than office environments, with 

27.5% reporting no change, 39.2% reporting a reduction in stress and approximately 33% 

reporting increased stress [74]. This supports the findings of the current study; however 

considerable literature exists which contradicts the notion of no correlation between stress 

levels and environment. A study by Eurofound and the International Labour Office (2017) 

found that participants working from home as opposed to office reported increased stress 

due to reduced work-life barrier, longer hours of work and family conflict [150]. As such, 41% 

of home workers felt stressed compared with 25% of those working in an office, implying a 

strong relationship between working environment and work stress levels. Furthermore, 
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Biron & van Veldhoven (2016) demonstrated that in most cases, office working was 

associated with higher levels of stress than home working, with the exception being 

employees with high levels of worktime control and job demand who have equal stress in 

both settings [151]. Indeed, the authors found that inter-person variations are important to 

understanding the effects of remote working. Likewise, Shao et al. (2021) found that the 

severity of the effect of stressors in different work environments depends upon the 

individual participants and their preferences or susceptibility to certain stressors [70]. 

Similarly, Galanti et al. (2021) found that social isolation and work-family conflict can 

increase stress levels in home environments, however working from home can also decrease 

other stressors related to commuting and the pandemic [71]. 

However, the results of the current study do suggest a relationship between stress and 

environment when accounting for the day of the week on which the work is occurring, with 

participants experiencing lower stress working from home from Monday to Wednesday and 

in the office on Thursday and Friday. The idea of different stress levels in different 

environments on different days of the week is supported by Tsai (2019), who found that the 

day of the week can have a considerable effect on an individual’s feelings of happiness and 

stress, depending upon demographic information such as culture, religion, and place of 

residence [152]. In addition, Song & Gao (2020) also found that day of the week can be an 

important contributor to one’s stress and affect levels, however they found that generally 

taking work home on weekdays was associated with more negative affect than doing that 

work in the office, however working from home for the full day was not associated with 

negative affect [75]. Moreover, they identified a greater prevalence of stress in participants 

working on the weekend. The findings of Freisthler et al. (2021) further support the idea, 

with their findings also indicating a reduction in stress of weekends as opposed to weekdays, 

which is not supported by the results of the current study [153]. However, a significant 

limitation of this study is that relatively few of the sessions (less than 5%) were collected on 

the weekend, limiting the reliability of any conclusions drawn about weekend working. 

Despite this, the current study does support the findings of existing literature regarding the 

notion that environment can affect stress levels differently on different days of the week. 

Moreover, there is some evidence in the current study that there is a relationship between 

environment and stress level when considering the activity that the participant is performing, 

with “Data analysis and statistics” being associated with greater levels of stress in the office 

environment than the home environment, and the reverse being true for the activities 

“Meeting” and “Reading or writing emails”. These results could be explained by the findings 
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of Shao et al. (2021) who found that technology stressors are more prevalent at home. 

“Meeting” remotely tends to require more technology than meeting in person in an office 

environment, assuming meetings in the office environment aren’t remote, with the same 

being true for communicating by email and teaching labs or tutorials, both activities which 

by most utilised metrics are associated with higher stress in the home environment as 

opposed to the office environment [70]. Furthermore, data analysis and “Editing an 

electronic document” were found to be associated with higher stress, each by at least 2 

utilised metrics, which could be explained by Prasad et al. (2020), who found employees 

completing such tasks may be more stressed in home environments due to lack of suggestion 

or guidance, or lack of work-life boundaries which may lead to working too much [154]. An 

alternative explanation could be that the difference in stress related to activity is due to 

participants feeling more capable of completing certain activities than others or are more 

comfortable completing certain activities in either the home or work environment. This 

would be supported by Woerkom & Meyers (2015) who state that employees engaging in 

activities they consider themselves proficient or capable of doing are more likely to be 

happier and less stress than those not engaging their perceived strengths [149]. However, 

this is speculation and in order to explain the differences in stress experienced in each 

environment related to activity, future iterations of this research would have to collect more 

information regarding the specific stressors experienced by participants. Nevertheless, there 

does appear to be some support in the literature and in the current study for different stress 

levels to be affected differently based on the work environment in which certain activities 

are performed. 

Likewise, though no significant correlation was found overall between stress level and the 

time of day the activities were performed, working in the office of a morning and afternoon 

is associated with lower modal and mean stress than working at home at these times of the 

day, with higher levels of stress being demonstrated in the office environment of an evening. 

One could argue that this is in contrast to Song & Gao (2021) who found working from home 

of an evening was associated with higher stress [75]. Furthermore, the results of the current 

study show that mean stress increases in both work environments as the day progresses, as 

opposed to Zawadzki et al. (2019) who found some evidence of stressors being more 

common of the morning than the afternoon, and more common in the early evening as 

opposed to late evening, however they do not report these results as significant or consistent 

[155]. As such, no definitive relationship between stress level and time of day can be 

established, however it is clear there are some differences in stress at different times of day 
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and thus this aspect should not be disregarded wholly as a potential contributing factor to 

stress and negative affect levels. 

