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Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK; dDanish Center for Clinical Health Services Research, 
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ABSTRACT
Introduction: Direct oral anticoagulants (DOACs) have overtaken vitamin K antagonists to become 
the most widely used method of anticoagulation for most indications. Their stable and predictable 
pharmacokinetics combined with relatively simple dosing, and the absence of routine monitoring 
has made them an attractive proposition for healthcare providers. Despite the benefits of DOACs as 
a class, important differences exist between individual DOAC drugs in respect of their pharmaco-
kinetic and pharmacodynamic profiles with implications for dosing and reversal in cases of major 
bleeding.
Areas Covered: This review summarizes the state of knowledge relating to the pharmacokinetics of 
dabigatran (factor IIa/thrombin inhibitor) and apixaban, edoxaban and rivaroxaban (factor Xa) inhibi-
tors. We focus on pharmacokinetic differences between the drugs which may have clinically significant 
implications.
Expert Opinion: Patient-centered care necessitates a careful consideration of the pharmacokinetic 
and pharmacodynamic differences between DOACs, and how these relate to individual patient 
circumstances. Prescribers should be aware of the potential for pharmacokinetic drug interactions 
with DOACs which may influence prescribing decisions in patients with multiple comorbidities. In 
order to give an appropriate dose of DOAC drugs, accurate estimation of renal function using the 
Cockcroft-Gault formula using actual body weight is necessary. An increasing body of evidence 
supports the use of DOACs in patients who are obese, and this is becoming more routine in clinical 
practice.
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1. Introduction

In many countries, the direct oral anticoagulants (DOACs) have 
overtaken vitamin K antagonists to become the most widely 
used method of oral anticoagulation for most indications. 
Their stable and predictable pharmacokinetics combined 
with relatively simple dosing, and the absence of routine 
monitoring has made them an attractive proposition for 
healthcare providers. Despite the benefits of DOACs as 
a class, important differences exist between individual DOAC 
drugs in respect of their pharmacokinetic and pharmacody-
namic profiles. These differences, coupled with the expanding 
role of DOACs in the clinical setting, as well as nuances in their 
dosing, mean that clinicians can be faced with increasingly 
complex decisions when selecting the most appropriate agent 
for a given patient [1].

Since their inception, DOACs have been subject to exten-
sive investigation with guidelines surrounding their use chan-
ging as new evidence has emerged [1]. It is therefore 
important for those individuals involved in the prescribing 
and monitoring of DOACs to be familiar with the pharmaco-
kinetic and pharmacodynamic properties of these agents and 
this article provides a detailed review of the topic.

1.1. The pharmacodynamic effects of DOACs

DOACs exert their pharmacodynamic effect by interfering with 
the normal function of clotting factors. In the clotting cascade, 
the two main targets for DOACs are factor IIa (thrombin) and 
factor Xa. Apixaban, edoxaban, and rivaroxaban all target 
factor Xa, whereas dabigatran is a direct thrombin inhibitor 
(Table 1). Betrixaban is also a factor Xa inhibitor but has since 
been withdrawn by its manufacturer, so is not discussed 
extensively.

Apixaban is a direct and reversible inhibitor of both free 
and clot bound factor Xa [2,3]. Whilst it has no direct effects 
on platelet aggregation, it inhibits thrombin-induced platelet 
activation [2,3] and consequently it is known to prolong pro-
thrombin time, international normalized ratio and activated 
partial thromboplastin time [3,4]. The impact of apixaban on 
thrombin generation lasts over 12 hours following oral admin-
istration [3]. Anti-factor Xa activity demonstrates a close linear 
relationship with plasma apixaban concentrations across 
a wide range of doses [3]. Other markers of hemostasis, such 
as clotting time, demonstrate a high degree of variability and 
do not accurately reflect apixaban activity [3].
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Edoxaban is a selective and competitive inhibitor of factor 
Xa. It inhibits thrombin formation and platelet aggregation 
and causes an increase in prothrombin time, international 
normalized ratio and activated partial thromboplastin time, 
inhibiting thrombin generation for up to 24 hours [5]. Plasma 
edoxaban levels and anti-factor Xa activity demonstrate 
a linear relationship [6].

