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Abstract 

Modern technologies are commonly used to inventory different architectural or industrial objects (especially cultural 
heritage objects and sites) to generate architectural documentation or 3D models. The Terrestrial Laser Scanning 
(TLS) method is one of the standard technologies researchers investigate for accurate data acquisition and process-
ing required for architectural documentation. The processing of TLS data to generate high-resolution architectural 
documentation is a multi-stage process that begins with point cloud registration. In this step, it is a common practice 
to identify corresponding points manually, semi-manually or automatically. There are several challenges for the TLS 
point cloud processing in the data registration process: correct spatial distribution, marking of control points, auto-
mation, and robustness analysis. This is particularly important when large, complex heritage sites are investigated, 
where it is impossible to distribute marked control points. On the other hand, when orientating multi-temporal data, 
there is also the problem of corresponding reference points. For this reason, it is necessary to use automatic tie-
point detection methods. Therefore, this article aims to evaluate the quality and completeness of the TLS registration 
process using 2D raster data in the form of spherical images and Affine Hand-crafted and Learned-based detectors 
in the multi-stage TLS point cloud registration as test data; point clouds were used for the historic 17th-century cellars 
of the Royal Castle in Warsaw without decorative structures, two baroque rooms in the King John III Palace Museum 
in Wilanów with decorative elements, ornaments and materials on the walls and flat frescoes, and two modern test 
fields, narrow office, and empty shopping mall. The extended Structure-from-Motion was used to determine the tie 
points for the complete TLS registration and reliability analysis. The evaluation of detectors demonstrates that for the 
test sites exhibiting rich textures and numerous ornaments, a combination of AFAST, ASURF, ASIFT, SuperGlue 
and LoFTR can be effectively employed. For the point cloud registration of less textured buildings, it is advisable to use 
AFAST/ASIFT. The robust method for point cloud registration exhibits comparable outcomes to the conventional 
target-based and Iterative Closest Points methods.
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detectors, Reliability assessment, TLS registration
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Introduction
Modern measurement technologies such as terrestrial 
laser scanning (TLS) are commonly applied to regis-
ter, preserve, protect and monitor different engineer-
ing objects [1], perform structural health monitoring 
[2–5], assist with construction management [6], carry out 
three-dimensional (3D) model reconstruction [7], moni-
tor deformation of structures [8–13] and significantly 
assist with preservation and safeguarding of cultural her-
itage objects and sites [14–21], owing to its accurate data 
acquisitions and processing, which is required to gener-
ate the documentation such as 3D models, vector draw-
ings or other architectural documentation [22–26]. The 
acquisition and processing of point clouds from terres-
trial laser scanners is a multi-step process consisting of 
(1) Survey planning, (2) Field operation, (3) Data prepa-
ration, (4) Data registration, (5) Data processing, and (6) 
Quality control and delivery [27]. Planning of the optimal 
TLS positions and target locations depends on the sur-
veying area and the design consideration of the project. 
Based on the adopted data orientation method, these 
target locations might be natural points that are detected 
in the point cloud or specific signal points in the form 
of black and white chessboards, retroreflective points, 
or spheres with a known radius (Fig.  1). Since the TLS 
point clouds are collected in the local reference system, 
it is required to perform the registration step (first step 
of the TLS point cloud processing methodology), allow-
ing to transform point clouds into the assumed reference 
system [28].

For large and complex objects and sites, obtaining data 
from multiple TLS positions and transforming them into 

the defined reference system is required, as a single posi-
tion will not provide the significant data needed for an 
accurate model generation. The transformation into the 
defined reference system relies on detecting correspond-
ing points, shapes or features in at least two-point clouds, 
and the exterior orientation parameters are obtained for 
each scan. These parameters determine the spatial loca-
tion of the central point of the scanner system in the 
assumed reference system together with three rotation 
angles, which are then used to transform the point cloud 
[29].

In literature, many investigations address the prob-
lem of TLS point cloud registration in the context of the 
effectiveness, efficiency and robustness of this process 
[30–34] and divide these methods into two main groups 
depending on the amount of the input data—pairwise or 
multiview registration [2]. Most of these algorithms are 
the coarse–fine-strategy [35, 36], which assumes that 
(1) in the first step—the translation and rotation param-
eters are approximated [28] and (2) in the final step—fine 
registration is performed by algorithms such as normal 
distribution transform (NDT) algorithm and its variants 
[37–39] or Iterative Closest Points (ICP) algorithm or its 
variants [38, 40]. A review of the commonly used meth-
ods for TLS registration can be found in the article [41].

Several challenges are encountered during data regis-
tration in Terrestrial Laser Scanning (TLS) point cloud 
processing. These challenges pertain to ensuring the 
accurate spatial distribution of data, addressing control 
point identification, enhancing automation in the pro-
cess, and conducting robustness analysis. This becomes 
especially critical when examining extensive and intricate 

Fig. 1 a The example of the artificial targets, b registration between two scanned positions [27]
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heritage sites where the deployment of marked control 
points is unfeasible. Furthermore, in the case of multi-
temporal data alignment, the issue of establishing cor-
respondences between reference points also arises. 
Consequently, automatic tie-point detection methods are 
necessary to mitigate these challenges effectively.

This paper aims to present the possibility of using the 
TLS-SfM method for the orientation of point clouds 
from terrestrial laser scanning of the interiors of historic 
and public buildings. This research compares the utilisa-
tion of selected 2D hand-crafted and learned methods for 
finding tie points. This article presents the effectiveness 
of different algorithms (AFAST, ASIFT, ASURF, LoFTR, 
SuperGlue and KeyNet with AffiNet and HardNet) in the 
point detection step with extended quality and robust-
ness analysis based on the reliability assessment. The 
interiors of historical 17th-century basements at the 
Royal Castle in Warsaw without decorative structure 
(Test Site I and II), the Museum of King Jan III’s Palace 
at Wilanow with decorative elements, ornaments, and 
materials on walls (Test Site III) and flat frescos (Test Site 
IV), narrow office (Test Site V) and shopping mall (Test 
Site VI), were selected for this study. For such objects, 
the distribution of the signalised points utilised in the 
data registration process may not be possible owing to 
the inability to distribute it on historical wall fragments, 
the deployment of tripods that would have the effect of 
obscuring the objects under development and the spa-
tial distribution of points (caused by the complex shapes 
of the objects being developed), which would affect the 
accuracy of registration and error detection according to 
robustness theory.

The method for point cloud registration is based on 
intensity rasters (together with a depth map) and an 
extended Structure-from-Motion (TLS-SfM) approach. 
The advantage of the method for point cloud registration 

over the Target-based method is that more automatically 
detected tie points are used for orientation with better 
spatial distribution and robust outliers’ detection regard-
ing the reliability theory. The Iterative Closest Points 
(ICP) method is based on the point-to-point and point-
to-plane approaches, which require clouds to be pre-
oriented when connecting point clouds to guarantee the 
final registration’s correctness. In the TLS-SfM approach, 
such a condition is unnecessary since the selection and 
elimination of tie points are utilised in a two-step manner 
through descriptor matching and geometrical verifica-
tion based on the RANSAC algorithm.

This article is divided into five main sections. 
Sect. “Principle of work” presents the fundamental prin-
ciples of the hand-crafted and learned feature detectors 
and descriptors. Sect. “Methodology” contains a descrip-
tion of the test sites and the approach used. Sect. “Results 
and discussion” presents the results of the detector 
assessments, and Sect.  “Conclusion” concludes the pro-
posed study, highlighting the advantages and limitations 
of using different affine 2D detectors and future work 
approaches.

Principle of work
TLS point cloud registration
Several methods of TLS data registration exist, which may 
be generally divided (followed by Vosselman and Maas 
[42] proposed definitions) into target-based and feature-
based [16, 43–49]. The TLS data registration methods are 
generally based on the corresponding features between 
two or more datasets. Still, the main differences might be 
seen in determining and matching these corresponding 
points. Despite the existence of two different approaches to 
the determination of tie points, to define the relationship 
between the local instrument and the global reference sys-
tem, Eq. (1) is used:
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In this Equation, the coordinates of the object points 
(reference points) correspond to the vector 

(

Xi Yi Zi

)T , 
points in the local (scanner) coordinate system and are 
represented by the vector 

(

xij yij zij
)T , the scanner posi-

tion 
(

Xc
i Y c

i Zc
i

)T scanner rotation Mij(three Euler angles 
ω,ϕ, κ that are used to construct the rotation matrix).