Overall, this section provides the answer to two of the research questions of the project. The 

first is “What differences exist in stress levels between instances of home and office 

working?” and the answer is that there is some evidence of differences between the stress 

experienced in each environment based on the time of day the work is being completed, the 

day of the week, and the activity being performed. Also, “What, if any, correlation exists 

between subjective stress, subjective productivity, time of day, day of week, physiological 

features and work environment?” is similarly answered in this section. The answer is that 

though there is no clear, significant correlation between the mentioned attributes overall in 

the dataset, there does appear to be relationships implied between some of the attributes. 

For example, participants experiencing lower stress working from home from Monday to 

Wednesday and in the office on Thursday and Friday, implying a relationship between 

environment and stress when considering the day of the week.  

5.4.2. Prediction of stress 

The validation prediction accuracy (99.3%) of the bagged tree ensemble model from this 

project is relatively high compared to the results of related projects. Indikawati & Winiarti 

(2020) achieved accuracy of up to 99% accuracy distinguishing stress from other 

physiological conditions, and stress and non-stress, respectively, using a random forest 

model [80].  This accuracy is very high compared to the original work of Schmidt et al. (2018), 

however, Indikawati & Winiarti (2020) do not specify the statistical features they extract 

from the physiological data, limiting the comparability of their results [17]. The predicted 

states in their project are different than the predicted states in this project, and they had 

more participants (15 as opposed to 13 on this project), and thus the comparison is limited. 

Another limitation to the comparison is that their data was collected in a controlled 

environment, whereas the data from the current project was collected in real-world, non-

controlled environments.  

Alternatively, Can et al. (2019) achieved 97.92% for distinguishing between mild, moderate 

and high stress using random forest, with data collected in a mixture of controlled and non-

controlled environments [81]. Betti et al. (2018) used just 15 features to achieve an accuracy 

of up to of 86% for discriminating between stress and relaxation [77]. This is a relatively high 

accuracy, higher than the 74.5% accuracy in binary classification achieved by Wisjman et al. 

(2013) [78]. However, Han et al. (2017) achieved 94% accuracy in binary classification, using 
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a combination of SVM and random forest (RF) classifiers on features extracted from ECG and 

respiration data [79]. Similar to Betti et al. (2018), Han et al. (2017) utilise the MAST in a 

controlled setting to elicit stress responses from 39 participants while the participants 

complete work-related tasks. The highest prediction accuracy was achieved using a 

combination of SVM and RF classifiers, not only achieving the aforementioned 94% accuracy 

for binary classification. The binary classification accuracy of the trained model from this 

project is higher than the accuracy of the models in all of the literature mentioned [77, 79].  

The training accuracy of the bagged tree model was 56%, with previously unseen data being 

misclassified at a high rate, especially high stress instances, which is considerably lower than 

the accuracies achieved in the previously referenced studies in literature. As such, the use of 

PCA and SMOTE was decided upon, as is done by Askari et al. (2022) [156]. Using PCA and 

SMOTE, the authors reduce the complexity of their dataset and balance their classes, 

allowing their recurrent Neural Network to achieve an accuracy of 92% for detecting acute 

physiological stress. There are some limitations with comparing the work of Askari et al. 

(2022) with the current study, including that they used a modified version of SMOTE called 

ADASYN, which uses density distribution as a guide for generating synthetic instances rather 

than simply achieving an equal number of instances of each class, as is done with traditional 

SMOTE. Furthermore, the accuracies they achieve with their model by utilising PCA and data 

balancing are considerably higher than the 73.7% achieved in this study, but that is 

potentially explainable by their much higher sample size of participants. As such, future work 

on the current study would require the collection of data from a much larger sample size. 

Moreover, Anusha et al. (2018) used the physiological data of 34 participants to train a 

number of machine learning models for predicting stress [157]. Their highest achieved 

accuracy of 90.91% was achieved by a KNN which was trained on data which had been 

balanced using SMOTE. Compared to the same model trained on the original, imbalanced 

dataset (which achieved an accuracy of 75.79%) this is an increase in accuracy of 

approximately 15%. This is comparable with the increase in accuracy achieved by the use of 

data balancing in this current study, in which the accuracy increased from 56% to 73.7%, an 

increase of 17.7%. Once again, the relatively small sample size achieved in the current study 

is likely the reason for the limited accuracy scores achieved by the Bagged Tree model, 

however this study supports the finding of Anusha et al. (2018) that SMOTE and data 

balancing can increase the accuracy of machine learning models by reducing training bias 

towards the majority class. 
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There are some limitations of the model from this project. Firstly, the number of participants 

is comparable with some other research in the field, though collecting data from more 

participants would allow for greater reliability in results. Furthermore, the subjective stress 

values used to label the physiological data for the supervised machine learning was collected 

using self-assessment questionnaires, which can often suffer from inaccuracy due to bias. 