Rivaroxaban is a direct, specific, and competitive inhibitor 
of factor Xa, inhibiting thrombin formation, and prolonging 
both prothrombin and activated partial thromboplastin time 
[7,8]. Rivaroxaban induced inhibition of thrombin generation 
persists beyond 24 hours permitting once daily dosing [8] and 
prolongation of prothrombin time exhibits a linear correlation 
with rivaroxaban plasma concentration [7].

Unlike the other DOACs, dabigatran is not a factor Xa 
inhibitor, and is instead a direct competitive inhibitor of free 
and fibrin-bound thrombin [9,10]. The effect of dabigatran on 
thrombin is rapid and reversible and prevents the conversion 
of fibrinogen into fibrin, preventing the development of 
a thrombus [9,10]. Dabigatran is known to prolong thrombin 
time, ecarin clotting time and activated partial thromboplastin 
time [9,10], with peak prolongation of coagulation corre-
sponding with the maximum plasma concentration (Cmax) 
and dropping by approximately 50% 12 hours after adminis-
tration [11].

The dosing regimens associated with the different DOACs 
have been the subject of much discussion. From a patient- 
perspective once daily dosing (edoxaban and rivaroxaban) 
may better promote compliance than twice-daily dosing (apix-
aban and dabigatran). However it has been suggested that 
rivaroxaban’s once daily dosing can lead to higher 

concentration peaks (and therefore greater risk of bleeding). 
Despite this, a recent meta-analysis, including 12 studies (24 
dose comparisons) across a range of indications concluded 
that the risk of thrombosis and bleeding were similar across 
once and twice-daily regimens [12].

The routine monitoring of DOACs is generally not consid-
ered necessary although it may be of some benefit in certain 
situations and patient populations such as major bleeding, 
declining renal function, pre-procedure and [13] treatment 
failure (breakthrough stroke) [14] which may result from 
a number of factors, including pharmacogenetic inter- 
individual differences in drug metabolism [15]. Whilst thera-
peutic ranges have not been clearly established, correlations 
between plasma trough levels and clinical effects (bleeding or 
thromboembolism) have been demonstrated with dabigatran 
and edoxaban (RE-LY and ENGAGE trials) and the European 
Heart Rhythm Association Guidelines state that plasma mon-
itoring may be useful in emergency situations or special cases 
[16]. Point of care tests have recently been studied, which 
sensitively identified effective thrombin and factor Xa inhibi-
tion by DOACs in a real-world cohort of patients presenting at 
an emergency department [17,18]. Where indicated, apixaban, 
edoxaban, and rivaroxaban activity can be accurately pre-
dicted with anti-factor Xa levels. Heparin anti-Xa levels can 
be used to identify the presence of a DOAC, and agent-specific 
Xa-levels can be used in quantification [3,13,19,20]. However, 
recent studies in elderly patients with atrial fibrillation (AF), 
multimorbidity, and polypharmacy receiving apixaban/rivarox-
aban found great inter-individual variability in plasma concen-
trations and thrombin generation (TG) [21]. Dabigatran activity 
can be monitored by assaying thrombin time, dilute thrombin 
time, ecarin clotting time and activated partial thromboplastin 
time, although the latter is less sensitive and not appropriate 
for precise quantification [10].

The International Council for Standardization in 
Haematology Recommendations for Laboratory Measurement 
of Direct Oral Anticoagulants documents outline the expected 
plasma concentrations of drugs associated with specific DOAC 
doses, and provided important insights into the reliability of 
assays [22].

In the event of overdose, the administration of activated 
charcoal has been shown to reduce exposure to, and facil-
itate the elimination of apixaban, edoxaban, rivaroxaban, 
and dabigatran although this approach is based on stan-
dard medical treatment and not necessarily endorsed by 
the manufacturers [10,23–29]. In the event of life- 
threatening or uncontrolled bleeding, andexanet (a recom-
binant form of human factor Xa) is available as an antidote 

Article highlights

● Whilst the pharmacodynamic properties of direct oral anticoagulants 
(DOACs) are similar among the class, there are important differences 
which have implications for patient care.

● The routine monitoring of DOACs is generally not considered neces-
sary for most patients.

● The pharmacokinetic properties of DOACs vary considerably between 
agents, and this can impact the suitability for individual patients.

● There is potential for numerous drug interactions with DOACs which 
are generally related to their metabolism and a thorough under-
standing of these mechanisms is necessary for safe prescribing.