The least-square estimation is required to determine 
the exterior orientation parameters for the oriented 
point. Teunissen [50] used the well-known Gauss-
Markow linear model (a linearised form of the nonlin-
ear input relationships), which is also used in the TLS/
photogrammetric bundle adjustment process [51]. To 
determine the normal equation matrix and vector, the 
least-square adjustment is used with the following ana-
lytic form (Eqs. 2, 3, 4):

where: A—coefficient matrix (m × n) (m—number of 
observational equations,—nnumber of unknowns), 
rank(A) = u (full rank);—xparameter vector (n × 1);—y

observation vector (m × 1) (uncorrelated observations); 
Ce—observation error covariance matrix (m × m) (posi-
tively determined) is also the observation result covari-
ance matrix, i.e., Ce ≡ Cy.

(2)
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(3)ATPAx = ATPy

(4)P = C−1
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The selection and arrangement of tie points in the 
point cloud orientation process play a crucial role. When 
considering the possibilities of using tie points in the data 
orientation process, it is essential to consider their use in 
accuracy and detecting, locating, and eliminating outliers 
that may occur during the adjustment process. Reliability 
theory deals with diagnosing outliers in observations and 
datasets used in the alignment process [52–57].

In this article, the proposed reliability approach will 
compensate for the orientation quality based on the local 
reliability criteria, which enables determining if the pair 
of tie points is correctly matched. The proposed qual-
ity assessment method will focus on the RMSE on con-
trol and check points evaluation and consider the points’ 
spatial distribution. Based on the least square method 

(Eqs.  2 and 3), the formula for local reliability criteria 
is determined (Eq.  5), which is called the “disturbance-
response” dependency and is one of the basic elements of 
reliability theory:

where: R—reliability matrix of the tie points; I—identity 
matrix, A—coefficient matrix based on the tie points.

(5)
v = −Ry

R = I − A
(

ATA
)−1

AT

Fig. 2 Incremental SfM methodology [59]
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The analysis of the internal reliability factors, based on the 
diagonal value of the matrix R (an orthogonal projection 
operator), that values are between < 0,1 > . It is stated that if: 
(1) {R}ii = 0 the tie point is uncontrolled by other points; (2) 
{R}ii = 1 the tie point is fully controlled by other points; (3) 
{R}ii > 0.5 tie point (in relation to other points) is well dis-
tributed regarding reliability theory. This method is very use-
ful for automatically analysing and selecting the TLS point 
registration [58].

TLS point featured‑based cloud registration
The current state-of-the-art approach for TLS data reg-
istration is based on two main methods, namely, (1) 
point-based (provided control points/markers) and (2) 
feature-based methods [42]. One of the feature-based 
methods is Structure-from-Motion (SfM), which is car-
ried out in the following steps: (1) feature extraction; (2) 
feature matching; (3) geometric verification; (4) recon-
struction initialisation; (5) image registration; (6) triangu-
lation, and (7) bundle adjustment (Fig. 2). To generalise, 
the SfM approach might be divided into two main parts: 
the correspondence search phase (1–3) and iterative 
reconstruction phase (4–6) [46, 59–62].

The classical SfM uses the group of collected images. 
Still, in the case of TLS registration, the point cloud 
should be converted into the spherical raster based on 
the cartographical Equation (Eqs.  6, 7, 8). Referring to 
Fig.  3, a TLS with the panoramic architecture acquire 
the spherical coordinate observation defined as a ρ—the 
measured distance between the object and scan position, 
θ—horizontal direction and φ—vertical (elevation) angle. 

These values might be expressed concerning the Euclid-
ean coordinate system (Eqs. 6, 7, 8):

A spherical image (for which the raster grey-level value 
assumes the laser beam reflectance intensity value) is 
used, together with the map of depth (i.e., the distance 
to the analysed object), for TLS data orientation. This 
point cloud representation is applied and implemented in 
many commercial software tools [46, 64–67]. The main 
advantage of that data representation is the possibility of 
using raw data with the highest resolution and without 
the interpolation of new values of pixel coordinates. It is 
also possible to generate an intensity raster of any resolu-
tion, and this can be done by converting new pixel values 
based on the formulas shown in Fig. 3.

To compare the points in different rasters, it is neces-
sary to determine the invariant features. The detection 
and description of features for each characteristic point 
are essential for the process of detection of homologous 
points because the final points’ recognition as tie points 

(6)ρij =

√

x2ij + y2ij + z2ij

(7)θij = arctan

(

yij

xij

)

(8)αij = arctan





zij
�

x2ij + y2ij





Fig. 3 Relation between spherical coordinates and coordinates on spherical photographs a Graphical representation of the relation between polar 
coordinates measured and the raster image in spherical projection [63], b formula for recalculation of polar coordinates to spherical projection, 
and c formula for recalculation of x,y spherical projection onto polar coordinates
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is carried out by matching their relative descriptors in 
the process of data orientation. There are two approaches 
usually applied: (1) the Approximate Nearest Neighbour-
Based Point Matching [68] and (2) Brute Force matching 
[69].

The fundamental principles of the 2D feature
Feature detection (also called extraction) is the first and 
the most essential step in the SfM methodology that 
relies on the detectors. The key extraction principle is to 
recognise each raster data (image from a group of pro-
cessed images) and a group of characteristic points (also 
called keypoints) based on the local characteristic of the 
intensity. For feature extraction, different methods and 
algorithms can be used, such as point detectors [70], line 
detectors [71] or blob detectors [72], which affects the 
robustness of the detected features and efficiency of the 
matching method.

Those features should have the following properties 
that allow to determine the characteristics of the detector 
“[73]: (1) Repeatability—the possibility to detect a high 
percent of the features possible to recognise the scene 
part visible in both images taken under different view-
ing conditions; (2) Distinctiveness/informativeness—the 
intensity patterns used for detecting points should show a 
lot of variations; (3) Locality—the neighbourhood used to 
determine the point should be local in order to reduce the 
probability of occlusions and invariant of the photomet-
ric and geometric deformations; (4) Quantity—a num-
ber of the detected features that should be sufficiently 
large and allow to detect features even on small objects 
(however, number of keypoints depends directly on the 
application); (5) Accuracy—definition of the quality and 
possibility of feature localisation in regards to the scale-
space and photometric and geometrical distortions; (6) 
Efficiency—determination of the required time for feature 
detection (important in the time-critical applications)”.

At present, there are two distinct approaches for 
detecting keypoints in images. The first approach 
involves utilising a group of hand-crafted algorithms, 
such as Scale-Invariant Feature Transform (SIFT) 
introduced by Lowe [74] and Speeded Up Robust Fea-
tures (SURF) proposed by Bay and Ess [75]. The second 
approach, a learned-based feature extraction approach, 
employs methods such as SuperGlue or LoFTR. Hand-
crafted detectors operate by detecting keypoints based 
on the grayscale gradient values in the local neighbour-
hood, using either blob detectors like SIFT, SURF, or 
CenSurE, or corner detectors like FAST introduced by 
Rosten and Drummond [76] and BRISK proposed by 
Leutenegger et  al. [77] [REF], which compare grayscale 

differences with the analysed pixel. Point and blob detec-
tors found wide application in the orientation of point 
clouds from terrestrial laser scanning [63]. The advan-
tages of using point and blob detectors are (1) the speed 
of detection and match of tie points—might be extracted 
very efficiently, (2) the accuracy of localisation and scale-
invariant, (3) stability over varying viewpoints and (4) 
the accuracy of TLS data registration [73, 78]. One of 
the significant limitations of these detectors is that they 
were designed to use images projected in the central pro-
jection. Such an approach assumes that standard image 
deformations might be expected. For this reason, using 
spherical rasters from point cloud conversions can result 
in significant deformations that contribute to problems 
concerning explicit identification and matching key-
points [19, 46, 63, 79]. This problem can be solved in two 
ways: (1) using different mapping representations (i.e., 
“virtual image”, orthoimage or Mercator representation) 
[60, 63] or (2) adding an affine component to the detec-
tors [80].

