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Abstract: Cold mix asphalt (CMA) is emerging as an environmentally friendly alternative to tradi-
tional hot mix asphalt (HMA). It offers advantages such as lower costs, reduced energy demands,
decreased environmental impacts, and improved safety aspects. Among the various types of CMA,
the cold bitumen emulsion mixture (CBEM) stands out. The CBEM involves diluting bitumen through
emulsification, resulting in lower bitumen viscosity. However, this process has certain drawbacks,
including extended setting (curing) times, lower early strength, increased porosity, and suscepti-
bility to moisture. This study focuses on enhancing CBEM properties through the utilization of
low-energy heat techniques, such as microwave technology, and the incorporation of a polymeric
additive, specifically acrylic. These innovations led to the development of a novel paving technology
known as a half-warm bitumen emulsion mixture (HWBEM). The research was conducted in two
phases. First, the study assessed the impact of low-energy heating on the CBEM. Subsequently, it
explored the combined effects of low-energy heating and the addition of an acrylic polymer. CBEM
samples containing ordinary Portland cement (OPC) as an active filler were utilized in the sample
manufacturing process. The effectiveness of these techniques in enhancing crack resistance was
evaluated by analysing the results of the indirect tensile strength test. Notably, CBEM samples
containing an amount of 2.5% of acrylic polymer and OPC exhibited the highest resistance to cracking.
Furthermore, significant improvements were observed in their volumetric and mechanical properties,
comparable to those of HMA.

Keywords: crack resistance; cold bitumen emulsion mixture; microwave; polymer modified asphalt

1. Introduction

Economy, sustainability, and safety carry high profiles nowadays in transportation
engineering, and pavements, the inevitable component of most transportation infrastruc-
tures, are immediately engaged with all these factors. The majority of pavements around
the globe are surfaced with asphalt, and among the different types of which, hot mix
asphalt (HMA) prevails in volume [1,2]. However, the use of HMA currently raises a lot of
questions due to its environmental costs, as does the matter of sustainability, which applies
to almost all types of construction materials [3,4].

The production of HMA consumes a huge amount of energy to heat the two main
asphalt ingredients, aggregate and bitumen. Additionally, the process emits pollutant
gases, resulting in the categorisation of HMA within environmentally costly products [5].
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Therefore, researchers try to alleviate the issues by developing new technologies to reduce
production temperature and emittance. Recent works have shown merits in cold bitumen
emulsion mixtures (CBEMs), a type of cold asphalt mixture family. The advantage of a
CBEM is that it is produced, mixed, and compacted at normal ambient temperature [6].
However, the mechanical properties of CBEM are inferior to those of conventional HMA.
CBEMs have a low early life strength and high porosity [7–9]. Such disadvantages result in
there being little interest in substituting HMA with a CBEM. Several methods have so far
been examined by researchers to develop and advance this technology, including the use
of filler types [10–15], advanced polymers [16–19], compaction energy [10,20–22], heating
techniques via microwave [23–25], polymers [18,26], and crumb rubber [27,28]. While these
methods show a slight modification in volumetric properties, other properties have shown
better improvement.

Researchers have been trying to apply affordable techniques, such as heating, to
control the porosity of CBEMs in comparison to that of conventional HMA without leaving
negative effects on the other improved characteristics of CBEM. Al-Busaltan et al. [23]
found that subjecting a CBEM to microwave heating up to 100 ◦C had a significant impact
on the engineering properties of the mixture. The process improved the final product’s
resistance to permanent deformation while it decreased porosity to an acceptable level. The
CBEM’s water damage and ageing characteristics were comparable to those of conventional
HMA and better fatigue characteristics were achieved. Additionally, Dulaimi et al. [24]
concluded that pre-compaction heating led to significant effects such as a reduction in the
porosity and mixture sensitivity to water damage and an improvement in the mixture’s
early life properties.

The term half-warm bituminous emulsion mixture (HWBEM) refers to the technique
of applying post-heating, whether conventional or microwave radiation (the process oc-
curs within a temperature not >100 ◦C), to a loosened CBEM before compaction. Hence,
HWBEM is a method for producing asphalt mixtures at temperatures between 65 and
100 ◦C [24,29–31]. Mixtures such as emulsified bitumen, foamed bitumen, and modified
bitumen with fluxing oil can be made using several kinds of bituminous binders [32,33].
According to Van de Ven et al. [34], a HWBEM can provide comparable monotonic qualities
at high temperatures in addition to similar fatigue properties in comparison to HMA. The
HWBEM offers a variety of advantages due to its lower production, laying, and compacting
temperatures, including but not limited to improved working conditions, lower GHG
emissions, less energy usage, a longer paving window, and longer hauling lengths [35].