● Accurate and appropriate estimation of renal function using the 
Cockcroft-Gault formula using actual body weight is required to 
correctly dose DOACs.

● There is increasing evidence to support the use of DOACs in patients 
who are obese, and this is becoming more routine in clinical practice.

Table 1. Pharmacodynamic properties of DOACs.

Apixaban Edoxaban Rivaroxaban Dabigatran

Daily doses Twice Once Once Twice
Pharmacological target Xa Xa Xa IIa
Effect on platelet aggregation - ↓
Effect on prothrombin time ↑ ↑ ↑ ↑
Effect on INR ↑ ↑ ↑
Effect on activated partial thromboplastin time ↑ ↑ ↑
Effect on ecarin clotting time ↑
Administered as prodrug? No No No Yes
Reversal agents andexanet Andexanet (unlicenced) andexanet idarucizumab
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to apixaban and rivaroxaban [30], and idarucizumab (a 
monoclonal antibody with an affinity for dabigatran 
approximately 300 times more potent than that of dabiga-
tran for thrombin) is available as an antidote for dabigatran 
[31]. Although the use of andexanet for the reversal of 
edoxaban is not currently licensed in the UK, Europe or 
America [30,32,33], it has been shown to significantly 
decrease anti-factor Xa activity and achieve hemostasis in 
most patients with acute bleeding secondary to edoxaban, 
and is the subject of an ongoing clinical trial evaluating this 
further [34,35]. In many parts of the world the availability of 
andexanet may be limited by cost, and prothrombin com-
plex concentrate is used off-label for DOAC reversal [36]. In 
the context of reversal agents, it is pertinent to note that 
they can be employed in patients with hyperacute ischemic 
stroke who are on anticoagulation, who may otherwise 
qualify for (and be in the window for) intravenous throm-
bolysis [37].

1.2. The pharmacokinetic profiles of DOACs

In contrast to the older oral anticoagulants such as warfarin 
and acencoumarol, DOACs benefit from a stable pharmaco-
kinetic profile which enables standardized dosing without 
the need for routine monitoring. Because of this, coupled 
with the evidence of efficacy, DOACs have become the 
treatment of choice in the management of both venous 
thromboembolism (VTE) and atrial fibrillation (AF) across 
Europe and the United States. There are, however, 
a number of important and clinically relevant differences in 

the pharmacokinetic profiles of each drug which are dis-
cussed below (Figure 1).

1.3. Characteristics of the available DOACs

1.3.1. Apixaban
Apixaban is primarily absorbed in the upper small intestine 
with absorption progressively decreasing as it moves through 
the gastrointestinal tract [38]. Following oral administration, 
the absolute oral bioavailability of apixaban is approximately 
50% [39]. The remainder of the dose is lost through incom-
plete absorption and hepatic first pass metabolism [3]. Studies 
on the effect of fasting and fed states on the absorption of 
apixaban have shown some variation but conclude that food 
does not impact on bioavailability in any clinically significant 
way [3,40,41]. Thus, apixaban can be taken with or without 
food [42–44]. Following oral administration of apixaban, Cmax 

is achieved after 2.5 to 4 hours [41,45].
Crushing and dissolution of apixaban tablets for adminis-

tration to patients with dysphasia or via nasogastric tubes 
appears to have no clinically significant impact on bioavail-
ability [46] and is licensed in the UK and Europe when water, 
glucose 5%, apple juice or apple puree is used a solvent and 
the solution administered orally [42]. If administering via 
a nasogastric tube, the manufacturer recommends 60 mL 
water or glucose 5% as a solvent [42].

The volume of distribution of apixaban is approximately 21  
L, suggesting that it is primarily distributed in the extracellular 
fluid [42]. Given the limited intracellular distribution of apix-
aban, extremes of body would be expected to have only 

Figure 1. Pharmacokinetic considerations in DOAC prescribing (Figure created with biorender.com).
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limited impact on the pharmacokinetic profile of the drug [39], 
and this has been confirmed in pharmacokinetic studies [47]. 
In a study examining the impact of extremes of body weight 
on the pharmacokinetics, pharmacodynamics, safety, and tol-
erability of apixaban, there were modest changes in apixaban 
exposure as a result of both low and high body weight, but 
this did not justify dose adjustment unless there were other 
factors that might simultaneously increase exposure [47]. 
These findings reflect the manufacturer’s recommendations 
not to reduce the dose based on body weight alone, but in 
the presence of other factors such as impaired renal function 
and advancing age [42]. Recent clinical evidence supports the 
safe use of apixaban in patients who are morbidly obese with 
a body mass index (BMI) >40 Kg/m2 in the management of 
both AF and VTE [48–52], and the manufacturers make no 
recommendation to avoid or alter the dose based on high 
body weight alone [42]. A recent review of available pharma-
cokinetic, interventional, and observational data has con-
cluded that obesity does not substantially impact on the 
efficacy or safety of apixaban in the management of AF or 
VTE [53].

