## LJMU Research Online

Lewczuk, K, Marcowski, P, Wizla, M, Gola, M, Nagy, L, Koós, M, Kraus, S, Demetrovics, Z, Potenza, MN, Ballester-Arnal, R, Batthyány, D, Bergeron, S, Billieux, J, Briken, P, Burkauskas, J, Cárdenas-López, G, Carvalho, J, CastroCalvo, J, Chen, L, Ciocca, G, Corazza, O, Csako, R, Fernandez, DP, Fujiwara, H, Fernandez, EF, Fuss, J, Gabrhelík, R, Gewirtz-Meydan, A, Gjoneska, B, Grubbs, JB, Hashim, HT, Islam, MDS, Ismail, M, Jiménez-Martínez, MC, Jurin, T, Kalina, O, Klein, V, Költö, A, Lee, S-K, Lin, C-Y, Lin, Y-C, Lochner, C, López-Alvarado, S, Lukavská, K, Mayta-Tristán, P, Miller, DJ, Orosová, O, Orosz, G, Sungkyunkwan University's Research Team, , Ponce, FP, Quintana, GR, Quintero Garzola, GC, Ramos-Diaz, J, Rigaud, K, Rousseau, A, De Tubino Scanavino, M, Schulmeyer, MK, Sharan, P, Shibata, M, Shoib, S, Sigre-Leirós, V, Sniewski, L, Spasovski, O, Steibliene, V, Stein, DJ, Ünsal, BC, Vaillancourt-Morel, M-P, Van Hout, MC and Böthe, $B$<br>Cross-cultural Adult ADHD assessment in 42 countries using the Adult ADHD Self-Report Scale Screener

http://researchonline.ljmu.ac.uk/id/eprint/21792/

## Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Lewczuk, K, Marcowski, P, Wizla, M, Gola, M, Nagy, L, Koós, M, Kraus, S, Demetrovics, Z, Potenza, MN, Ballester-Arnal, R, Batthyány, D, Bergeron, S, Billieux, J, Briken, P, Burkauskas, J, Cárdenas-López, G, Carvalho, J, Castro-Calvo. J. Chen. L. Ciocca. G. Corazza. O. Csako. R. Fernandez. DP.

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.

You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

Title: Cross-cultural Adult ADHD assessment in 42 countries using the Adult ADHD SelfReport Scale Screener

Karol Lewczuk ${ }^{1^{*}}$, Przemysław Marcowski ${ }^{2}$, Magdalena Wizła ${ }^{1}$, Mateusz Gola ${ }^{3,4}$, Léna Nagy ${ }^{5,6}$, Mónika Koós ${ }^{5,6}$, Shane W. Kraus ${ }^{7}$, Zsolt Demetrovics ${ }^{6,8}$, Marc N. Potenza ${ }^{9,10}$, Rafael BallesterArnal ${ }^{11}$, Dominik Batthyány ${ }^{12}$, Sophie Bergeron ${ }^{13}$, Joël Billieux ${ }^{14,15}$, Peer Briken ${ }^{16}$, Julius Burkauskas ${ }^{17}$, Georgina Cárdenas-López ${ }^{18}$, Joana Carvalho ${ }^{19}$, Jesús Castro-Calvo ${ }^{20}$, Lijun Chen ${ }^{21}$, Giacomo Ciocca ${ }^{22}$, Ornella Corazza ${ }^{23,24}$, Rita I. Csako ${ }^{25}$, David P. Fernandez ${ }^{26}$, Hironobu Fujiwara ${ }^{27,28}$, Elaine F. Fernandez ${ }^{29}$, Johannes Fuss ${ }^{30}$, Roman Gabrhelík ${ }^{31,32}$, Ateret GewirtzMeydan ${ }^{33}$, Biljana Gjoneska ${ }^{34}$, Joshua B. Grubbs ${ }^{35,36}$, Hashim T. Hashim ${ }^{37}$, Md. Saiful Islam ${ }^{38,39}$, Mustafa Ismail ${ }^{37}$, Martha C. Jiménez-Martínez ${ }^{40,41}$, Tanja Jurin ${ }^{42}$, Ondrej Kalina ${ }^{43}$, Verena Klein ${ }^{44}$, András Költő ${ }^{45}$, Sang-Kyu Lee ${ }^{46,47}$, Chung-Ying Lin ${ }^{48,49}$, Yi-Ching Lin ${ }^{50}$, Christine Lochner ${ }^{51}$, Silvia López-Alvarado ${ }^{52}$, Kateřina Lukavská ${ }^{31,53}$, Percy Mayta-Tristán ${ }^{54}$, Dan J. Miller ${ }^{55}$, Ol'ga Orosová ${ }^{56}$, Gábor Orosz ${ }^{57}$, Sungkyunkwan University's research team ${ }^{58 \dagger}$, Fernando P. Ponce ${ }^{59}$, Gonzalo R. Quintana ${ }^{60}$, Gabriel C. Quintero Garzola ${ }^{61,62}$, Jano RamosDiaz ${ }^{63}$, Kévin Rigaud ${ }^{57}$, Ann Rousseau ${ }^{64}$, Marco De Tubino Scanavino ${ }^{65,66}$, Marion K. Schulmeyer ${ }^{67}$, Pratap Sharan ${ }^{68}$, Mami Shibata ${ }^{27}$, Sheikh Shoib ${ }^{69,70}$, Vera Sigre-Leirós ${ }^{14,71}$, Luke Sniewski ${ }^{72}$, Ognen Spasovski ${ }^{73,73}$, Vesta Steibliene ${ }^{74}$, Dan J. Stein ${ }^{75}$, Berk C. Ünsal ${ }^{5,6}$, Marie-Pier Vaillancourt-Morel ${ }^{76}$, Marie Claire Van Hout ${ }^{77}$, Beáta Bőthe ${ }^{78}$
${ }^{1}$ Institute of Psychology, Cardinal Stefan Wyszynski University, Warsaw, Poland, ${ }^{2}$ Swartz Center for Computational Neuroscience, University of California, San Diego, San Diego, USA, ${ }^{3}$ Institute of Psychology, Polish Academy of Sciences, Poland, ${ }^{4}$ Institute for Neural Computations, University of California San Diego, USA, ${ }^{5}$ Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary, ${ }^{6}$ Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary, ${ }^{7}$ Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, USA, ${ }^{8}$ Centre of Excellence in Responsible Gaming, University of Gibraltar, Gibraltar, Gibraltar, ${ }^{9}$ Yale University School of Medicine, New Haven, CT, USA, ${ }^{10}$ Connecticut Council on Problem Gambling, Wethersfield, CT, USA, ${ }^{11}$ Departmento de Psicología Básica, Clínica y Psicobiología, University Jaume I of Castellón, Spain, ${ }^{12}$ Institute for Behavioural Addictions, Sigmund Freud University Vienna, Austria, ${ }^{13}$ Département de psychologie, Université de Montréal, Montréal, Canada, ${ }^{14}$ Institute of Psychology, University of Lausanne, Lausanne, Switzerland, ${ }^{15}$ Center for Excessive Gambling, Addiction Medicine, Lausanne University Hospitals (CHUV), Lausanne, Switzerland, ${ }^{16}$ Institute for Sex Research, Sexual Medicine, and Forensic Psychiatry; University Medical Centre Hamburg-Eppendorf; Hamburg, Germany, ${ }^{17}$ Laboratory of Behavioral Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, Lithuania, ${ }^{18}$ Virtual Teaching and Cyberpsychology Laboratory, School of Psychology, National Autonomous University of Mexico, Mexico, ${ }^{19}$ William James Center for Research, Departamento de Educação e Psicologia, Universidade de Aveiro, Aveiro, Portugal, ${ }^{20}$ Department of Personality, Assessment, and Psychological Treatments, University of Valencia, Spain, ${ }^{21}$ Department of Psychology, College of Humanity and Social Science, Fuzhou University,

China, ${ }^{22}$ Section of Sexual Psychopathology, Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Rome, Italy, ${ }^{23}$ Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, United Kingdom; Department of Psychology and Cognitive Science, University of Trento, Italy, ${ }^{24}$ Department of Psychology and Cognitive Science, University of Trento, Italy, ${ }^{25}$ Department of Psychology and Neuroscience, Auckland University of Technology, Auckland, New Zealand, ${ }^{26}$ Nottingham Trent University, United Kingdom, ${ }^{27}$ Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan, ${ }^{28}$ Decentralized Big Data Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan, ${ }^{29}$ HELP University, Malaysia, ${ }^{30}$ Institute of Forensic Psychiatry and Sex Research, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Essen, Germany, ${ }^{31}$ Charles University, First Faculty of Medicine, Department of Addictology, Prague, Czech Republic, ${ }^{32}$ General University Hospital in Prague, Department of Addictology, Czech Republic, ${ }^{33}$ School of Social Work, Faculty of Social Welfare and Health Sciences, University of Haifa, Israel, ${ }^{34}$ Macedonian Academy of Sciences and Arts, Republic of North Macedonia, ${ }^{35}$ University of New Mexico, Albuquerque, United States, ${ }^{36}$ Center for Alcohol, Substance use, And Addiction (CASAA), University of New Mexico, Albuquerque, United States, ${ }^{37}$ University of Baghdad, College of Medicine, Iraq, ${ }^{38}$ Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh, ${ }^{39}$ Centre for Advanced Research Excellence in Public Health, Savar, Dhaka-1342, Bangladesh, ${ }^{40}$ Universidad Pedagógica y Tecnológica de Colombia, Colombia, ${ }^{41}$ Grupo de Investigación Biomédica y de Patología, Colombia, ${ }^{42}$ Department of Psychology, Humanities and Social Sciences, University of Zagreb, Croatia, ${ }^{43}$ Department of Educational Psychology and Psychology of Health, Pavol Jozef Safarik University in Kosice, Slovakia, ${ }^{44}$ School of Psychology, University of Southampton, United Kingdom, ${ }^{45}$ Health Promotion Research Centre, University of Galway, Ireland, ${ }^{46}$ Department of Psychiatry, Hallym University Chuncheon Sacred Heart Hospital, South Korea, ${ }^{47}$ Chuncheon Addiction Management Center, South Korea, ${ }^{48}$ Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ${ }^{49}$ Biostatistics Consulting Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ${ }^{50}$ Department of Early Childhood and Family Education, National Taipei University of Education, Taipei, Taiwan, ${ }^{51}$ SAMRC Unit on Risk \& Resilience in Mental Disorders, Stellenbosch University, South Africa, ${ }^{52}$ University of Cuenca, Ecuador, ${ }^{53}$ Charles University, Faculty of Education, Department of Psychology, Prague, Czech Republic, ${ }^{54}$ Facultad de Medicina, Universidad Científica del Sur, Lima, Perú, ${ }^{55}$ College of Healthcare Sciences, James Cook University, Australia, ${ }^{56}$ Pavol Jozef Safarik University in Kosice, Department of Educational Psychology and Psychology of Health, Slovakia, ${ }^{57}$ Artois University, France, ${ }^{58}$ Department of Psychology, Sungkyunkwan University, South Korea, ${ }^{59}$ Facultad de Psicología, Universidad de Talca, Chile, ${ }^{60}$ Departamento de Psicología y Filosofía, Facultad de Ciencias Sociales, Universidad de Tarapacá, Arica, Arica y Parinacota, Chile, ${ }^{61}$ Florida State University, Republic of Panama, ${ }^{62}$ Sistema Nacional de Investigación (SNI), SENACYT, Panama, ${ }^{63}$ Facultad de Ciencias de la Salud, Universidad Privada del Norte, Lima, Perú, ${ }^{64}$ Leuven School For Mass Communication, KU Leuven, Leuven,

Belgium, ${ }^{65}$ Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, Brazil, ${ }^{66}$ Experimental Pathophisiology Post Graduation Program, Faculdade de Medicina, Universidade de São Paulo, Brazil, ${ }^{67}$ Universidad Privada de Santa Cruz de la Sierra, Bolivia, ${ }^{68}$ Department of Psychiatry, All India Institute of Medical Sciences, New Delhi -110029, India, ${ }^{69}$ Department of Health Services, Srinagar, 190001 India, ${ }^{70}$ Sharda University, Greater Noida, India (SSh), ${ }^{71}$ Institute of Legal Psychiatry, Lausanne University Hospitals (CHUV), Lausanne, Switzerland, ${ }^{72}$ Auckland University of Technology, New Zealand, ${ }^{73}$ Faculty of Philosophy, University of Ss. Cyril and Methodius in Trnava, Slovakia, ${ }^{74}$ Laboratory of Behavioral Medicine, Neuroscience Institute, Lithuanian University of Health sciences, Lithuania, ${ }^{75}$ SAMRC Unit on Risk \& Resilience in Mental Disorders, Dept of Psychiatry \& Neuroscience Institute, University of Cape Town, ${ }^{76}$ Département de Psychologie, Université du Québec à Trois-Rivières, TroisRivières, Canada, ${ }^{77}$ Public Health Institute, Faculty of Health, Liverpool John Moores University, United Kingdom, ${ }^{78}$ Département de Psychologie, Université de Montréal, Montréal, Canada
*Correspondence should be addressed to Karol Lewczuk; E-mail: kar.lewczuk @ gmail.com
${ }^{\dagger}$ The Sungkyunkwan University’s research team includes Dr. H. Chang and Mr. K. Park

## Acknowledgements

The Authors would like to thank: French media: L'Avenir de l'Artois, La Voix Du Nord, Le Parisien and Wéo as well as Digital Ethics Center (Skaitmenines etikos centras) and Lithuanian National Radio and Television (Lietuvos nacionalinis radijas ir televizija) for their help with recruitment and data collection.

## Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

## Author Contributions

Conceptualization: K. Lewczuk, L.N., M.K., S.W.K., Z.D., M.N.P., and B.B.
Data curation: K. Lewczuk, P.M., M.W., M.G., L.N., M.K., S.W.K., Z.D., M.N.P., R.B.-A., D.B., S.B., J. Billieux, P.B., J. Burkauskas, G.C.-L., J.C., L.C., G.C., O.C., R.I.C., D.P.F., H.F., E.F.F., J.F., R.G., A.G.-M., B.G., J.B.G., H.T.H., M.S.I., M.I., M.C.J.-M., T.J., O.K., V.K., A.K., S.-K.L., C.-Y.L., Y.-C.L., C.L., S.L.-A., K. Lukavská, P.M.-T., D.J.M., O.O., G.O., S.U.s.r.t., F.P.P., G.R.Q., G.C.Q.G., J.R.-D., K.R., A.R., M.D.T.S., M.K.S., P.S., M.S., S.S., V.S.-L., L.S., O.S., V.S., D.J.S., B.C.Ü., M.-P.V.-M., M.C.V.H., and B.B.

Formal analysis: K. Lewczuk, P.M., and B.B.
Funding acquisition: K. Lewczuk, M.G., L.N., M.K., S.W.K., Z.D., H.F., R.G., and B.B.
Investigation: K. Lewczuk, P.M., M.W., M.G., L.N., M.K., S.W.K., Z.D., M.N.P., R.B.-A., D.B., S.B., J. Billieux, P.B., J. Burkauskas, G.C.-L., J.C., J.C.-C., L.C., G.C., O.C., R.I.C., D.P.F., H.F., E.F.F., J.F., R.G., A.G.-M., B.G., J.B.G., H.T.H., M.S.I., M.I., M.C.J.-M., T.J., O.K., V.K., A.K., S.-K.L., Y.-C.L., C.L., S.L.-A., K. Lukavská, P.M.-T., D.J.M., O.O., G.O., S.U.s.r.t., F.P.P., G.R.Q., G.C.Q.G., J.R.-D., K.R., A.R., M.D.T.S., M.K.S., P.S., M.S., S.S., V.S.-L., L.S., O.S., V.S., D.J.S., B.C.Ü., M.-P.V.-M., M.C.V.H., and B.B.

Methodology: K. Lewczuk, L.N., M.K., S.W.K., Z.D., M.N.P., and B.B.
Project administration: K. Lewczuk, L.N., M.K., S.W.K., Z.D., and B.B.
Resources: K. Lewczuk, L.N., M.K., S.W.K., Z.D., M.N.P., R.G., J.R.-D., and B.B.
Software: K. Lewczuk, P.M., and B.B.
Supervision: B.B.
Validation: K. Lewczuk, P.M., M.W., M.G., L.N., M.K., S.W.K., Z.D., M.N.P., and B.B.
Visualization: K. Lewczuk, P.M., and O.K.
Writing - original draft: K. Lewczuk, P.M., and M.W.
Writing - review \& editing: K. Lewczuk, P.M., M.W., M.G., L.N., M.K., S.W.K., Z.D., M.N.P., J. Billieux, J. Burkauskas, J.C., D.P.F., J.F., R.G., A.G.-M., J.B.G., M.S.I., M.C.J.-M., C.-Y.L., Y.-C.L., C.L., K. Lukavská, D.J.M., F.P.P., G.R.Q., G.C.Q.G., M.D.T.S., V.S.-L., L.S., D.J.S., M.-P.V.-M., and B.B.

## Funding Information

KLe was supported by Sonatina grant awarded by National Science Centre, Poland, grant number: 2020/36/C/HS6/00005.
MG was supported by National Science Centre of Poland grant number: 2021/40/Q/HS6/00219. LN was supported by the ÚNKP-22-3 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund.
MK was supported by the ÚNKP-22-3 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund.
SWK was supported by the Kindbridge Research Institute.
ZD was supported by the Hungarian National Research, Development, and Innovation Office (Grant number: KKP126835).
SB was supported by a Tier 1 Canada Research Chair.
LJC was supported by the National Social Science Foundation of China (Grant No. 19BSH117).
RC was supported by Auckland University of Technology, 2021 Faculty Research Development Fund.

HF was supported by Grant-in-Aid for Transformative Research Areas (A) (Japan Society for The Promotion of Science, JP21H05173), Grant-in-Aid for Scientific Research (B) (Japan Society for The Promotion of Science, 21H02849), and the smoking research foundation. RG was supported by Charles University institutional support program Cooperatio-Health Sciences.
JBG was supported by grants from the International Center for Responsible Gaming and the Kindbridge Research Institute.
CY-L was supported by the WUN Research Development Fund (RDF) 2021.
ChL received support from the WUN Research Development Fund (RDF) 2021.
KLu was supported by Charles University institutional support program Cooperatio-Health Sciences.
PMT was supported by Universidad Cientifica del Sur. GO was supported by the ANR grant of the Chaire Professeur Junior of Artois University and by the Strategic Dialogue and Management Scholarship (Phase 1 and 2). SURT was supported by Brain Korea 21 (BK21) program of National Research Foundation of Korea.
GQG was supported by the SNI \#073-2022 (SENACYT, Rep. of Panama).
KR was supported by a funding from the Hauts-de-France region (France) called "Dialogue Stratégique de Gestion 2 (DSG2)".
MPVM was supported by a Research Chair from the Université du Québec à Trois-Rivières and a career award from the Fonds de recherche du Québec - Santé (FRQ-S).
Title: Cross-cultural Adult ADHD assessment in 42 countries using the Adult ADHD Self-
Report Scale Screener


#### Abstract

Based on a large-scale research project involving 42 countries (International Sex Survey, $N=72,627,57 \%$ women, $M_{\text {age }}=32.84 ; S D=12.57$ ), we analyzed adult ADHD symptoms in a cross-cultural context, including investigation of the occurrence and potential correlates of adult ADHD, and psychometric examination of the Adult ADHD Self-Report Scale (ASRS) Screener. The ASRS Screener demonstrated good reliability and validity, along with partial invariance across different languages, countries, and genders. Consistent with previous evidence showing low specificity of adult ADHD screening instruments, the occurrence of being at risk for adult ADHD was relatively high ( $21.4 \%$ for women, $18.1 \%$ for men). The highest scores were obtained in the US, Canada, and other English-speaking Western countries, with significantly lower scores among East Asian and non-English-speaking European countries. Moreover, ADHD symptom severity and occurrence were especially high among gender-diverse individuals. Significant associations between adult ADHD symptoms and age, mental and sexual health, and socioeconomic status were observed.


Keywords: attention deficit/hyperactivity disorder, ADHD, adult ADHD, cross-cultural, assessment

Attention deficit/hyperactivity disorder (ADHD) is one of the most common childhood psychiatric disorders (e.g., Polanczyk \& Jensen, 2008), where symptoms have traditionally been considered to diminish or cease in late adolescence or early adulthood (Hill \& Schoener, 1996). Although it is now known that impairing levels of symptoms often persist into adulthood (Caye et al., 2016; Kooij et al., 2010), screening, diagnosis, and treatment of ADHD in adults lag behind those in children and require further exploration.

Two central features of ADHD include inattentiveness and impulsiveness/hyperactivity which are inconsistent with the child's developmental level (American Psychiatric Association [APA], 2013). The abovementioned factors have been found to be consistent across cultures for children (e.g., Bauermeister et al., 2010), suggesting common genetic and neurobiological underpinnings of the disorder, which are at least to some degree, not dependent on cultural factors (Meyer, 2005). At the same time, the basic character of adult ADHD across cultures did not undergo similar scrutiny, and previous analysis suggests significant cultural variability in its prevalence, rate of diagnosis, and treatment (Fayyad et al., 2017; e.g., Gómez-Benito et al., 2019; Timimi \& Taylor, 2004). The present study focuses on the subject of adult ADHD screening in a cross-cultural context, employing and psychometrically evaluating one of the most established measures for adult ADHD assessment, the Adult ADHD Self-Report Scale (ASRS) Screener (Kessler et al., 2005, 2007).

## The ASRS Screener and Adult ADHD Assessment

The extended version of the ASRS Screener and its direct predecessor, the ASRS, were developed by the World Health Organization (WHO) World Mental Health Initiative as previously existing measures of adult ADHD failed to address all 18 Diagnostic and Statistical Manual of Mental Disorders (DSM) IV Criterion A symptoms (Kessler et al., 2005, 2007).

Further analysis showed that the same, or even higher, diagnostic precision of the full 18-item ASRS can be achieved with six items, creating a unidimensional, shortened version of the full scale (i.e., the ASRS Screener). This version of the screener offered the best psychometric properties and was characterized by a sensitivity of $68.7 \%$ and specificity of $99.5 \%$, with a total classification accuracy of $97.9 \%$ and high internal consistency (Kessler et al., 2005, 2007). Moreover, the ASRS Screener has demonstrated good test-retest reliability (Matza et al., 2011) as well as high sensitivity to identify ADHD in clinical samples (e.g., for people seeking treatment for substance use disorders; Van De Glind et al., 2013). Recently, the ASRS Screener has been updated to better fit DSM-5 diagnostic criteria for adult ADHD (APA, 2013), although its 6-item length remained unchanged (Ustun et al., 2017). In the current cross-cultural analysis, we are using the original DSM-IV version. Initial work on a clinical sample showed that DSM-IV and DSM-5 versions achieve almost identical psychometric characteristics in terms of sensitivity, specificity, and positive and negative predictive value (Bastiaens \& Galus, 2018).

It is worth noting that adult ADHD screening - including the ASRS Screener - is limited by several challenges. First, positive adult ADHD diagnosis currently requires symptoms to be present during childhood, that is, knowledge about recent level of symptoms is not sufficient for a diagnosis. Secondly, symptoms of ADHD are non-specific and can appear in the course of a wide variety of conditions, including anxiety, mood, and substance use disorders (e.g., National Collaborating Centre for Mental Health UK [NCCMH UK], 2009). Lastly, self-report measures are also prone to multiple biases and may be manipulated by respondents (Lovett \& Harrison, 2021). Therefore, clinicians should not rely on self-report alone for ADHD assessment, as multiple factors may result in high false-positive rates in self-report screening measures.