Accordingly, this study is aimed at examining the cracking characteristics of the
HWBEM. The improvement in volumetrics post-heating is examined through mechanical
properties. The investigation is an attempt to cover the phenomena of expected cracking
failure in pavements, which will facilitate more understanding of the HWBEM. To date,
this subject is rarely discussed in the literature for the CBEM and HWBEM.

2. Experimental Plan and Sample Preparation
2.1. Materials

The study utilised virgin coarse and fine aggregates obtained from a local quarry in
Kerbala. The coarse and fine aggregates from virgin crushed limestone were sourced from
local quarries. They were washed, dried, graded, and stored in accordance with the Iraqi
general specification for roads and bridges [36]. The coarse and fine aggregates’ physical
properties are presented in Tables 1 and 2, respectively. The aggregate envelope and the
gradation used in the study are depicted in Figure 1. Ordinary Portland cement (OPC)
obtained from a cement plant in Karbala was used as a filler material.
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Table 1. The physical properties of virgin coarse aggregate.

Property Adopted Specification
(ASTM) VCA Requirements

Water absorption, % C127 [37] 1.410 -

Bulk specific gravity C127 [37] 2.591 -

Bulk SSD specific gravity C127 [37] 2.601

Apparent specific gravity C127 [37] 2.618 -

Soundness loss by sodium sulphate, % C88 [38] 7.574 12% max

Percent wear by Los Angeles abrasion test, % C131 [39] 13.5 30% max

Degree of crushing, % --- 93% 90% min

Clay lumps, % C142 [40] 0.080 -

Flat and elongated particles, % D4791 [40] 1.538 10% max

Table 2. The physical characteristics of virgin fine aggregate and fine glass aggregates (FGA).

Property Adopted Specification
(ASTM) VFA FGA

Water absorption, % C128 [41] 1.810 0.530

Bulk specific gravity C128 [41] 2.598 2.497

Apparent specific gravity C128 [41] 2.587 2.471

Fine aggregate angularity (FAA) C 1252 [42] 52.7 87.5

Loss angles abrasion %, D grading C131 [39] 7.420 31.500

Degree of crushing, % D5821 [43] 87.44 100

The test conducted for the portion size 4.75–2.36 mm.
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Figure 1. Standard particle size envelope and particle size distribution of the gradation used.

The hard bitumen used in the study had a penetration grade of 40/50 and was obtained
from Al-Neisseria Refinery. This bitumen is typically used in Iraq, where hot weather
predominates. It meets the specified limits and ranges set by the General Specification
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for Roads and Bridges (GSRB) [36]. The bitumen emulsion, commercially known as
“POLYCOAT”, was provided by Henkel Company. The properties of the POLYCOAT
emulsion can be found in Table 3. Additionally, an acrylic (AR) polymer, obtained from
Conmix Company, was used as a bitumen modifier. The properties of the AR polymer are
listed in Table 4.

Table 3. Properties of bitumen emulsion.

Property Specification Limits Results

Emulsion type D2397 [44] Rapid, medium and slow-setting Medium-setting (CMS)

Colour appearance Dark brown liquid

Residue by evaporation, % D6934 [45] Min. 57 58

Specific gravity, gm/cm3 D70 [46] 1.05

Penetration, mm D5 [47] 100–250 230

Aggregate coating D6998 [48] uniformly and thoroughly coated

Table 4. Properties of the acrylic polymer.

Property Test Method Standard Limits Results of Test

Component - Single Single

Form - Liquid Liquid

Colour - Milky white Milky white

Specific gravity ASTM D1475 1.02 kg/Lit ± 0.05 1.06 kg/L

Viscosity @ 25 ◦C - 100 ± 50 cps 125 cps

Percent of the solid - 49.0 ± 1.0% 49

2.2. Experimental Plan

Four types of specimens were designed:

• Type 1: Control HMA containing OPC as the filler (HMA-OPC)
• Type 2: Control CBEM containing OPC as the filler (CBEM-OPC)
• Type 3: HWBEM containing OPC as the filler (HWBEM-OPC)
• Type 4: HWBEM prepared with AR, including OPC as a filler.