Moreover, the lack of demographic data, such as gender or marital status means that the 

effects of the participants’ demographics cannot be explored.  

Another limitation of the study was that there was limited exploration of tuning the model 

hyperparameters, which potentially limits the performance of the models trained. 

Hyperparameters are parameters which control the learning process and resulting 

parameters of a machine learning model, and so optimising these hyperparameters allows 

us to optimise and potentially improve the learning rate, model parameters, and ultimately 

model performance. One such hyperparameter is learning rate, which controls how much 

change occurs to the weights of the model at each stage of the learning process, or in other 

words how quickly the learning process takes place. The value is set between 0 and 1, with a 

commonly used value being 0.1, which means that the weights in the model are updated by 

10% of the estimated weight error each time the weights are updated. Setting the learning 

rate too low may lead to the model weights converging too slowly or never at all, or the 

model becoming stuck with suboptimal weights and solutions. Alternatively, setting the 

learning rate too high may lead to convergence which is too quick, similarly reducing model 

performance [158]. Another important hyperparameter is optimisation function, or method 

used for optimisation. There are three main varieties of optimisation approaches: searches 

(random & grid) where the hyperparameter values are altered until the optimal values are 

found; evolutionary optimisation which mimics natural selection processes in mutating the 

hyperparameters and changing them iteratively and recombining the choices found to be 

effective; and Bayesian optimisation in which sequences of hyperparameters are tested, with 

each iteration of hyperparameters being a refinement of the ones in the previous iteration 

[159].  

Hyperparameters which are specific to tree models and tree-based ensemble models include 

maximum tree depth, minimum leaf size, and branch split criterion [160]. The maximum tree 

depth parameter sets a limit to the number of splits and nodes that can be generated in the 

model. A higher value will mean more splits and more splits tends to lead to better 

classification, however it can also lead to overfitting of the model to the training data and 

can take longer and be more computationally expensive than if a smaller value were used 
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[161]. The minimum leaf size parameter sets a limit for the minimum number of observations 

that each node is allowed to have, which also limits the number of splits that can occur, as if 

a split would result in a node with fewer observations than is allowed by the minimum leaf 

size parameter the split would not occur. Having too low a value will likely lead to the model 

being overfit to the training data, however too large a value will mean the model cannot 

create enough splits to achieve a high performance [162]. Finally, the branch split criterion 

is the criterion used to decide how nodes are split into child nodes. Examples of split criteria 

include: the Gini impurity, where the probability of the parent node giving a misclassification 

is measured and the split that would reduce that probability the most is made; information 

gain, where the split is made by calculating the difference between the entropy of the parent 

node and the average entropies of the child nodes for each possible split; and reduction in 

variance, where the split which most reduces the variance in a target variable is made to 

generate the child nodes [163-165]. Each of these split criteria has their advantages and 

disadvantages, and so an exploration of how the use each of them effects the accuracy of 

the models trained in this study should be explored in future work.  

Hyper parameters can be set either manually or automatically, with a wide range of potential 

methods for automatic hyperparameter tuning being available [161]. The hyperparameters 

chosen in this study were set manually and different hyperparameter values were not 

explored, and so future work should explore different hyperparameters and compare 

different methods for automated hyperparameter tuning. 

Another limitation of this study was the lack of a calibration process that would make a 

person specific model more accurate by factoring in their baseline heart rate. Resting or 

baseline heart rates can vary person from person, based upon factors such as their physical 

fitness levels, age, health conditions, and an array of other demographic factors [166, 167]. 

This inter-personal difference in resting heart rate presents a potential problem for the 

models trained in this study. Normalisation of the physiological data attributes and features 

was useful in this regard, as it meant that rather than comparing the raw values of the 

features- which could vary greatly between participants- the models could learn from data 

which was all normalised within the range of 0 to 1. This reduced the effects of the 

interpersonal differences as all participants data was measured on the same scale and had 

similar variance [15]. However, only one method of normalisation was explored, and perhaps 

other methods could be explored in future work to see if this has any effect on the accuracy 

of the models. Another method for addressing this limitation which could be explored in 

future work is the engineering of new features which measure the distance of the current 
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value of an attribute from the baseline or resting value of that attribute for each participant. 

For example, one could collect a baseline reading of each participants resting attributes, in 

this instance we shall focus on heart rate, for a session of around 5 minutes, as has been 

done in previous literature [17]. An average heart rate value could then be calculated from 

this session, with this being considered the participant’s resting heart rate, and a new feature 

could be engineered from each current window of the data being collected- difference from 

baseline heart rate (HR_DFB). To calculate this feature, one would take the average value of 

the heart rate measured in the relevant window and from it minus the resting heart rate 

value. Thus, if a participant has a resting heart rate value of 80 beats per minute (bpm), and 

the average value for the relevant window is 124 bpm, the HR_DFB value for that window 

would be 44. This would help to calibrate the models and reduce misclassifications. To 

illustrate how, consider the following example: participant A has a current heart rate of 114 

bpm and a resting heart rate of 105 bpm, and participant b has a current heart rate of 115 

bpm and a resting heart rate of 82 bpm. Whereas a model may interpret the current heart 

rates of both participants to be the same and thus equally indicative of stress, the HR_DFB 

value of each participant (9 for participant A and 33 for participant B) demonstrates that 

participant’s B heart rate is far more indicative of stress than participant A’s. Similar features 

could be calculated for other physiological attributes, such as skin temperature.  