In recent years, novel learning-based solutions have 
been developed to overcome the limitations of hand-
crafted methods. These solutions encompass various 
approaches. The first approach, known as “detect-then-
describe,” involves using a learned detector and descrip-
tor, which can either be fully learned or combined with 
hand-crafted and learning-based methods. Notable 
works in this domain include Barroso-Laguna et al. [81], 
Verdie et  al. [82] for the detector, Ebel et  al. [83], and 
Mishchuk et al. [84] or the descriptor.

The second approach, “end-to-end,” aims to jointly 
optimise the entire pipeline to extract sparse image cor-
respondences. Examples of end-to-end methods include 
SuperPoint, introduced by DeTone et al. [85]; SuperGlue, 
proposed by Sarlin et  al. [86]; and DISK, presented by 
Tyszkiewicz et  al. [87]. These end-to-end methods have 
been utilised to enhance both the repeatability and reli-
ability of keypoints, leading to improved success rates in 
image matching and more accurate pose estimation, as 
demonstrated by Remondino [88].

More recently, researchers such as Choy et  al. [89], 
Rocco et  al. [90], and Li et  al. [91] introduced a new 
approach, “end-to-end detector-free local feature match-
ing methods.” These methods eliminate the feature detec-
tor phase and directly generate dense descriptors or 
dense feature matches. Notably, Sun et al. [92] introduced 
the LoFTR approach, which builds upon the Transformer 
architecture proposed by Vaswani et al. [93]. In contrast 
to the sequential process of image feature detection, 
description, and matching, LoFTR establishes pixel-wise 
dense matches at a coarse level and subsequently refines 
these matches at a fine level.
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The feature description, matching and images registration
To match characteristic points in several photographs, 
it is necessary to describe their features based on their 
neighbourhood [72]. This is carried out by descriptors, 
which enable the determination of the invariant features 
that form the basis for comparing points in different pho-
tographs. The characteristic points’ descriptions can be 
unified using one descriptor for each detector. For that 
purpose, the operations of the SIFT descriptor were uti-
lised [72]. The operations of the SIFT descriptor consist 
of two stages: (1) calculation of the gradient (scale) and 
orientation of each point within the neighbourhood of 
a key point and (2) determination of a 128-element vec-
tor of features (a descriptor). The Gaussian images are 
used to determine the orientation of keypoints, which 
corresponds to the scale of a given keypoint. For each 
image point, the gradient module and orientation are 
calculated. The keypoints’ features are measured in rela-
tion to the determined orientation, which results in the 
description being independent of the rotation. The SIFT 
algorithm considers the gradient module and orienta-
tion within the neighbourhood of 16 × 16 for a given 
keypoint. Then, this area is divided into regions of 4 × 4 
size, in which the resultant orientation histograms are 
re-created. The consequent gradient module for eight 
orientations is determined within each area based on the 
particular points of the modules. Thus, the point feature 
descriptor is a vector of 4 × 4 × 8 = 128 elements. The vec-
tor is normalised to reduce the influence of illumination. 
The next stage of considering points as tie points in image 
data orientation is their relative matching. In this article, 
the Approximate Nearest Neighbourhood-Based Point 
Matching [60] was used. At the end of the final iterative, 

the bundle adjustment process relies on the methodology 
described in subSect. “TLS point cloud registration”.

Methodology
Selected test site
The proposed method for automatic Terrestrial Laser 
Scanning data registration that involves the use TLS-SfM 
with hand-crafted and learned features to detect non-
signalised tie points on point clouds was tested at six 
different sites, namely historic 17th-century basements 
at the Royal Castle in Warsaw without decorative struc-
ture (Test Site I and II), Museum of King Jan III’s Palace 
at Wilanów with decorative elements, ornaments, and 
materials on walls (Test Site III) and flat frescos (Test Site 
IV), narrow office (Test Site V) and shopping mall (Test 
Site VI).

The Test Sites I and II are constructed of bricks filled 
with mortar. It has an irregular shape with a ceiling in the 
form of arches, with a maximum height of approximately 
3.2 m and a minimum of about 2.1 m. Due to its histori-
cal character and the prevailing humidity conditions, the 
part of the room has damp walls and fragments of bricks 
crumble, making it impossible to place the signalled 
control points on the object. On the other hand, it was 
impossible to place the points on tripods because of the 
size and dimensions of the individual rooms. If the tar-
get-based methodology is implemented, it will increase 
the number of required scanner positions, leading to 
inaccurate point cloud registration.

Both Test Sites were marked with check points (that 
were not used for orientation parameters determina-
tion but were used for the independent quality assess-
ment), which were placed at different heights. All points 

Fig. 4 a The floor plan with marked dimensions and Terrestrial Laser Scanning (TLS) positions (red dots). Each name of the laser scanner position 
contains the name of the selected test site (I and II) and specified id (1, 2, 3, 4, etc.). For each TLS position, the height (h) was also defined as b 
a spherical map of point clouds for each Test Site
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Fig. 5 The point cloud in the spherical projection of Test Site III with marked points (red circles) [63]

Fig. 6 The point cloud in the spherical projection of Test Site IV without marked points [63]

Fig. 7 The point cloud example in the spherical projection of Test Site V with marked check points (red circles) [63]
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were measured with Total Station Leica TCRP 1202 with 
angular accuracy 2 s., linear accuracy 2 mm + 2 ppm. TLS 
data used in this work was acquired by phase-shift scan-
ners Z + F 5006  h (Test Sites I, II and IV–VI) and Z + F 
5003 from different positions and heights with an angular 
resolution 360◦/320◦ and point resolution 6.3 mm/10 m 
(Test Site III). Figure  4 presents the floor plan with 
marked dimensions for Test Sites I and II, including Ter-
restrial Laser Scanning (TLS) positions and marked ref-
erence points.

The Test Site I is a regular-shaped facility with dimen-
sions of approx. 5.6  m × 5.1  m. A ventilation pipe runs 
through the centre of the room (halfway up the room) 
and is used to dehumidify the room, which limits the 
placement of the scanner stations. It was necessary to 
increase the number of scanner positions used for a full 
Test Site inventory and the number of marked control 
points. The Test Site II has dimensions of 7.4 m × 5.1 m 
and is divided by curves at 1/3 and 2/3 of the distance. In 
addition, it has recesses and long windowpanes. There-
fore, increasing the number of signalised points and 
scanner positions was necessary, which resulted in some 
points not being visible on all scans.

Test Sites III and IV are two decorated historical cham-
bers at the Museum of King Jan III’s Palace at Wilanów. 
Test site III: “The Queen’s Bedroom” was characterised 
by geometric complexity in the form of rich ornaments, 
bas-reliefs, and facets. Moreover, mirrors in golden 
frames, decorative fireplaces, fabrics, etc., hung on the 
walls (Fig.  5). Test Site III is dimensions are approxi-
mately 6.4 m × 7.3 m × 5.3 m.

Figure 5 presents the distribution of scanner positions 
and the scanning distances. Five out of six scans were 
acquired with the selected fragment of a chamber (the 
incomplete extent). The seventh scan (acquired with the 
full angular resolution) was applied as the reference scan. 
Sixteen marked points were distributed over the test site 

(considered as check points in further analyses), which 
were used for TLS data orientation.

Test site IV: “The Chamber with a Parrot” is charac-
terised by the small number of ornaments and the lack 
of bas-reliefs, facets, or fabrics on the walls. In this Test 
Site, the walls were painted with patterns, which imitated 
spatial effects. Figure 6 presents the distribution of scan-
ner positions and scanning distances, where the first scan 
was considered the reference scan. Due to the restriction 
on placing marked points on historical surfaces, auto-
matically detected points defined as check points were 
used for the accuracy analysis. The dimensions of Test 
Site IV are approximately 4.2 m × 4.2 m × 2.6 m.

The Test Site V is the office room at the main hall of 
Warsaw University of Technology. The smooth walls 
characterise the selected Test Site without the texture; 
lamps and power wires were on the ceiling, and the floor 
was covered with dark carpet. Figure 7 presents the dis-
tribution of scanner stations and scanning distances. 
The dimensions of the office room are approximately 
7.4 m × 5.9 m × 4.5 m.