Available reports show that the rate of clinical diagnosis of ADHD in the US and some other Western countries has undergone a several-fold increase in the $21^{\text {st }}$ century (e.g., McCarthy
et al., 2012; Olfson et al., 2013), which is possibly facilitated by the limitations of screening tools to assess ADHD accurately. However, exaggeration of symptoms by individuals to obtain prescription medications (i.e., stimulants to enhance cognitive performance or for recreational purposes) or disability accommodations have been linked to ADHD overdiagnosis (e.g., Lovett \& Harrison, 2021). Given these factors, a surge of ADHD diagnoses in the US has been termed as an epidemic problem (Paris et al., 2015). On the other hand, adults with ADHD often describe experiencing significant concerns in multiple domains that may not be adequately appreciated or identified by clinicians (Ginapp et al., 2022, 2023). This indicates that further work is needed to better understand the disorder and its repercussions.

An important research avenue in adult ADHD research lies outside of the so-called "WEIRD" populations (i.e., Western, Educated, Industrialized, Rich, and Democratic populations) involving groups underrepresented in research (e.g., Fayyad et al., 2017; GómezBenito et al., 2019). Much prior research on adult ADHD has been based on student samples (Lovett \& Harrison, 2021), which calls for research efforts targeting populations including older individuals.

## Adult ADHD Prevalence and Cultural Context

The prevalence estimates of adult ADHD assessed with the ASRS, as well as other screening tools, differ largely across studies depending on the sample's characteristics, grading criteria, and cut-off values (e.g., Song et al., 2021). As direct cross-cultural comparisons have been rare in previous studies, it is challenging to determine whether differences in estimates may derive from methodological, sample-related, cultural, or other types of differences (Polanczyk et al., 2007). One notable multi-country initiative that allowed for direct-cross cultural comparisons of the prevalence of ADHD in adults is the WHO World Mental Health Surveys (Fayyad et al., 2017). The study was based on standardized interviews administered face-to-face in respondents'
homes, assessing a range of DSM-IV disorders. The study involved participants from 20 countries and showed that ADHD occurrence was estimated to be the highest in Western highincome countries like France (7.3\%), Northern Ireland (6.0\%) and the USA (5.2\%) - and lower in middle/low-income countries, for instance Iraq and Romania (both 0.6\%; see: Fayyad et al., 2017).

Occurrence estimates based on self-report surveys employing large-scale national samples range from $2.1 \%$ to $11.4 \%$ (Adler et al., 2019 [ $N=22,397,2.1 \%$, US sample]; Kessler et al., 2006 [ $N=3,199,4.4 \%$, US sample]; Polanczyk et al., 2010 [ $N=3,007,5.8 \%$, representative Brazilian sample]; Vňuková et al., 2021 [ $N=1,518,7.8 \%$, Czech sample]; Weissenberger et al., 2018 [ $N=1,012,11.4 \%$, Czech sample]). In rare cases, reported adult ADHD occurrence in general population convenience samples has been higher (20.2\%; Panagiotidi et al., 2019, N=344; mostly British sample). In clinical psychiatric populations, adult ADHD rates typically exceed $20 \%$ (e.g., Syed et al., 2010 [ $N=243]$ ). Moreover, early conceptualizations suggested that ADHD was more prevalent in males (APA, 2013). Currently, however, some researchers claim this disproportion results from the underestimation of female cases arising from bias in sampling, differences in symptomatology or presentation or other factors (Simon et al., 2009).

Although cross-cultural comparative research on ADHD is scarce, findings suggest the existence of cultural differences regarding perceptions of ADHD and ADHD-like symptoms (e.g., Fayyad et al., 2017; Song et al., 2021). As degrees of support versus discouragement towards hyperactive or impulsive behavior may differ between cultures, perceptions of what behavior is considered problematic or disordered may also differ (e.g., Gómez-Benito et al., 2019; Timimi \& Taylor, 2004). Thus, quantitative research of ADHD occurrence and treatmentseeking individuals may partially reflect cultural expectations and the influence of cultural environment on behavior (Kooij et al., 2010).

## Present Study Goals and Adult ADHD Related Factors

The goal of the present study was to investigate cross-cultural variability in adult ADHD symptoms, by analyzing symptom severity, occurrence of scoring at risk for adult ADHD, and cross-cultural measurement invariance, reliability, and validity of the ASRS Screener across analyzed country samples. Attention was given to non-Western countries, in which ADHD diagnosis is not as established, and to minority samples (e.g., gender-diverse individuals). Investigating cross-cultural measurement invariance is essential, as it shows whether the analyzed underlying construct and employed instrument have the same structure, are interpreted in similar ways, and have comparable applicability in different languages, countries or subgroups like gender-based ones (e.g., Davidov et al., 2014).

Next, several factors potentially relevant to adult ADHD were analyzed, including age, gender, socioeconomic status, and mental, physical, and sexual health. Previous analysis showed that ADHD symptoms may decline with age (e.g., Faraone \& Biederman, 2005), be more severe in gender minority individuals (Bretherton et al., 2021; Dawson et al., 2017), people affected by socioeconomic disadvantage (Russell et al., 2014) and be associated with increased odds of various psychiatric disorders (NCCMH UK, 2009).

## Method

## Procedure

The International Sex Survey (ISS) is a large, cross-sectional, multi-national study, conducted online in 42 countries ${ }^{1}$. The study design was preregistered ([PREREGISTRATION LINK]).

[^0]Translation. The original (English) version of test battery was translated into 25 other languages, according to guidelines of a pre-established translation procedure for cross-cultural studies (Beaton et al., 2000). The translation procedure is also described in more detail in the previously published study protocol (Bőthe et al., 2021).

Data collection. Data for the ISS were collected between October 2021 and May 2022 in all collaborating countries. Participants who responded to the study advertisements completed an anonymous survey on the Qualtrics Research Suite, which took approximately 25 to 45 minutes. Detailed information regarding data collection was described previously (Bőthe et al., 2021).

To ensure transparency of data use, all published manuscripts and conference presentations which employ data gathered as part of the ISS project are available using the following links: publications, [PUBLICATIONS LINK]; conference presentations,

## [CONFERENCES LINK].

Ethics. The study was conducted in accordance with the Declaration of Helsinki. The study procedures were approved by appropriate ethics review boards for collaborating countries or, in some cases, the appropriate ethics review boards considered the study exempt from additional approval as it had already been approved by the ethics review boards of the principal investigators' institutions ([SUPPORTING DOCUMENTS LINK]). All participants were informed about the study and provided informed consent.

## Participants

On the data preprocessing stage, participants who (a) failed more than one out of three attention questions and/or (b) produced response patterns suggesting inattentiveness (e.g., contradictory answers to several questions, see [PREREGISTRATION LINK] for a detailed
description). Next, after excluding all participants with missing values in the variables of interest, data collected from 72,627 participants ( $M_{\mathrm{age}}=32.84, S D=12.57$ ) were included in the analyses. Of all participants, 41,360 identified as women ( $57.0 \%$ of the total sample), 28,877 as men (39.8\%) , and 2,390 (3.3\%) as gender-diverse individuals. Detailed sociodemographic distribution is presented in Table 1.

## Measures

The complete set of measures collected, including item questions and available responses in all languages, can be found following the link: [TRANSLATIONS LINK]. Outlined below are measures focal to the current analyses.

Adult ADHD symptom severity was assessed using the ASRS Screener (Kessler et al., 2007). This questionnaire is a 6 -item screening measure for adult ADHD symptoms and is an abbreviated version of the 18 -item ASRS, developed by the World Health Organization (Kessler et al., 2005). It measures the frequency of relevant behaviors (on a scale from 0 [ Never] to 4 [Very often]).

For the ASRS Screener validity analyses, we included additional measures. With three separate questions, we gathered information about participants' self-reported (1) mental, (2) physical, and (3) sexual conditions. Response options were 0 (indicating that a participant is not suffering from mental, physical, or sexual condition) and 1 (indicating that a participant is suffering from mental, physical, or sexual condition). As an indicator of relative socioeconomic status, respondents were also asked to rate their life circumstances in comparison to the others.

Response options ranged from 1 (among the worst) to 7 (among the best).

## Data Analysis

All analytical procedures were performed in the $R$ computational environment ( R Core Team, 2019). Preregistered analysis plan can be found using the link [ANALYSIS PLAN LINK]. R code used for the statistical analysis can be found following the link [CODE LINK].

Descriptive Analysis. First, descriptive statistics were calculated for all ASRS Screener items. We rejected the hypothesis that the data were missing non-randomly, based on Little's missing completely at random test $\left(\chi^{2}(105)=106.21, p=.449\right)$. On this basis, all observations with missing values in any of the ASRS Screener items were removed.

Dimensionality. The dimensionality of the ASRS Screener was assessed using CFA. Evaluation of model fit was based on established goodness-of-fit metrics (Marsh et al., 2005; Schermelleh-Engel et al., 2003): Comparative Fit Index (CFI; $\geq .90$ adequate; $\geq .95$ good), TuckerLewis Index (TLI; $\geq .90$ adequate; $\geq .95$ good), and Root-Mean-Square Error of Approximation with its $90 \%$ confidence interval (RMSEA; $\leq .10$ : acceptable, $\leq .08$ : adequate, and $\leq .05$ : good; Kenny et al., 2015; Schermelleh-Engel et al., 2003). The diagonally weighted least square estimator was used for fitting the CFA and measurement invariance models (Finney \& DiStefano, 2013).

Measurement Invariance. To minimize measurement bias and maximize inter-group comparisons validity, tests of measurement invariance were performed with language, country, and gender of participants as grouping variables (Millsap, 2011; Vandenberg \& Lance, 2000). Six levels of invariance were tested with increasingly constrained parameters: configural (i.e., same structure across groups), metric (i.e., same factor loadings across groups), scalar (i.e., same item intercepts across groups), and residual (i.e., same residual covariance across groups), as well as latent variance-covariance, and means invariance (Milfont \& Fischer, 2010; Vandenberg \& Lance, 2000).

Significant changes in RMSEA ( $\Delta$ RMSEA $\leq .015$ ) and CFI $(\Delta \mathrm{CFI} \leq .01)$ suggested which level of measurement invariance was achieved (Chen, 2007; G. W. Cheung \& Rensvold, 2002). We also reported additional goodness-of-fit metrics (TLI) to account for model parsimony in model comparisons (Marsh et al., 2005, 2013). In cases where full invariance was not achieved, partial invariance tests were performed by progressively releasing equality constraints (i.e., factor loading, intercept, and residual covariance parameters for a given item) in the order according to the expected $\chi^{2}$ difference until assumed cut-off values for the changes in RMSEA and CFI were met (Milfont \& Fischer, 2010) or the number of modification indices was exhausted.

For measure invariance tests, based on an a priori Monte Carlo simulation (see details in [ANALYSIS PLAN LINK]), only groups consisting of a minimum of 460 participants were retained. Accordingly, in the language-based measurement invariance tests, 20 of 26 groups met the minimum group size criterion, 32 out of 42 groups for country-based tests and all three gender groups (i.e., men, women, gender-diverse individuals) meeting the size criterion for gender-based tests.

Reliability, Validity, and Screening Threshold. ASRS Screener reliability was assessed using Cronbach's alpha and McDonald's omega (McDonald, 1970; McNeish, 2018; Nunnally, 1978). Validity was assessed by calculating ASRS Screener general score correlations with theoretically relevant characteristics and testing for differences in total ASRS Screener scores between participants who identified themselves as men, women, or gender-diverse individuals (one-way analysis of variance; $\eta^{2}$ is provided as effect size as well as Cohen's $d$ for pairwise comparisons).

## Descriptive Statistics and Confirmatory Factor Analysis of the Full Sample

A one-factor measurement model was fit to the data with acceptable goodness-of-fit (RMSEA=.093, 95\% CI [.091, .095]; CFI=.945; TLI=.909). Although the obtained RMSEA was slightly higher than the recommended target value of $<.08$, given that other indicators achieved acceptable scores, the tested model was unidimensional and based on only six items (which should be considered when evaluating RMSEA; Kenny et al., 2015), we proceeded with this model with no additional adjustments. Summary statistics for ASRS total score, items, and standardized factor loadings are presented in Table 2.

## Measurement Invariance Across Language, Country, and Gender Groups

First, measurement invariance was assessed across language groups. Descriptive statistics for countries included in measurement invariance tests are given in Supplemental Materials in Table S1. Table S1 contains both unadjusted means for the ASRS Screener in respective countrybased subsamples, as well as means adjusted for age and gender as those basic characteristics differed between country subsamples and may have relevance for the presentation of ADHD symptoms. Additionally, both empirical (unadjusted) and adjusted means are depicted in Figure 1. Next, mean comparisons for the countries included in measurement invariance tests are depicted in Tables S2 (unadjusted means) and S3 (means adjusted for age and gender). Since changes in RMSEA and CFI values in the measurement invariance tests did not meet the assumed cut-offs, subsets of constraints were relaxed, resulting in acceptable changes in goodness-of-fit metrics up to the level of residual invariance. Second, measurement invariance across country groups was assessed. Like in the language-based tests, partial invariance was tested by relaxing select constraints. Again, this method resulted in adequate changes in goodness-of-fit metrics up to residual invariance. Third, measurement invariance across genders was also tested. The same
method was used as described above, resulting in partial invariance, this time up to a variancecovariance level.

These results suggest that, while differences in group means may be present, no significant measurement biases exist across the examined variables. The results of all measurement invariance test sets, along with a detailed description of relaxed constraints, are available in Supplemental Materials (Tables S4-S6).

## Reliability and Validity

The ASRS demonstrated adequate reliability, as evidenced by acceptable values of the Cronbach's alpha ( $\alpha=.73$ ) and McDonald's omega ( $\omega=.82$ ). There were also differences in ASRS scores with respect to gender $\left(F(2 ; 72,624)=855.57, p<.001, \eta^{2}=.02\right)$, with gender-diverse individuals scoring higher $(M=13.20, S D=4.89)$ than women $(M=10.14, S D=4.36$; $t(72,624)=33.25, p<.001$, Cohen's $d=0.66)$, who in turn, scored higher than men $(M=9.49$, $S D=4.35, t(72,624)=19.35, p<.001$, Cohen's $d=0.15)$.

In addition, the ASRS Screener score had weak to moderate associations with theoretically relevant variables (Figure 2), including age ( $r=-.28, p<.001$ ), socioeconomic status ( $r=-.10, p<.001$ ), self-reported experiences with mental illness ( $r=.32$, $p<.001$ ), and sexual problems ( $r=.09, p<.001$ ), but not physical illness ( $r=.01, p=.218$ ).

## Applicability of the ASRS Cut-Off Score

Applicability of the diagnostic cut-off score for the ASRS Screener was assessed by calculating the proportion of individuals who screened positive using the established threshold of 14 points or more (Kessler et al., 2007). 20.9\% of participants (15,201 out of $N=72,627$ participants) scored above the screening threshold, indicating higher risk of adult ADHD. Comparisons of participants who scored lower or higher on the ASRS Screener in their respective
countries are presented in Table 3. In terms of gender, $21.4 \%$ of women $(8,838), 18.1 \%$ of men $(5,213)$, and $48.1 \%$ of gender-diverse individuals $(1,150)$ scored above the threshold.

## Discussion

The aim of the article was cross-cultural examination of adult ADHD symptoms, filling a gap in research on adult ADHD outside of WEIRD populations and among groups underrepresented in research (e.g., gender-diverse individuals). Concurrently, the present study allowed for achieving these aims while investigating the psychometric properties of one of most popular self-report screening measures, the ASRS Screener. First, the unidimensional model of the ASRS Screener was tested and found to fit the data well for the whole sample. This result supports the notion that ASRS Screener assesses a single underlying construct. The factor loadings of all six items were sufficiently high, and the internal consistency achieved for the measure was also high. Overall, this supported the notion that the 6 -item ASRS Screener is an internally coherent, unidimensional brief tool for assessing general ADHD symptoms in adults.

The ASRS Screener achieved partial invariance across languages and countries up to the residual invariance level. For gender groups, full metric invariance was achieved, with partial invariance up to the variance-covariance level. This indicates that although some differences in item interpretation and measurement may exist, the basic structure of the adult ADHD symptoms as assessed by the ASRS Screener was similar across the country, language, and gender groups. However, it should be noted that relaxing constraints as part of testing partial invariance on different levels has implications for the interpretability of the results, as well as the generalizability of the questionnaire and inter-group comparisons (Millsap, 2011; Vandenberg \& Lance, 2000). Therefore, the present findings should be interpreted cautiously (implications of relaxing equality constraints on each of these levels are further detailed in the Supplemental Materials).

## Occurrence of Being at Risk for Adult ADHD Across Countries

The occurrence rates estimated in the current study for different countries varied starkly between $9.1 \%$ and $32.3 \%$. For most countries in the study ( 29 of 42 ), estimates exceeded $20 \%$, higher than those usually reported in previous studies where estimates of current occurrence reached up to $15 \%$ (Adler et al., 2019; Kessler et al., 2006, 2007; Vňuková et al., 2021; Weissenberger et al., 2018). Of the countries which qualified for measurement invariance analysis, the highest percentages of being at-risk for adult ADHD were noted for the US (34.9\%) and Canada (31.0\%), followed predominantly by other Western countries for which English is the primary language: South Africa (29.6\%), Ireland (28.8\%), New Zealand (28.5\%), and the United Kingdom (28.0\%). The lowest occurrence was found in a more diverse group of countries including non-English speaking European countries (predominantly not Western European) as well as East Asian countries: Germany (10.0\%), North Macedonia (13.2\%), Taiwan (13.8\%), Israel (14.4\%), Lithuania (14.6\%), Hungary (15.5\%), and South Korea (17.2\%). Similarly, gender- and age-adjusted means (which may offer less biased estimates) of adult ADHD symptom severity were highest in the US, New Zealand, Canada, Australia, and Ireland, while lowest in South Korea, North Macedonia, Italy, Taiwan, and Israel.

When interpreting results, it is important to note that the ASRS was designed as a screener. Hence, false positives will exist. Thus, scoring above the diagnostic threshold for ASRS Screener may not reflect a case and should rather call for further clinical assessment. As discussed earlier, symptoms characteristic of ADHD, including inattentiveness, impulsiveness, and hyperactivity, are non-specific to ADHD and may relate to other disorders and behavioral problems (NCCMH UK, 2009). Similar to other measures of adult ADHD, the ASRS Screener does not provide information about the possible childhood onset of the disorder. While this is currently needed for diagnosis, it should be noted that in some cases, ADHD only presents first in
adulthood. This might be especially the case with women and others for whom inattentiveness is the leading symptom. Nonetheless, recent findings suggest a high rate of false-positives using self-report screeners for adult ADHD (Chamberlain et al., 2021). Moreover, in the present study, samples were not representative of the national populations, and reported percentages should not be considered an accurate representation of ADHD prevalence or severity as reported across languages, countries, and genders.

Further possible explanations for being at risk for adult ADHD may be related to increased diagnoses of ADHD in the $21^{\text {st }}$ century (and possible overdiagnosis), especially in Western countries. Evidence supporting this hypothesis shows a six-fold increase in cases in which stimulants were prescribed from 1994 to 2009 in the USA alone (Olfson et al., 2013), and doubling in the UK between 2004 and 2009 (McCarthy et al., 2012). Moreover, the previous analysis provided initial evidence that excessive use of digital media among adolescents, which has also increased recently, has been associated with subsequent, significant increases in selfreported ADHD symptoms (Ra et al., 2018).

Increasing rates of adult ADHD diagnosis in Western countries may also be connected to ADHD-related information being accessible and proliferated in Western countries (especially English-speaking countries, where people can easily access much ADHD-related information). Previous findings (Suhr \& Wei, 2017) show that exposure to popular information on ADHD can make people focus on their self-perception of impulsive and inattentive behavior seemingly fitting ADHD symptom descriptions, even when they do not meet the formal criteria for the disorder. Next, in the process of formal diagnosis and/or screening, people may inaccurately (although honestly) report heightened levels of symptoms (Suhr \& Wei, 2017). Thus, cultural factors related to ADHD may be partially responsible for differences in adult ADHD symptom severity in the countries analyzed in the current study. Lastly, another possible explanative route
in light of which current results can be considered is based on previous, initial evidence showing elevated severity of ADHD symptoms as related to the COVID-19 pandemic (see: Behrmann et al., 2022). As the present research was conducted during the COVID-19 pandemic, findings should be treated with caution.

## Sociodemographic Factors and Other Adult ADHD-Related Variables

Analysis of factors potentially associated with adult ADHD in the current work brought significant evidence of convergent analysis of the ASRS Screener (e.g., negative association with age, positive association with self-reported mental health problems).

Age. Our results point to weak to moderate, negative associations of the ASRS Screener score with age, consistent with research showing an age-related decline of ADHD (e.g., Faraone \& Biederman, 2005; Polanczyk et al., 2007).

Gender. In our study, women displayed slightly more severe symptoms of ADHD than men. Moreover, more women than men scored above the diagnostic threshold. Some research showed results consistent with this pattern: women with ADHD experienced more intense inattention and hyperactivity symptoms than men with ADHD (Fedele et al., 2012). However, the difference between women and men in our analysis has a small effect size, which supports the hypothesis that sex-related differences in ADHD occurrence and symptom severity are less pronounced for adults than for children (Simon et al., 2009).Importantly, we observed a high occurrence of ADHD-like symptoms among gender-diverse individuals. Previous studies have shown that ADHD was more prevalent among transgender adolescents compared to age-matched individuals (A. S. Cheung et al., 2018). Transgender individuals, compared to individuals identifying as cisgender, more frequently reported having ADHD (Bretherton et al., 2021; Dawson et al., 2017). The reported estimates reached values as high as $23 \%$ for transmasculine and $26 \%$ for non-binary study participants (Leven et al., 2020). A recent systematic review
concluded that evidence suggesting a higher occurrence of ADHD in transgender than cisgender individuals exists; however, the evidence is scarce and thus the authors recommended treating it cautiously (Thrower et al., 2020). This analysis, which is based on a sizable sample of genderdiverse individuals $(n=2,390)$ from diverse cultural backgrounds represents an important step in supplementing previously scarce evidence on this subject.

Socioeconomic status. The evaluation of life circumstances as slightly worse by participants reporting higher ADHD symptom severity is consistent with previous studies showing that ADHD in childhood or adolescence may predict economic disadvantage and academic, occupational, and social dysfunction in adulthood (Du Rietz et al., 2017; Galéra et al., 2012; Kooij et al., 2005).

Mental illness, somatic illness, and sexual problems. The positive relationship between ADHD symptoms severity and self-reported mental illness that we observed is supported by previous research (NCCMH UK, 2009) showing adult ADHD to increase the odds of having another mental illness, for example, autism spectrum (Jensen \& Steinhausen, 2015), mood and anxiety disorders (Kessler et al., 2006). In our study, ADHD symptoms were not associated with a physical illness, which is in contrast to the meta-analysis that showed co-occurrence of ADHD with asthma, sleep disorders, and obesity, as well as providing evidence for associations with migraine and celiac disease (see: Instanes et al., 2018). The authors point, however, to the relatively poor quality of studies and the need for large systematic studies investigating this topic, which our work helps to provide. At the same time, our study only included a single general question about experienced physical problems, and no objective measures or medical records were employed. Additionally, our results point to adult ADHD's weak positive relation with selfreported sexual problems. This association aligns with a recent systematic review by Soldati and
colleagues (2020) showing that individuals with ADHD report less sexual satisfaction and more sexual dysfunctions, but stronger sexual desire.