Overall, however, this section does answer the research question “Can machine learning be 

used to identify and predict occurrences of stress in both work environments, based on the 

physiological attributes of the individual, and what is the best model for doing so?“. The 

answer is that the best model for classifying and predicting the occurrences of work stress 

based upon the physiological data attributes of individuals in this study is the bagged tree 

ensemble model, achieving a binary validation classification accuracy of 99.3% and a testing 

accuracy of 73.7%.  

5.4.3. Potential stress mitigations 

Mitigating and reducing stress is vital, as this will help in the reduction of negative health 

outcomes related with long-term stress, such as cardiovascular disease and sexual 

dysfunction [3, 4]. The mitigations can be split into two main categories: organisational, 

which refers to policies, rules or incentives organisations can put in place to influence or help 

their employees; and personal, which are things the individual employees can do to mitigate 

their own work stress [168].  
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The results of the data analysis in this chapter of the thesis indicate a relationship between 

stress and environment on certain days of the week. As such, one personal work stress 

mitigation method could be for employees to consider the impact working from home or 

office environments on each day will impact their stress. For example, if an individual 

employee has a large number of meetings with colleagues on one day, it may be less stressful 

for them to work in an office environment on that day, as this would reduce their exposure 

to technological stressors. One limitation of this mitigation method is it requires an employee 

to have an insight on the influence environment has on their work stress on each day of the 

week. To achieve this, individuals could keep a work stress diary to track their feelings of 

work stress over time in each environment [169, 170]. Institutions could help individuals 

understand their fluctuations in work stress by encouraging them to keep a work stress 

study, or providing them with a system, like the machine learning model developed in this 

project, which can detect when the employee is experiencing high work stress. Institutions 

should also foster generous flexible working plans which allow employees the freedom to 

work in their preferred environment whenever possible [171].  

Furthermore, the results of the analysis of the dataset in this thesis chapter show that 

working from the office of an evening- colloquially “staying late at the office”- should be 

discouraged as it is associated with higher average stress than office work at any other time 

of day, and higher average stress than working in the home environment at the same time 

of day.  Institutions could impose policies should as closing the offices at 5pm each evening, 

with employees having to request permission to stay later [172]. Similarly, institutions could 

provide incentive for employees to finish work before the evening begins on days associated 

with high average office environment work stress- Thursday and Friday in this study- by 

offering extra-curricular activities or social events. On the individual level, employees should 

aim to enforce a strict work-life boundary and ensure that they only work late in the office 

when absolutely necessary [73]. 

Similarly, there is a suggested relationship between the activity being performed in each 

environment and the stress experienced. One personal mitigation for this stress could be to 

ensure that certain activities are completed in the environment where they prevent the least 

potential stressors. For example, meeting in person instead of remotely may reduce 

technology stressors, however working in an office environment could increase other 

stressors. As such, each individual employee should be free to choose their own work 

environment where possible [171]. However, there will always be some instances in which 

employees are bound to experience high work stress, such as when they have an 
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approaching work deadline, or they unavoidably have to perform a task they dislike. In these 

instances, individuals could utilise meditation or deep breathing exercises, as these methods 

have been shown to be highly effective at reduce stress frequency and intensity [173]. 

Furthermore, individuals and Institutions should aim to ensure that employees are given 

ample time after having to complete a stressful task to recover. In addition, organisation 

should ensure that all work being performed by employees is meaningful, useful, and where 

possible engages an employee’s strengths, thus increasing their productivity [149].  

5.5. Chapter summary 

This chapter answered 4 of the research questions posited in this project. It was established 

in this chapter that there is some evidence of differences between the stress experienced in 

each environment based on the time of day the work is being completed, the day of the 

week, and the activity being performed. Also, though there is no clear, significant correlation 

between any of the attributes overall in the dataset, there does appear to be relationships 

implied between some of the attributes. For example, participants experiencing lower stress 

working from home from Monday to Wednesday and in the office on Thursday and Friday, 

implying a relationship between environment and stress when considering the day of the 

week. There is also an implication of relationship between stress and environment when 

considering the time of day, as working in the office of a morning and afternoon is associated 

with lower modal and mean stress than working at home at these times of the day, with 

higher levels of stress being demonstrated in the office environment of an evening. 