The purpose was to evaluate the impact of incorporating AR on the performance of the
HWBEM. The AR used was in the range of 1.25% to 5% of the weight of residual bitumen
set at 1.25, 2.5, 3.75, and 5% (HWBEM-OPC-(AR content)%AR). For comparison purposes,
the aggregate gradation shown in Figure 1 was used for all the specimens.

2.3. Mix Design, Preparation, and Conditioning of Specimens

The specimens of the CBEM and HWBEM were prepared in accordance with the
design methodology specified in the MS-14 Asphalt Cold Mix Manual, Figure 2 [49]. To
evaluate the compatibility between the aggregate particles and the emulsion binder, a
coating test was performed. This test aimed to assess the ability of the emulsion binder to
coat and adhere to the surface of the aggregate particles. This test is highly sensitive to
the amount of pre-mixing water used, particularly in cases where the mixture contains a
significant proportion of fine aggregate. The test helps determine the effectiveness of the
emulsion binder in coating and bonding the aggregate particles, which is crucial for the
overall performance of the mixture.
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The content of the pre-mixing water was obtained visually through a trial-and-error
process described in MS-14. The results suggested the use of 3.5% pre-mixing water for the
control CBEM-OPC. The pre-mixing water content was combined with various bitumen
emulsion contents to determine the optimal amount of bitumen emulsion that would
result in the best volumetric properties and maximum Marshall stability. According to the
required marshal mechanical properties, and based on the Iraqi GSRB specifications, the
optimum bitumen emulsion content was found to be 12% for CBEM-OPC, and the total
liquid content of the mix reached 15.5%.

It is important to note that the formulation and compaction of the samples were carried
out at the laboratory temperature range of 20–25 ◦C. During the mixing process, a stand
mixer/blender was utilized to combine the aggregate, filler, and pre-mixing water for one
minute. Following this, the bitumen emulsion was gradually introduced while continuing
blending for an additional minute. To simulate heavy compaction, the Marshall hammer
was used to apply 75 blows on each side of the specimens. This compaction method helps
ensure that the samples achieve the desired density and structural integrity [50,51].

To produce HWBEM specimens, some additional steps along with the ones noted
above were followed. Following the mixing process, the loose CBEM mixture was con-
ditioned in a microwave oven. Heating durations of 1.5, 3.0, 4.5, 6.0, and 7.5 min were
implemented to determine the optimal time frame for achieving the most favourable
volumetric and mechanical properties. After the heating process, the loose mixture was
promptly moulded and compacted by subjecting it to 75 blows from Marshall Hammer on
each side, as previously carried out for unheated samples. All samples were cured under a
similar regime.
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The temperature of the samples was recorded after the heating process. Changes in
sample temperature are shown in Figure 3. The temperature trend during the process
indicated that it consistently remained below 100 ◦C, leading to the introduction of a new
technology known as a “half-warm bitumen emulsion mixture”. This technology refers to
the use of a bitumen emulsion at temperatures lower than those of traditional HMA, while
still providing satisfactory performance characteristics. Table 5 shows the GSRB limitation
for the surface layer, section R9.
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Table 5. GSRB limitation for the surface layer, section R9 [36].

Property GSRB Requirements

Stability, Kg >800

Retained strength, % >70

Air void, % 3–5

Flow, 1/10 mm 2–4

2.4. Sample Testing

In addition to the volumetric properties, the mechanical properties of the HWBEM
were compared to those of the control HMA and HWBEM for quality control.

2.4.1. Indirect Tensile Strength (ITS)

The ITS test showcases the capacity of a bituminous mixture to withstand the develop-
ment of tensile cracks and prevent stripping. A Marshall specimen is positioned between
two stripes on its sides and is loaded radially in accordance with ASTM D6931 [52]. The test
resulted in sample failure. ITS test conditions are summarised in Table 6. If the deformation
of the sample under loading is recorded, the integration of the area under the curve of the
ITS against horizontal deformation will yield the toughness of the bituminous mixture.
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Table 6. ITS test conditions.