In summary, we have provided much needed data on adult ADHD in a multi-national context, including non-Western countries which were previously largely understudied (Fayyad et al., 2017; Gómez-Benito et al., 2019). The study had a very wide scope, as 42 countries, representing six continents and a variety of distinct cultural backgrounds, were included in the analysis. As these data had been lacking in the available literature, the current study can provide a foundation for future research in these countries, while also helping to create scientifically informed screening and diagnostic standards for adult ADHD in multiple populations. On a scientific level, the present results can help establish a more comprehensive and accurate picture of interdependencies between ADHD symptoms and various factors across countries with different cultures, which had also been a knowledge gap, especially in terms of comparing WEIRD and non-WEIRD countries (e.g., Fayyad et al., 2017; Gómez-Benito et al., 2019; Song et al., 2021).

As part of the present project, 26 different language versions of the ASRS Screener were prepared, adapted, and psychometrically examined. These versions are openly available for research and clinical use by other researchers. This allows for further scientific contributions and can facilitate assessment and diagnostic processes in clinical domains. Through providing new scientific results from diverse populations as well as making the assessment tools openly available, the current project can help propel further research on culturally-sensitive interventions for adults with ADHD. Although previous data on this subject were scarce (e.g., Thrower et al., 2020), our findings provide evidence that adult ADHD symptom severity is especially high in gender-diverse individuals. Significant attention to this group in clinical domains seems warranted (Bretherton et al., 2021; Dawson et al., 2017; Leven et al., 2020).

## Limitations and Future Directions

Despite significant strengths, the limitations of the current study should be noted. General limitations associated with using ISS data (e.g., convenience sample use, cross-sectional design, online data collection) are described here [GENERAL ISS LIMITATIONS]. Additionally, the analysis is based on self-report, with no additional assessment by a clinician; therefore, the results should be interpreted with caution. The current results should be supplemented in future research involving (1) clinical samples, (2) expert assessment by a clinician, (3) additional ADHD screening measures and a broader palette of measures for convergent and divergent validity investigation (e.g., screening measures for specific co-occurring disorders), (4) representative samples, and (5) longitudinal designs allowing for investigating test-retest reliability. The current analysis should also be replicated with other adult ADHD screening tools (e.g., Ustun et al., 2017).

## Conclusions

The present work involved 42 countries and 72,627 participants to investigate crosscultural differences in adult ADHD. The findings supported inter-cultural stability of a basic adult ADHD symptom structure, as well as the unidimensionality of the ASRS Screener and its high internal consistency and validity. Despite significant cross-national differences, a substantial number of participants in each of the analyzed countries was identified as being at-risk for adult ADHD. This includes some countries previously underrepresented in research (e.g., South Africa, Malaysia), showing the need for developing quality diagnosis, assessment, and treatment for adult ADHD worldwide, particularly in non-Western countries, for which science, assessment, and diagnosis of adult ADHD may be more underdeveloped. At the same time, we caution against the risk of overestimating adult ADHD based solely on self-report screening tools, which should be supplemented by additional information from clinical evaluations for adequate
differential diagnosis and assessment of early ADHD onset. Notably, the increased risk among the minority groups like gender-diverse individuals was suggested, which supports a need for further research on adult ADHD in these individuals. As part of the current project, 26 language versions of the ASRS Screener were prepared and psychometrically examined and are freely and openly available as part of the current project documentation. Altogether, the findings of the current project can contribute to significant advancements in adult ADHD assessment standards, including among groups underrepresented in previous research.

## References

Adler, L. A., Faraone, S. V., Sarocco, P., Atkins, N., \& Khachatryan, A. (2019). Establishing US norms for the Adult ADHD Self-Report Scale (ASRS-v1.1) and characterising symptom burden among adults with self-reported ADHD. International Journal of Clinical Practice, 73(1), e13260. https://doi.org/10.1111/ijcp. 13260

American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition). American Psychiatric Association. https://doi.org/10.1176/appi.books. 9780890425596

Bastiaens, L., \& Galus, J. (2018). Comparison of the Adult ADHD Self Report Scale Screener for DSM-IV and DSM-5 in a Dually Diagnosed Correctional Population. Psychiatric Quarterly, 89(2), 505-510. https://doi.org/10.1007/s11126-017-9553-4

Bauermeister, J. J., Canino, G., Polanczyk, G., \& Rohde, L. A. (2010). ADHD Across Cultures: Is There Evidence for a Bidimensional Organization of Symptoms? Journal of Clinical Child \& Adolescent Psychology, 39(3), 362-372. https://doi.org/10.1080/15374411003691743

Beaton, D. E., Bombardier, C., Guillemin, F., \& Ferraz, M. B. (2000). Guidelines for the Process of Cross-Cultural Adaptation of Self-Report Measures. Spine, 25(24), 3186-3191.

Behrmann, J. T., Blaabjerg, J., Jordansen, J., \& Jensen de López, K. M. (2022). Systematic Review: Investigating the Impact of COVID-19 on Mental Health Outcomes of Individuals With ADHD. Journal of Attention Disorders, 26(7), 959-975. https://doi.org/10.1177/10870547211050945

Bőthe, B., Koós, M., Nagy, L., Kraus, S. W., Potenza, M. N., \& Demetrovics, Z. (2021). International Sex Survey: Study protocol of a large, cross-cultural collaborative study in

45 countries. Journal of Behavioral Addictions, 10(3), 632-645. https://doi.org/10.1556/2006.2021.00063

Bretherton, I., Thrower, E., Zwickl, S., Wong, A., Chetcuti, D., Grossmann, M., Zajac, J. D., \& Cheung, A. S. (2021). The Health and Well-Being of Transgender Australians: A National Community Survey. LGBT Health, 8(1), 42-49. https://doi.org/10.1089/lgbt.2020.0178

Caye, A., Swanson, J., Thapar, A., Sibley, M., Arseneault, L., Hechtman, L., Arnold, L. E., Niclasen, J., Moffitt, T., \& Rohde, L. A. (2016). Life Span Studies of ADHDConceptual Challenges and Predictors of Persistence and Outcome. Current Psychiatry Reports, 18(12), 111. https://doi.org/10.1007/s11920-016-0750-x

Chamberlain, S. R., Cortese, S., \& Grant, J. E. (2021). Screening for adult ADHD using brief rating tools: What can we conclude from a positive screen? Some caveats. Comprehensive Psychiatry, 106, 152224. https://doi.org/10.1016/j.comppsych.2021.152224

Chen, F. F. (2007). Sensitivity of Goodness of Fit Indexes to Lack of Measurement Invariance. Structural Equation Modeling: A Multidisciplinary Journal, 14(3), 464-504. https://doi.org/10.1080/10705510701301834

Cheung, A. S., Ooi, O., Leemaqz, S., Cundill, P., Silberstein, N., Bretherton, I., Thrower, E., Locke, P., Grossmann, M., \& Zajac, J. D. (2018). Sociodemographic and Clinical Characteristics of Transgender Adults in Australia. Transgender Health, 3(1), 229-238. https://doi.org/10.1089/trgh.2018.0019

Cheung, G. W., \& Rensvold, R. B. (2002). Evaluating Goodness-of-Fit Indexes for Testing Measurement Invariance. Structural Equation Modeling: A Multidisciplinary Journal, 9(2), 233-255. https://doi.org/10.1207/S15328007SEM0902_5

Davidov, E., Meuleman, B., Cieciuch, J., Schmidt, P., \& Billiet, J. (2014). 10.1146/annurev-soc-071913-043137. Annual Review of Sociology, 40(1), 55-75. https://doi.org/10.1146/annurev-soc-071913-043137

Dawson, A. E., Wymbs, B. T., Gidycz, C. A., Pride, M., \& Figueroa, W. (2017). Exploring rates of transgender individuals and mental health concerns in an online sample. International Journal of Transgenderism, 18(3), 295-304. https://doi.org/10.1080/15532739.2017.1314797

Du Rietz, E., Kuja-Halkola, R., Brikell, I., Jangmo, A., Sariaslan, A., Lichtenstein, P., Kuntsi, J., \& Larsson, H. (2017). Predictive validity of parent- and self-rated ADHD symptoms in adolescence on adverse socioeconomic and health outcomes. European Child \& Adolescent Psychiatry, 26(7), 857-867. https://doi.org/10.1007/s00787-017-0957-3

Faraone, S. V., \& Biederman, J. (2005). What Is the Prevalence of Adult ADHD? Results of a Population Screen of 966 Adults. Journal of Attention Disorders, 9(2), 384-391. https://doi.org/10.1177/1087054705281478

Fayyad, J., Sampson, N. A., Hwang, I., Adamowski, T., Aguilar-Gaxiola, S., Al-Hamzawi, A., Andrade, L. H. S. G., Borges, G., De Girolamo, G., Florescu, S., Gureje, O., Haro, J. M., Hu, C., Karam, E. G., Lee, S., Navarro-Mateu, F., O’Neill, S., Pennell, B.-E., Piazza, M., ... Kessler, R. C. (2017). The descriptive epidemiology of DSM-IV Adult ADHD in the World Health Organization World Mental Health Surveys. ADHD Attention Deficit and Hyperactivity Disorders, 9(1), 47-65. https://doi.org/10.1007/s12402-016-0208-3

Fedele, D. A., Lefler, E. K., Hartung, C. M., \& Canu, W. H. (2012). Sex Differences in the Manifestation of ADHD in Emerging Adults. Journal of Attention Disorders, 16(2), 109117. https://doi.org/10.1177/1087054710374596

Finney, S. J., \& DiStefano, C. (2013). Nonnormal and categorical data in structural equation modeling. In Structural equation modeling: A second course, 2nd ed. (pp. 439-492). IAP Information Age Publishing.

Galéra, C., Bouvard, M.-P., Lagarde, E., Michel, G., Touchette, E., Fombonne, E., \& Melchior, M. (2012). Childhood attention problems and socioeconomic status in adulthood: 18-year follow-up. British Journal of Psychiatry, 201(1), 20-25. https://doi.org/10.1192/bjp.bp.111.102491

Ginapp, C. M., Greenberg, N. R., Macdonald-Gagnon, G., Angarita, G. A., Bold, K. W., \& Potenza, M. N. (2023). The experiences of adults with ADHD in interpersonal relationships and online communities: A qualitative study. SSM - Qualitative Research in Health, 3, 100223. https://doi.org/10.1016/j.ssmqr.2023.100223

Ginapp, C. M., Macdonald-Gagnon, G., Angarita, G. A., Bold, K. W., \& Potenza, M. N. (2022). The lived experiences of adults with attention-deficit/hyperactivity disorder: A rapid review of qualitative evidence. Frontiers in Psychiatry, 13, 949321. https://doi.org/10.3389/fpsyt.2022.949321

Gómez-Benito, J., Van de Vijver, F. J. R., Balluerka, N., \& Caterino, L. (2019). Cross-Cultural and Gender Differences in ADHD Among Young Adults. Journal of Attention Disorders, 23(1), 22-31. https://doi.org/10.1177/1087054715611748

Hill, J. C., \& Schoener, E. P. (1996). Age-dependent decline of attention deficit hyperactivity disorder. American Journal of Psychiatry, 153(9), 1143-1146. https://doi.org/10.1176/ajp.153.9.1143

Instanes, J. T., Klungsøyr, K., Halmøy, A., Fasmer, O. B., \& Haavik, J. (2018). Adult ADHD and Comorbid Somatic Disease: A Systematic Literature Review. Journal of Attention Disorders, 22(3), 203-228. https://doi.org/10.1177/1087054716669589

Jensen, C. M., \& Steinhausen, H.-C. (2015). Comorbid mental disorders in children and adolescents with attention-deficit/hyperactivity disorder in a large nationwide study. ADHD Attention Deficit and Hyperactivity Disorders, 7(1), 27-38. https://doi.org/10.1007/s12402-014-0142-1

Kenny, D. A., Kaniskan, B., \& McCoach, D. B. (2015). The Performance of RMSEA in Models With Small Degrees of Freedom. Sociological Methods \& Research, 44(3), 486-507. https://doi.org/10.1177/0049124114543236

Kessler, R. C., Adler, L. A., Gruber, M. J., Sarawate, C. A., Spencer, T., \& Van Brunt, D. L. (2007). Validity of the World Health Organization Adult ADHD Self-Report Scale (ASRS) Screener in a representative sample of health plan members. International Journal of Methods in Psychiatric Research, 16(2), 52-65. https://doi.org/10.1002/mpr. 208

Kessler, R. C., Adler, L., Ames, M., Demler, O., Faraone, S., Hiripi, E., Howes, M. J., Jin, R., Secnik, K., Spencer, T., Ustun, T. B., \& Walters, E. E. (2005). The World Health Organization adult ADHD self-report scale (ASRS): A short screening scale for use in the general population. Psychological Medicine, 35(2), 245-256. Cambridge Core. https://doi.org/10.1017/S0033291704002892

Kessler, R. C., Adler, L., Barkley, R., Biederman, J., Conners, C. K., Demler, O., Faraone, S. V., Greenhill, L. L., Howes, M. J., \& Secnik, K. (2006). The prevalence and correlates of adult ADHD in the United States: Results from the National Comorbidity Survey Replication. American Journal of Psychiatry, 163(4), 716-723.

Kooij, J. J. S., Bejerot, S., Blackwell, A., Caci, H., Casas-Brugué, M., Carpentier, P. J., Edvinsson, D., Fayyad, J., Foeken, K., Fitzgerald, M., Gaillac, V., Ginsberg, Y., Henry, C., Krause, J., Lensing, M. B., Manor, I., Niederhofer, H., Nunes-Filipe, C., Ohlmeier, M.
D., ... Asherson, P. (2010). European consensus statement on diagnosis and treatment of adult ADHD: The European Network Adult ADHD. BMC Psychiatry, 10(1), 67. https://doi.org/10.1186/1471-244X-10-67

Kooij, J. J. S., Buitelaar, J. K., van den Oord, E. J., Furer, J. W., Th. Rijnders, C. A., \& Hodiamont, P. P. G. (2005). Internal and external validity of Attention-Deficit Hyperactivity Disorder in a population-based sample of adults. Psychological Medicine, 35(6), 817-827. https://doi.org/10.1017/S003329170400337X

Leven, T., de Caestecker, L., \& McCallum, A. (2020). Health needs assessment of lesbian, gay, bisexual, transgender and non-binary people. http://hdl.handle.net/11289/580258

Lovett, B. J., \& Harrison, A. G. (2021). Assessing adult ADHD: New research and perspectives. Journal of Clinical and Experimental Neuropsychology, 43(4), 333-339. https://doi.org/10.1080/13803395.2021.1950640

Marsh, H. W., Hau, K.-T., \& Grayson, D. (2005). Goodness of Fit in Structural Equation Models. In Contemporary psychometrics: A festschrift for Roderick P. McDonald. (pp. 275-340). Lawrence Erlbaum Associates Publishers.

Marsh, H. W., Vallerand, R. J., Lafrenière, M.-A. K., Parker, P., Morin, A. J. S., Carbonneau, N., Jowett, S., Bureau, J. S., Fernet, C., Guay, F., Salah Abduljabbar, A., \& Paquet, Y. (2013). Passion: Does one scale fit all? Construct validity of two-factor passion scale and psychometric invariance over different activities and languages. Psychological Assessment, 25(3), 796-809. https://doi.org/10.1037/a0032573

Matza, L. S., Van Brunt, D. L., Cates, C., \& Murray, L. T. (2011). Test-Retest Reliability of Two Patient-Report Measures for Use in Adults With ADHD. Journal of Attention Disorders, 15(7), 557-563. https://doi.org/10.1177/1087054710372488

McCarthy, S., Wilton, L., Murray, M. L., Hodgkins, P., Asherson, P., \& Wong, I. C. (2012). The epidemiology of pharmacologically treated attention deficit hyperactivity disorder (ADHD) in children, adolescents and adults in UK primary care. BMC Pediatrics, 12(1), 78. https://doi.org/10.1186/1471-2431-12-78

McDonald, R. P. (1970). The theoretical foundations of principal factor analysis, canonical factor analysis, and alpha factor analysis. British Journal of Mathematical and Statistical Psychology, 23(1), 1-21. https://doi.org/10.1111/j.2044-8317.1970.tb00432.x

McNeish, D. (2018). Thanks coefficient alpha, we'll take it from here. Psychological Methods, 23(3), 412-433. https://doi.org/10.1037/met0000144

Meyer, A. (2005). Cross-cultural issues in ADHD research. Journal of Psychology in Africa, 10, 101-106.

Milfont, T. L., \& Fischer, R. (2010). Testing measurement invariance across groups: Applications in cross-cultural research. International Journal of Psychological Research, 3(1), 111130. https://doi.org/10.21500/20112084.857

Millsap, R. E. (2011). Statistical approaches to measurement invariance. Routledge.
National Collaborating Centre for Mental Health UK. (2009). Attention deficit hyperactivity disorder: Diagnosis and management of ADHD in children, young people and adults.

Nunnally, J. C. (1978). Psychometric theory. McGraw-Hill series in psychology (3rd ed.). McGraw-Hill.

Olfson, M., Blanco, C., Wang, S., \& Greenhill, L. L. (2013). Trends in Office-Based Treatment of Adults With Stimulants in the United States. The Journal of Clinical Psychiatry, 74(01), 43-50. https://doi.org/10.4088/JCP.12m07975

Panagiotidi, M., Overton, P. G., \& Stafford, T. (2019). Co-Occurrence of ASD and ADHD Traits in an Adult Population. Journal of Attention Disorders, 23(12), 1407-1415. https://doi.org/10.1177/1087054717720720

Paris, J., Bhat, V., \& Thombs, B. (2015). Is Adult Attention-Deficit Hyperactivity Disorder Being Overdiagnosed? The Canadian Journal of Psychiatry, 60(7), 324-328. https://doi.org/10.1177/070674371506000705

Polanczyk, G., de Lima, M. S., Horta, B. L., Biederman, J., \& Rohde, L. A. (2007). The Worldwide Prevalence of ADHD: A Systematic Review and Metaregression Analysis. American Journal of Psychiatry, 164(6), 942-948. https://doi.org/10.1176/ajp.2007.164.6.942

Polanczyk, G., \& Jensen, P. (2008). Epidemiologic Considerations in Attention Deficit Hyperactivity Disorder: A Review and Update. Attention Deficit Hyperactivity Disorder, 17(2), 245-260. https://doi.org/10.1016/j.chc.2007.11.006

Polanczyk, G., Laranjeira, R., Zaleski, M., Pinsky, I., Caetano, R., \& Rohde, L. A. (2010). ADHD in a representative sample of the Brazilian population: Estimated prevalence and comparative adequacy of criteria between adolescents and adults according to the item response theory: ADHD in a representative sample of the Brazilian population. International Journal of Methods in Psychiatric Research, 19(3), 177-184. https://doi.org/10.1002/mpr. 319

R Core Team. (2019). $R$ : A language and environment for statistical computing. $R$ Foundation for Statistical Computing [Computer software]. https://www.r-project.org/

Ra, C. K., Cho, J., Stone, M. D., De La Cerda, J., Goldenson, N. I., Moroney, E., Tung, I., Lee, S. S., \& Leventhal, A. M. (2018). Association of Digital Media Use With Subsequent

Symptoms of Attention-Deficit/Hyperactivity Disorder Among Adolescents. JAMA, 320(3), 255. https://doi.org/10.1001/jama.2018.8931

Russell, G., Ford, T., Rosenberg, R., \& Kelly, S. (2014). The association of attention deficit hyperactivity disorder with socioeconomic disadvantage: Alternative explanations and evidence. Journal of Child Psychology and Psychiatry, 55(5), 436-445. https://doi.org/10.1111/jcpp. 12170

Schermelleh-Engel, K., Moosbrugger, H., \& Müller, H. (2003). Evaluating the Fit of Structural Equation Models: Tests of Significance and Descriptive Goodness-of-Fit Measures. Methods of Psychological Research, 8, 23-74.