Furthermore, it is clearly established that the best machine learning model for classifying the 

stress level of participants on the current project is the bagged tree ensemble model, which 

achieved a binary classification accuracy of 73.7% when dimensionality reduction and data 

balancing techniques were applied.  
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6. Conclusion  

6.1. Introduction 

In this chapter, the conclusions of the proposed study are drawn. Section 6.2. reiterates all 

of the research questions and provides a concise summary of the answers to each provided 

in the previous chapters of the thesis. Section 6.3. then explains the futures work which 

should be conducted on this project, as well as in the dementia-related difficulties and work 

stress prediction domains in general.  

6.2. Conclusion  

There were 7 research questions which were posited in this research project. Here all 7 are 

reiterated and the answers provided to them in this thesis summarised.  

6.2.1. What are the best physiological attributes and sensors for predicting the 

occurrence of dementia-related difficulties?  

The best physiological attributes and sensing modalities for predicting dementia-related 

difficulties identified in the review detailed in chapter 3 were movement from 

accelerometers, coronary data attributes using PPG or ECG, with these attributes including 

BVP and HR, and EDA. All three of these modalities were found to be highly efficacious in 

identifying difficulties alone and in combination with other physiological attributes or 

sensing modalities. One other notable sensing modality is skin temperature, despite only 

being found to be an efficacious sensing modality in 1 of the included papers. However, it 

appears to be useful in combination with other attributes for predicting difficulties and so 

could be seen as a potentially efficacious sensing modality. More work should be done on 

evaluating a correlation between skin temperature and dementia-related agitation; 

however, it should be noted that no significant correlations between features extracted from 

skin temperature and stress in the data analysis outlined in chapter 5, not supporting the use 

of skin temperature for detecting stress-related difficulties.  

6.2.2. What is the best wearable device which can be used to track the indicative 

physiological attributes of people with dementia, in a comfortable, unobtrusive and 

unobstructive manner? 

The results of the device search outlined in chapter 3 of the thesis highlight that the Empatica 

E4 is the best wearable device which can be used to track the indicative physiological 

attributes of people with dementia, in a comfortable, unobtrusive and unobstructive 

manner. This device is designed for use in clinical trials, offering high quality, accurate and 
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precise measurements of physiological data. It contains a PPG sensor, a tri-axial 

accelerometer, an EDA sensor, an infrared thermopile (for measuring skin temperature), and 

an internal real-time clock (allowing the readings of the other sensors to be accurately time 

referenced). It has an internal real time clock which allows for data to be timestamped and 

has a built-in event marker button so that events can be marked as they occur, allowing for 

easier matching of events to physiological data. It was found to be usable and comfortable 

for people with dementia in a number of previous studies in literature and contained all of 

the most commonly used and efficacious sensors for collecting physiological indicators of 

dementia-related agitation. However, the main drawback to this device is that it is highly 

expensive and may not be usable for some researchers due to financial limitations.  

6.2.3. What is the best machine learning model for predicting the occurrences of 

dementia-related difficulties and the context in which they occur? 

This question was not answered in the research project due to the pivot of the project to a 

different domain prior to the work on answering this question commencing. One could 

answer this question with a systematic literature review, as there is plenty of literature in 

which machine learning is used to identify dementia-related difficulties, though as identified 

in previous works, no comprehensive system for all dementia-related difficulties yet exists. 

As such, it would be best if this question were answered using a comprehensive dataset of 

physiological attributes from people with dementia being used to train novel comprehensive 

dementia-related difficulty prediction models.  

6.2.4. What differences exist in stress levels between instances of home and office 

working? 

Stress experienced in the office environment tends to be higher on Mondays, Tuesdays, and 

Wednesdays, and during the evenings as opposed to office working sessions at those times 

and on those days. Alternatively, home-based work sessions have higher average stress 

values on Thursdays and Fridays, and in the morning and afternoons. The differences in 

home and office work stress are also apparent when accounting for activity. For example, 

having meetings in the home environment is associated with higher average stress than in 

the office environment, with a similar but less obvious trend existing for email. This may be 

due to technology stressors, with added technological stressors being involved in remote 

meetings in home environments compared to office environments. On the other hand, data 

analysis and editing electronic documents have generally higher average stress in the office 

environment as opposed to the home environment. Furthermore, there is some difference 
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in the physiological data features which significantly correlate with stress in home and office 

environments. For example, in the home environment, most of the features extracted from 

the EDA attribute correlate with stress, while only minimum EDA correlates with stress in the 

office environment. Overall, it is clear that there are differences in the stress that is 

experienced in each work environment, however, to fully understand those differences it 

may be important for future research to collect demographic information from participants, 

such as age and marital status.  

6.2.5. What, if any, correlation exists between subjective stress, subjective 

productivity, time of day, day of week, physiological features, and work environment? 

Significant correlations exist between stress and a number of physiological features, 

including many EDA, HR, BVP, and IBI features. The notion that BVP and IBI related features 

were useful in predicting stress was also supported by the PCA conducted which found BVP 

and IBI features tended to have the greatest weight in explaining the variance of the dataset. 