The Test site VI is the “Empty shopping mall”. The 
walls of the room were smooth, without texture. Lamps, 
electric wires, and an air-conditioning system were on 
the ceiling; the floor was concrete. Figure 8 presents the 
distribution of scanner stations and scanning distances. 
Scan three was used as the reference scan, and eight 
marked points were distributed over the test site (con-
sidered as check points in further analyses), which were 
used for TLS data orientation. The dimensions of the Test 
Site VI are approximately 21.5 m × 7.1 m × 6.3 m.

The TLS‑SfM approach
The approach based on a modified SfM algorithm was 
used to register the TLS-derived point. Figure  9 shows 
a schematic of the data processing using the TLS-SfM 
method.

Fig. 8 The point cloud example in the spherical projection of test site VI with marked check points (red circles) [63]
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Fig. 9 Workflow of the proposed TLS-SfM point cloud registration approach



Page 11 of 26Markiewicz et al. Heritage Science          (2023) 11:254  

The TLS-SfM method is a multi-stage approach that 
consists of the following steps:

1) Conversion of point clouds to raster form (3D-2D).

 To convert point clouds to raster form, unprocessed 
raw data was selected to generate rasters with the 
maximum possible resolution (for each raster) and 
do not require interpolating the coordinate values for 
pixels. The mathematical relationship between carte-
sian and spherical coordinates was described by Fangi 
[44]. The data conversion from 3 to 2D consisted of 
converting the coordinates of the points from Carte-
sian to spherical based on Eqs.  6, 7, 8. The x and y 
coordinates in the raster area correspond to the val-
ues of the vertical and horizontal angles, respectively, 
and the intensity of the laser beam reflection and the 
X, Y, and Z coordinates of the points, respectively, are 
used to assign grey level values of the new raster. As 
a result of this step, 4 rasters are generated for each 
point cloud.

2) Corresponding search

 In the proposed TLS-SfM method, the process of 
finding tie points (feature detection and description) 
has been implemented using detect-the-describe, 
detect & describe (end-to-end) and describe-to-
detect (end-to-end detector-free local feature match-
ing methods) approaches. The detect-than-describe 
approach used a two-stage data transformation based 
on affine-based feature point detection and fea-
ture description using a descriptor. For both cases, 
both hand-crafted and learned-based algorithm 
approaches were used. A detailed description of the 
algorithms used is presented in subSect.  “Overview 
of the investigated algorithms and evaluated criteria”. 
This step is performed for all possible pairs of rasters. 
To determine these pairs, the methods of permuta-
tions without repetitions are used:

where: k = 2 (a pair of scans), n—the number of all 
scans.

 Descriptor matching (for detect-than-describe 
and end-to-end methods) is performed using the 
Approximate Nearest Neighbourhood-Based Point 
Matching algorithm and L2 distance metrics.

(9)
(

n
k

)

=
n!

k!(n− k)!

3) Tie points XYZ determination

 The 2D coordinates of the pre-matched tie points 
detected on the intensity rasters were used to inter-
polate the coordinates of the XYZ points. The X, 
Y and Z rasters generated in the first data process-
ing step were used for this purpose, respectively. 
The bilinear method was used as the interpolation 
method.

4) Tie point geometrical verification

 The geometrical verification of the detected tie points 
(based on 3D coordinates, performed in the itera-
tive process (RANSAC method) with the following 
assumptions—full registration (the accuracy on con-
trol and check points do not exceed 5 mm and covar-
iances factors are higher than 0.5), initial registration 
used for final registration bases on the ICP (threshold 
10 mm) and non-registration (values on control and 
check higher than 10  mm). The output of this data 
processing step was (1) the set of correct tie points, 
(2) the linear RMSE value of the scan pair match, (3) 
the number of tie points and (4) approximate trans-
formation parameters.

5) Incremental reconstruction

 The Incremental reconstruction process starts with 
selecting the reference scan to which the other point 
clouds will be registered. To do this, the pair of point 
clouds for which the highest number of tie points 
was first detected is selected. From this pair of points, 
the point cloud with more connections to the other 
scans is selected. To match the remaining pairs of 
scans, the process is performed iteratively according 
to the following steps:

(a) Localise a new pair of scans to the current pre-reg-
istered point clouds,

(b) Compute the approximate point clouds registration 
parameters,

(c) Find correspondence points on multiple point 
clouds,

(d) Repeat steps a-c until all pairs of scans have been 
added.

 The result of this stage is an approximation of the 
mutual orientation parameters and all possible con-
nections between point clouds.

6) Final bundle adjustment
 A final bundle adjustment is based on early iterative 

matching of the point clouds to the reference scan. 
This involves determining the orientation elements of 
the point clouds with simultaneous filtering of outlier 
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observations based on RMSE error values and relia-
bility coefficients. In addition, based on the measured 
control points, it is possible to orient the point clouds 
to the reference coordinate system. As a result of the 
TLS-SfM process, point cloud orientation elements 
are obtained in the adopted reference system.

Overview of the investigated algorithms and evaluated 
criteria
This study investigates the quality improvement and 
completeness of the TLS registration process using 2D 
raster data and affine-detectors. To compare and verify 
the results of the point cloud registration, based on the 
selected hand-crafted and learned features, the multi-
stage TLS-SfM registration methodology was followed.

(1) Hand-crafted affine detectors, namely, corner 
detector (AFAST) and blob detectors (ASURF and 
ASIFT), were tested. The use of affine in feature 
point detection involves two steps: (a) multiple vir-
tual image generation (which includes the skew, tilt, 
and rotation) to simulate the influence of the affine 
and (b) for each virtual image, apply the detector:

• FAST (Features from Accelerated Segment Test) [76] 
utilises corner keypoints in images to detect by com-
paring the brightness intensities of pixels in a circu-
lar neighbourhood around each pixel of interest. The 
technique will classify the pixel as a corner depend-
ing on the neighbourhood’s brightness and number 
of contiguous pixels and then to the central pixel 
using a threshold value. The FAST corner detector 
is based on a decision tree structure that allows for 
quick evaluation of the pixel intensities, making it 
suitable for real-time applications.

• SIFT (Scale-Invariant Feature Transform) [74]—the 
purpose of SIFT is to detect and describe distinctive 
image keypoints. The advantage of this technique is 
its invariant nature to the scale changes, rotations, 
and changes in illumination, which makes it robust to 
variations in image conditions. The working principle 
of the SIFT algorithm is identifying stable keypoints 
using a scale-space representation of the image and 
applying a Difference of Gaussians (DoG) operator 
to detect local extrema. These keypoints are then 
described based on their surrounding gradient ori-
entations, resulting in highly distinctive and invariant 
feature descriptors.

• SURF (Speeded-Up Robust Features) [75] offers 
faster computation. It provides robustness against 
image transformations by utilising integral images to 
efficiently calculate various image filters, such as the 
Haar wavelet responses, which capture both local 
intensity and orientation information. SURF detects 

keypoints by identifying locations with extreme 
responses in scale-space and orientation.

(2) Authors implemented the learned-based features:
• SuperGlue [94] for reliable correspondence between 

keypoints across different images. Unlike tradi-
tional hand-crafted methods, SuperGlue predicts 
the matching likelihood and establishes matches 
directly from the input data. It consists of two main 
components: (1) a learned embedding network and 
(2) a geometric verification module. The embedding 
network is used to map keypoints from two images 
into a shared feature space, where their similar-
ity is measured. The geometric verification module 
uses the learned embeddings to estimate a geomet-
ric transformation between the keypoints and refine 
the matches. SuperGlue can leverage rich contextual 
information and handle challenging scenarios such 
as occlusions and viewpoint changes owing to jointly 
learning feature representation and the matching 
process.

• LoFTR (Local Feature Transformer) is an end-to-end 
detector-free local feature-matching method intro-
duced by Sun et al. [92]. LoFTR creates dense pixel-
wise correspondences between images using a Trans-
former-based architecture. LoFTR directly predicts 
dense correspondences without needing a feature 
detector, unlike traditional approaches that require 
separate stages for feature detection, description, and 
matching. It operates in two steps: (1) coarse match-
ing and (2) fine matching. LoFTR employs a self-
attention mechanism in the coarse matching stage to 
allow each pixel to attend to its neighbours and cap-
ture their contextual information to create a pixel-
wise dense matching. The coarse matching stage is 
used to provide the initial estimation of correspond-
ences. LoFTR uses a hierarchical refinement network 
to refine the initial matches in the matching stage. 
This network takes the initial correspondences and 
iteratively refines them by considering local spatial 
relationships and context. LoFTR improves the accu-
racy and reliability of the correspondences by itera-
tively refining the matches. LoFTR’s Transformer-
based architecture captures long-range dependencies 
and global contextual information, enhancing the 
quality of the dense correspondences. This approach 
eliminates the need for explicit feature detection 
and produces dense descriptors directly, leading to 
improved matching performance.