Simon, V., Czobor, P., Bálint, S., Mészáros, Á., \& Bitter, I. (2009). Prevalence and correlates of adult attention-deficit hyperactivity disorder: Meta-analysis. British Journal of Psychiatry, 194(3), 204-211. https://doi.org/10.1192/bjp.bp.107.048827

Soldati, L., Bianchi-Demicheli, F., Schockaert, P., Köhl, J., Bolmont, M., Hasler, R., \& Perroud, N. (2020). Sexual Function, Sexual Dysfunctions, and ADHD: A Systematic Literature Review. The Journal of Sexual Medicine, 17(9), 1653-1664. https://doi.org/10.1016/j.jsxm.2020.03.019

Song, P., Zha, M., Yang, Q., Zhang, Y., Li, X., \& Rudan, I. (2021). The prevalence of adult attention-deficit hyperactivity disorder: A global systematic review and meta-analysis. Journal of Global Health, 11, 04009. https://doi.org/10.7189/jogh.11.04009

Suhr, J., \& Wei, C. (2017). Attention Deficit/Hyperactivity Disorder as an Illness Identity. In K.
B. Boone (Ed.), Neuropsychological Evaluation of Somatoform and Other Functional Somatic Conditions (1st ed., pp. 251-273). Routledge. https://doi.org/10.4324/9781315266992-9

Syed, H., Masaud, T. M., Nkire, N., Iro, C., \& Garland, M. R. (2010). Estimating the prevalence of adult ADHD in the psychiatric clinic: A cross-sectional study using the adult ADHD self-report scale (ASRS). Irish Journal of Psychological Medicine, 27(4), 195-197. Cambridge Core. https://doi.org/10.1017/S079096670000152X

Thrower, E., Bretherton, I., Pang, K. C., Zajac, J. D., \& Cheung, A. S. (2020). Prevalence of Autism Spectrum Disorder and Attention-Deficit Hyperactivity Disorder Amongst Individuals with Gender Dysphoria: A Systematic Review. Journal of Autism and Developmental Disorders, 50(3), 695-706. https://doi.org/10.1007/s10803-019-04298-1

Timimi, S., \& Taylor, E. (2004). ADHD is best understood as a cultural construct. British Journal of Psychiatry, 184(1), 8-9. https://doi.org/10.1192/bjp.184.1.8

Ustun, B., Adler, L. A., Rudin, C., Faraone, S. V., Spencer, T. J., Berglund, P., Gruber, M. J., \& Kessler, R. C. (2017). The World Health Organization Adult AttentionDeficit/Hyperactivity Disorder Self-Report Screening Scale for DSM-5. JAMA Psychiatry, 74(5), 520. https://doi.org/10.1001/jamapsychiatry.2017.0298

Van De Glind, G., Van Den Brink, W., Koeter, M. W. J., Carpentier, P.-J., Van Emmerik-van Oortmerssen, K., Kaye, S., Skutle, A., Bu, E.-T. H., Franck, J., Konstenius, M., Moggi, F., Dom, G., Verspreet, S., Demetrovics, Z., Kapitány-Fövény, M., Fatséas, M., Auriacombe, M., Schillinger, A., Seitz, A., ... Levin, F. R. (2013). Validity of the Adult ADHD Self-Report Scale (ASRS) as a screener for adult ADHD in treatment seeking substance use disorder patients. Drug and Alcohol Dependence, 132(3), 587-596. https://doi.org/10.1016/j.drugalcdep.2013.04.010

Vandenberg, R. J., \& Lance, C. E. (2000). A Review and Synthesis of the Measurement Invariance Literature: Suggestions, Practices, and Recommendations for Organizational

Research. Organizational Research Methods, 3(1), 4-70.
https://doi.org/10.1177/109442810031002
Vňuková, M., Ptáček, R., Děchtěrenko, F., Weissenberger, S., Ptáčková, H., Braaten, E., Raboch, J., Anders, M., Klicperová-Baker, M., \& Goetz, M. (2021). Prevalence of ADHD Symptomatology in Adult Population in the Czech Republic-A National Study. Journal of Attention Disorders, 25(12), 1657-1664. https://doi.org/10.1177/1087054720934042

Weissenberger, S., Ptacek, R., Vnukova, M., Raboch, J., Klicperova-Baker, M., Domkarova, L., \& Goetz, M. (2018). ADHD and lifestyle habits in Czech adults, a national sample. Neuropsychiatric Disease and Treatment, Volume 14, 293-299. https://doi.org/10.2147/NDT.S148921

## Table 1

Participants' Sociodemographic Characteristics

| Variable | $N=72,627$ | \% |
| :---: | :---: | :---: |
| Country |  |  |
| Algeria | 19 | 0.03 |
| Australia | 565 | 0.78 |
| Austria | 684 | 0.94 |
| Bangladesh | 254 | 0.35 |
| Belgium | 584 | 0.80 |
| Bolivia | 325 | 0.45 |
| Brazil | 3,222 | 4.44 |
| Canada | 2,278 | 3.14 |
| Chile | 1,083 | 1.49 |
| China | 2,339 | 3.22 |
| Colombia | 1,707 | 2.35 |
| Croatia | 2,096 | 2.89 |
| Czech Republic | 1,518 | 2.09 |
| Ecuador | 235 | 0.32 |
| France | 1,526 | 2.10 |
| Germany | 3,015 | 4.15 |
| Gibraltar | 44 | 0.06 |
| Hungary | 9,887 | 13.61 |
| India | 147 | 0.20 |
| Iraq | 83 | 0.11 |
| Ireland | 1,449 | 2.00 |
| Israel | 1,164 | 1.60 |
| Italy | 2,015 | 2.77 |
| Japan | 493 | 0.68 |
| Lithuania | 1,813 | 2.50 |
| Malaysia | 1,082 | 1.49 |
| Mexico | 1,854 | 2.55 |
| New Zealand | 2,524 | 3.48 |
| North Macedonia | 1,089 | 1.50 |
| Panama | 282 | 0.39 |
| Peru | 2,321 | 3.20 |
| Poland | 8,231 | 11.33 |
| Portugal | 1,997 | 2.75 |
| Slovakia | 967 | 1.33 |
| South Africa | 1,644 | 2.26 |
| South Korea | 1,318 | 1.81 |
| Spain | 2,091 | 2.88 |
| Switzerland | 1,068 | 1.47 |
| Taiwan | 2,604 | 3.59 |
| Turkey | 674 | 0.93 |
| United Kingdom | 1,245 | 1.71 |
| United States of America | 2,104 | 2.90 |
| Other | 987 | 1.36 |
| Language |  |  |
| Arabic | 120 | 0.17 |
| Bangla | 227 | 0.31 |
| Croatian | 2,211 | 3.04 |
| Czech | 1,472 | 2.03 |
| Dutch | 467 | 0.64 |
| English | 12,258 | 16.88 |
| French | 3,587 | 4.94 |
| German | 3,238 | 4.46 |
| Hebrew | 1,145 | 1.58 |
| Hindi | 12 | 0.02 |
| Hungarian | 9,681 | 13.33 |
| Italian | 2,043 | 2.81 |
| Japanese | 406 | 0.56 |
| Korean | 1,293 | 1.78 |
| Lithuanian | 1,888 | 2.60 |
| Macedonian | 1,134 | 1.56 |


| Mandarin - Simplified | 2,385 | 3.28 |
| :---: | :---: | :---: |
| Mandarin - Traditional | 2,618 | 3.60 |
| Polish | 8,623 | 11.87 |
| Portuguese - Brazil | 3,289 | 4.53 |
| Portuguese - Portugal | 2,002 | 2.76 |
| Romanian | 64 | 0.09 |
| Slovak | 1,835 | 2.53 |
| Spanish - Latin America | 7,844 | 10.80 |
| Spanish - Spain | 2,079 | 2.86 |
| Turkish | 706 | 0.97 |
| Sex at birth |  |  |
| Female | 43,150 | 59.41 |
| Male | 29,477 | 40.59 |
| Gender |  |  |
| Woman | 41,360 | 56.95 |
| Man | 28,877 | 39.76 |
| Gender diverse individual | 2,390 | 3.29 |
| Sexual orientation |  |  |
| Heterosexual | 50,098 | 68.98 |
| Gay or lesbian | 4,110 | 5.66 |
| Bi+ | 9,152 | 12.60 |
| Homo- and heteroflexible identities | 5,942 | 8.18 |
| Asexual | 953 | 1.31 |
| Questioning or other | 2,372 | 3.27 |
| Highest level of education |  |  |
| Primary (e.g., elementary school) | 437 | 0.60 |
| Secondary (e.g., high school) | 17,166 | 23.64 |
| Tertiary (e.g., college or university) | 55,024 | 75.76 |
| Currently being in education |  |  |
| Yes, in primary education (e.g., elementary school) | 53 | 0.07 |
| Yes, in secondary education (e.g., high school) | 0 | 0.00 |
| Yes, in tertiary education (e.g., college or university) | 27,441 | 37.78 |
| No | 45,133 | 62.14 |
| Work status |  |  |
| Yes, full time | 38,651 | 53.22 |
| Yes, part-time | 10,038 | 13.82 |
| Yes, I do odd jobs | 6,057 | 8.34 |
| No | 17,881 | 24.62 |
| Socioeconomic status |  |  |
| My life circumstances are among the best | 3,514 | 4.84 |
| My life circumstances are much better than average | 27,975 | 38.52 |
| My life circumstances are better than average | 13,062 | 17.99 |
| My life circumstances are average | 23,515 | 32.38 |
| My life circumstances are worse than average | 3,724 | 5.13 |
| My life circumstances are much worse than average | 652 | 0.90 |
| My life circumstances are among the worst | 185 | 0.25 |
| Residence |  |  |
| Metropolis (population is over 1 million people) | 23,751 | 32.70 |
| City (population is between 100,000-999,999 people) | 26,529 | 36.53 |
| Town (population is between 1,000-99,999 people) | 18,315 | 25.22 |
| Village (population is below 1,000 people) | 4,032 | 5.55 |
| Relationship status |  |  |
| Married or common-law partners | 22,000 | 30.29 |
| In a relationship | 23,884 | 32.89 |
| Widow or widower | 393 | 0.54 |
| Divorced | 2,272 | 3.13 |
| Single | 24,078 | 33.15 |
| Having children |  |  |
| Yes, 1 | 7,589 | 10.45 |
| Yes, 2 | 9,412 | 12.96 |
| Yes, 3 | 3,498 | 4.82 |
| Yes, 4 | 938 | 1.29 |
| Yes, 5 | 264 | 0.36 |
| Yes, 6-9 | 116 | 0.16 |
| Yes, 10 or more | 15 | 0.02 |
| No | 50,795 | 69.94 |
|  | M | SD |
| Age | 32.84 | 12.57 |

Note. $M=$ mean; $S D=$ standard deviation.

## 1 Table 2

3 Reliability Metrics of the ASRS Screener

| Item | Range | $M$ | $S D$ | SE | Skew. | Kurt. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ASRS-1 | $0-4$ | 1.605 | 1.069 | 0.004 | 0.329 | -0.526 |  |
| ASRS-2 | $0-4$ | 1.441 | 1.070 | 0.004 | 0.492 | -0.392 |  |
| ASRS-3 | $0-4$ | 1.929 | 1.172 | 0.004 | 0.103 | -0.842 |  |
| ASRS-4 | $0-4$ | 1.395 | 1.101 | 0.004 | 0.594 | -0.322 |  |
| ASRS-5 | $0-4$ | 2.105 | 1.259 | 0.005 | -0.046 | -1.047 |  |
| ASRS-6 | $0-4$ | 1.505 | 1.117 | 0.004 | 0.393 | .648 |  |
| Total Score | $0-24$ | 9.979 | 4.425 | 0.016 | 0.299 | -0.568 | .424 |

4 Note. All factor loadings were statistically significant at $p<.001$.
$5 M=$ mean; $S D=$ standard deviation; $S E=$ standard error; $S k e w .=$ skewness; Kurt.=kurtosis;
$6 \lambda=$ standardized factor loading.

## 1 Table 3

3 Value for the ASRS Screener
$\left.\begin{array}{lrrrr}\hline & & & \\ \hline(n=57,426,79.07 \%)\end{array}\right)$

4

ASRS Screener Mean Scores in Respective Countries Included in Measurement Invariance Tests:
Empirical (Unadjusted) and Adjusted for Age and Gender


Figure 2
Associations Between Adult ADHD Symptoms and Selected Factors (Pearson's r)


Note. SES=Socioeconomic status.
${ }^{* * *} p<.001$

| Country | $n$ | $M(S D)$ | Madj. 95\% CI | Min. | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Australia | 564 | 10.36 (5.20) | 11.91 [11.56, 12.26] | 0 | 24 |
| Austria | 682 | 9.12 (4.02) | 9.90 [ 9.58, 10.21] | 0 | 24 |
| Brazil | 3222 | 9.80 (4.58) | 11.64 [11.49, 11.80] | 0 | 24 |
| Canada | 2275 | 11.15 (4.88) | 11.98 [11.80, 12.15] | 0 | 24 |
| Chile | 1083 | 11.01 (4.09) | 11.25 [11.00, 11.50] | 0 | 23 |
| China | 2339 | 10.10 (3.98) | 10.31 [10.14, 10.49] | 0 | 24 |
| Colombia | 1707 | 10.76 (4.03) | 10.81 [10.61, 11.02] | 0 | 24 |
| Croatia | 2096 | 10.04 (4.29) | 10.41 [10.22, 10.60] | 0 | 24 |
| Czech Republic | 1518 | 8.38 (3.91) | 10.75 [10.53, 10.97] | 0 | 22 |
| France | 1525 | 10.69 (4.51) | 11.42 [11.21, 11.64] | 0 | 24 |
| Germany | 3009 | 8.39 (3.85) | 10.15 [ 9.99, 10.31] | 0 | 22 |
| Hungary | 9885 | 9.16 (4.21) | 10.32 [10.22, 10.42] | 0 | 24 |
| Ireland | 1448 | 10.87 (4.70) | 11.69 [11.47, 11.91] | 0 | 24 |
| Israel | 1159 | 8.57 (4.57) | 9.84 [ 9.59, 10.08] | 0 | 24 |
| Italy | 2013 | 9.32 (4.37) | 9.55 [ 9.36, 9.74] | 0 | 24 |
| Lithuania | 1813 | 9.18 (4.13) | 10.09 [ 9.90, 10.29] | 0 | 24 |
| Malaysia | 1081 | 11.04 (4.20) | 11.12 [10.87, 11.38] | 0 | 24 |
| Mexico | 1854 | 10.64 (4.51) | 11.25 [11.05, 11.44] | 0 | 24 |
| New Zealand | 2522 | 10.90 (4.74) | 12.00 [11.83, 12.17] | 0 | 24 |
| North Macedonia | 1089 | 8.79 (4.28) | 9.26 [ 9.01, 9.52] | 0 | 23 |
| Peru | 2321 | 10.22 (4.13) | 10.92 [10.74, 11.09] | 0 | 24 |
| Poland | 8230 | 10.23 (4.29) | 10.38 [10.27, 10.49] | 0 | 24 |
| Portugal | 1997 | 10.40 (4.08) | 10.94 [10.75, 11.13] | 0 | 24 |
| Slovakia | 966 | 10.60 (3.98) | 10.89 [10.63, 11.16] | 1 | 24 |
| South Africa | 1644 | 11.00 (4.69) | 11.47 [11.27, 11.68] | 0 | 24 |
| South Korea | 1317 | 8.68 (4.96) | 8.71 [ 8.48, 8.94] | 0 | 24 |
| Spain | 2091 | 10.40 (3.99) | 10.30 [10.11, 10.48] | 0 | 24 |
| Switzerland | 1066 | 10.27 (4.42) | 10.64 [10.39, 10.90] | 0 | 24 |
| Taiwan | 2604 | 9.21 (3.96) | 9.81 [ 9.64, 9.98] | 0 | 24 |
| Turkey | 673 | 10.61 (4.56) | 11.01 [10.69, 11.32] | 0 | 24 |
| United Kingdom | 1243 | 10.68 (4.84) | 11.52 [11.29, 11.76] | 0 | 24 |
| United States of America | 2103 | 11.55 (5.04) | 12.04 [11.86, 12.22] | 0 | 24 |

## Table S1

Descriptive Statistics of the ASRS Screener in Countries Included in the Measurement Invariance
Tests

Note. $n=$ group sample size; $M=$ mean; $M$ adj. = marginal means adjusted for gender and age; Min. $=$ minimum $;$ Max. $=$ maximum .
Values in round and box brackets represent standard deviations and 95\% Confidence Intervals, respectively.

## 1 Table S2

2 Country-Based Pairwise Comparisons of the ASRS Screener Performed With the t -test Across
3 Countries Included in Measurement Invariance Tests

| Comparison | $t$ | $p$ | padj. | $\Delta$ | $d$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Australia - Austria | 4.64 | < . 001 | < . 001 | 1.24 | 0.27 |
| Australia - Brazil | 2.39 | . 02 | . 02 | 0.56 | 0.11 |
| Australia - Canada | -3.26 | < . 001 | < . 001 | -0.79 | -0.16 |
| Australia - Chile | -2.57 | . 01 | . 01 | -0.65 | -0.14 |
| Australia - China | 1.10 | . 27 | . 31 | 0.26 | 0.06 |
| Australia-Colombia | -1.65 | . 1 | . 12 | -0.40 | -0.09 |
| Australia - Croatia | 1.33 | . 18 | . 22 | 0.32 | 0.07 |
| Australia - Czech Republic | 8.22 | < . 001 | < . 001 | 1.98 | 0.43 |
| Australia - France | -1.34 | . 18 | . 21 | -0.33 | -0.07 |
| Australia - Germany | 8.58 | < . 001 | <. 001 | 1.97 | 0.43 |
| Australia - Hungary | 5.39 | <. 001 | <. 001 | 1.20 | 0.25 |
| Australia - Ireland | -2.01 | . 04 | . 06 | -0.51 | -0.10 |
| Australia - Israel | 6.98 | $<.001$ | $<.001$ | 1.79 | 0.37 |
| Australia - Italy | 4.33 | $<.001$ | < . 001 | 1.04 | 0.22 |
| Australia - Lithuania | 4.94 | <. 001 | <. 001 | 1.18 | 0.25 |
| Australia - Malaysia | -2.70 | . 01 | . 01 | -0.68 | -0.14 |
| Australia - Mexico | -1.16 | . 25 | . 28 | -0.28 | -0.06 |
| Australia - New Zealand | -2.26 | . 02 | . 03 | -0.54 | -0.11 |
| Australia - North Macedonia | 6.17 | $<.001$ | < . 001 | 1.57 | 0.33 |
| Australia - Peru | 0.57 | . 57 | . 6 | 0.14 | 0.03 |
| Australia - Poland | 0.59 | . 55 | . 59 | 0.13 | 0.03 |
| Australia - Portugal | -0.15 | . 88 | . 89 | -0.04 | -0.01 |
| Australia - Slovakia | -0.96 | . 34 | . 38 | -0.24 | -0.05 |
| Australia - South Africa | -2.60 | . 01 | . 01 | -0.64 | -0.13 |
| Australia - South Korea | 6.49 | <. 001 | < . 001 | 1.68 | 0.33 |
| Australia - Spain | -0.16 | . 88 | 0.89 | -0.04 | -0.01 |
| Australia-Switzerland | 0.36 | . 72 | 0.75 | 0.09 | 0.02 |
| Australia - Taiwan | 4.95 | $<.001$ | < . 001 | 1.15 | 0.25 |
| Australia - Turkey | -0.90 | . 37 | . 41 | -0.25 | -0.05 |
| Australia - United Kingdom | -1.23 | . 22 | . 26 | -0.32 | -0.06 |
| Australia - United States of America | -4.87 | <. 001 | <. 001 | -1.19 | -0.23 |
| Austria - Brazil | -3.94 | <. 001 | <. 001 | -0.68 | -0.16 |
| Austria - Canada | -10.99 | <. 001 | <. 001 | -2.03 | -0.45 |
| Austria - Chile | -9.55 | <. 001 | <. 001 | -1.89 | -0.47 |
| Austria - China | -5.64 | <. 001 | <. 001 | -0.98 | -0.25 |
| Austria - Colombia | -8.99 | <. 001 | <. 001 | -1.64 | -0.41 |
| Austria - Croatia | -5.13 | <. 001 | <. 001 | -0.92 | -0.22 |
| Austria - Czech Republic | 4.02 | <. 001 | <. 001 | 0.74 | 0.19 |
| Austria - France | -8.18 | <. 001 | <. 001 | -1.57 | -0.37 |
| Austria - Germany | 4.33 | <. 001 | <. 001 | 0.73 | 0.19 |
| Austria - Hungary | -0.25 | . 8 | . 82 | -0.04 | -0.01 |
| Austria - Ireland | -8.86 | < . 001 | <. 001 | -1.75 | -0.40 |
| Austria - Israel | 2.70 | . 01 | . 01 | 0.55 | 0.13 |
| Austria - Italy | -1.11 | . 27 | . 3 | -0.20 | -0.05 |
| Austria - Lithuania | -0.32 | . 75 | . 78 | -0.06 | -0.01 |
| Austria - Malaysia | -9.62 | $<.001$ | <. 001 | -1.92 | -0.47 |
| Austria - Mexico | -8.18 | <. 001 | <. 001 | -1.52 | -0.36 |
| Austria - New Zealand | -9.86 | <. 001 | <. 001 | -1.78 | -0.41 |
| Austria - North Macedonia | 1.64 | . 1 | . 12 | 0.33 | 0.08 |
| Austria - Peru | -6.28 | <. 001 | <. 001 | -1.11 | -0.27 |
| Austria - Poland | -6.89 | <. 001 | <. 001 | -1.11 | -0.27 |
| Austria - Portugal | -7.14 | <. 001 | <. 001 | -1.28 | -0.32 |
| Austria - Slovakia | -7.42 | <. 001 | <. 001 | -1.48 | -0.37 |
| Austria - South Africa | -9.79 | <. 001 | <. 001 | -1.88 | -0.43 |
| Austria - South Korea | 2.11 | . 04 | . 05 | 0.43 | 0.10 |
| Austria - Spain | -7.23 | <. 001 | <. 001 | -1.28 | -0.32 |
| Austria - Switzerland | -5.60 | <. 001 | <. 001 | -1.15 | -0.27 |
| Austria - Taiwan | -0.53 | . 6 | . 63 | -0.09 | -0.02 |
| Austria - Turkey | -6.40 | <. 001 | <. 001 | -1.49 | -0.35 |
| Austria - United Kingdom | -7.56 | <. 001 | <. 001 | -1.56 | -0.35 |


| Austria - United States of America | -12.88 | < . 001 | < . 001 | -2.43 | -0.53 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Brazil - Canada | -10.33 | < . 001 | < . 001 | -1.35 | -0.28 |
| Brazil - Chile | -8.13 | < . 001 | < . 001 | -1.20 | -0.28 |
| Brazil - China | -2.60 | . 01 | . 01 | -0.30 | -0.07 |
| Brazil-Colombia | -7.53 | < . 001 | <. 001 | -0.95 | -0.22 |
| Brazil - Croatia | -1.95 | . 05 | . 07 | -0.24 | -0.05 |
| Brazil - Czech Republic | 11.04 | < . 001 | < . 001 | 1.42 | 0.33 |
| Brazil - France | -6.32 | < . 001 | < . 001 | -0.89 | -0.20 |
| Brazil - Germany | 13.24 | <. 001 | < . 001 | 1.42 | 0.33 |
| Brazil - Hungary | 7.06 | <. 001 | <. 001 | 0.64 | 0.15 |
| Brazil - Ireland | -7.21 | < . 001 | <. 001 | -1.06 | -0.23 |
| Brazil - Israel | 7.90 | < . 001 | <. 001 | 1.24 | 0.27 |
| Brazil - Italy | 3.80 | < . 001 | <. 001 | 0.48 | 0.11 |
| Brazil - Lithuania | 4.96 | < . 001 | <. 001 | 0.63 | 0.14 |
| Brazil - Malaysia | -8.21 | <. 001 | <. 001 | -1.24 | -0.28 |
| Brazil - Mexico | -6.34 | < . 001 | <. 001 | -0.84 | -0.18 |
| Brazil - New Zealand | -8.82 | <. 001 | <. 001 | -1.10 | -0.24 |
| Brazil - North Macedonia | 6.63 | <. 001 | <. 001 | 1.01 | 0.23 |
| Brazil - Peru | -3.59 | < . 001 | <. 001 | -0.42 | -0.10 |
| Brazil - Poland | -4.54 | < . 001 | <. 001 | -0.42 | -0.10 |
| Brazil - Portugal | -4.87 | <. 001 | <. 001 | -0.59 | -0.14 |
| Brazil - Slovakia | -5.29 | <. 001 | <. 001 | -0.80 | -0.19 |
| Brazil - South Africa | -8.52 | < . 001 | < . 001 | -1.20 | -0.26 |
| Brazil - South Korea | 7.05 | < . 001 | <. 001 | 1.12 | 0.23 |
| Brazil - Spain | -5.00 | <. 001 | <. 001 | -0.59 | -0.14 |
| Brazil - Switzerland | -2.94 | <. 001 | <. 001 | -0.46 | -0.10 |
| Brazil - Taiwan | 5.29 | <. 001 | <. 001 | 0.59 | 0.14 |
| Brazil - Turkey | -4.19 | < . 001 | <. 001 | -0.81 | -0.18 |
| Brazil - United Kingdom | -5.49 | <. 001 | <. 001 | -0.87 | -0.19 |
| Brazil - United States of America | -12.84 | <. 001 | <. 001 | -1.75 | -0.36 |
| Canada - Chile | 0.87 | . 38 | . 42 | 0.14 | 0.03 |
| Canada - China | 7.97 | < . 001 | <. 001 | 1.05 | 0.23 |
| Canada - Colombia | 2.78 | . 01 | . 01 | 0.39 | 0.09 |
| Canada - Croatia | 7.96 | <. 001 | <. 001 | 1.10 | 0.24 |
| Canada - Czech Republic | 19.31 | <. 001 | <. 001 | 2.77 | 0.63 |
| Canada - France | 2.96 | < . 001 | <. 001 | 0.46 | 0.10 |
| Canada - Germany | 22.26 | < . 001 | <. 001 | 2.76 | 0.63 |
| Canada - Hungary | 17.97 | < . 001 | <. 001 | 1.99 | 0.44 |
| Canada - Ireland | 1.76 | . 08 | . 1 | 0.28 | 0.06 |
| Canada - Israel | 15.30 | < . 001 | < . 001 | 2.58 | 0.55 |
| Canada - Italy | 12.93 | < . 001 | <. 001 | 1.83 | 0.39 |
| Canada - Lithuania | 13.98 | < . 001 | <. 001 | 1.97 | 0.44 |
| Canada - Malaysia | 0.64 | . 52 | . 56 | 0.10 | 0.02 |
| Canada - Mexico | 3.47 | < . 001 | < . 001 | 0.51 | 0.11 |
| Canada - New Zealand | 1.80 | . 07 | . 09 | 0.25 | 0.05 |
| Canada - North Macedonia | 14.27 | < . 001 | <. 001 | 2.36 | 0.51 |
| Canada - Peru | 6.92 | < . 001 | <. 001 | 0.92 | 0.20 |
| Canada - Poland | 8.17 | < . 001 | <. 001 | 0.92 | 0.20 |
| Canada - Portugal | 5.48 | < . 001 | <. 001 | 0.75 | 0.17 |
| Canada - Slovakia | 3.33 | <. 001 | <. 001 | 0.55 | 0.12 |
| Canada - South Africa | 0.94 | . 35 | . 39 | 0.14 | 0.03 |
| Canada - South Korea | 14.43 | < . 001 | < . 001 | 2.46 | 0.50 |
| Canada - Spain | 5.59 | <. 001 | <. 001 | 0.75 | 0.17 |
| Canada - Switzerland | 5.20 | <. 001 | <. 001 | 0.88 | 0.19 |
| Canada - Taiwan | 15.10 | <. 001 | <. 001 | 1.94 | 0.44 |
| Canada - Turkey | 2.64 | . 01 | . 01 | 0.54 | 0.11 |
| Canada - United Kingdom | 2.75 | . 01 | . 01 | 0.47 | 0.10 |
| Canada - United States of America | -2.69 | . 01 | . 01 | -0.40 | -0.08 |
| Chile - China | 6.07 | <. 001 | <. 001 | 0.90 | 0.22 |
| Chile - Colombia | 1.59 | . 11 | . 13 | 0.25 | 0.06 |
| Chile - Croatia | 6.19 | < . 001 | <. 001 | 0.96 | 0.23 |
| Chile - Czech Republic | 16.44 | < . 001 | <. 001 | 2.63 | 0.66 |
| Chile - France | 1.86 | . 06 | . 08 | 0.32 | 0.07 |
| Chile - Germany | 18.36 | <. 001 | <. 001 | 2.62 | 0.66 |
| Chile - Hungary | 14.08 | <. 001 | <. 001 | 1.85 | 0.45 |
| Chile - Ireland | 0.81 | . 42 | . 46 | 0.14 | 0.03 |
| Chile - Israel | 13.35 | < . 001 | < . 001 | 2.44 | 0.56 |
| Chile - Italy | 10.68 | < . 001 | < . 001 | 1.69 | 0.40 |
| Chile - Lithuania | 11.61 | < . 001 | <. 001 | 1.83 | 0.45 |
| Chile - Malaysia | -0.20 | . 84 | . 86 | -0.04 | -0.01 |