No significant correlation exists between stress and productivity in the dataset overall, 

however for one participant there was a negative correlation between stress and 

productivity, and for another participant that correlation was positive. Furthermore, though 

no clear correlation exists between stress and environment, a relationship is implied 

between stress and environment due to differences in stress in each environment when 

considering time of day, day of week, and activity. Likewise, no significant correlation was 

found between time of day and stress, day of the week and stress, and activity and stress.  

6.2.6. Can machine learning be used to identify and predict occurrences of stress in 

both work environments, based on the physiological attributes of the individual, and 

what is the best model for doing so?  

A novel bagged tree ensemble was developed for binary stress classification, achieving a 

validation accuracy of 99.3%, a relatively high precision and AUC, and few instances of 

misclassified observations. This accuracy is very high compared to models found in existing 

literature. This accuracy was reduced significantly when the model was tested with unseen 

data, however it was possible to increase the accuracy to 73.7% using PCA and SMOTE. The 

significantly increased accuracy after the PCA and SMOTE were employed highlights the 

importance of ensuring that relevant features are identified and utilised, and the importance 

of having a balanced dataset. However, it can be difficult to collect a balanced dataset, as in 

this study and a number of studies in literature, all the collected datasets were skewed 

towards having more low stress than high stress instances. As such, data balancing 
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techniques such as SMOTE could be considered vital for stress detection. There are some 

limitations of the model from this project. Firstly, the number of participants is comparable 

with other research in the field, though collecting data from more participants would allow 

for greater reliability in results. Furthermore, the subjective stress values used to label the 

physiological data for the supervised machine learning was collected using self-assessment 

questionnaires, which can often suffer from inaccuracy due to bias. Moreover, the lack of 

demographic data, such as gender or marital status means that the effects of the 

participants’ demographics cannot be explored. However, based on the analysis of data 

collected on this project, machine learning models trained using physiological data can be 

used to predict the levels of stress with high accuracy, and the best model found in this 

project was the bagged tree ensemble model.  

6.2.7. What mitigations can be used to reduce or prevent work stress once it is 

detected, based on the causal environmental and personal factors identified in the 

answer to question  

The potential mitigations to stress based on the results of the data analysis in chapter 5 of 

the thesis can be split into institutional and personal mitigation methods. The potential 

personal stressors including ensuring a work-life balance and avoiding working late at the 

office, understanding the impact environment has on one’s work stress on each day of the 

week and time of day and choosing to work in the lowest stress environment where possible, 

and utilising methods such as meditation or deep breathing to reduce stress when stressors 

are unavoidable. Institutional stress mitigations could include policies to promote working 

from home on days when that is less stressful for certain employees (obviously requiring a 

study of their workforce’s habits and stress), discouraging working in the office of an evening 

and doing overtime unless absolutely and unavoidably necessary, providing incentives for 

employees to finish work at a reasonable time such as social events and extra-curricular 

activities, and encouraging employees to be mindful of their stress levels and the impact 

their work environments can have on their stress. Overall, the work stress mitigations 

proposed in this thesis are relatively simple, common-sense ideas which should not be hard 

to implement in academic workplaces, or offices of many creative technology companies.  

6.3. Discussion of Future Work  

Future work on this project should focus upon ensuring the reliability of the classification 

results of the developed model. The main method for doing this should be conducting the 

data collection methodology with more participants, increasing the size of the dataset with 
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which the models can be trained and evaluated. Furthermore, future iterations of the study 

should aim to collect demographic and environmental factors which could influence the 

differences in stress levels and physiological attribute values between the two work 

environments. Moreover, the transfer of the methods and lessons learnt back to the 

dementia-related difficulties detection domain should be conducted in the future, as the 

development of a comprehensive dementia-related difficulties support system remains 

highly important and topical. 

In the dementia-related difficulties domain future work should focus on a dataset which 

contains a comprehensive range of physiological indicators of dementia-related difficulties. 

The dataset should ideally contain data from as many different people, with as many 

different types of dementia and symptoms as possible. Moreover, steps should be taken to 

ensure that the data is shareable with other researchers in the domain, such as anonymising 

or pseudonymising personalised data and obtaining informed consent from participants and 

their representatives for sharing the data in a controlled and ethical manner with researchers 

with valid reasons for accessing the data. Finally, the dataset should be used for developing 

a system which can predict the occurrence of a comprehensive range of dementia-related 

difficulties in a timely manner.  

Future work in the work stress detection domain should focus on the development of more 

personalised models which focus on identifying the stress of individuals, as there are clear 

interpersonal differences in the way in which individuals exhibit and experience stress. 