The plasma protein binding of apixaban is approximately 
87% [42,54] suggesting a limited potential for interactions 
resulting from displacement from plasma proteins [54].

Studies examining the impact of age on the pharmacoki-
netics of apixaban have found that although Cmax was com-
parable between younger and older participants, exposure 
was modestly raised in elderly subjects although this may 
have simply been the consequence of declining renal function 
[55]. Population pharmacokinetic analysis suggests that age 
alone appears to only have a small impact on apixaban expo-
sure [56]. Similarly, although Cmax and exposure have been 
shown to be higher in females than males, the difference 
observed is not considered to be clinically significant [55] 
and no difference in endpoints has been observed [3]. No 
dose adjustments are recommended based solely on these 
parameters [42,44].

Apixaban is metabolized by O-demethylation, hydroxyla-
tion, and sulfation [3,42,54] and is primarily mediated by the 
cytochrome P450 enzymes CYP3A4 and CYP3A5, although 
others including CYP1A2, CYP2C8, CYP2C9, CYP2C19, and 
CYP2J2 are also involved [3,42,54,57]. Apixaban is also 
a substrate for P-glycoprotein (P-gp) and breast cancer resis-
tance protein (BRCP) [58]. Therefore, drugs which are strong 
inducers or inhibitors of both CYP3A4 and P-gp such as phe-
nytoin, rifampicin, carbamazepine, and ketoconazole demon-
strate clinically significant interactions with apixaban, with 
numerous studies confirming this [3,59,60]. Clarithromycin 
slightly increases apixaban exposure, but this can be 
addressed through monitoring for signs and symptoms of 
bleeding or anemia; especially, in elderly patients and in 
those with renal impairment. Amiodarone, which inhibits 
both CYP3A4 and P-glycoprotein, may increase apixaban and 
rivaroxaban exposure, and therefore increase the risk of bleed-
ing but no dose adjustment is required [61,62]. The FDA in the 
United States have an online tool which can help to identify 
interactions resulting from inducer/inhibitor drugs and those 
which inhibit transporter systems [63]. Following 

administration, unchanged apixaban is the major component 
present in the plasma and no other active metabolites are 
found [3,42].

The presence of mild or moderate hepatic impairment has 
little or no impact on the pharmacokinetics of apixaban and 
plasma protein binding is similar to that seen in healthy 
individuals [3]. Therefore, no dose adjustments are recom-
mended in patients with Child-Pugh A or B [42,44]. Apixaban 
should be avoided in the event of severe hepatic impairment 
(Child-Pugh C), primarily due to a lack of experience although 
these patients will likely have some abnormalities in their 
coagulation [3,42,44].

Apixaban has multiple routes of elimination including 
metabolism (as outlined above), biliary, renal, and direct 
intestinal excretion [3,42,64] with total plasma clearance 
being 3.3 L/hr and half-life approximately 12 hours [3,42]. 
Following repeated twice daily dosing of apixaban, steady 
state is reached within three days [45]. Compared to the 
other available DOACs, apixaban is the least dependent on 
renal elimination with approximately 27% of the drug being 
cleared by this route and the rest by other means [3,39,42,65]. 
Consequently, the impact of renal impairment is less than with 
other DOACs and appears not to impact on Cmax or the 
relationship between plasma concentration and anti – factor 
Xa activity, although apixaban exposure is increased in the 
presence of renal impairment [56,66,67].