Item ASTM D6931 Used Value for CBEM and HWBEM

Number of required specimens 3 3

Rate of the loading, mm/min 50 ± 5 51.3

Device accuracy min 0.01 N 0.01 N

Test temperature, ◦C 25 ± 2 23

Specimen diameters, mm 101.6, 150 101.6

Specimen thickness, mm 50.8–65.5 63

Compaction (Marshall Hammer) 75 × 2 75 × 2

Curing - 24 h @ 25 ◦C

Specimen conditioning before the test
Oven dry 120–130 min 120 min

Water bath 30–40 min Not used

2.4.2. Cracking Tolerance Index (CT-Index)

The indirect tolerance index (or CT-index) is a simple alternative test indicator of
the indirect tension test strength that was introduced to evaluate the effectiveness of
mixtures in resisting cracking [53]. This newly developed cracking performance index
was declared by the Texas A and M Transportation Institute [54] and reflects mode I of
fracture mechanism according to the ASTM D 19 testing method [55]. The test has many
advantages over other cracking resistance indices since its formula is based on more than
one parameter to evaluate the cracking resistance. Moreover, the chase cannot be handled
easily at intermediate temperatures. The chase can be performed at an applied loading
rate of about 50 mm/min, and it does not require cutting, notching, drilling, gluing, or any
additional instrumentation [56,57].

At present, X-ray computed tomography (CT) can be employed for the non-destructive
scanning and virtual cross-sectioning of specimens. It enables the intuitive and precise
visualization of internal structures and material compositions in both two-dimensional
sections and three-dimensional images. This facilitates the analysis of internal structures
and the measurement of void content within the specimen [58,59].

The adoption of this approach is based on the recognition that microcracks tend to
develop when the load-bearing capacity peak is reached. Microcracks continue growing
and propagating after that point and result in a proportional decrease in the mixture’s load
bearing capacity. The CT-index is calculated via Equation (1), which is developed based on
an understanding presented in Figure 4.

CTIndex =
t

62
×

G f

|m75|
×

(
l75

D

)
(1)

where, CTIndex refers to the cracking tolerance index (unitless), Gf, t, D, |m75|, and l75
are: the mode I failure energy (Joules/m2), specimen thickness and diameter (mm), the
post-peak loading slope (N/m), and the strain at 75% of the loading stage, respectively,
and can be determined as follows:

G f =
W f

D× t
× 106 (2)

where D and t are as described previously, Wf is the required work (in joules) until the failure
load (the area under load–displacement curve divided by the specimen’s cross-sectional
dimensions). ∣∣∣∣m75

∣∣∣∣=∣∣∣∣P85 − P65

l85 − l65

∣∣∣∣ (3)
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where PX and lx are the loadings with respect to the crack initiation load and displacement
values at the specified stage in the post-peak side (for instance, P85 is the loading resistance
value at 85% of the cacking initiation load and l85 means the displacement corresponding P85)
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2.4.3. Cracking Resistance Index (CRI)

Another recently introduced mechanical performance indicator for asphalt mixtures is
the CRI [60]. It is calculated by dividing the fracture energy by the peak load, as described
in Equation (4):

CRI =
G f

Pmax
(4)

where Gf is the failure energy (Joules/m2), as mentioned above, and Pmax is the peak load
or P100 (N), as depicted in Figure 3.

2.4.4. Toughness Index (TI)

The toughness index is simply calculated using the post-peak Gf rather than consider-
ing the total area under the curve [61]. Equation (5) will yield the TI value where a scale
adjustment factor of 10−3 is also included.

TI =
(

G f , post−peak

)
∗ (∆mdp− ∆Pmax) ∗ 10−3 (5)

where Gf,post-peak is post-peak failure energy, ∆Pmax is the displacement at the peak load,
and ∆mdp is the displacement at 50% of the peak load.

3. Test Results and Discussion

Figure 5 shows the density of the studied mixtures. Increasing the AR content in
HWBEM samples resulted in some reduction in the density of the HWBEM samples con-
taining AR. These samples contained excess water because this water formed a continuous
phase with the AR. This volume of water was released from the mixture during the curing
process, leading to a noticeable decrease in the density of these samples if heat was not
applied. Likewise, the presence and loss of water had an impact on the air voids in the
mixtures, as demonstrated in Figure 6.
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Adding AR to the HWBEM in an amount of up to 2.5% increased the ITS considerably.
As shown in Figure 7, even a small AR content of 1.25% led to a higher ITS when compared
to that of HMA, and doubling the AR content caused the HWBEM to perform superiorly
compared to HMA. However, any further increase in AR caused a cliff fall in the tensile
strength of the HWBEM. It is understood that the addition of AR initially led to the
development of some interlocking in the aggregate phase of the mixtures. However, a
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further increase after the optimum point reduced binder–aggregate adhesion at the binder–
aggregate interface.
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Figure 7. ITS test results for the study mixtures.