• KeyNet detector + AffNet + HardNet descriptor 
(later called KeyNetAffine)—is a combined hand-
crafted and learned method to detect features. 
KeyNet is a state-of-the-art keypoint detector [81] 
that leverages deep learning techniques to detect 
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distinctive image keypoints. KeyNet utilises a convo-
lutional neural network (CNN) architecture, which 
is trained on large-scale datasets with annotated 
keypoints. KeyNet, to maximise the detection accu-
racy and robustness, identifies salient and repeat-
able keypoints, which allows for optimising the net-
work parameters. This detector is highly adaptable to 
diverse image conditions due to excellent handling of 
variations in scale, rotation, and illumination, demon-
strating outstanding performance in keypoint-based 
applications, namely, image matching, object recog-
nition, and visual tracking. The HardNet is a feature 
descriptor used in computer vision applications, 
particularly for matching and recognition tasks. The 
HardNet descriptor [84] is designed to capture and 
encode distinctive information from image patches, 
making it robust to variations in scale, rotation, and 
lighting conditions. The descriptor is computed by 
extracting local patches around keypoints and encod-
ing them into fixed-length feature vectors. HardNet 
can handle challenging scenarios, such as significant 
viewpoint changes and occlusions, owing to focusing 
on the most informative and discriminative patches. 
HardNet utilises a Siamese neural network architec-
ture that learns to optimise the feature representa-
tion for improved matching accuracy. During train-
ing, pairs of matching and non-matching patches are 
used to learn discriminative feature embeddings.

To evaluate the accuracy of TLS point cloud on learned-
based methods, it was decided to use those approaches 
trained on images depicting historical buildings and 
architectural objects (for LoFTR—MegaDepth, Super-
Glue and KeyNetAffine—PhotoTurism, respectively). 

The additional retrained learned-based descriptors were 
chosen due to the desire to test ready-made solutions and 
compare them with hand-crafted methods.The quality 
improvement and completeness of the TLS registration 
process were compared against several metrics presented 
in Table 1.

Results and discussion
Automatic pairwise point cloud registration‑ accuracy 
evaluation
To assess the detector’s or affine-detector’s applicability 
in the TLS registration process, the accuracy of the ori-
entation of all possible overlapping pairs of scans from 
different heights and distances from scanned surfaces 
was analysed. The results are presented in Table  2 and 
marked in colour: (1) green—the complete registration 
with the X, Y and Z with RMSE ≤ 0.005  m and covari-
ance factor > 0.5; (2) orange—preliminary orientation; 
obtained parameters should be treated as the initial 
parameters for Iterative closest Point (ICP) registration 
and (3) red—no registration because the points were not 
well distributed and/or the RMSE < 0.01 m and/or covari-
ance < 0.5. Additionally, due to the processing of point 
clouds of wall fragments (rather than the entire room) on 
Test Site III, it was decided to mark "x" pairs of scans that 
do not overlap.

The results in Table  2 show that only AFAST (point 
detector) and ASIFT (blob detector) allow for correct 
registration of all pairs of scans for all test sites. The 
remaining algorithms should be analysed individually for 
each test site. The LoFTR approach obtained the worst 
results: for Test Site I, only 1 of 6; Test Site II, 0 of 15; Test 

Table 1 Metrics for evaluating the hand-crafted and learned-based features

Metrics Description

Number and tie point distribution The high number of points can lead to detecting the correct points used in the registration step. 
Additionally, it also affects the possible determination of tie points between multiple scans and the final 
robustness of the registration

The completeness of data registration The data registration is understood as the ability to orientate all pair scans to each other with a minimum 
number of connections and determine the robustness and effectiveness of the TLS-SfM approach

The registration accuracy The registration accuracy determines the final quality of matching between points clouds on marked 
check points. The final step of documentation generation results in the final accuracy of 3D models 
and documentation

The reliability assessment The reliability assessment makes it possible to assess the correctness of the geometric distribution 
of the tie points in a fully automatic manner. By meeting the minimum requirements for the values 
of these coefficients, it is possible to assess whether a network of tie points is robust

The distance between a pair of point clouds The analysis of the distance between point clouds allows independent control of the accuracy of match-
ing whole and fragmented point clouds. Such a metric enables the accuracy of the fit to be assessed 
for objects for which it is not possible to distribute marked reference points. This allows the results to be 
compared independently with stat-of-the-art approaches, namely iterative closest point and target-
based



Page 14 of 26Markiewicz et al. Heritage Science          (2023) 11:254 

Site III, 0 of 9; Test Site IV 6 of 6; Test Site V, 0 of 28 and 
Test Site VI 0 of 20 pairs of scans were correctly oriented 
(full orientation). For the other learned-based approaches 
for point detection, significantly better results were 
obtained. In the case of the SuperGlue detector for Test 
Site I, 2 of 6; Test Site II, 11 of 15; Test Site III, 8 of 9; Test 
Site IV, 6 of 6; Test Site V, 24 of 28 and Test Site VI 6 of 21 

pairs of scans were correctly registered. With the KeyN-
etAffine, it was possible to register all pairs of scans from 
Test Site IV, 5 of 6 pairs of scans for Test Site I, 12 of 15 
for Test Site II, 1 of 9 for Test Site III, 16 out of 28 for Test 
Site V and 3 of 21 for Test Site VI.

When the multi-position TLS point clouds are regis-
tered, not only the percentage of the correctly aligned 

Table 2 The accuracy of the TLS registration for detectors and a-detectors
Test Site I- Basement at the Royal Castle

AFAST ASIFT ASURF SuperGlue LoFTR KeyNetAffine
2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 

1  1  1  1  1  1 

2   2   2   2   2   2  

3    3    3    3    3    3   

Test Site II- Basement at the Royal Castle
AFAST ASIFT ASURF SuperGlue LoFTR KeyNetAffine

 2 3 4 5 6  2 3 4 5 6  2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

1  1  1 1 1 1

2   2   2  2 2 2

3    3    3   3 3 3

4     4     4    4 4 4

5      5      5     5 5 5

Test Site III – "The Queen's Bedroom" 
AFAST ASIFT ASURF SuperGlue LoFTR KeyNetAffine

2 3 4 5 6  2 3 4 5 6  2 3 4 5 6  2 3 4 5 6  2 3 4 5 6  2 3 4 5 6 

1 x x x 1   x x x   1   x x x   1   x x x   1   x x x   1   x x x 

2 x x x 2   x x x   2   x x x   2   x x x   2   x x x   2   x x x 

3 3       3       3       3       3     

4 4         4         4         4         4       

5 5 5 5 5 5

Test Site IV – "The Chamber with a Parrot" 
AFAST ASIFT ASURF SuperGlue LoFTR KeyNetAffine
2 3 4 2 3 4  2 3 4  4 5 6  4 5 6  4 5 6 

1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3

Test Site V - The office room

AFAST ASIFT ASURF SuperGlue LoFTR KeyNetAffine

2 3 4 5 6 8 9 2 3 4 5 6 8 9 2 3 4 5 6 8 9 2 3 4 5 6 8 9 2 3 4 5 6 8 9 2 3 4 5 6 8 9

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

5 5 5 5 5 5

6      6 6 6 6 6

8       8 8 8 8 8

Test Site VI – Empty shop (shopping mall)
AFAST ASIFT ASURF SuperGlue LoFTR KeyNetAffine

2 3 4 5 6 7  2 3 4 5 6 7  2 3 4 5 6 7  2 3 4 5 6 7  2 3 4 5 6 7  2 3 4 5 6 7

1 1  1  1  1  1 

2 2   2   2   2   2  

3 3    3    3    3    3   

4 4     4     4     4     4    

5 5      5      5      5      5     

6       6       6       6       6       6      
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point cloud is necessary, but also the possibility of a 
global registration for all possible point clouds. The 
full registration (based on results of full and prelimi-
nary pair of scans orientation) for Test Site I, II, III, IV 
and V. For Test Site VI, it was impossible to perform 
the multi-position registration. The incompleteness of 
a pair of scan registrations for Test Site I and IV might 
affect the robustness of the global adjustment and 
approximately equivalence redundancy of the tie point 
on point clouds.