Numerous studies support the use of apixaban in 
patients with impaired renal function with some suggesting 
that it has a lower rate of bleeding in this population when 
compared to warfarin [3,68–72]. Although unlicensed in 
some jurisdictions for use in dialysis patients, there is 
some evidence to support its use in this patient cohort 
[70]. Despite this, uncertainty remains around the optimal 
dosing of apixaban in patients with severely impaired renal 
function with some evidence to suggest that a reduced 
dose may be more appropriate [73]. In the UK and Europe, 
the manufacturers recommend that the dose of apixaban be 
reduced in patients with AF who have a creatinine clearance 
between 15-29 mL/min or who meet two of three criteria 
(aged ≥80 years, body weight ≤60 Kg or serum creatinine ≥  
133micromol/L) but make no such dose reduction recom-
mendation for patients with VTE [42,43]. In these jurisdic-
tions, apixaban is not licensed in patients with a creatinine 
clearance <15 mL/min [42,43]. However, further large-scale 
studies are required to identify the safest regimens in 
patients with renal dysfunction. A patient-level meta- 
analysis (COMBINE-AF) of randomized controlled trials con-
cluded that standard-dose DOACs are safer and more effec-
tive than warfarin down to a creatinine-clearance of at least 
25 mL/min [74].

1.3.2. Edoxaban
The dissolution of edoxaban is pH dependent, demonstrating 
high solubility in acidic environments and becoming practi-
cally insoluble in basic solutions [75]. Consequently, absorp-
tion primarily occurs in the proximal small intestine with 
significantly less absorption occurring in the colon [75]. 
Following administration, the absolute oral bioavailability of 
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edoxaban is estimated to be approximately 60% with Cmax 

occurring within 1 to 2 hours of ingestion [76,77]. Although 
studies on the effect of fasted/fed states on the absorption of 
edoxaban have demonstrated a modest increase in both Cmax 

and total exposure as well as a reduced rate of absorption in 
the presence of food [78,79], this is felt not to be of any clinical 
significance [79] and the manufacturers recommend adminis-
tration with or without food [24,25,80].

In patients with swallowing difficulties, edoxaban may be 
crushed and mixed with water or apple puree for oral admin-
istration or mixed with water and administered via a gastric 
tube [24,25]. Edoxaban is stable in water or apple puree for 4  
hours [81]. Pharmacokinetic studies of edoxaban have demon-
strated that manipulation and administration of the dosage 
form in this manner have little impact on Cmax or exposure 
although it may shorten the time taken to achieve maximum 
plasma concentration [81].

Edoxaban is widely distributed throughout the body with 
a with a large volume of distribution of approximately 107 L 
[6] which is the largest of the DOACs [82]. Edoxaban kinetics 
can be described by a two-compartment model [83] and it is 
therefore tempting to conclude that obesity would nega-
tively impact on therapeutic efficacy due to distribution 
into the peripheries and consequent reduction in exposure 
[6]. However, given the complex mechanisms behind the 
pharmacokinetics of drugs, individual parameters such as 
volume of distribution may not necessarily correlate with 
clinical efficacy. The available data on the use of edoxaban 
in the management of VTE in obesity are limited and cer-
tainly less clear than with apixaban and rivaroxaban, both of 
which have evidence to support their use [82,84]. Unlike with 
VTE however, data supporting the use of edoxaban in the 
management of AF in obese patients are available, with 
analysis of the ENGAGE AF-TIMI 48 trial demonstrating similar 
clinical efficacy in extremes of body weight [85]. For patients 
with low body weight, the rate of edoxaban clearance 
appears to be reduced [86] and this is reflected in guidance 
from the manufacturers to reduce dose in those with a body 
weight ≤60 Kg regardless of indication in those in the UK and 
Europe [24,25] and for those with thromboembolism in the 
United States [80].

The plasma protein binding of edoxaban is approximately 
55% which suggests low potential for interactions resulting 
from displacement from plasma proteins [6].

Although increasing age has been shown to correlate inver-
sely with non-renal clearance, in the absence of any other 
factors such as low body weight, it is not expected to have 
any clinically significant impact on the pharmacokinetics of 
edoxaban [76]. Other intrinsic factors such as sex and race also 
do not appear to impact on its pharmacokinetics [6]

Edoxaban is metabolized by numerous pathways, primar-
ily hydrolysis mediated by carboxylesterase 1, but also con-
jugation and oxidation by CYP3A4 and CYP3A5 [6,25,87] 
although metabolism of the active drug accounts for less 
than 10% of the total clearance [6]. Edoxaban is a substrate 
for P-gp and studies have demonstrated that coadministra-
tion with strong inhibitors increases edoxaban exposure 
[76,88]. Consequentially, the UK and European manufacturer 

recommends a dose reduction for all indications in patients 
taking certain P-gp inhibitors such as ciclosporin, dronedar-
one, erythromycin, and ketoconazole [24,25], although the 
American datasheet recommends this only when treating 
VTE [80]. Following administration, unchanged edoxaban is 
the major component present in the plasma with three 
active metabolites also present, although exposure to these 
in healthy subjects is less than 10% [24,25] and they are 
unlikely to contribute to anticoagulant activity in any signif-
icant way [6].