Furthermore, more work should be done on comparing the physiological and subjective 

stress levels in home and office work environments, with an emphasis on how demographic 

and environmental factors influence the physiological attributes. Finally, more emphasis 

should be placed upon individual employees and their employers having an understanding 

and mindfulness of how choice of work environment can impact stress levels, with 

institutions encouraging the tracking of work stress by employees using a diary or a 

physiological data-based system for detecting stress, such as the model developed in this 

thesis.   
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Appendix A- Email template for requesting data from other 

researchers 

Dear [Name of corresponding author on relevant paper] 

My name is Matthew Harper and I am a PhD student in the Department of Computer Science 

at Liverpool John Moores University. The aim of my project is to develop a wearable system 

which can detect agitation/difficulties in people with dementia by tracking physiological 

indicators, and trigger context-appropriate digital interventions (meaning the system will 

need to be context-aware). 

In your paper {Name of the relevant paper], you [brief discussion of the relevant paper’s 

methodology]. 

Would it be possible for you to share [description of the physiological data which is being 

requested]? I would of course reference and acknowledge you in any future publications for 

work in which I used and built upon your data. 

Thanks 

Matt Harper 
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Appendix B- Table of attributes and extracted and engineered 

features 

Attribute Feature name Feature abbreviation Description 

DateTime Time of day TimeOfDay The time at which the 

session began.  

Day of week DayOfWeek The day of the week 

the session occurred 

on 

Environment N/A N/A The environment in 

which the session 

occurred 

Activity N/A N/A The activity 

performed during the 

session 

Stress Stress level Stress_Level The level of stress, 

either high (above the 

median) or low 

(below the median), 

experienced during 

the session.  

Productivity N/A N/A How productive the 

participant felt during 

the session.  

Length of session data 

files 

Duration N/A The duration of the 

work session.  

Electrodermal activity 

(EDA) 

Mean EDA value EDA_MEAN The mean value of the 

EDA data.  

Maximum EDA value EDA_MAX The maximum value 

of the EDA data.  

Minimum EDA value EDA_MIN The minimum value 

of the EDA data 
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Median EDA value EDA_MED The median value of 

the EDA data 

Variance of EDA EDA_STD The variance of the 

EDA data 

Range of EDA values EDA_RANGE The difference 

between the greatest 

EDA value and the 

lowest EDA value 

EDA tonic component 

(TONIC) 

Mean value of the 

tonic component 

MEAN_TONIC The mean value of the 

tonic component of 

the EDA 

Variance of the tonic 

component 

STD_TONIC The variance of the 

tonic component of 

the EDA 

EDA phasic 

component (PHASIC) 

Mean value of the 

phasic component 

MEAN_PHASIC The mean value of the 

phasic component of 

the EDA 

Variance of the phasic 

component 

STD_PHASIC The variance of the 

phasic component of 

the EDA 

Number of skin 

conductance 

responses per minute  

NUM_SCRs_PERMIN The number of peaks 

in the phasic 

component of the 

EDA which 

correspond to an 

activation of the ANS.  

Sum of the magnitude 

of skin conductance 

responses per minute  

SCR_MAG_NORMALI

ZED 

The summed 

magnitude of the 

peaks in the phasic 

component of the 

EDA which 

correspond to an 

activation of the ANS.  
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Sum of the duration 

of skin conductance 

responses per minute 

SCR_DUR_NORMALIS

ED 

The summed duration 

of peaks in the phasic 

component of the 

EDA which 

correspond to an 

activation of the ANS.  

Heart rate (HR)  Mean HR value HR_MEAN The mean value of the 

HR data 

Maximum HR value HR_MAX The maximum value 

of the HR data 

Minimum HR value HR_MIN The minimum value 

of the HR data 

Variance of HR  HR_STD The variance of the 

HR data 

Range of HR values HR_RANGE The difference 

between the greatest 

HR value and the 

lowest HR value 

Skin temperature (ST)  Mean ST value ST_MEAN The mean value of the 

ST data 

Maximum ST value ST_MAX The maximum value 

of the ST data 

Minimum ST value ST_MIN The minimum value 

of the ST data 

Median ST value ST_MED The median value of 

the ST data 

Variance of ST ST_STD The variance of the ST 

data 

Range of ST values ST_RANGE The difference 

between the greatest 

ST value and the 

lowest ST value 
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Blood volume pulse 

(BVP) 