| Chile - Mexico | 2.26 | . 02 | . 03 | 0.37 | 0.09 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Chile - New Zealand | 0.70 | . 48 | . 52 | 0.11 | 0.02 |
| Chile - North Macedonia | 12.34 | < . 001 | $<.001$ | 2.22 | 0.53 |
| Chile - Peru | 5.18 | <. 001 | <. 001 | 0.78 | 0.19 |
| Chile - Poland | 5.87 | <. 001 | <. 001 | 0.78 | 0.19 |
| Chile - Portugal | 3.96 | < . 001 | <. 001 | 0.61 | 0.15 |
| Chile - Slovakia | 2.27 | . 02 | . 03 | 0.40 | 0.10 |
| Chile - South Africa | 0.02 | . 98 | . 98 | 0.00 | 0.00 |
| Chile - South Korea | 12.58 | < . 001 | <. 001 | 2.32 | 0.51 |
| Chile - Spain | 4.02 | <. 001 | <. 001 | 0.61 | 0.15 |
| Chile - Switzerland | 4.03 | < . 001 | <. 001 | 0.74 | 0.17 |
| Chile - Taiwan | 12.27 | < . 001 | < . 001 | 1.80 | 0.45 |
| Chile - Turkey | 1.84 | . 07 | . 08 | 0.40 | 0.09 |
| Chile - United Kingdom | 1.79 | . 07 | . 09 | 0.33 | 0.07 |
| Chile - United States of America | -3.29 | < . 001 | <. 001 | -0.55 | -0.12 |
| China - Colombia | -5.12 | < . 001 | <. 001 | -0.65 | -0.16 |
| China - Croatia | 0.47 | . 64 | . 67 | 0.06 | 0.01 |
| China - Czech Republic | 13.27 | < . 001 | $<.001$ | 1.72 | 0.44 |
| China - France | -4.16 | < . 001 | <. 001 | -0.59 | -0.14 |
| China - Germany | 15.87 | <. 001 | <. 001 | 1.72 | 0.44 |
| China - Hungary | 10.20 | <. 001 | <. 001 | 0.94 | 0.23 |
| China - Ireland | -5.14 | <. 001 | <. 001 | -0.76 | -0.18 |
| China - Israel | 9.76 | < . 001 | < . 001 | 1.54 | 0.36 |
| China - Italy | 6.13 | < . 001 | <. 001 | 0.78 | 0.19 |
| China-Lithuania | 7.28 | < . 001 | <. 001 | 0.93 | 0.23 |
| China - Malaysia | -6.19 | <. 001 | $<.001$ | -0.94 | -0.23 |
| China - Mexico | -4.04 | <. 001 | <. 001 | -0.54 | -0.13 |
| China - New Zealand | -6.35 | < . 001 | $<.001$ | -0.80 | -0.18 |
| China - North Macedonia | 8.55 | <. 001 | <. 001 | 1.31 | 0.32 |
| China - Peru | -1.03 | . 3 | . 34 | -0.12 | -0.03 |
| China - Poland | -1.32 | . 19 | . 22 | -0.12 | -0.03 |
| China - Portugal | -2.39 | . 02 | . 02 | -0.29 | -0.07 |
| China - Slovakia | -3.29 | < . 001 | $<.001$ | -0.50 | -0.13 |
| China - South Africa | -6.35 | <. 001 | <. 001 | -0.90 | -0.21 |
| China - South Korea | 8.89 | < . 001 | <. 001 | 1.42 | 0.32 |
| China - Spain | -2.45 | 0.01 | 0.02 | -0.29 | -0.07 |
| China-Switzerland | -1.03 | . 3 | . 34 | -0.16 | -0.04 |
| China - Taiwan | 7.89 | < . 001 | $<.001$ | 0.89 | 0.22 |
| China - Turkey | -2.63 | . 01 | . 01 | -0.51 | -0.12 |
| China - United Kingdom | -3.59 | <. 001 | <. 001 | -0.57 | -0.13 |
| China - United States of America | -10.57 | < . 001 | <. 001 | -1.45 | -0.32 |
| Colombia - Croatia | 5.27 | < . 001 | <. 001 | 0.71 | 0.17 |
| Colombia - Czech Republic | 16.97 | < . 001 | <. 001 | 2.37 | 0.60 |
| Colombia - France | 0.42 | . 67 | . 71 | 0.06 | 0.01 |
| Colombia - Germany | 19.72 | <. 001 | <. 001 | 2.37 | 0.60 |
| Colombia - Hungary | 15.02 | < . 001 | <. 001 | 1.60 | 0.39 |
| Colombia - Ireland | -0.70 | . 48 | . 52 | -0.11 | -0.03 |
| Colombia - Israel | 13.20 | < . 001 | $<.001$ | 2.19 | 0.51 |
| Colombia - Italy | 10.41 | < . 001 | <. 001 | 1.43 | 0.34 |
| Colombia - Lithuania | 11.48 | <. 001 | <. 001 | 1.58 | 0.39 |
| Colombia - Malaysia | -1.79 | . 07 | . 09 | -0.29 | -0.07 |
| Colombia - Mexico | 0.81 | . 42 | . 46 | 0.12 | 0.03 |
| Colombia - New Zealand | -1.05 | . 3 | . 33 | -0.14 | -0.03 |
| Colombia - North Macedonia | 12.11 | <. 001 | <. 001 | 1.97 | 0.47 |
| Colombia - Peru | 4.09 | < . 001 | <. 001 | 0.53 | 0.13 |
| Colombia - Poland | 4.88 | <. 001 | <. 001 | 0.53 | 0.13 |
| Colombia - Portugal | 2.69 | . 01 | . 01 | 0.36 | 0.09 |
| Colombia - Slovakia | 0.95 | . 34 | . 38 | 0.15 | 0.04 |
| Colombia - South Africa | -1.64 | . 1 | . 12 | -0.25 | -0.06 |
| Colombia - South Korea | 12.34 | < . 001 | <. 001 | 2.07 | 0.46 |
| Colombia - Spain | 2.74 | 0.01 | 0.01 | 0.36 | 0.09 |
| Colombia - Switzerland | 2.93 | < . 001 | <. 001 | 0.49 | 0.12 |
| Colombia - Taiwan | 12.41 | < . 001 | <. 001 | 1.55 | 0.39 |
| Colombia - Turkey | 0.71 | . 48 | . 52 | 0.14 | 0.03 |
| Colombia - United Kingdom | 0.47 | . 64 | . 67 | 0.08 | 0.02 |
| Colombia - United States of America | -5.43 | <. 001 | <. 001 | -0.80 | -0.17 |
| Croatia - Czech Republic | 12.11 | <. 001 | <. 001 | 1.66 | 0.40 |
| Croatia - France | -4.36 | <. 001 | <. 001 | -0.65 | -0.15 |
| Croatia - Germany | 14.15 | <. 001 | <. 001 | 1.66 | 0.41 |
| Croatia - Hungary | 8.60 | < . 001 | < . 001 | 0.88 | 0.21 |


| Croatia - Ireland | -5.30 | < . 001 | < . 001 | -0.82 | -0.18 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Croatia - Israel | 9.02 | <. 001 | <. 001 | 1.48 | 0.33 |
| Croatia - Italy | 5.34 | < . 001 | <. 001 | 0.72 | 0.17 |
| Croatia - Lithuania | 6.42 | <. 001 | <. 001 | 0.87 | 0.21 |
| Croatia - Malaysia | -6.31 | <. 001 | <. 001 | -1.00 | -0.24 |
| Croatia - Mexico | -4.25 | < . 001 | <. 001 | -0.60 | -0.14 |
| Croatia - New Zealand | -6.42 | < . 001 | <. 001 | -0.85 | -0.19 |
| Croatia - North Macedonia | 7.83 | < . 001 | <. 001 | 1.25 | 0.29 |
| Croatia - Peru | -1.43 | . 15 | . 18 | -0.18 | -0.04 |
| Croatia - Poland | -1.75 | . 08 | . 1 | -0.18 | -0.04 |
| Croatia - Portugal | -2.70 | . 01 | . 01 | -0.35 | -0.08 |
| Croatia - Slovakia | -3.52 | < . 001 | <. 001 | -0.56 | -0.14 |
| Croatia - South Africa | -6.45 | < . 001 | <. 001 | -0.96 | -0.21 |
| Croatia - South Korea | 8.20 | <. 001 | <. 001 | 1.36 | 0.29 |
| Croatia - Spain | -2.76 | . 01 | . 01 | -0.35 | -0.09 |
| Croatia - Switzerland | -1.35 | . 18 | . 21 | -0.22 | -0.05 |
| Croatia - Taiwan | 6.85 | < . 001 | < . 001 | 0.83 | 0.20 |
| Croatia - Turkey | -2.86 | <. 001 | . 01 | -0.57 | -0.13 |
| Croatia - United Kingdom | -3.81 | < . 001 | < . 001 | -0.63 | -0.14 |
| Croatia - United States of America | -10.45 | < . 001 | <. 001 | -1.51 | -0.32 |
| Czech Republic - France | -15.11 | <. 001 | <. 001 | -2.31 | -0.55 |
| Czech Republic - Germany | -0.05 | . 96 | . 97 | -0.01 | 0.00 |
| Czech Republic - Hungary | -7.14 | < . 001 | < . 001 | -0.78 | -0.19 |
| Czech Republic - Ireland | -15.61 | <. 001 | <. 001 | -2.48 | -0.57 |
| Czech Republic - Israel | -1.11 | . 27 | . 31 | -0.19 | -0.04 |
| Czech Republic - Italy | -6.72 | <. 001 | <. 001 | -0.94 | -0.23 |
| Czech Republic - Lithuania | -5.71 | <. 001 | <. 001 | -0.80 | -0.20 |
| Czech Republic - Malaysia | -16.38 | <. 001 | <. 001 | -2.66 | -0.66 |
| Czech Republic - Mexico | -15.58 | <. 001 | < . 001 | -2.26 | -0.54 |
| Czech Republic - New Zealand | -18.27 | <. 001 | <. 001 | -2.52 | -0.58 |
| Czech Republic - North Macedonia | -2.48 | . 01 | . 02 | -0.41 | -0.10 |
| Czech Republic - Peru | -13.97 | <. 001 | <. 001 | -1.84 | -0.46 |
| Czech Republic - Poland | -16.65 | < . 001 | <. 001 | -1.85 | -0.45 |
| Czech Republic - Portugal | -14.85 | <. 001 | <. 001 | -2.02 | -0.50 |
| Czech Republic - Slovakia | -13.66 | <. 001 | <. 001 | -2.22 | -0.56 |
| Czech Republic - South Africa | -17.12 | <. 001 | <. 001 | -2.62 | -0.61 |
| Czech Republic - South Korea | -1.79 | . 07 | . 09 | -0.30 | -0.07 |
| Czech Republic - Spain | -15.15 | < . 001 | < . 001 | -2.02 | -0.51 |
| Czech Republic - Switzerland | -11.19 | < . 001 | <. 001 | -1.88 | -0.45 |
| Czech Republic - Taiwan | -6.53 | <. 001 | <. 001 | -0.83 | -0.21 |
| Czech Republic - Turkey | -11.03 | < . 001 | <. 001 | -2.23 | -0.53 |
| Czech Republic - United Kingdom | -13.50 | <. 001 | <. 001 | -2.30 | -0.52 |
| Czech Republic - United States of America | -21.32 | < . 001 | <. 001 | -3.17 | -0.70 |
| France - Germany | 17.06 | < . 001 | <. 001 | 2.30 | 0.55 |
| France - Hungary | 12.47 | <. 001 | <. 001 | 1.53 | 0.35 |
| France - Ireland | -1.03 | . 3 | . 34 | -0.17 | -0.04 |
| France - Israel | 12.01 | < . 001 | < .001 | 2.12 | 0.47 |
| France - Italy | 9.07 | < . 001 | <. 001 | 1.37 | 0.31 |
| France - Lithuania | 10.05 | < . 001 | <. 001 | 1.51 | 0.35 |
| France - Malaysia | -2.04 | . 04 | . 05 | -0.35 | -0.08 |
| France - Mexico | 0.33 | . 74 | . 77 | 0.05 | 0.01 |
| France - New Zealand | -1.38 | . 17 | . 2 | -0.21 | -0.04 |
| France - North Macedonia | 10.95 | < . 001 | < .001 | 1.90 | 0.43 |
| France - Peru | 3.25 | < . 001 | <. 001 | 0.47 | 0.11 |
| France - Poland | 3.72 | <. 001 | <. 001 | 0.46 | 0.11 |
| France - Portugal | 2.01 | . 04 | . 06 | 0.30 | 0.07 |
| France - Slovakia | 0.52 | . 6 | . 64 | 0.09 | 0.02 |
| France - South Africa | -1.91 | . 06 | . 07 | -0.31 | -0.07 |
| France - South Korea | 11.22 | <. 001 | <. 001 | 2.01 | 0.42 |
| France - Spain | 2.04 | . 04 | . 05 | 0.29 | 0.07 |
| France - Switzerland | 2.39 | . 02 | . 02 | 0.43 | 0.10 |
| France - Taiwan | 10.65 | < . 001 | < . 001 | 1.48 | 0.35 |
| France - Turkey | 0.38 | . 7 | . 74 | 0.08 | 0.02 |
| France - United Kingdom | 0.08 | . 93 | . 94 | 0.02 | 0.00 |
| France - United States of America | -5.40 | < . 001 | < . 001 | -0.86 | -0.18 |
| Germany - Hungary | -9.42 | <. 001 | < . 001 | -0.77 | -0.19 |
| Germany - Ireland | -17.44 | <. 001 | <. 001 | -2.48 | -0.58 |
| Germany - Israel | -1.18 | . 24 | . 27 | -0.18 | -0.04 |
| Germany - Italy | -7.78 | <. 001 | < . 001 | -0.93 | -0.23 |
| Germany - Lithuania | -6.60 | <. 001 | <. 001 | -0.79 | -0.20 |


| Germany - Malaysia | -18.21 | < . 001 | < . 001 | -2.66 | -0.66 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Germany - Mexico | -17.88 | < . 001 | < . 001 | -2.25 | -0.54 |
| Germany - New Zealand | -21.35 | < . 001 | < . 001 | -2.51 | -0.58 |
| Germany - North Macedonia | -2.72 | . 01 | . 01 | -0.40 | -0.10 |
| Germany - Peru | -16.58 | <. 001 | <. 001 | -1.84 | -0.46 |
| Germany - Poland | -21.75 | <. 001 | <. 001 | -1.84 | -0.45 |
| Germany - Portugal | -17.44 | < . 001 | <. 001 | -2.01 | -0.51 |
| Germany - Slovakia | -15.18 | < . 001 | < . 001 | -2.21 | -0.57 |
| Germany - South Africa | -19.34 | <. 001 | <. 001 | -2.62 | -0.61 |
| Germany - South Korea | -1.93 | . 05 | . 07 | -0.30 | -0.07 |
| Germany - Spain | -17.94 | <. 001 | <. 001 | -2.01 | -0.51 |
| Germany - Switzerland | -12.33 | < . 001 | <. 001 | -1.88 | -0.45 |
| Germany - Taiwan | -7.86 | < . 001 | <. 001 | -0.82 | -0.21 |
| Germany - Turkey | -11.77 | <. 001 | <. 001 | -2.22 | -0.53 |
| Germany - United Kingdom | -14.85 | <. 001 | <. 001 | -2.29 | -0.52 |
| Germany - United States of America | -24.29 | <. 001 | <. 001 | -3.17 | -0.71 |
| Hungary - Ireland | -13.07 | <. 001 | <. 001 | -1.71 | -0.38 |
| Hungary - Israel | 4.21 | <. 001 | <. 001 | 0.59 | 0.13 |
| Hungary - Italy | -1.53 | . 13 | . 15 | -0.16 | -0.04 |
| Hungary - Lithuania | -0.17 | . 86 | . 88 | -0.02 | 0.00 |
| Hungary - Malaysia | -13.99 | <. 001 | < . 001 | -1.88 | -0.45 |
| Hungary - Mexico | -13.12 | <. 001 | <. 001 | -1.48 | -0.34 |
| Hungary - New Zealand | -16.82 | <. 001 | <. 001 | -1.74 | -0.39 |
| Hungary - North Macedonia | 2.71 | . 01 | . 01 | 0.37 | 0.09 |
| Hungary - Peru | -11.14 | < . 001 | <. 001 | -1.07 | -0.26 |
| Hungary - Poland | -16.84 | <. 001 | <. 001 | -1.07 | -0.25 |
| Hungary - Portugal | -12.29 | <. 001 | <. 001 | -1.24 | -0.30 |
| Hungary - Slovakia | -10.71 | < . 001 | < . 001 | -1.44 | -0.35 |
| Hungary - South Africa | -14.98 | <. 001 | <. 001 | -1.84 | -0.41 |
| Hungary - South Korea | 3.32 | <. 001 | <. 001 | 0.47 | 0.10 |
| Hungary - Spain | -12.76 | <. 001 | <. 001 | -1.24 | -0.30 |
| Hungary - Switzerland | -7.81 | <. 001 | <. 001 | -1.11 | -0.26 |
| Hungary - Taiwan | -0.58 | . 56 | . 6 | -0.05 | -0.01 |
| Hungary - Turkey | -8.05 | <. 001 | <. 001 | -1.45 | -0.33 |
| Hungary - United Kingdom | -10.56 | <. 001 | <. 001 | -1.52 | -0.33 |
| Hungary - United States of America | -20.34 | <. 001 | <. 001 | -2.39 | -0.52 |
| Ireland - Israel | 12.61 | <. 001 | <. 001 | 2.30 | 0.50 |
| Ireland - Italy | 9.82 | <. 001 | <. 001 | 1.54 | 0.34 |
| Ireland - Lithuania | 10.75 | <. 001 | <. 001 | 1.69 | 0.38 |
| Ireland - Malaysia | -1.00 | . 32 | . 36 | -0.18 | -0.04 |
| Ireland - Mexico | 1.39 | . 16 | . 19 | 0.23 | 0.05 |
| Ireland - New Zealand | -0.20 | . 84 | . 86 | -0.03 | -0.01 |
| Ireland - North Macedonia | 11.59 | <. 001 | <. 001 | 2.08 | 0.46 |
| Ireland - Peru | 4.26 | <. 001 | <. 001 | 0.64 | 0.14 |
| Ireland - Poland | 4.83 | <. 001 | <. 001 | 0.64 | 0.14 |
| Ireland - Portugal | 3.05 | <. 001 | <. 001 | 0.47 | 0.11 |
| Ireland-Slovakia | 1.48 | . 14 | . 17 | 0.26 | 0.06 |
| Ireland - South Africa | -0.81 | . 42 | . 46 | -0.14 | -0.03 |
| Ireland - South Korea | 11.84 | $<.001$ | < . 001 | 2.18 | 0.45 |
| Ireland - Spain | 3.10 | <. 001 | <. 001 | 0.47 | 0.11 |
| Ireland - Switzerland | 3.27 | $<.001$ | <. 001 | 0.60 | 0.13 |
| Ireland - Taiwan | 11.35 | < . 001 | < . 001 | 1.66 | 0.38 |
| Ireland - Turkey | 1.18 | . 24 | . 27 | 0.25 | 0.05 |
| Ireland - United Kingdom | 1.03 | . 3 | . 34 | 0.19 | 0.04 |
| Ireland - United States of America | -4.15 | $<.001$ | <. 001 | -0.69 | -0.14 |
| Israel - Italy | -4.55 | <. 001 | <. 001 | -0.75 | -0.17 |
| Israel-Lithuania | -3.69 | <. 001 | <. 001 | -0.61 | -0.14 |
| Israel-Malaysia | -13.36 | <. 001 | <. 001 | -2.48 | -0.56 |
| Israel - Mexico | -12.19 | <. 001 | <. 001 | -2.07 | -0.46 |
| Israel - New Zealand | -14.21 | < . 001 | <. 001 | -2.33 | -0.50 |
| Israel - North Macedonia | -1.19 | . 23 | . 27 | -0.22 | -0.05 |
| Israel - Peru | -10.41 | < . 001 | < . 001 | -1.66 | -0.38 |
| Israel - Poland | -11.68 | <. 001 | <. 001 | -1.66 | -0.37 |
| Israel - Portugal | -11.27 | < . 001 | <. 001 | -1.83 | -0.42 |
| Israel - Slovakia | -10.98 | <. 001 | <. 001 | -2.04 | -0.48 |
| Israel - South Africa | -13.76 | <. 001 | <. 001 | -2.44 | -0.53 |
| Israel - South Korea | -0.61 | . 54 | . 58 | -0.12 | -0.02 |
| Israel - Spain | -11.43 | <. 001 | <. 001 | -1.83 | -0.43 |
| Israel - Switzerland | -8.92 | <. 001 | < . 001 | -1.70 | -0.38 |
| Israel - Taiwan | -4.15 | <. 001 | <. 001 | -0.64 | -0.15 |