Observing the trend of changes in failure energy (Figure 8) confirms the results.
Incorporating AR up to the optimal level enhanced the HWBEM’s ability to absorb energy
before failing. However, any increase beyond this point resulted in mixture failure at much
lower energy levels. A higher failure energy level is directly associated with improved
material performance under repeated loading conditions.

Cracking, though itself a type of distress, is the onset of future distress usually related
to water ingress. Therefore, retarding crack initiation is vital for pavement performance,
durability, and preservation. The energy required for the crack initiation (Gf-CI) of the
mixtures in the study is presented in Figure 9. Heat treatment certainly improved the GF-CI
value, but the inclusion of AR up to the optimum value of 2.5% tremendously enhanced the
capacity of the material to absorb energy before crack initiation. As another confirmation
of the effect of AR within the HWBEM mixtures, any further addition of AR considerably
dropped the energy required before any crack initiation.

Figure 10 shows loading–displacement curves for all the study mixtures. It can be
noticed that heat treatment was effective at enhancing the maximum indirect cracking load
of the HWBEM when compared with that of the CBEM. Adding AR in an amount up to 2.5%
certainly improved the HWBEM’s response to loading although it caused the HWBEM-
1.25%AR and HWBEM-2.5%AR to be more brittle than HMA and CBEM (associated with
the displacement position of Pmax compared with that of HMA). The viscous phases of
HMA were more extensive than those of HWBEMs, possessed an enhanced capacity to
dissipate energy and respond to loading, and therefore possessed a higher capacity to
retain tensile strength, than that of CBEM.
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Figure 10. Load–deformation curves for all study mixtures.

Figure 11 reports the CT indices found for the studied mixtures. As expected, the
CTindex of HMA shows superior characteristics to that of the CBEM. It is known that the
CTindex for asphalt mixture ranges from 31 to 255 [55]. Moreover, the HWBEM, after being
extensively heat-treated, demonstrates a slight improvement in the CTindex when compared
with that of the CBEM. On the other hand, adding AR in an amount up to led to a continued
improvement in the CTindex. Now, the criterion for an optimum value for the AR content
will need to be discussed. As expected enough now, adding AR in an amount greater
than 2.5% caused the mixtures to show a little tolerance to cracking. What is understood
from the literature is that the CTindex depends on various factors, namely failure energy,
the slope of the post-peak inflection point, and the strain value at 75% of the peak load
value. These indices are highly affected by the ingredients of the mixture and volumetric
properties. Noticeably, in terms of volumetric properties, Figures 4 and 5 demonstrate the
lower density and higher air void for the HWBEM containing more than 2.5% of AR. In
terms of ingredients, AR extends a reinforced network within the binder (emulsion residue),
leading to improved adhesion and cohesion, and ultimately enhancing crack resistance.
Inversely, the extra AR predominated the binder materials and affected the role of the
binder material, whereas the created networks dispersed the binder, affecting adhesion and
cohesion inferiorly.

As mentioned previously, the slope of the curve in the mixture’s post-peak behaviour
(m75) is one of the factors that affect the magnitude of CTindex; theoretically, the sharper the
slope, the smaller the CTindex. In other words, a sharper slope indicates that the mixture has
a weaker ability to tolerate the onset of cracking and less resistance to cracking propagation
after the maximum tensile stress is borne. The slope of the mixtures’ behaviour in their
post-peak stage was studied and is presented in Figure 12. However, the previous claim is
correct only when comparing the CBEM with HWBEM-0%AR. Inversely, the remaining
m75 values results show higher magnitudes. Moreover, some mixtures with a higher CTindex
are associate with a higher m75, as for example, in the case of HWBEM-1.25%AR compared
with HWBEM-5%AR. Therefore, it would lead to fruitless results to use the m75 slope
index result alone to evaluate the cracking resistance. Its effect must be accommodated
inclusively within the CTindex.
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The strain at 75% of the post-peak load can reflect the brittleness of the asphalt mixture
and/or crack initiation, whereas the higher value is associated with ductile material.
Results in Figure 13 demonstrate such an indicator, where the hydric filler material in