Mean BVP value BVP_MEAN The mean value of the 

BVP data 

Maximum BVP value BVP_MAX The maximum value 

of the BVP data 

Minimum BVP value BVP_MIN The minimum value 

of the BVP data 

Median BVP value BVP_MED The median value of 

the BVP data 

Variance of BVP BVP_STD The variance of the 

BVP data 

Accelerometer (ACC) Mean ACC value from 

the X axis 

ACC_X_MEAN The mean value of the 

accelerometer X axis 

data 

Maximum ACC value 

from the X axis 

ACC_X_MAX The maximum value 

of the accelerometer 

X axis data 

Minimum ACC value 

from the X axis 

ACC_X_MIN The minimum value 

of the accelerometer 

X axis data 

Median ACC value 

from the X axis 

ACC_X_MED The median value of 

the accelerometer X 

axis data 

Variance of ACC from 

the X axis 

ACC_X_STD The variance of the 

accelerometer X axis 

data 

Range of ACC values 

from the X axis 

ACC_X_RANGE The difference 

between the greatest 

accelerometer X axis 

value and the lowest 

accelerometer X axis 

value 
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Mean ACC value from 

the Y axis 

ACC_Y_MEAN The mean value of the 

accelerometer Y axis 

data 

Maximum ACC value 

from the Y axis 

ACC_Y_MAX The maximum value 

of the accelerometer 

Y axis data 

Minimum ACC value 

from the Y axis 

ACC_Y_MIN The minimum value 

of the accelerometer 

Y axis data 

Median ACC value 

from the Y axis 

ACC_Y_MED The median value of 

the accelerometer Y 

axis data 

Variance of ACC from 

the Y axis 

ACC_Y_STD The variance of the 

accelerometer Y axis 

data 

Range of ACC values 

from the Y axis 

ACC_Y_RANGE The difference 

between the greatest 

accelerometer Y axis 

value and the lowest 

accelerometer Y axis 

value 

Mean ACC value from 

the Z axis 

ACC_Z_MEAN The mean value of the 

accelerometer Z axis 

data 

Maximum ACC value 

from the Z axis 

ACC_Z_MAX The maximum value 

of the accelerometer 

Z axis data 

Minimum ACC value 

from the Z axis 

ACC_Z_MIN The minimum value 

of the accelerometer 

Z axis data 
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Median ACC value 

from the Z axis 

ACC_Z_MED The median value of 

the accelerometer Z 

axis data 

Variance of ACC from 

the Z axis 

ACC_Z_STD The variance of the 

accelerometer Z axis 

data 

Range of ACC values 

from the Z axis 

ACC_Z_RANGE The difference 

between the greatest 

accelerometer Z axis 

value and the lowest 

accelerometer Z axis 

value 

Mean ACC value from 

the summed axes 

ACC_SUM_MEAN The mean value of the 

summed 

accelerometer axes 

data 

Maximum ACC value 

from the summed 

axes 

ACC_SUM_MAX The maximum value 

of the summed 

accelerometer axes 

data 

Minimum ACC value 

from the summed 

axes 

ACC_SUM_MIN The minimum value 

of the summed 

accelerometer axes 

data 

Median ACC value 

from the summed 

axes 

ACC_SUM_MED The median value of 

the summed 

accelerometer axes 

data 

Variance of ACC from 

the summed axes 

ACC_SUM_STD The variance of the 

summed 

accelerometer axes 

data 
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Range of ACC values 

from the summed 

axes 

ACC_SUM_RANGE The difference 

between the greatest 

summed 

accelerometer axes 

value and the lowest 

summed 

accelerometer axes 

value 

Interbeat interval (IBI) Mean IBI value IBI_MEAN The mean value of the 

IBI data 

Maximum IBI value IBI_MAX The maximum value 

of the IBI data 

Minimum IBI value IBI_MIN The minimum value 

of the IBI data 

Variance of IBI IBI_STD The variance of the IBI 

data 

Root mean square of 

the IBI values 

IBI_RMS The square root of the 

sum of the squares of 

the successive 

intervals between 

heart beats 

Number of IBIs 

varying by more than 

50 milliseconds 

NN50 The number of 

interbeat intervals 

which differ from the 

proceeding interval 

by more than 50 

milliseconds 

Percentage of IBIs 

varying by more than 

50 milliseconds 

pNN50 The percentage of 

interbeat intervals 

which differ from the 

proceeding interval 

by more than 50 

milliseconds 
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Number of IBIs 

varying by more than 

25 milliseconds 

NN25 The number of 

interbeat intervals 

which differ from the 

proceeding interval 

by more than 25 

milliseconds 

Percentage of IBIs 

varying by more than 

25 milliseconds 

pNN25 The percentage of 

interbeat intervals 

which differ from the 

proceeding interval 

by more than 25 

milliseconds 
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Appendix C- List of relevant publications by researcher 

Harper, Matthew, et al. "Data Science Techniques to Support Prediction, Diagnosis and 

Recode Treatment of Alzheimer's Disease." 2019 12th International Conference on 

Developments in eSystems Engineering (DeSE). IEEE, 2019. 

Harper, Matthew, and Fawaz Ghali. "A Systematic review of wearable devices for tracking 

physiological indicators of Dementia related difficulties." 2020 13th International Conference 

on Developments in eSystems Engineering (DeSE). IEEE, 2020. 

Harper, Matthew, et al. "Challenges in data capturing and collection for physiological 

detection of dementia-related difficulties and proposed solutions." Intelligent Computing 

Theories and Application: 17th International Conference, ICIC 2021, Shenzhen, China, August 

12–15, 2021, Proceedings, Part III 17. Springer International Publishing, 2021. 

Harper, Matthew, et al. "Review of methods for data collection experiments with people 
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17th International Conference, ICIC 2021, Shenzhen, China, August 12–15, 2021, Proceedings, 

Part III 17. Springer International Publishing, 2021. 
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