The hand-crafted detectors are the potential solu-
tion to overcome the problems mentioned above. 
Table 2 shows that the full multi-stage registration was 
conducted for Test Sites I–V. The worst results were 
obtained for Test Site VI, for which full registration was 
only possible with the ASIF and AFAST detectors.

The analyses of the performance of point/blob detec-
tors and a-detectors on test fields characterised both by 
different textures, structures, numbers, and decorations 
and by scanner positions to varying distances from 
walls and heights demonstrated that:

• Using the LoFTR approach, it was not possible to 
correctly register point clouds obtained by scan-
ner positions, for which corresponding fragments 
were measured at significantly different angles to 
the normal vector surface (i.e., acute angles to the 
normal vector surface) and for significantly differ-
ent distances from the scanner position. This influ-
enced the occurrence of significant "distortions" in 
the spherical projection caused by the cartographic 
conversion of the 3D data from the 2D form.

• Hand-crafted algorithms allow more resistant tie 
points to be detected, which translates into more cor-
rectly oriented scan pairs. The SIFT and SURF algo-
rithms are based on greyscale gradients, making them 
scale-invariant and more robust. The performance dif-
ference is based on using a filter (CenSurE and SiFT—
Laplasian centre-surround and Difference of Gaussian 
algorithms, respectively) and a Hessian (SURF and 

Difference of Boxes detector). For this reason, with 
these detectors, it was possible to detect a higher num-
ber of correctly matched keypoints, which affected the 
higher number of correctly registered pairs of scans.

• Applying affine significantly improved the quality of 
the TLS point cloud pairwise and multi-stage reg-
istration. The use of ASIFT and AFAST allowed the 
orientation of point cloud pairs, necessary for final 
multi-position registration, for all Test Sites. This 
is also noticeable when applied to the KeyNetAffine 
approach. Compared to other learned-based meth-
ods, it was possible to orient more pairs of scans with 
a wide baseline (Test Site I, II and VI). For the orienta-
tion of short baseline pairs of scans characterised by 
high distortion (Test Site III and V), significantly bet-
ter results were obtained for the SuperGlue approach.

The number of detected and matched keypoints 
after the final bundle adjustment
The number of tie points obtained after the full bundle 
adjustment process was analysed to assess the influence 
of the hand-crafted and learned features in the TLS reg-
istration process and the selection of the appropriate fea-
tures. Table 3 presents the number of all tie points used 
in the full bundle adjustment and points for cases for 
which full bundle adjustment was impossible (marked 
with a cross).

The number of used tie points presented in Table  3 
indicated that hand-crafted detectors recorded the high-
est number of keypoints for all Test Sites apart from Test 
Site VI, for which the SuperGlue approach detected the 
most points. When considering the ratio of the number 
of points detected by the hand-crafted versus learned-
based approach, it can be concluded that 26 times more 
were detected for Test Site I (AFAST—KeyNetAffine), 
91 for Test Site II (ASIFT—LoFTR), 2.8 for Test Site III 
(AFAST—KeyNetAffine), 21 for Test Site IV (AFAST—
KeyNetAffine), and 5 for Test Site V (AFAST—KeyN-
etAffine). Due to the lack of full bundle adjustment of all 

Table 3 The number of all tie points used in the full bundle adjustment and points for cases for which full bundle adjustment was 
impossible (marked with a cross)

Detector Test Site I Test Site II Test Site III Test Site IV Test Site V Test Site VI

AFAST 70,977 108,218 5144 146,662 37,215 877

ASIFT 60,308 123,808 3392 106,386 14,597 496

ASURF 27,871 92,659 1184 128.360 13,290 648

SuperGlue 3024 6518 1916 15,796 8268 1264x

LoFTR 3295 1359 293x 16,907 324x 0

KeyNetAffine 2726 7682 1838 6938 7387 176x
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scans using Learned features, it was impossible to calcu-
late the points ratio for the two approaches.

The analyses presented in Table  3 also show that, on 
average, the most tie scores were detected for AFAST 
and the least for KeyNetAffine. The significant difference 
in the number of points detected for the two approaches 
for Test Site I, II and IV is due to the characteristics of 
the sites. Test Site I and II is a historic brick cellar with an 
arched ceiling, and Test Site IV is a room with paintings 
imitating the spatial effect. For this reason, hand-crafted 
detectors, notably the AFAST detector (due to its mode 
of operation), detect significantly more points than other 
Test Sites characterised by less such unambiguous detail.

Their spatial distribution should also be considered 
when assessing the quality of the tie points used in the 

bundle adjustment process. This is crucial, as it impacts 
the quality of registration and the accuracy of the entire 
process. Figure 10 shows the distribution of points used 
in full bundle adjustment and points for cases for which 
full bundle adjustment was impossible (marked with a 
cross).

The analysis shows that despite the lower number of 
tie points detected by Learned-based methods compared 
to Hand-crafted detectors, their placement guarantees 
a correct point cloud registration. As with the number 
of points analysed, the distribution of points should be 
assessed independently for each Test Site:

• Test Site I—The points detected by the hand-crafted 
detectors for all detectors have a similar spatial dis-

Fig. 10 The tie points distribution used for TLS point cloud registration for each method
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tribution. Noticeably, the issues are clustered in the 
lower part of the room and the middle of the ceiling. 
An uneven distribution characterises points detected 
using the LoFTR algorithm, and an increased density 
of points on wall sections is noticeable. For KeyN-
etAffine, the points are evenly distributed, and unlike 
for LoFTR, there are no areas with a significantly 
higher point density. When analysing the results for 
SuperGlue, there is a significant density of points 
in one part of the basement due to the inability to 
detect tie points on the minimum number of pairs of 
scans mortising full bundle adjustment.

• Test Site II—The distribution of scores for all meth-
ods is similar for Test Site I. For the hand-crafted 
algorithms, the most points (highest density) were 
detected and used on the two walls visible on all 
scans. Significantly fewer points are on the ceiling, 
and the highest density was obtained in the central 
part of the basement. The best results were obtained 
for the ASURF, AFAST and ASIFT algorithms. For 
the learned-based algorithms, the best distribution 
of points (both points were on the ceiling and the 
walls) while maintaining a similar density for the 
entire basement was obtained for KeyNetAffine and 
the worst for LoFTR, for which points were mainly 
distributed on the walls in groups of different thick-
nesses. For the SuperGlue method, most points were 
distributed on the walls mapped on all scans and a 

small number on the ceiling. However, it should 
be emphasised that the number and distribution 
of points detected by the learned-based methods 
allowed the correct registration of all point clouds.

• Test Site III—For Test Site III, which contains rich 
ornaments, bas-reliefs, and facets, the distribution 
of tie points was similar for all hand-crafted and 
learned-based methods except for the LoFTR algo-
rithm. In summary, it can be concluded that the best 
distribution was obtained for points detected using 
the SuperGlue approach.

• Test Site IV—As for Test Sites I and II, in this case, 
a higher point density for points detected by hand-
crafted methods. For this type of algorithm, it is 
noticeable that there is a higher point density for 
areas where there is a more significant change in grey 
degree gradients. For this reason, these points are 
not evenly distributed throughout the study area. For 
learn-based methods (SuperGlue and KeyNetAffine), 
the distribution of points is more even than for hand-
crafted methods. As for the previous Test Sites of the 
learned-based algorithm group, the most points were 
detected using the SuperGlue approach, the least 
using LoFTR.