Sustainability 2023, 15, 15256 14 of 19

the CBEM produced the secondary binder (hydridic products have brittle characteristics)
that controlled the ability of the asphalt binder (primary binder) to be ductile. However,
introducing the heat treatment increased the brittleness as a result of extra hydraulic
product creation due to the microwave heating process. This is also confirmed by the value
of Pmax and/or ITS, as shown in Figure 6, when comparing the CBEM with the HWBEM
with up to 2.5% of AR. Then, the inferior effect of extra AR and volumetric properties works
to weaken the mixture with higher amounts of AR. Nevertheless, a controlled dosage of AR
of up to 2.5% facilitates there being greater ductility for the mix due to the polymer-created
network that reinforces the binders (both primary and secondary binders). Additional
conformation can be confirmed through observing Figure 8, where the crack initiation
energy is negatively affected by heating but AR inclusion rises to 2.5%.
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The CRI-index can reveal the normalization of different mixtures against crack re-
sistance, as it is determined by dividing the failure energy (Gf) over the peak load (Pmax).
Comparing Figure 7 with Figure 14, the same trend can be observed, but there is a notice-
able variation in the ratio. An explanation for this would be the difference between these
mixtures in their responses to loading. The load–displacement curve provides insights into
the characteristics of a mixture. While a mixture might exhibit high peak load resistance,
it may simultaneously possess a limited capacity to absorb energy. This relationship be-
comes apparent when considering the area under the load–displacement curve. However,
Figure 14 reveals the significance of AR in extending the energy of failure noticeably with
an increase in the peak load with less range, as can be seen with the HWBEM with up to
2.5% of AR.

The toughness index (TI) demonstrates the post-cracking characteristics, or it explains
to what extent post-cracking is associated with the total toughness of the material, where the
brittle material has a significantly lower value compared with that of the ductile material.
However, the highest toughness index obtained for HWBEM-2.5%AR is further proof of
the effect of AR (of up to 2.5% in content) in improving the HWBEM’s performance, as can
be seen in Figure 15. Both 1.25% and 2.5% AR contents caused the HWBEM to demonstrate
much higher toughness than that of HMA itself. Furthermore, the heat treatment resulted
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in a minimization of the toughness index, as can be seen when comparing the CBEM with
HWBEM-0%AR.
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4. Conclusions

This research aimed to evaluate the cracking performance of asphalt mixtures that
included AR polymer modification, known as HWBEMs. The study investigated how the
presence of an AR polymer impacts the resistance to cracking in these asphalt mixtures.
It also explored additional cracking indices beyond the standard ITS index. The main
finding highlights that the cracking performance of these asphalt mixtures is influenced by
multiple phases leading to the final fracture. Therefore, it is essential to use various indices
to describe these phases and their significance, as this will improve our comprehension
of cracking performance. Considering multiple indices offers a more comprehensive
understanding of material behaviour and performance in relation to cracking.

Based on the testing program and analysis of the results, the following conclusions
can be drawn:

• Volumetric properties: HWBEMs exhibit superior properties compared to CBEMs.
Mixing HWBEMs with 1.25% of AR shows an improvement in AV% that is comparable
to that of HWBEMs. Additionally, the density of the treated mixes is slightly higher
than that of the CBEM for all AR contents.

• The cracking resistance indices employed in the study demonstrate the effectiveness of
the proposed design procedure for preparing HWBEMs. These mixes exhibit a higher
tensile strength compared to that of cold mixtures, indicating improved resistance to
cracking.

• Relying solely on the ITS value as a criterion to describe pavement cracking resistance
can be misleading. This is because certain mixtures with high ITS values may exhibit
lower Gf and CTindex values in comparison. The crack tolerance index test method,
which evaluates the cracking resistance of mixtures considering crack phases, is a
suitable approach, particularly for mixtures exhibiting higher brittleness than that of
traditional hot mix asphalt.

• Considering volumetric and mechanical performance as well as various cracking
indices, it is recommended to utilise an optimal AR content of approximately 2.5%.
This content yields higher properties in comparison to those of the reference CBEM
and HWBEM.

• It is recommended to consider these indices collectively rather than individually, as
each one identifies and describes a distinct phenomenon related to cracking, both
before and after fracture.

• The sustainable approach of incorporating microwave post-heating and AR technology
in the production of newly developed asphalt mixtures has demonstrated efficiency in
terms of various cracking performance indicators.
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