| Israel - Turkey | -9.26 | < . 001 | < . 001 | -2.05 | -0.45 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Israel - United Kingdom | -10.99 | < . 001 | < . 001 | -2.11 | -0.45 |
| Israel - United States of America | -17.22 | < . 001 | < . 001 | -2.99 | -0.62 |
| Italy - Lithuania | 1.05 | . 3 | . 33 | 0.14 | 0.03 |
| Italy - Malaysia | -10.71 | $<.001$ | < . 001 | -1.72 | -0.40 |
| Italy - Mexico | -9.22 | < . 001 | < . 001 | -1.32 | -0.30 |
| Italy - New Zealand | -11.62 | <. 001 | <. 001 | -1.58 | -0.35 |
| Italy - North Macedonia | 3.28 | <. 001 | < . 001 | 0.53 | 0.12 |
| Italy - Peru | -6.96 | <. 001 | < . 001 | -0.90 | -0.21 |
| Italy - Poland | -8.37 | <. 001 | <. 001 | -0.91 | -0.21 |
| Italy - Portugal | -8.05 | <. 001 | <. 001 | -1.08 | -0.25 |
| Italy - Slovakia | -7.97 | <. 001 | < . 001 | -1.28 | -0.31 |
| Italy - South Africa | -11.12 | < . 001 | < . 001 | -1.68 | -0.37 |
| Italy - South Korea | 3.80 | <. 001 | <. 001 | 0.64 | 0.14 |
| Italy - Spain | -8.22 | <. 001 | <. 001 | -1.08 | -0.26 |
| Italy - Switzerland | -5.67 | <. 001 | <. 001 | -0.95 | -0.22 |
| Italy - Taiwan | 0.89 | . 37 | . 41 | 0.11 | 0.03 |
| Italy - Turkey | -6.43 | <. 001 | < . 001 | -1.29 | -0.29 |
| Italy - United Kingdom | -8.05 | <. 001 | <. 001 | -1.36 | -0.29 |
| Italy - United States of America | -15.20 | <. 001 | <. 001 | -2.23 | -0.47 |
| Lithuania - Malaysia | -11.63 | <. 001 | <. 001 | -1.87 | -0.45 |
| Lithuania - Mexico | -10.25 | <. 001 | <. 001 | -1.46 | -0.34 |
| Lithuania - New Zealand | -12.72 | < . 001 | <. 001 | -1.72 | -0.39 |
| Lithuania - North Macedonia | 2.40 | . 02 | . 02 | 0.39 | 0.09 |
| Lithuania - Peru | -8.09 | <. 001 | < . 001 | -1.05 | -0.25 |
| Lithuania - Poland | -9.74 | <. 001 | <. 001 | -1.05 | -0.25 |
| Lithuania - Portugal | -9.15 | <. 001 | <. 001 | -1.22 | -0.30 |
| Lithuania - Slovakia | -8.88 | < . 001 | <. 001 | -1.42 | -0.35 |
| Lithuania - South Africa | -12.10 | <. 001 | <. 001 | -1.83 | -0.41 |
| Lithuania - South Korea | 2.95 | <. 001 | <. 001 | 0.49 | 0.11 |
| Lithuania - Spain | -9.35 | <. 001 | < . 001 | -1.22 | -0.30 |
| Lithuania - Switzerland | -6.54 | <. 001 | <. 001 | -1.09 | -0.25 |
| Lithuania - Taiwan | -0.26 | . 79 | . 82 | -0.03 | -0.01 |
| Lithuania - Turkey | -7.15 | <. 001 | < . 001 | -1.43 | -0.33 |
| Lithuania - United Kingdom | -8.92 | <. 001 | <. 001 | -1.50 | -0.33 |
| Lithuania - United States of America | -16.21 | <. 001 | <. 001 | -2.37 | -0.52 |
| Malaysia - Mexico | 2.44 | . 01 | . 02 | 0.40 | 0.09 |
| Malaysia - New Zealand | 0.92 | . 36 | . 4 | 0.15 | 0.03 |
| Malaysia - North Macedonia | 12.37 | <. 001 | < . 001 | 2.25 | 0.53 |
| Malaysia - Peru | 5.32 | <. 001 | <. 001 | 0.82 | 0.20 |
| Malaysia - Poland | 5.99 | <. 001 | <. 001 | 0.82 | 0.19 |
| Malaysia - Portugal | 4.12 | <. 001 | <. 001 | 0.65 | 0.16 |
| Malaysia - Slovakia | 2.44 | . 01 | . 02 | 0.44 | 0.11 |
| Malaysia - South Africa | 0.23 | . 82 | . 84 | 0.04 | 0.01 |
| Malaysia - South Korea | 12.61 | $<.001$ | < . 001 | 2.36 | 0.51 |
| Malaysia - Spain | 4.18 | < . 001 | <. 001 | 0.65 | 0.16 |
| Malaysia- Switzerland | 4.17 | <. 001 | <. 001 | 0.78 | 0.18 |
| Malaysia - Taiwan | 12.26 | < . 001 | <. 001 | 1.83 | 0.45 |
| Malaysia - Turkey | 1.99 | . 05 | . 06 | 0.43 | 0.10 |
| Malaysia - United Kingdom | 1.96 | . 05 | . 06 | 0.37 | 0.08 |
| Malaysia - United States of America | -3.02 | <. 001 | < . 001 | -0.51 | -0.11 |
| Mexico - New Zealand | -1.83 | . 07 | . 09 | -0.26 | -0.06 |
| Mexico - North Macedonia | 11.10 | < . 001 | < . 001 | 1.85 | 0.42 |
| Mexico - Peru | 3.07 | <. 001 | <. 001 | 0.42 | 0.10 |
| Mexico - Poland | 3.60 | <. 001 | <. 001 | 0.41 | 0.09 |
| Mexico - Portugal | 1.75 | . 08 | . 1 | 0.24 | 0.06 |
| Mexico - Slovakia | 0.23 | . 82 | . 84 | 0.04 | 0.01 |
| Mexico - South Africa | -2.33 | . 02 | . 03 | -0.36 | -0.08 |
| Mexico - South Korea | 11.36 | <. 001 | <. 001 | 1.96 | 0.41 |
| Mexico-Spain | 1.79 | . 07 | . 09 | 0.24 | 0.06 |
| Mexico - Switzerland | 2.19 | . 03 | . 04 | 0.37 | 0.08 |
| Mexico - Taiwan | 10.98 | < . 001 | < . 001 | 1.43 | 0.34 |
| Mexico - Turkey | 0.14 | . 89 | . 9 | 0.03 | 0.01 |
| Mexico - United Kingdom | -0.21 | . 83 | . 85 | -0.04 | -0.01 |
| Mexico - United States of America | -6.01 | <. 001 | < . 001 | -0.91 | -0.19 |
| New Zealand - North Macedonia | 13.14 | <. 001 | <. 001 | 2.11 | 0.47 |
| New Zealand - Peru | 5.28 | <. 001 | < . 001 | 0.67 | 0.15 |
| New Zealand - Poland | 6.35 | <. 001 | < . 001 | 0.67 | 0.15 |
| New Zealand - Portugal | 3.82 | <. 001 | <. 001 | 0.50 | 0.11 |
| New Zealand - Slovakia | 1.86 | . 06 | . 08 | 0.30 | 0.07 |


| New Zealand - South Africa | -0.71 | . 48 | . 52 | -0.11 | -0.02 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| New Zealand - South Korea | 13.33 | $<.001$ | < . 001 | 2.21 | 0.46 |
| New Zealand - Spain | 3.90 | <. 001 | <. 001 | 0.50 | 0.11 |
| New Zealand - Switzerland | 3.83 | <. 001 | <. 001 | 0.63 | 0.14 |
| New Zealand - Taiwan | 13.82 | <. 001 | < . 001 | 1.69 | 0.39 |
| New Zealand - Turkey | 1.43 | . 15 | . 18 | 0.29 | 0.06 |
| New Zealand - United Kingdom | 1.33 | . 18 | . 22 | 0.22 | 0.05 |
| New Zealand - United States of America | -4.52 | < . 001 | < . 001 | -0.65 | -0.13 |
| North Macedonia - Peru | -9.23 | <. 001 | <. 001 | -1.44 | -0.34 |
| North Macedonia - Poland | -10.41 | < . 001 | < . 001 | -1.44 | -0.34 |
| North Macedonia - Portugal | -10.13 | <. 001 | <. 001 | -1.61 | -0.38 |
| North Macedonia - Slovakia | -9.95 | <. 001 | < . 001 | -1.81 | -0.44 |
| North Macedonia - South Africa | -12.74 | < . 001 | <. 001 | -2.21 | -0.49 |
| North Macedonia - South Korea | 0.56 | . 58 | . 62 | 0.10 | 0.02 |
| North Macedonia - Spain | -10.28 | <. 001 | <. 001 | -1.61 | -0.39 |
| North Macedonia - Switzerland | -7.88 | <. 001 | <. 001 | -1.48 | -0.34 |
| North Macedonia - Taiwan | -2.78 | <. 001 | . 01 | -0.42 | -0.10 |
| North Macedonia - Turkey | -8.35 | <. 001 | <. 001 | -1.82 | -0.41 |
| North Macedonia - United Kingdom | -9.99 | <. 001 | <. 001 | -1.89 | -0.41 |
| North Macedonia - United States of America | -16.25 | < . 001 | < . 001 | -2.76 | -0.59 |
| Peru - Poland | -0.03 | . 98 | . 98 | 0.00 | 0.00 |
| Peru - Portugal | -1.37 | . 17 | . 2 | -0.17 | -0.04 |
| Peru - Slovakia | -2.45 | . 01 | . 02 | -0.38 | -0.09 |
| Peru - South Africa | -5.41 | <. 001 | <. 001 | -0.78 | -0.18 |
| Peru - South Korea | 9.55 | < . 001 | <. 001 | 1.54 | 0.34 |
| Peru - Spain | -1.41 | . 16 | . 19 | -0.17 | -0.04 |
| Peru - Switzerland | -0.26 | . 8 | . 82 | -0.04 | -0.01 |
| Peru - Taiwan | 8.77 | < . 001 | < . 001 | 1.01 | 0.25 |
| Peru - Turkey | -1.98 | . 05 | . 06 | -0.39 | -0.09 |
| Peru - United Kingdom | -2.79 | < . 001 | . 01 | -0.45 | -0.10 |
| Peru - United States of America | -9.53 | <. 001 | <. 001 | -1.33 | -0.29 |
| Poland - Portugal | -1.64 | . 1 | . 12 | -0.17 | -0.04 |
| Poland - Slovakia | -2.75 | . 01 | . 01 | -0.38 | -0.09 |
| Poland - South Africa | -6.21 | <. 001 | <. 001 | -0.78 | -0.17 |
| Poland - South Korea | 10.67 | <. 001 | <. 001 | 1.54 | 0.33 |
| Poland - Spain | -1.71 | . 09 | . 11 | -0.17 | -0.04 |
| Poland - Switzerland | -0.27 | . 79 | . 82 | -0.04 | -0.01 |
| Poland - Taiwan | 11.20 | $<.001$ | < . 001 | 1.02 | 0.25 |
| Poland - Turkey | -2.12 | . 04 | . 05 | -0.38 | -0.09 |
| Poland - United Kingdom | -3.09 | <. 001 | <. 001 | -0.45 | -0.10 |
| Poland - United States of America | -11.08 | <. 001 | <. 001 | -1.33 | -0.28 |
| Portugal - Slovakia | -1.31 | . 19 | . 22 | -0.21 | -0.05 |
| Portugal - South Africa | -4.12 | $<.001$ | < . 001 | -0.61 | -0.14 |
| Portugal - South Korea | 10.42 | <. 001 | <. 001 | 1.71 | 0.38 |
| Portugal - Spain | 0.00 | 1 | 1 | 0.00 | 0.00 |
| Portugal - Switzerland | 0.80 | . 42 | . 46 | 0.13 | 0.03 |
| Portugal - Taiwan | 9.90 | <. 001 | <. 001 | 1.19 | 0.30 |
| Portugal - Turkey | -1.09 | . 28 | . 31 | -0.22 | -0.05 |
| Portugal - United Kingdom | -1.70 | . 09 | . 11 | -0.28 | -0.06 |
| Portugal - United States of America | -8.09 | < . 001 | <. 001 | -1.16 | -0.25 |
| Slovakia - South Africa | -2.33 | . 02 | . 03 | -0.40 | -0.09 |
| Slovakia - South Korea | 10.25 | <. 001 | <. 001 | 1.92 | 0.43 |
| Slovakia - Spain | 1.33 | . 18 | . 22 | 0.21 | 0.05 |
| Slovakia - Switzerland | 1.80 | . 07 | . 09 | 0.34 | 0.08 |
| Slovakia - Taiwan | 9.30 | <. 001 | < . 001 | 1.39 | 0.35 |
| Slovakia - Turkey | -0.04 | . 96 | . 97 | -0.01 | 0.00 |
| Slovakia - United Kingdom | -0.39 | . 69 | . 73 | -0.07 | -0.02 |
| Slovakia - United States of America | -5.63 | < . 001 | < . 001 | -0.95 | -0.21 |
| South Africa - South Korea | 12.95 | <. 001 | <. 001 | 2.32 | 0.48 |
| South Africa - Spain | 4.19 | <. 001 | <. 001 | 0.61 | 0.14 |
| South Africa - Switzerland | 4.14 | <. 001 | <. 001 | 0.74 | 0.16 |
| South Africa - Taiwan | 12.88 | < . 001 | < . 001 | 1.79 | 0.41 |
| South Africa - Turkey | 1.86 | . 06 | . 08 | 0.39 | 0.08 |
| South Africa - United Kingdom | 1.82 | . 07 | . 09 | 0.33 | 0.07 |
| South Africa - United States of America | -3.44 | <. 001 | <. 001 | -0.55 | -0.11 |
| South Korea - Spain | -10.56 | <. 001 | <. 001 | -1.71 | -0.38 |
| South Korea - Switzerland | -8.23 | <. 001 | <. 001 | -1.58 | -0.34 |
| South Korea- Taiwan | -3.35 | <. 001 | <. 001 | -0.53 | -0.12 |
| South Korea - Turkey | -8.67 | <. 001 | <. 001 | -1.93 | -0.40 |
| South Korea - United Kingdom | -10.29 | < . 001 | < . 001 | -1.99 | -0.41 |


| South Korea - United States of America | -16.36 | $<.001$ | $<.001$ | -2.87 | -0.57 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Spain - Switzerland | 0.81 | .42 | .46 | 0.13 | 0.03 |
| Spain - Taiwan | 10.16 | $<.001$ | $<.001$ | 1.19 | 0.30 |
| Spain - Turkey | -1.10 | .27 | .31 | -0.22 | -0.05 |
| Spain - United Kingdom | -1.72 | .09 | -1 | -0.28 | -0.06 |
| Spain - United States of America | -8.24 | $<.001$ | $<.001$ | -1.16 | -0.25 |
| Switzerland - Taiwan | 6.77 | $<.001$ | $<.001$ | 1.06 | 0.25 |
| Switzerland - Turkey | -1.56 | .12 | .14 | -0.35 | -0.08 |
| Switzerland - United Kingdom | -2.13 | .03 | .04 | -0.41 | -0.09 |
| Switzerland - United States of America | -7.38 | $<.001$ | $<.001$ | -1.29 | -0.27 |
| Taiwan - Turkey | -7.30 | $<.001$ | $<.001$ | -1.40 | -0.33 |
| Taiwan - United Kingdom | -9.30 | $<.001$ | $<.001$ | -1.47 | -0.33 |
| Taiwan - United States of America | -17.42 | $<.001$ | $<.001$ | -2.34 | -0.52 |
| Turkey - United Kingdom | -0.29 | .77 | -8 | -0.06 | -0.01 |
| Turkey - United States of America | -4.54 | $<.001$ | $<.001$ | -0.94 | -0.20 |
| United Kingdom - United States of America | -4.98 | $<.001$ | $<.001$ | -0.88 |  |

Note. $t=t$-test statistic; $p=$ test significance; $p a d j$. $=$ test significance adjusted using the false discovery rate correction for multiplicity; $\Delta=$ difference in means; $d=$ Cohen's $d$.

## 1 Table S3

2 Country-Based Pairwise Comparisons of the ASRS Screener Performed Using an Analysis of
3 Variance, While Controlling for Gender and Age, Across Countries Included in Measurement

4
Invariance Tests

| Comparison | $t$ | p adj. | $\Delta$ |
| :---: | :---: | :---: | :---: |
| Australia - Austria | 8.51 | < . 001 | 2.01 |
| Australia - Brazil | 1.40 | . 183 | 0.27 |
| Australia-Canada | -0.36 | . 743 | -0.07 |
| Australia - Chile | 3.05 | . 003 | 0.66 |
| Australia - China | 8.17 | <. 001 | 1.60 |
| Australia - Colombia | 5.40 | < . 001 | 1.09 |
| Australia - Croatia | 7.59 | < . 001 | 1.50 |
| Australia - Czech Republic | 5.68 | <. 001 | 1.16 |
| Australia - France | 2.38 | . 022 | 0.49 |
| Australia - Germany | 9.24 | <. 001 | 1.76 |
| Australia - Hungary | 8.86 | <. 001 | 1.59 |
| Australia - Ireland | 1.07 | . 312 | 0.22 |
| Australia - Israel | 9.72 | $<.001$ | 2.07 |
| Australia - Italy | 11.88 | <. 001 | 2.36 |
| Australia-Lithuania | 9.07 | <. 001 | 1.81 |
| Australia - Malaysia | 3.63 | <. 001 | 0.78 |
| Australia - Mexico | 3.31 | . 001 | 0.66 |
| Australia - New Zealand | -0.46 | . 669 | -0.09 |
| Australia - North Macedonia | 12.26 | <. 001 | 2.65 |
| Australia - Peru | 5.09 | <. 001 | 0.99 |
| Australia - Poland | 8.41 | <. 001 | 1.53 |
| Australia - Portugal | 4.88 | <. 001 | 0.97 |
| Australia - Slovakia | 4.60 | <. 001 | 1.01 |
| Australia - South Africa | 2.14 | . 039 | 0.43 |
| Australia - South Korea | 15.26 | <. 001 | 3.20 |
| Australia - Spain | 8.14 | <. 001 | 1.61 |
| Australia - Switzerland | 5.84 | < . 001 | 1.27 |
| Australia- Taiwan | 10.88 | < . 001 | 2.10 |
| Australia - Turkey | 3.80 | <. 001 | 0.90 |
| Australia - United Kingdom | 1.83 | . 079 | 0.39 |
| Australia - United States of America | -0.67 | . 532 | -0.13 |
| Austria - Brazil | -9.95 | < . 001 | -1.75 |
| Austria - Canada | -11.49 | < . 001 | -2.08 |
| Austria - Chile | -6.67 | <. 001 | -1.35 |
| Austria - China | -2.30 | . 027 | -0.42 |
| Austria - Colombia | -4.87 | <. 001 | -0.92 |
| Austria - Croatia | -2.80 | . 007 | -0.51 |
| Austria-Czech Republic | -4.41 | <. 001 | -0.85 |
| Austria - France | -7.98 | <. 001 | -1.53 |
| Austria - Germany | -1.44 | . 173 | -0.25 |
| Austria - Hungary | -2.55 | . 014 | -0.42 |
| Austria - Ireland | -9.30 | $<.001$ | -1.79 |
| Austria - Israel | 0.29 | . 783 | 0.06 |
| Austria - Italy | 1.89 | . 07 | 0.35 |
| Austria - Lithuania | -1.05 | . 32 | -0.20 |
| Austria - Malaysia | -6.04 | $<.001$ | -1.23 |
| Austria - Mexico | -7.26 | <. 001 | -1.35 |
| Austria - New Zealand | -11.73 | <. 001 | -2.10 |
| Austria - North Macedonia | 3.13 | . 002 | 0.63 |
| Austria - Peru | -5.64 | <. 001 | -1.02 |
| Austria - Poland | -2.91 | . 005 | -0.48 |
| Austria - Portugal | -5.66 | $<.001$ | -1.04 |
| Austria - Slovakia | -4.80 | <. 001 | -1.00 |
| Austria - South Africa | -8.35 | <. 001 | -1.58 |
| Austria - South Korea | 6.08 | <. 001 | 1.19 |
| Austria - Spain | -2.17 | . 037 | -0.40 |
| Austria - Switzerland | -3.67 | $<.001$ | -0.75 |
| Austria - Taiwan | 0.50 | . 645 | 0.09 |


| Austria - Turkey | -4.92 | < . 001 | -1.11 |
| :---: | :---: | :---: | :---: |
| Austria - United Kingdom | -8.23 | < . 001 | -1.63 |
| Austria - United States of America | -11.72 | <. 001 | -2.14 |
| Brazil - Canada | -2.94 | . 004 | -0.34 |
| Brazil - Chile | 2.67 | . 01 | 0.39 |
| Brazil - China | 11.61 | < . 001 | 1.33 |
| Brazil - Colombia | 6.55 | < . 001 | 0.83 |
| Brazil - Croatia | 10.41 | < . 001 | 1.23 |
| Brazil - Czech Republic | 6.93 | < . 001 | 0.90 |
| Brazil - France | 1.70 | . 103 | 0.22 |
| Brazil-Germany | 14.17 | <. 001 | 1.49 |
| Brazil - Hungary | 15.68 | <. 001 | 1.33 |
| Brazil - Ireland | -0.34 | . 755 | -0.04 |
| Brazil - Israel | 12.67 | < . 001 | 1.80 |
| Brazil - Italy | 17.42 | <. 001 | 2.09 |
| Brazil - Lithuania | 12.63 | <. 001 | 1.55 |
| Brazil - Malaysia | 3.52 | <. 001 | 0.52 |
| Brazil - Mexico | 3.24 | . 002 | 0.40 |
| Brazil - New Zealand | -3.20 | . 002 | -0.35 |
| Brazil - North Macedonia | 16.23 | <. 001 | 2.38 |
| Brazil - Peru | 6.38 | <. 001 | 0.73 |
| Brazil - Poland | 14.03 | < . 001 | 1.26 |
| Brazil - Portugal | 5.86 | < . 001 | 0.70 |
| Brazil - Slovakia | 4.87 | <. 001 | 0.75 |
| Brazil - South Africa | 1.33 | . 206 | 0.17 |
| Brazil - South Korea | 21.31 | < . 001 | 2.94 |
| Brazil - Spain | 11.29 | < . 001 | 1.35 |
| Brazil - Switzerland | 6.76 | <. 001 | 1.00 |
| Brazil - Taiwan | 16.60 | < . 001 | 1.84 |
| Brazil - Turkey | 3.60 | <. 001 | 0.64 |
| Brazil - United Kingdom | 0.86 | . 419 | 0.12 |
| Brazil - United States of America | -3.39 | . 001 | -0.40 |
| Canada - Chile | 4.74 | < . 001 | 0.73 |
| Canada - China | 13.59 | < . 001 | 1.67 |
| Canada - Colombia | 8.71 | < . 001 | 1.16 |
| Canada - Croatia | 12.44 | < . 001 | 1.57 |
| Canada - Czech Republic | 8.89 | <. 001 | 1.23 |
| Canada - France | 4.05 | < . 001 | 0.56 |
| Canada - Germany | 15.79 | < . 001 | 1.83 |
| Canada - Hungary | 17.17 | <. 001 | 1.66 |
| Canada - Ireland | 2.09 | . 045 | 0.29 |
| Canada - Israel | 14.28 | < . 001 | 2.14 |
| Canada - Italy | 19.04 | <. 001 | 2.43 |
| Canada - Lithuania | 14.42 | < . 001 | 1.89 |
| Canada - Malaysia | 5.56 | < . 001 | 0.85 |
| Canada - Mexico | 5.64 | <. 001 | 0.73 |
| Canada - New Zealand | -0.16 | . 884 | -0.02 |
| Canada - North Macedonia | 17.72 | < . 001 | 2.72 |
| Canada - Peru | 8.67 | < . 001 | 1.06 |
| Canada - Poland | 16.08 | < . 001 | 1.60 |
| Canada - Portugal | 8.14 | < . 001 | 1.04 |
| Canada - Slovakia | 6.79 | < . 001 | 1.08 |
| Canada - South Africa | 3.75 | <. 001 | 0.50 |
| Canada - South Korea | 22.67 | < . 001 | 3.27 |
| Canada - Spain | 13.29 | <. 001 | 1.68 |
| Canada - Switzerland | 8.66 | <. 001 | 1.34 |
| Canada - Taiwan | 18.17 | <. 001 | 2.17 |
| Canada - Turkey | 5.34 | <. 001 | 0.97 |
| Canada - United Kingdom | 3.12 | . 003 | 0.46 |
| Canada - United States of America | -0.49 | . 649 | -0.06 |
| Chile - China | 6.15 | < . 001 | 0.94 |
| Chile - Colombia | 2.70 | . 009 | 0.44 |
| Chile - Croatia | 5.40 | < . 001 | 0.84 |
| Chile - Czech Republic | 3.01 | . 003 | 0.50 |
| Chile - France | -1.04 | . 325 | -0.17 |
| Chile - Germany | 7.40 | < . 001 | 1.10 |
| Chile - Hungary | 7.01 | <. 001 | 0.93 |
| Chile - Ireland | -2.62 | . 011 | -0.44 |
| Chile - Israel | 8.02 | < . 001 | 1.41 |
| Chile - Italy | 10.85 | <. 001 | 1.70 |