• Test Site V—In the case of an office room test 
field characterised by a lack of diverse texture and 
equipped with furniture and office equipment, the 
number, density, and distribution of tie points were 

Table 4 Comparison of results of TLS joint/full registration method for all scans and the target-based registration method with 
reliability assessment for all Test Sites

x too low number of tie points

RMSE on marked check points [mm]

Detector Test Site I Test Site II Test Site III Test Site IV Test Site V Test Site VI

AFAST 3.4 3.9 2.3 2.5 2.0 9.0

ASIFT 1.8 2.3 1.9 2.8 1.8 4.9

ASURF 3.7 5.0 2.5 2.6 2.1 x

SuperGlue x 4.1 4.7 2.6 1.9 x

LoFTR 4.2 10.5 x 2.7 x x

KeyNetAffine 3.6 2.3 5.5 2.5 2.4 x

Target-based method 3.5 4.4 5.7 2.8 1.3 3.8

The reliability indices—minimum values

Detector Test Site I Test Site II Test Site III Test Site IV Test Site V Test Site VI

AFAST 0.94 0.98 0.66 0.99 0.94 0.10

ASIFT 0.98 0.78 0.58 0.99 0.65 0.60

ASURF 0.97 0.99 0.94 0.99 0.93 x

SuperGlue x 0.28 0.51 0.98 0.87 x

LoFTR 0.76 0.59 x 0.94 x x

KeyNetAffine 0.51 0.89 0.86 0.98 0.86 x

Target-based method 0.35 0.20 0.22 0.23 0.29 0.28
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similar for the AFAST, ASIFT, ASURF, SuperGlue 
and KeyNetAffine algorithms. As for the previous 
Test Sites, the worst results were obtained for the 
LoFTR-based approach, for which all point clouds 
could not be registered.

• Test Site VI—An analysis of the distribution of tie 
points detected on the empty shopping mall scans 
shows that only hand-crafted ASIFT and AFAST 
detectors could orient all point clouds. This was due 
to the conversion of the 3D data to 2D and the influ-
ence of the presence of significant distortion in the 
image. Considering that points were searched on 
wide-based point clouds, applying the abovemen-
tioned methods allowed the detection of an adequate 
number of points evenly distributed over the entire 
study area. Comparing the results for points detected 
on rasters generated from pairs of scans with smaller 
baseline between point clouds and less distortion, the 
use of learned-based methods allowed the detection 
of a more significant number of correctly detected 
tie points. For this reason, when planning a survey 
of this type of object, it is crucial to decide whether 
to make fewer point clouds and use affine-detector-
based hand-crated methods or to add several scanner 
stations to reduce the baseline between point clouds 
and use learned-based algorithms.

The comparison with the current state‑of‑the‑art methods
To assess the accuracy and correctness of the pre-
sented approach for point cloud orientation based on 

affine-detectors and point clouds converted to raster 
form, it was decided to compare point clouds with the 
commonly used approach based on signalised control 
points (target-based registration) implemented in Z + F 
LaserControl software [47] and the Iterative Closest 
Points (ICP) method implemented in the open-source 
CloudCompare [48].

The target‑based
The target-based method relies on the marked points 
and is commonly applied for TLS point cloud registra-
tion. These points should be evenly distributed across 
the investigated object. To compare results from the fea-
ture-based registration method with “normal” and affine 
detectors, the obtained results were compared with the 
TLS target-based registration from Z + F LaserControl 
software. To automatically analyse the influence of the 
geometrical point distribution with reliability assess-
ment, the values of the covariance factors were com-
pared. Results are shown in Table 4.

Results presented in Table  4 show that the differ-
ences between the RMSE values on marked check points 
(obtained from multi-position TLS registration) depend 
on Test Sites.

• For Test Site I, significantly higher accuracy of 
full-bundle adjustment can be observed on points 
detected with the ASIFT detector compared to the 
commonly used Target-based approach. The linear 
RMSE value was 2 times lower (1.8  mm). For the 
other algorithms, the linear RMSE values were simi-

Fig. 11 The probability density histogram of linear deviations between the worst oriented pair of scans for Test Site I: a target-based method, b ICP 
point-to-point, c AFAST, d ASIFT, e ASURF, f SuperGlue, g LoFTR, h KeyNetAffine
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lar to those of the Target-based approach and were 
for AFAST—3.4 mm, ASURF—3.7 mm, KeyNetAff-
ine—3.6 mm and Target-based 3.5 mm, respectively. 
For the LoFTR-value method, the RMSE was 4.2 mm 
(0.7 mm higher) than the Target-based approach. The 
significant impact of using a Hand-crafted detector 
can be seen by analysing the minimum covariance 
factors. This contributed to fulfilling the network’s 
controllability condition and improving the geomet-
ric distribution of tie points for the minimum values 
(above 0.5, which is the threshold value). There is a 
noticeable increase in values from 0.35 for Target-

based to 0.94 for AFAST, 0.98 for ASIFT, 0.97 for 
ASURF, 0.76 for LoFTR and 0.51 for KeyNetAffine.

• For Test Site II, varying linear RMSE values are 
evident. The best results were obtained on points 
detected with ASIFT and KeyNetAffine—linear 
RMSE values of 2.3  mm—2 times lower than for 
Target-based. For AFAST and SuperGlue, the linear 
RMSE values are lower than for Target-based. Only 
for ASURF, which is 0.6  mm higher than Target-
based and LoFTR—6.1 mm. Analysing the values of 
the minimum reliability indices, as for Test Site I, a 
significant increase in their values (which translates 
into a better geometric distribution and resistance 

Fig. 12 The probability density histogram of linear deviations between the worst oriented pair of scans for Test Site II: a target-based method, b ICP 
point-to-point, c AFAST, d ASIFT, e ASURF, f SuperGlue, g LoFTR, h KeyNetAffine

Fig. 13 The probability density histogram of linear deviations between the worst oriented pair of scans for Test Site III: a target-based method, b 
ICP point-to-point, c AFAST, d ASIFT, e ASURF, f SuperGlue, g LoFTR, h KeyNetAffine
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to the influence of outliers) for all methods except 
SuperGlue.

• In the case of Test Site III, the RMSE’s deviation on 
detectors is approximately 2 times lower than Tar-
get-based (5.7  mm) for Hand-crafted detectors and 
similar to Target-based (but still lower) for Learned-
based approaches. The covariance factor for the 
Hand-crafted method is in the range of 0.58–0.98, 
for Learned-based methods in the range of 0.51–0.86 
and for target-based is 0.22. As mentioned, full reg-
istration for all scans with the LoFTR algorithm was 
impossible.

• For Test Site IV, both Hand-crated and Learned fea-
tures provided comparable results; therefore, it is dif-
ficult to judge if it is necessary to use the Learned-
based method, as the obtained mean RMSE values 
for detectors and target-based method are similar. 
The minimum covariance factors values (about 0.98) 
are about 4.5 times better than the target-based 
method (0.23).

• For Test Site V, similar results for Hand-crafted 
(2.5  mm–2.8  mm) and Learned-based methods 
(1.9  mm–2.4  mm) but slightly worse than Target-
based (1.3 mm). The minimum covariance factor for 
both methods is in the range of 0.65–0.94, and for 

Fig. 14 The probability density histogram of linear deviations between the worst oriented pair of scans for Test Site IV: a target-based method, b 
ICP point-to-point, c AFAST, d ASIFT, e ASURF, f SuperGlue, g LoFTR, h KeyNetAffine

Fig. 15 The probability density histogram of linear deviations between the worst oriented pair of scans for Test Site V: a target-based method, b ICP 
point-to-point, c AFAST, d ASIFT, e ASURF, f SuperGlue, g LoFTR, h KeyNetAffine
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target-based is 0.29. In this case, orienting the point 
clouds using LoFTR-detected points was also impos-
sible.

• Completing the multi-station registration scans for 
Test Site VI was impossible due to the challenge of 
finding the corresponding points for Hand-crafted 
and Learned methods, except ASIFT and AFAST. 
Comparing values of RMSE, similar values can be 
seen for ASIFT and target-based methods. However, 
the AFAST detector demonstrated approximately 
2–2.5 times worse performance. The min covari-
ance factors for the AFAST, ASIFT and target-based 
methods were 0.1, 0.60 and 0.28, respectively.

Iterative closest points (ICP)
To assess the accuracy of TLS data registration using aff-
ine-detectors, the results were compared with the point-
to-point ICP method using open-source CloudCompare 
software, commonly used in point cloud registration. The 
quality of point cloud matching was assessed by analysing 
the linear distance between pairs of point clouds. Point 
cloud resampling was performed with a fixed distance 
(1 mm) between points. Figures 11, 12, 13, 14, 15, 16 show 
the example of the worst scenario for all Test Sites. Each fig-
ure contains 8 histograms showing the probability density 
function of linear deviations between point clouds using 
the target-based method, the ICP point-to-point, Hand-
crafted detectors (AFAST, ASIFT, ASURF) and Learned-
based features (SuperGlue, LoFTR and KeyNetAffine).