| Chile - Lithuania | 7.24 | < . 001 | 1.16 |
| :---: | :---: | :---: | :---: |
| Chile - Malaysia | 0.71 | . 511 | 0.13 |
| Chile - Mexico | 0.02 | . 982 | 0.00 |
| Chile - New Zealand | -4.94 | < . 001 | -0.75 |
| Chile - North Macedonia | 11.16 | <. 001 | 1.99 |
| Chile - Peru | 2.19 | . 036 | 0.33 |
| Chile - Poland | 6.45 | < . 001 | 0.87 |
| Chile - Portugal | 1.97 | . 059 | 0.31 |
| Chile - Slovakia | 1.94 | . 063 | 0.36 |
| Chile - South Africa | -1.38 | . 19 | -0.22 |
| Chile - South Korea | 14.94 | < . 001 | 2.54 |
| Chile - Spain | 6.14 | <. 001 | 0.95 |
| Chile - Switzerland | 3.39 | < . 001 | 0.61 |
| Chile - Taiwan | 9.62 | <. 001 | 1.44 |
| Chile - Turkey | 1.20 | . 255 | 0.24 |
| Chile - United Kingdom | -1.58 | . 132 | -0.27 |
| Chile - United States of America | -5.09 | <. 001 | -0.79 |
| China - Colombia | -3.80 | < . 001 | -0.50 |
| China - Croatia | -0.78 | . 469 | -0.10 |
| China - Czech Republic | -3.10 | . 003 | -0.43 |
| China - France | -8.12 | <. 001 | -1.11 |
| China - Germany | 1.40 | . 185 | 0.16 |
| China - Hungary | -0.03 | . 98 | 0.00 |
| China - Ireland | -9.89 | < . 001 | -1.37 |
| China - Israel | 3.17 | . 002 | 0.47 |
| China - Italy | 6.04 | < . 001 | 0.76 |
| China-Lithuania | 1.68 | . 107 | 0.22 |
| China - Malaysia | -5.32 | <. 001 | -0.81 |
| China - Mexico | -7.22 | <. 001 | -0.93 |
| China - New Zealand | -14.06 | < . 001 | -1.68 |
| China - North Macedonia | 6.89 | < . 001 | 1.05 |
| China - Peru | -4.96 | <. 001 | -0.60 |
| China - Poland | -0.69 | . 524 | -0.07 |
| China - Portugal | -4.94 | < . 001 | -0.63 |
| China - Slovakia | -3.67 | < . 001 | -0.58 |
| China - South Africa | -8.70 | < . 001 | -1.16 |
| China - South Korea | 11.23 | <. 001 | 1.61 |
| China - Spain | 0.14 | . 895 | 0.02 |
| China - Switzerland | -2.15 | . 038 | -0.33 |
| China - Taiwan | 4.27 | < . 001 | 0.51 |
| China - Turkey | -3.82 | < . 001 | -0.69 |
| China - United Kingdom | -8.29 | < . 001 | -1.21 |
| China - United States of America | -13.84 | <. 001 | -1.73 |
| Colombia - Croatia | 2.99 | . 004 | 0.40 |
| Colombia - Czech Republic | 0.46 | . 669 | 0.07 |
| Colombia - France | -4.15 | < . 001 | -0.61 |
| Colombia - Germany | 5.19 | <. 001 | 0.66 |
| Colombia - Hungary | 4.55 | < . 001 | 0.50 |
| Colombia - Ireland | -5.87 | < . 001 | -0.87 |
| Colombia - Israel | 6.15 | <. 001 | 0.98 |
| Colombia - Italy | 9.26 | < . 001 | 1.26 |
| Colombia - Lithuania | 5.13 | < . 001 | 0.72 |
| Colombia - Malaysia | -1.92 | . 066 | -0.31 |
| Colombia - Mexico | -3.10 | . 003 | -0.43 |
| Colombia - New Zealand | -9.02 | < . 001 | -1.18 |
| Colombia - North Macedonia | 9.64 | <. 001 | 1.55 |
| Colombia - Peru | -0.77 | . 473 | -0.10 |
| Colombia - Poland | 3.92 | < . 001 | 0.43 |
| Colombia - Portugal | -0.92 | . 39 | -0.13 |
| Colombia - Slovakia | -0.48 | . 659 | -0.08 |
| Colombia - South Africa | -4.60 | < . 001 | -0.66 |
| Colombia - South Korea | 13.86 | < . 001 | 2.11 |
| Colombia - Spain | 3.83 | <. 001 | 0.52 |
| Colombia - Switzerland | 1.06 | . 319 | 0.17 |
| Colombia - Taiwan | 7.78 | < . 001 | 1.01 |
| Colombia - Turkey | -1.01 | . 338 | -0.19 |
| Colombia - United Kingdom | -4.57 | <. 001 | -0.71 |
| Colombia - United States of America | -9.04 | <. 001 | -1.23 |
| Croatia - Czech Republic | -2.36 | . 023 | -0.34 |
| Croatia - France | -7.24 | <. 001 | -1.01 |


| Croatia - Germany | 2.17 | . 037 | 0.26 |
| :---: | :---: | :---: | :---: |
| Croatia - Hungary | 0.94 | . 378 | 0.09 |
| Croatia - Ireland | -9.00 | $<.001$ | -1.28 |
| Croatia - Israel | 3.75 | <. 001 | 0.57 |
| Croatia - Italy | 6.65 | < . 001 | 0.86 |
| Croatia - Lithuania | 2.38 | . 022 | 0.32 |
| Croatia - Malaysia | -4.59 | $<.001$ | -0.71 |
| Croatia - Mexico | -6.32 | < . 001 | -0.84 |
| Croatia - New Zealand | -12.87 | <. 001 | -1.59 |
| Croatia - North Macedonia | 7.39 | < . 001 | 1.15 |
| Croatia - Peru | -4.04 | < . 001 | -0.51 |
| Croatia - Poland | 0.29 | . 783 | 0.03 |
| Croatia - Portugal | -4.09 | <. 001 | -0.53 |
| Croatia - Slovakia | -3.00 | . 004 | -0.48 |
| Croatia - South Africa | -7.78 | $<.001$ | -1.06 |
| Croatia - South Korea | 11.67 | < . 001 | 1.70 |
| Croatia - Spain | 0.89 | . 403 | 0.11 |
| Croatia - Switzerland | -1.49 | . 156 | -0.23 |
| Croatia - Taiwan | 4.94 | <. 001 | 0.60 |
| Croatia - Turkey | -3.24 | . 002 | -0.60 |
| Croatia - United Kingdom | -7.48 | $<.001$ | -1.11 |
| Croatia - United States of America | -12.70 | <. 001 | -1.63 |
| Czech Republic - France | -4.46 | <. 001 | -0.68 |
| Czech Republic - Germany | 4.55 | <. 001 | 0.60 |
| Czech Republic - Hungary | 3.72 | <. 001 | 0.43 |
| Czech Republic - Ireland | -6.13 | <. 001 | -0.94 |
| Czech Republic - Israel | 5.59 | <. 001 | 0.91 |
| Czech Republic - Italy | 8.32 | <. 001 | 1.20 |
| Czech Republic - Lithuania | 4.48 | <. 001 | 0.65 |
| Czech Republic - Malaysia | -2.26 | . 03 | -0.38 |
| Czech Republic - Mexico | -3.45 | <. 001 | -0.50 |
| Czech Republic - New Zealand | -9.23 | <. 001 | -1.25 |
| Czech Republic - North Macedonia | 8.89 | <. 001 | 1.48 |
| Czech Republic - Peru | -1.23 | . 244 | -0.17 |
| Czech Republic - Poland | 3.06 | . 003 | 0.37 |
| Czech Republic - Portugal | -1.36 | . 197 | -0.19 |
| Czech Republic - Slovakia | -0.86 | . 42 | -0.15 |
| Czech Republic - South Africa | -4.87 | $<.001$ | -0.73 |
| Czech Republic - South Korea | 12.81 | <. 001 | 2.04 |
| Czech Republic - Spain | 3.13 | . 002 | 0.45 |
| Czech Republic - Switzerland | 0.61 | . 57 | 0.10 |
| Czech Republic - Taiwan | 6.89 | <. 001 | 0.94 |
| Czech Republic - Turkey | -1.34 | . 201 | -0.26 |
| Czech Republic - United Kingdom | -4.86 | <. 001 | -0.78 |
| Czech Republic - United States of America | -9.14 | < . 001 | -1.30 |
| France - Germany | 9.70 | <. 001 | 1.27 |
| France - Hungary | 9.68 | <. 001 | 1.11 |
| France - Ireland | -1.74 | . 095 | -0.27 |
| France - Israel | 9.79 | $<.001$ | 1.58 |
| France - Italy | 13.27 | <. 001 | 1.87 |
| France - Lithuania | 9.22 | <. 001 | 1.33 |
| France - Malaysia | 1.81 | . 083 | 0.30 |
| France - Mexico | 1.22 | . 245 | 0.18 |
| France - New Zealand | -4.27 | $<.001$ | -0.58 |
| France - North Macedonia | 13.11 | <. 001 | 2.16 |
| France - Peru | 3.70 | < . 001 | 0.51 |
| France - Poland | 8.96 | < . 001 | 1.04 |
| France - Portugal | 3.41 | <. 001 | 0.48 |
| France - Slovakia | 3.09 | . 003 | 0.53 |
| France - South Africa | -0.35 | . 744 | -0.05 |
| France - South Korea | 17.37 | <. 001 | 2.72 |
| France - Spain | 8.04 | <. 001 | 1.13 |
| France - Switzerland | 4.70 | <. 001 | 0.78 |
| France - Taiwan | 12.06 | <. 001 | 1.61 |
| France - Turkey | 2.17 | . 037 | 0.42 |
| France - United Kingdom | -0.64 | . 555 | -0.10 |
| France - United States of America | -4.43 | < . 001 | -0.62 |
| Germany - Hungary | -1.89 | . 07 | -0.16 |
| Germany - Ireland | -11.54 | <. 001 | -1.54 |
| Germany - Israel | 2.18 | . 037 | 0.31 |


| Germany - Italy | 4.96 | < . 001 | 0.60 |
| :---: | :---: | :---: | :---: |
| Germany - Lithuania | 0.46 | . 669 | 0.06 |
| Germany - Malaysia | -6.54 | $<.001$ | -0.97 |
| Germany - Mexico | -8.89 | <. 001 | -1.10 |
| Germany - New Zealand | -16.45 | <. 001 | -1.85 |
| Germany - North Macedonia | 6.00 | <. 001 | 0.89 |
| Germany - Peru | -6.62 | <. 001 | -0.77 |
| Germany - Poland | -2.52 | . 015 | -0.23 |
| Germany - Portugal | -6.53 | <. 001 | -0.79 |
| Germany - Slovakia | -4.81 | <. 001 | -0.74 |
| Germany - South Africa | -10.32 | <. 001 | -1.32 |
| Germany - South Korea | 10.39 | < . 001 | 1.44 |
| Germany - Spain | -1.20 | . 255 | -0.15 |
| Germany - Switzerland | -3.31 | . 001 | -0.49 |
| Germany - Taiwan | 3.05 | . 003 | 0.34 |
| Germany - Turkey | -4.81 | <. 001 | -0.86 |
| Germany - United Kingdom | -9.78 | <. 001 | -1.37 |
| Germany - United States of America | -15.89 | <. 001 | -1.89 |
| Hungary - Ireland | -11.73 | <. 001 | -1.37 |
| Hungary - Israel | 3.70 | <. 001 | 0.48 |
| Hungary - Italy | 7.46 | <. 001 | 0.77 |
| Hungary - Lithuania | 2.09 | . 045 | 0.22 |
| Hungary - Malaysia | -6.05 | $<.001$ | -0.81 |
| Hungary - Mexico | -8.82 | <. 001 | -0.93 |
| Hungary - New Zealand | -18.11 | <. 001 | -1.68 |
| Hungary - North Macedonia | 7.92 | <. 001 | 1.05 |
| Hungary - Peru | -6.27 | <. 001 | -0.60 |
| Hungary - Poland | -1.00 | . 346 | -0.06 |
| Hungary - Portugal | -6.07 | <. 001 | -0.62 |
| Hungary - Slovakia | -4.13 | <. 001 | -0.58 |
| Hungary - South Africa | -10.46 | <. 001 | -1.16 |
| Hungary - South Korea | 13.12 | <. 001 | 1.61 |
| Hungary - Spain | 0.20 | . 855 | 0.02 |
| Hungary - Switzerland | -2.44 | . 019 | -0.33 |
| Hungary - Taiwan | 5.54 | <. 001 | 0.51 |
| Hungary - Turkey | -4.17 | <. 001 | -0.69 |
| Hungary - United Kingdom | -9.65 | <. 001 | -1.21 |
| Hungary - United States of America | -17.23 | <. 001 | -1.73 |
| Ireland - Israel | 11.31 | <. 001 | 1.85 |
| Ireland - Italy | 14.93 | <. 001 | 2.14 |
| Ireland - Lithuania | 10.90 | <. 001 | 1.59 |
| Ireland - Malaysia | 3.37 | . 001 | 0.56 |
| Ireland - Mexico | 3.03 | . 003 | 0.44 |
| Ireland - New Zealand | -2.27 | . 029 | -0.31 |
| Ireland - North Macedonia | 14.56 | <. 001 | 2.42 |
| Ireland - Peru | 5.55 | <. 001 | 0.77 |
| Ireland - Poland | 11.00 | <. 001 | 1.31 |
| Ireland - Portugal | 5.21 | <. 001 | 0.75 |
| Ireland - Slovakia | 4.60 | <. 001 | 0.79 |
| Ireland - South Africa | 1.42 | . 176 | 0.21 |
| Ireland - South Korea | 18.83 | $<.001$ | 2.98 |
| Ireland - Spain | 9.77 | < . 001 | 1.39 |
| Ireland - Switzerland | 6.24 | <. 001 | 1.04 |
| Ireland - Taiwan | 13.80 | <. 001 | 1.88 |
| Ireland - Turkey | 3.52 | < . 001 | 0.68 |
| Ireland - United Kingdom | 1.03 | . 334 | 0.16 |
| Ireland - United States of America | -2.49 | . 016 | -0.35 |
| Israel - Italy | 1.88 | . 071 | 0.29 |
| Israel-Lithuania | -1.64 | . 118 | -0.26 |
| Israel-Malaysia | -7.30 | $<.001$ | -1.29 |
| Israel - Mexico | -9.06 | <. 001 | -1.41 |
| Israel - New Zealand | -14.66 | < . 001 | -2.16 |
| Israel - North Macedonia | 3.28 | . 001 | 0.57 |
| Israel - Peru | -7.21 | <. 001 | -1.08 |
| Israel - Poland | -4.13 | < . 001 | -0.54 |
| Israel - Portugal | -7.18 | <. 001 | -1.10 |
| Israel - Slovakia | -5.83 | < . 001 | -1.06 |
| Israel - South Africa | -10.26 | <. 001 | -1.64 |
| Israel - South Korea | 6.74 | <. 001 | 1.13 |
| Israel-Spain | -2.99 | . 004 | -0.46 |


| Israel - Switzerland | -4.56 | $<.001$ | -0.80 |
| :---: | :---: | :---: | :---: |
| Israel - Taiwan | 0.21 | . 845 | 0.03 |
| Israel - Turkey | -5.80 | $<.001$ | -1.17 |
| Israel - United Kingdom | -9.94 | <. 001 | -1.68 |
| Israel - United States of America | -14.48 | $<.001$ | -2.20 |
| Italy - Lithuania | -4.04 | $<.001$ | -0.54 |
| Italy - Malaysia | -10.05 | <. 001 | -1.57 |
| Italy - Mexico | -12.69 | <. 001 | -1.70 |
| Italy - New Zealand | -19.59 | <. 001 | -2.45 |
| Italy - North Macedonia | 1.83 | . 079 | 0.29 |
| Italy - Peru | -10.78 | $<.001$ | -1.37 |
| Italy - Poland | -8.05 | <. 001 | -0.83 |
| Italy - Portugal | -10.61 | $<.001$ | -1.39 |
| Italy - Slovakia | -8.28 | <. 001 | -1.34 |
| Italy - South Africa | -13.93 | <. 001 | -1.92 |
| Italy - South Korea | 5.73 | <. 001 | 0.84 |
| Italy - Spain | -5.75 | $<.001$ | -0.75 |
| Italy - Switzerland | -6.96 | $<.001$ | -1.09 |
| Italy - Taiwan | -2.09 | . 045 | -0.26 |
| Italy - Turkey | -7.88 | $<.001$ | -1.46 |
| Italy - United Kingdom | -13.16 | $<.001$ | -1.97 |
| Italy - United States of America | -19.18 | $<.001$ | -2.49 |
| Lithuania - Malaysia | -6.45 | <. 001 | -1.03 |
| Lithuania - Mexico | -8.41 | <. 001 | -1.15 |
| Lithuania - New Zealand | -14.88 | <. 001 | -1.90 |
| Lithuania - North Macedonia | 5.21 | $<.001$ | 0.83 |
| Lithuania - Peru | -6.32 | <. 001 | -0.82 |
| Lithuania - Poland | -2.65 | . 011 | -0.29 |
| Lithuania - Portugal | -6.29 | $<.001$ | -0.85 |
| Lithuania - Slovakia | -4.84 | <. 001 | -0.80 |
| Lithuania - South Africa | -9.76 | <. 001 | -1.38 |
| Lithuania - South Korea | 9.21 | <. 001 | 1.39 |
| Lithuania - Spain | -1.51 | . 151 | -0.20 |
| Lithuania - Switzerland | -3.43 | $<.001$ | -0.55 |
| Lithuania - Taiwan | 2.25 | . 031 | 0.29 |
| Lithuania - Turkey | -4.87 | $<.001$ | -0.91 |
| Lithuania - United Kingdom | -9.36 | $<.001$ | -1.43 |
| Lithuania - United States of America | -14.62 | $<.001$ | -1.95 |
| Malaysia - Mexico | -0.77 | . 472 | -0.12 |
| Malaysia - New Zealand | -5.76 | $<.001$ | -0.87 |
| Malaysia - North Macedonia | 10.45 | <. 001 | 1.86 |
| Malaysia - Peru | 1.36 | . 196 | 0.21 |
| Malaysia - Poland | 5.53 | $<.001$ | 0.74 |
| Malaysia - Portugal | 1.17 | . 267 | 0.18 |
| Malaysia - Slovakia | 1.25 | . 236 | 0.23 |
| Malaysia - South Africa | -2.15 | . 038 | -0.35 |
| Malaysia - South Korea | 14.20 | $<.001$ | 2.42 |
| Malaysia - Spain | 5.33 | <. 001 | 0.83 |
| Malaysia - Switzerland | 2.69 | . 009 | 0.48 |
| Malaysia - Taiwan | 8.77 | <. 001 | 1.32 |
| Malaysia - Turkey | 0.58 | . 592 | 0.12 |
| Malaysia - United Kingdom | -2.31 | . 027 | -0.40 |
| Malaysia - United States of America | -5.90 | $<.001$ | -0.92 |
| Mexico - New Zealand | -5.91 | $<.001$ | -0.75 |
| Mexico - North Macedonia | 12.51 | <. 001 | 1.98 |
| Mexico - Peru | 2.55 | . 014 | 0.33 |
| Mexico - Poland | 8.10 | <. 001 | 0.87 |
| Mexico - Portugal | 2.29 | . 028 | 0.31 |
| Mexico - Slovakia | 2.14 | . 04 | 0.35 |
| Mexico - South Africa | -1.62 | . 122 | -0.23 |
| Mexico - South Korea | 16.95 | $<.001$ | 2.54 |
| Mexico - Spain | 7.16 | <. 001 | 0.95 |
| Mexico-Switzerland | 3.79 | $<.001$ | 0.60 |
| Mexico - Taiwan | 11.39 | $<.001$ | 1.44 |
| Mexico - Turkey | 1.29 | . 222 | 0.24 |
| Mexico - United Kingdom | -1.82 | . 081 | -0.28 |
| Mexico - United States of America | -6.00 | $<.001$ | -0.79 |
| New Zealand - North Macedonia | 18.11 | <. 001 | 2.73 |
| New Zealand - Peru | 9.04 | <. 001 | 1.08 |
| New Zealand - Poland | 16.83 | <. 001 | 1.62 |


| New Zealand - Portugal | 8.46 | < . 001 | 1.06 |
| :---: | :---: | :---: | :---: |
| New Zealand - Slovakia | 7.00 | < . 001 | 1.10 |
| New Zealand - South Africa | 3.97 | < . 001 | 0.52 |
| New Zealand - South Korea | 23.17 | < . 001 | 3.29 |
| New Zealand - Spain | 13.71 | < . 001 | 1.70 |
| New Zealand - Switzerland | 8.91 | < . 001 | 1.35 |
| New Zealand - Taiwan | 18.80 | < . 001 | 2.19 |
| New Zealand - Turkey | 5.50 | < . 001 | 0.99 |
| New Zealand - United Kingdom | 3.30 | . 001 | 0.47 |
| New Zealand - United States of America | -0.35 | . 744 | -0.04 |
| North Macedonia - Peru | -10.85 | < . 001 | -1.65 |
| North Macedonia - Poland | -8.32 | < . 001 | -1.12 |
| North Macedonia - Portugal | -10.71 | < . 001 | -1.68 |
| North Macedonia - Slovakia | -8.90 | < . 001 | -1.63 |
| North Macedonia - South Africa | -13.64 | <. 001 | -2.21 |
| North Macedonia - South Korea | 3.28 | . 001 | 0.56 |
| North Macedonia - Spain | -6.65 | <. 001 | -1.03 |
| North Macedonia - Switzerland | -7.72 | < . 001 | -1.38 |
| North Macedonia - Taiwan | -3.63 | < . 001 | -0.54 |
| North Macedonia - Turkey | -8.57 | <. 001 | -1.74 |
| North Macedonia - United Kingdom | -13.11 | < . 001 | -2.26 |
| North Macedonia - United States of America | -17.91 | < . 001 | -2.78 |
| Peru - Poland | 5.45 | < . 001 | 0.54 |
| Peru - Portugal | -0.19 | . 859 | -0.02 |
| Peru - Slovakia | 0.14 | . 895 | 0.02 |
| Peru - South Africa | -4.17 | < . 001 | -0.56 |
| Peru - South Korea | 15.41 | < . 001 | 2.21 |
| Peru - Spain | 4.94 | <. 001 | 0.62 |
| Peru - Switzerland | 1.78 | . 088 | 0.27 |
| Peru - Taiwan | 9.36 | <. 001 | 1.11 |
| Peru - Turkey | -0.50 | . 649 | -0.09 |
| Peru - United Kingdom | -4.16 | <. 001 | -0.61 |
| Peru - United States of America | -8.99 | < . 001 | -1.12 |
| Poland - Portugal | -5.41 | < . 001 | -0.56 |
| Poland - Slovakia | -3.63 | <. 001 | -0.51 |
| Poland - South Africa | -9.71 | < . 001 | -1.09 |
| Poland - South Korea | 13.56 | < . 001 | 1.67 |
| Poland-Spain | 0.83 | . 438 | 0.08 |
| Poland-Switzerland | -1.94 | . 062 | -0.26 |
| Poland - Taiwan | 6.07 | < . 001 | 0.57 |
| Poland - Turkey | -3.75 | < . 001 | -0.63 |
| Poland - United Kingdom | -9.01 | < . 001 | -1.14 |
| Poland - United States of America | -16.22 | < . 001 | -1.66 |
| Portugal-Slovakia | 0.28 | . 792 | 0.05 |
| Portugal - South Africa | -3.86 | <. 001 | -0.53 |
| Portugal - South Korea | 15.13 | < . 001 | 2.23 |
| Portugal - Spain | 4.95 | < . 001 | 0.64 |
| Portugal-Switzerland | 1.89 | . 07 | 0.30 |
| Portugal - Taiwan | 9.14 | < . 001 | 1.13 |
| Portugal - Turkey | -0.36 | . 744 | -0.07 |
| Portugal - United Kingdom | -3.89 | < . 001 | -0.58 |
| Portugal - United States of America | -8.46 | < . 001 | -1.10 |
| Slovakia - South Africa | -3.45 | < . 001 | -0.58 |
| Slovakia - South Korea | 12.45 | <. 001 | 2.19 |
| Slovakia - Spain | 3.71 | < . 001 | 0.60 |
| Slovakia - Switzerland | 1.36 | . 195 | 0.25 |
| Slovakia - Taiwan | 6.96 | < . 001 | 1.09 |
| Slovakia - Turkey | -0.54 | . 622 | -0.11 |
| Slovakia - United Kingdom | -3.53 | < . 001 | -0.63 |
| Slovakia - United States of America | -7.10 | <. 001 | -1.15 |
| South Africa - South Korea | 18.02 | < . 001 | 2.77 |
| South Africa - Spain | 8.60 | < . 001 | 1.18 |
| South Africa - Switzerland | 5.10 | < . 001 | 0.83 |
| South Africa - Taiwan | 12.75 | <. 001 | 1.67 |
| South Africa - Turkey | 2.47 | . 017 | 0.47 |
| South Africa - United Kingdom | -0.31 | . 772 | -0.05 |
| South Africa - United States of America | -4.15 | < . 001 | -0.57 |
| South Korea - Spain | -10.89 | < . 001 | -1.59 |
| South Korea - Switzerland | -11.33 | < . 001 | -1.94 |
| South Korea - Taiwan | -7.84 | <. 001 | -1.10 |


| South Korea - Turkey | -11.70 | $<.001$ | -2.30 |
| :---: | :---: | :---: | :---: |
| South Korea - United Kingdom | -17.12 | $<.001$ | -2.82 |
| South Korea - United States of America | -22.81 | <. 001 | -3.33 |
| Spain - Switzerland | -2.22 | . 033 | -0.35 |
| Spain - Taiwan | 4.00 | $<.001$ | 0.49 |
| Spain - Turkey | -3.86 | $<.001$ | -0.71 |
| Spain - United Kingdom | -8.23 | <. 001 | -1.23 |
| Spain - United States of America | -13.56 | <. 001 | -1.75 |
| Switzerland - Taiwan | 5.54 | <. 001 | 0.84 |
| Switzerland - Turkey | -1.78 | . 088 | -0.36 |
| Switzerland - United Kingdom | -5.08 | $<.001$ | -0.88 |
| Switzerland - United States of America | -8.95 | <. 001 | -1.40 |
| Taiwan - Turkey | -6.68 | $<.001$ | -1.20 |
| Taiwan - United Kingdom | -11.97 | <. 001 | -1.72 |
| Taiwan - United States of America | -18.32 | <. 001 | -2.23 |
| Turkey - United Kingdom | -2.60 | . 012 | -0.52 |
| Turkey - United States of America | -5.63 | $<.001$ | -1.03 |
| United Kingdom - United States of America | -3.49 | $<.001$ | -0.52 |

1 Note. $t=t$-test statistic; $p a d j$. = test significance adjusted using the false discovery rate correction 2 for multiplicity; $\Delta=$ difference in means.

2 Language-Based Confirmatory Factor Analyses and Tests of Invariance of the ASRS Screener

| Model | DWLS $\chi^{2}$ | df | RMSEA | CFI | TLI | c | Comp. | $\Delta \mathrm{df}$ | $\triangle$ RMSEA | $\Delta \mathrm{CFI}$ | $\Delta \mathrm{TLI}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Croatian | 121.549 | 9 | . 076 | . 961 | . 934 | - | - | - | - | - | - |
| Czech | 118.091 | 9 | . 091 | . 944 | . 907 | - | - | - | - | - | - |
| English | 1009.311 | 9 | . 098 | . 959 | . 931 | - | - | - | - | - | - |
| French | 277.986 | 9 | . 093 | . 948 | . 913 | - | - | - | - | - | - |
| German | 285.542 | 9 | . 098 | . 920 | . 867 | - | - | - | - | - | - |
| Hebrew | 120.393 | 9 | . 104 | . 936 | . 894 | - | - | - | - | - | - |
| Hungarian | 1231.064 | 9 | . 120 | . 881 | . 802 | - | - | - | - | - | - |
| Italian | 179.214 | 9 | . 097 | . 941 | . 902 | - | - | - | - | - | - |
| Korean | 44.220 | 9 | . 055 | . 986 | . 977 | - | - | - | - | - | - |
| Lithuanian | 133.799 | 9 | . 087 | . 954 | . 923 | - | - | - | - | - | - |
| Macedonian | 79.073 | 9 | . 084 | . 953 | . 922 | - | - | - | - | - | - |
| Mandarin - Simplified | 130.233 | 9 | . 075 | . 944 | . 907 | - | - | - | - | - | - |
| Mandarin - Traditional | 213.074 | 9 | . 093 | . 953 | . 922 | - | - | - | - | - | - |
| Polish | 977.373 | 9 | . 112 | . 923 | . 872 | - | - | - | - | - | - |
| Portuguese - Brazil | 406.855 | 9 | . 116 | . 935 | . 892 | - | - | - | - | - | - |
| Portuguese - Portugal | 128.410 | 9 | . 082 | . 953 | . 921 | - | - | - | - | - | - |
| Slovak | 120.152 | 9 | . 082 | . 941 | . 901 | - | - | - | - | - | - |
| Spanish - Latin America | 345.430 | 9 | . 073 | . 967 | . 946 | - | - | - | - | - | - |
| Spanish - Spain | 111.795 | 9 | . 075 | . 946 | . 910 | - | - | - | - | - | - |
| Turkish | 69.002 | 9 | . 098 | . 951 | . 918 | - | - | - | - | - | - |
| Invariance |  |  |  |  |  |  |  |  |  |  |  |
| m1 configural | 6102.566 | 180 | . 098 | . 942 | . 904 | - | - | - | - | - | - |
| m 2 metric | 8801.511 | 275 | . 095 | . 917 | . 909 | - | m2-m1 | 95 | -. 003 | -. 025 | . 006 |
| m2a partial metric | 7225.128 | 256 | . 089 | . 932 | . 920 | ASRS=~ASRS6 | m2a-m1 | 76 | -. 009 | -. 010 | . 017 |
| m2b partial metric | 6733.104 | 237 | . 089 | . 937 | . 920 | ASRS=~ASRS5 | m2b-m1 | 57 | -. 009 | -. 006 | . 016 |
| m3 scalar | 19410.630 | 370 | . 122 | . 814 | . 850 | - | m3-m2 | 95 | . 027 | -. 102 | -. 060 |
| m3a partial scalar | 15423.719 | 351 | . 111 | . 853 | . 874 | ASRS5~1 | m3a-m2 | 76 | . 017 | -. 064 | -. 035 |
| m3b partial scalar | 13638.608 | 332 | . 108 | . 870 | . 883 | ASRS4~1 | m3b-m2 | 57 | . 013 | -. 047 | -. 027 |
| m3c partial scalar | 11242.440 | 313 | . 101 | . 894 | . 898 | ASRS3~1 | m3c-m2 | 38 | . 006 | -. 023 | -. 011 |
| m3d partial scalar | 10475.115 | 294 | . 100 | . 901 | . 899 | ASRS2~1 | m3d-m2 | 19 | . 005 | -. 016 | -. 011 |
| m3e partial scalar | 8801.511 | 275 | . 095 | . 917 | . 909 | ASRS6~1 | m3e-m2 | 0 | . 000 | . 000 | . 000 |
| m 4 residual | 22208.873 | 484 | . 114 | . 788 | . 869 | - | m4-m3 | 114 | -. 008 | -. 026 | . 019 |
| m4a partial residual | 21486.496 | 465 | . 114 | . 795 | . 868 | ASRS5~~ASRS5 | m4a-m3 | 95 | -. 008 | -. 019 | . 018 |
| m 4 b partial residual | 20938.515 | 446 | . 115 | . 800 | . 866 | ASRS1~~ASRS1 | m4b-m3 | 76 | -. 007 | -. 014 | . 016 |
| m 4 c partial residual | 20513.974 | 427 | . 117 | . 804 | . 863 | ASRS4~~ASRS4 | $\mathrm{m} 4 \mathrm{c}-\mathrm{m} 3$ | 57 | -. 005 | -. 010 | . 013 |
| m4d partial residual | 20046.911 | 408 | . 118 | . 809 | . 859 | ASRS6~~ASRS6 | m4d-m3 | 38 | -. 004 | -. 006 | . 010 |
| m5 variance-covariance | 26459.252 | 503 | . 122 | . 747 | . 849 | - | m5-m4 | 19 | . 008 | -. 041 | -. 020 |
| m6 means | 34133.619 | 522 | . 136 | . 673 | . 812 | - | m6-m5 | 19 | . 014 | -. 075 | -. 037 |

2 Country-Based Confirmatory Factor Analyses and Tests of Invariance of the ASRS Screener

| Model | DWLS $\chi^{2}$ | df | RMSEA | CFI | TLI | c | Comp. | $\Delta \mathrm{df}$ | $\triangle \mathrm{RMSEA}$ | $\Delta \mathrm{CFI}$ | $\Delta \mathrm{TLI}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Australia | 57.543 | 9 | . 098 | . 971 | . 951 | - | - | - | - | - | - |
| Austria | 53.903 | 9 | . 086 | . 933 | . 888 | - | - | - | - | - | - |
| Brazil | 398.802 | 9 | . 116 | . 935 | . 891 | - | - | - | - | - | - |
| Canada | 195.400 | 9 | . 095 | . 960 | . 933 | - | - | - | - | - | - |
| Chile | 58.000 | 9 | . 071 | . 966 | . 943 | - | - | - | - | - | - |
| China | 128.622 | 9 | . 075 | . 944 | . 907 | - | - | - | - | - | - |
| Colombia | 56.388 | 9 | . 056 | . 980 | . 967 | - | - | - | - | - | - |
| Croatia | 111.944 | 9 | . 074 | . 964 | . 939 | - | - | - | - | - | - |
| Czech Republic | 120.328 | 9 | . 090 | . 945 | . 909 | - | - | - | - | - | - |
| France | 102.952 | 9 | . 083 | . 956 | . 927 | - | - | - | - | - | - |
| Germany | 266.010 | 9 | . 097 | . 924 | . 873 | - | - | - | - | - | - |
| Hungary | 1225.462 | 9 | . 117 | . 889 | . 814 | - | - | - | - | - | - |
| Ireland | 176.061 | 9 | . 113 | . 939 | . 899 | - | - | - | - | - | - |
| Israel | 119.281 | 9 | . 103 | . 939 | . 899 | - | - | - | - | - | - |
| Italy | 178.255 | 9 | . 097 | . 940 | . 899 | - | - | - | - | - | - |
| Lithuania | 126.423 | 9 | . 085 | . 956 | . 927 | - | - | - | - | - | - |
| Malaysia | 78.151 | 9 | . 084 | . 948 | . 913 | - | - | - | - | - | - |
| Mexico | 111.576 | 9 | . 078 | . 968 | . 946 | - | - | - | - | - | - |
| New Zealand | 221.459 | 9 | . 097 | . 961 | . 935 | - | - | - | - | - | - |
| North Macedonia | 73.196 | 9 | . 081 | . 956 | . 927 | - | - | - | - | - | - |
| Peru | 135.111 | 9 | . 078 | . 964 | . 939 | - | - | - | - | - | - |
| Poland | 933.313 | 9 | . 112 | . 925 | . 875 | - | - | - | - | - | - |
| Portugal | 126.304 | 9 | . 081 | . 955 | . 926 | - | - | - | - | - | - |
| Slovakia | 64.581 | 9 | . 080 | . 936 | . 893 | - | - | - | - | - | - |
| South Africa | 127.190 | 9 | . 089 | . 959 | . 932 | - | - | - | - | - | - |
| South Korea | 41.681 | 9 | . 053 | . 988 | . 979 | - | - | - | - | - | - |
| Spain | 122.526 | 9 | . 078 | . 942 | . 904 | - | - | - | - | - | - |
| Switzerland | 115.212 | 9 | . 105 | . 927 | . 878 | - | - | - | - | - | - |
| Taiwan | 209.689 | 9 | . 093 | . 954 | . 923 | - | - | - | - | - | - |
| Turkey | 62.224 | 9 | . 094 | . 954 | . 923 | - | - | - | - | - | - |
| United Kingdom | 138.781 | 9 | . 108 | . 951 | . 919 | - | - | - | - | - | - |
| United States of America | 186.116 | 9 | . 097 | . 963 | . 939 | - | - | - | - | - | - |
| ( Invariance |  |  |  |  |  |  |  |  |  |  |  |
| m1 configural | 6122.485 | 288 | . 097 | . 943 | . 906 | - | - | - | - | - | - |
| m 2 metric | 8766.086 | 443 | . 093 | . 919 | . 912 | - | m2-m1 | 155 | -. 004 | -. 024 | . 007 |
| m2a partial metric | 7223.675 | 412 | . 087 | . 934 | . 923 | ASRS $=\sim$ ASRS 6 | m2a-m1 | 124 | -. 009 | -. 009 | . 017 |
| m3 scalar | 19510.204 | 598 | . 121 | . 816 | . 853 | - | m3-m2 | 155 | . 028 | -. 103 | -. 060 |
| m3a partial scalar | 15349.787 | 567 | . 110 | . 856 | . 878 | ASRS5~1 | m3a-m2 | 124 | . 017 | -. 063 | -. 034 |
| m3b partial scalar | 13597.608 | 536 | . 106 | . 873 | . 886 | ASRS4~1 | m3b-m2 | 93 | . 013 | -. 046 | -. 026 |
| m3c partial scalar | 11273.432 | 505 | . 099 | . 895 | . 901 | ASRS3~1 | m3c-m2 | 62 | . 006 | -. 024 | -. 012 |
| m3d partial scalar | 10476.466 | 474 | . 099 | . 903 | . 902 | ASRS2~1 | m3d-m2 | 31 | . 006 | -. 016 | -. 011 |
| m3e partial scalar | 8766.086 | 443 | . 093 | . 919 | . 912 | ASRS6~1 | m3e-m2 | 0 | . 000 | . 000 | . 000 |
| m 4 residual | 22297.440 | 784 | . 113 | . 791 | . 872 | - | m4-m3 | 186 | -. 008 | -. 025 | . 020 |
| m4a partial residual | 21764.330 | 753 | . 114 | . 796 | . 870 | ASRS1~~ASRS1 | m4a-m3 | 155 | -. 007 | -. 020 | . 017 |
| m4b partial residual | 21119.492 | 722 | . 114 | . 802 | . 868 | ASRS5~~ASRS5 | m4b-m3 | 124 | -. 007 | -. 014 | . 016 |
| m 4 c partial residual | 20679.228 | 691 | . 116 | . 806 | . 865 | ASRS4~~ASRS4 | m4c-m3 | 93 | -. 005 | -. 010 | . 013 |
| m4d partial residual | 20181.007 | 660 | . 117 | . 810 | . 862 | ASRS6~~ASRS6 | m4d-m3 | 62 | -. 004 | -. 006 | . 010 |
| m5 variance-covariance | 26767.680 | 815 | . 121 | . 748 | . 851 | - | m5-m4 | 31 | . 009 | -. 043 | -. 021 |
| m6 means | 33897.745 | 846 | . 135 | . 679 | . 818 | - | m6-m5 | 31 | . 013 | -. 069 | -. 034 |

1 Note. DWLS = diagonally weighted least square estimator; $\chi^{2}=$ Chi-square; df = degrees of freedom; CFI = comparative fit index; TLI = Tucker-Lewis Index; RMSEA $=$ root2 mean-square error of approximation; Comp. = Comparison; $\Delta \mathrm{CFI}=$ change in CFI value compared to the preceding model; $\Delta \mathrm{TLI}=$ change in the TLI value compared to the

Table S6

| Model | DWLS $\chi^{2}$ | df | RMSEA | CFI | TLI | c | Comp. | $\Delta \mathrm{df}$ | $\triangle \mathrm{RMSEA}$ | $\Delta \mathrm{CFI}$ | $\Delta \mathrm{TLI}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gender diverse individual | 150.007 | 9 | . 083 | . 966 | . 944 | - | - | - | - | - | - |
| Man | 2152.120 | 9 | . 094 | . 944 | . 906 | - | - | - | - | - | - |
| Woman | 3245.994 | 9 | . 095 | . 940 | . 899 | - | - | - | - | - | - |
| Invariance |  |  |  |  |  |  |  |  |  |  |  |
| m1 configural | 5548.122 | 27 | . 094 | . 942 | . 904 | - | - | - | - | - | - |
| m 2 metric | 5668.923 | 37 | . 081 | . 941 | . 928 | - | m2-m1 | 10 | -. 013 | -. 001 | . 025 |
| m3 scalar | 6857.696 | 47 | . 079 | . 929 | . 932 | - | m3-m2 | 10 | -. 002 | -. 012 | . 003 |
| m3a partial scalar | 6222.904 | 45 | . 077 | . 935 | . 935 | ASRS3~1 | m3a-m2 | 8 | -. 004 | -. 006 | . 007 |
| m 4 residual | 7042.514 | 59 | . 072 | . 927 | . 944 | - | m4-m3 | 12 | -. 008 | -. 002 | . 012 |
| m5 variance-covariance | 7500.159 | 61 | . 073 | . 922 | . 943 | - | m5-m4 | 2 | . 001 | -. 005 | -. 002 |
| m6 means | 11260.907 | 63 | . 088 | . 883 | . 916 | - | m6-m5 | 2 | . 015 | -. 039 | -. 026 |

Note. DWLS $=$ diagonally weighted least square estimator; $\chi^{2}=$ Chi-square; $\mathrm{df}=$ degrees of freedom; CFI $=$ comparative fit index; TLI $=$ Tucker-Lewis Index; RMSEA $=$ root-mean-square error of approximation; Comp. = Comparison; $\Delta \mathrm{CFI}=$ change in CFI value compared to the preceding model; $\Delta \mathrm{TLI}=$ change in the TLI value compared to the preceding model; $\triangle$ RMSEA $=$ change in the RMSEA value compared to the preceding mode; $\mathrm{c}=$ model constraint relaxed for given model. $=\sim=$ loadings; $\sim 1=$ intercepts; $\sim \sim=$ covariances. Highlighted in bold is the level of invariance achieved.

## Measurement invariance testing, implications of relaxing equality constraints on (a) Metric,

## (b) Scalar, and (c) Residual levels

(a) Metric: because this level tests whether factor loadings are equivalent across groups, relaxing constraints at this level suggests that the relationships between observed measures and the underlying construct of the ASRS may differ across groups. This means that while analyses and comparisons of the ASRS score across groups can still be performed (such as correlational or regression-based analyses), caution should be exercised when comparing the strength of these relationships as the lack of full metric invariance can affect the comparability of the scores.
(b) Scalar: because this level examines whether item intercepts are equivalent across groups, relaxing constraints at this level implies that the baseline of the latent construct measured by the ASRS differs between groups. Accordingly, although comparisons of the ASRS between different groups can still be performed (as in the case of partial metric invariance), inter-group comparisons of latent means should be performed with caution since differences may be affected by group-specific biases.
(c) Residual: because this level tests whether item residual variances are equivalent across groups, relaxing constraints at this level indicates that the error variances associated with the items of the ASRS are different across groups. This can potentially affect measurement reliability and precision. However, provided that scalar invariance is established, latent means and relationships among constructs can be performed - but with caution regarding the differences in measurement precision (see Millsap \& Yun-Tein, 2004; Putnick \& Bornstein, 2016; Vandenberg \& Lance, 2000).

## References - Supplemental Materials

Millsap, R., \& Yun-Tein J. (2004) Assessing Factorial Invariance in Ordered-Categorical Measures, Multivariate Behavioral Research, 39(3), 479-515, https://doi.org/10.1207/S15327906MBR3903_4

Putnick, D. L., \& Bornstein, M. H. (2016). Measurement invariance conventions and reporting: The state of the art and future directions for psychological research. Developmental Review, 41, 71-90. https://doi.org/10.1016/j.dr.2016.06.004

Vandenberg, R. J., \& Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3(1), 4-70. https://doi.org/10.1177/109442810031002


[^0]:    ${ }^{1}$ [1] Egypt, Iran, Pakistan, and Romania were included in the study protocol paper as collaborating countries (Böthe, Koós, et al., 2021); however, it was not possible to get ethical approval for the study in a timely manner in these countries. Chile was not included in the study protocol paper as a collaborating country (Bőthe, Koós, et al., 2021) as