Based on the analysis of the results for Test Site I 
(Fig. 11), it can be seen that results obtained from ASIFT, 

Fig. 16 The probability density histogram of linear deviations between the worst oriented pair of scans for Test Site VI: a target-based method, b 
ICP point-to-point—CloudCompare, c AFAST, d ASIFT, e ASURF, f SuperGlue, g LoFTR, h KeyNetAffine
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ASURF, SuperGlue, LoFTR, Target-based and ICP meth-
ods are similar to a chi-square distribution. Still, better 
results are obtained from the detector-based approach.

For Test Site II (Fig. 12), all histogram shapes except the 
Target-based and LoFTR methods are similar to a chi-
square distribution. The distance for 95% of the points 
for the Target-based method algorithm does not exceed 
6  mm. The histogram peak of probability density histo-
gram of linear deviations between the worst oriented pair 
of scans by LoFTR shows that deviations are higher than 
10 mm and registration was performed incorrectly.

Test Site III’s best point cloud matching results were 
obtained for the ICP-based approach (Fig.  13b). The 
results obtained from Hand-crafted detectors (Fig. 13c–
e) are similar to those obtained from target-based 
registration (Fig.  13a). The peaks of histograms are 
approximately 2 mm. The shapes of the linear deviations 
histograms for Learned-based approaches (Fig.  13f–h) 
are “flat”, indicating more significant errors in deviations 
between point clouds than for Hand-crafted methods.

Based on the analysis of the results for Test Site IV 
(Fig.  14), the results obtained from all methods (except 
KeyNetAffine) are similar to a chi-square, which were 
obtained by the Target-base and ICP point-to-point 
approaches. Despite not obtaining a chi-square distribu-
tion for the KeyNetAffine methods, it should be consid-
ered that the scans were oriented correctly as, for 95% of 
the points, the distance does not exceed 4 mm, which does 
not exceed a scanning point resolution of 6 mm/10 m.

Results obtained for Test Site V (Fig.  15) show that 
point clouds were oriented correctly using algorithms 
based on Hand-crafted detectors. In contrast, for the 
ASIFT detector, the distribution of values takes the shape 
of a chi-square distribution and coincides with histo-
grams obtained for the target-based and ICP methods. 
Similar to the results obtained for Test Site IV (not chi-
square distribution of other detectors) for the Learned-
based approach, the deviations of 95% of the points do 
not exceed 6  mm, which does not exceed a scanning 
point resolution of 6 mm/10 m.

The worst results for comparing point cloud distances 
were obtained from empty shop using the Target-based 
method (Fig. 16a). This was due to the 12 mm/10 m scan-
ning resolution, which translated into point cloud den-
sity and the ability to identify signalised points. For this 
reason, it is recommended to use the ICP method, which 
allows for the correct orientation of the data. Despite 
this, the probability density histogram of linear devia-
tions between the worst oriented pair of scans shows that 
the distances between clouds do not exceed the accepted 
scanning resolution of 12 mm/10 m, which can be con-
sidered an acceptable registration result.

In summary, the data orientation results presented using 
an affine-detector allow robust registration, and choosing 
the ASIFT detector allows for complete data registration.

Conclusion
This article evaluated the quality improvement and com-
pleteness of the TLS registration process using 2D raster 
data from spherical images and Hand-crafted and Learn-
ing features in the multi-stage TLS point cloud registra-
tion. For this study, to compare and verify the detectors 
and A-detectors, the Royal Castle in Warsaw without 
decorative structure (Test Site I and II), Museum of King 
Jan III’s Palace at Wilanow with decorative elements, 
ornaments, and materials on walls (Test Site III) and flat 
frescos (Test Site IV), narrow office (Test Site V) and 
shopping mall (Test Site VI) were used. The performed 
experiments demonstrated that:

• The proposed TLS point cloud registration approach 
is a fully automatic solution independent of the 
object’s interior type.

• The selection of a suitable detector should depend on 
the test site being measured. In the case of cultural 
heritage interiors (characterised by a good texture 
and number of ornaments), it is possible to use both 
Hand-crafted detectors AFAST, ASURF, ASIFT and 
Learned-based SuperGlue and LoFTR. For the point 
cloud registration of public buildings, it is recom-
mended to use detectors such as AFAST or ASIFT. 
On the other hand, using the ASIFT detector allowed 
for point cloud registration regardless of the geom-
etry dependencies between individual scans and the 
test field being developed.

• It is recommended to use the ASIFT or AFAST detec-
tor for TLS point cloud registration because these 
detectors could perform the multi-station registration 
at all Test Sites. Another solution might be to consider 
increasing the number of posts to minimise signifi-
cant deviations on spherical images and use Learned 
methods, namely SuperGlue and KeyNetAffine.

• The use of the affine hand-crafted detectors allows 
for detecting the high number of tie points, improv-
ing the accuracy and completeness of the TLS reg-
istration process compared to the learning-based 
approach. The number of ties detected increased 
for cultural heritage sites by 21–91 times and for 
public objects by about 2.8–5 times.

• In analysing the accuracy of point cloud orienta-
tion on signalised check points, two cases should 
be considered separately, i.e., decorated rooms and 
public facilities. For decorative sites, the smaller 
values can be observed for linear RMSE errors 
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for hand-crafted features (values approximately 2 
times smaller) than those obtained by the Target-
based approach and similar to Target-based values 
for the Learned-based approach. When comparing 
the results obtained for public interiors, it can be 
observed that similar accuracies to the target-based 
method were obtained for hand-crafted features 
and learned-based (where it was possible to regis-
ter all scans). That proves that using a-detectors for 
point cloud orientation is correct and reasonable.

• For low internal reliability indices, we have relatively 
low controllability of observations and thus low detec-
tion of outliers at the reference points. An important 
consideration is the number of points and their geo-
metric distribution. In the target-based method, it is 
challenging to distribute many points and sometimes 
even impossible, while in the feature-based approach, 
a large number of points are automatically detected. A 
large number of points distributed over the entire sur-
veyed object allows for relative control of points and 
the correct removal of outliers.

• By analysing the internal reliability indices, using 
a-detectors allows for increased controllability of 
points and the detection of outliers in the dataset. 
This fulfilled the network’s controllability condition, 
with 0.5 being the acceptable threshold value. Com-
paring results obtained from Hand-crafted and 
Learned features with values obtained for the points 
detected with the Target-based method, it can be 
observed that for Test Site I, the minimum value is 
0.51–0.97, while for the target-based method, the 
minimum is 0.35. For Test Site II, the minimum is 
between 0.59 and 0.98 (only for SuperGlue is 0.28), 
while for the target-based method, the average is 
0.20. For Test Site III, the average minimum covari-
ance factors values (0.71) are about 3.2 times bet-
ter compared to the target-based method (0.22); for 
Test Site IV, the minimum covariance factors for 
the targets-based method is 0.23 and about 4 times 
worse than the detector-based method. In the case 
of Test Site V, the minimum covariance factor for 
the detector-based method is in the range of 0.65–
0.94, while for the target-based method, it is 0.29 
and for the Test Site VI, the minimum covariance 
factors are 0.10, 0.60 and 0.28 for AFAST, ASIFT 
and target-based, respectively.

• The proposed robust method for point cloud regis-
tration based on intensity rasters (together with a 
depth map) and affine-detectors allows us to obtain 
similar results as commonly used target-based and 
Iterative Closest Points methods. The advantage of 
the proposed approach for point cloud orientation 
over the Target-based method is that more automati-

cally detected tie points are used for orientation, with 
better spatial distribution and robust outliers detec-
tion regarding the reliability theory. When register-
ing point clouds using the ICP method, the clouds 
must be pre-oriented, as this guarantees the correct-
ness of the final registration. In the affine-detectors 
approach, such a condition is not required since the 
selection and elimination of tie points are utilised in 
a two-step manner through descriptor matching and 
geometrical verification based on the RANSAC algo-
rithm.

• The obtained TLS registration results based on 
learned-based methods (on data trained on the 
images by the authors of the solutions) attest to high 
performance and use in data orientation. To further 
improve the accuracy and completeness of the data 
orientation on objects with poorer texture and less 
ornamentation (Test Sites V and VI), the authors 
plan to prepare a test dataset based on intensity ras-
ters based on TLS point clouds.
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