The presence of mild or moderate hepatic impairment does 
not appear to impact on the pharmacokinetics or pharmaco-
dynamics of edoxaban which is in keeping with the limited 
role hepatic metabolism plays in edoxaban clearance (<10%) 
[6,25,89] although different recommendations are made with 
regard to this in Europe and America [6,24,25,80,89]. The use 
of edoxaban has not been studied in patients with severe 
hepatic impairment, but it is expected that these patients 
will likely have some disturbances in their coagulation [25].

Edoxaban has multiple routes of elimination with renal 
clearance of the unchanged compound contributing to 
approximately half of the total clearance and the remainder 
being cleared through metabolism (as outlined above) and 
biliary excretion [6,87]. Total plasma clearance is estimated to 
be 22 L/hr and its half-life is between 10 and 14 hours with 
steady state plasma concentrations being achieved after 3  
days of regular dosing [6,24,25,80]. Given the significant role 
of the kidneys in the elimination of edoxaban, it is unsurpris-
ing that pharmacokinetic studies have demonstrated that 
exposure increases as renal function declines [90–92] with 
a corresponding increase in anti-factor Xa activity [93]. In 
keeping with these findings, the dose of edoxaban should 
be reduced in the presence of renal impairment, defined as 
a creatinine clearance of 15–50 mL/min [24,25,80] with numer-
ous studies demonstrating the safety and efficacy of this 
approach to dosing in both AF and VTE [94–96]. It has been 
suggested that in patients with very good levels of renal 
function (creatinine clearance >95 mL/min), the efficacy of 
edoxaban decreases, likely as a result of lower plasma con-
centrations and thus anti-factor Xa activity, although interpre-
tation of these findings is complicated [97]. In the UK and 
Europe, the manufacturers do not make any recommendation 
to avoid edoxaban or attenuate the dose in this patient cohort 
[24,25], but the American datasheet does recommend avoid-
ing edoxaban in patients with AF who have a creatinine clear-
ance >95 mL/min as a result of findings from the ENGAGE AF- 
TIMI 48 study [80].

1.3.3. Rivaroxaban
Rivaroxaban is primarily absorbed in the stomach with studies 
demonstrating a significant drop in both exposure and Cmax 

when the drug was released directly into the small intestine 
[98]. The oral bioavailability of rivaroxaban is the highest 
among the DOACs, being approximately 80–100% under the 
right conditions, with Cmax being achieved 2–4 hours following 
oral administration [7,99]. At the lowest dose of 10 mg, the 
presence or absence of food appears to make no difference to 
bioavailability, however this is not the case for doses of 15 mg 
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and 20 mg. When these higher doses are administered in 
a fasted state, both absorption rate and bioavailability drop 
to as low as 66%, although this can be increased to > 80% 
when taken with food [7,99,100]. This is irrespective of the 
type of food (i.e. high carbohydrate or high fat) [7]. 
Consequently, the manufacturers recommend taking doses 
of 10 mg or less with or without food but doses of 15 mg or 
20 mg with food [101–104].

In patients with swallowing difficulties, studies have 
demonstrated that exposure and Cmax of a 20 mg tablet 
crushed and administered in apple sauce were comparable 
to a whole tablet but when mixed with water and adminis-
tered via a nasogastric tube Cmax was 18% lower 
[7,101,102,104]. Given these results, the administration of 
rivaroxaban, crushed and mixed with either water or apple 
sauce and administered orally or via a nasogastric tube, is 
considered appropriate [105]. In light of the dose- 
proportional and predictable pharmacokinetics of rivaroxa-
ban, these results are likely applicable to the lower doses 
[102]. When prescribing rivaroxaban to a patient with swal-
lowing difficulties or an enteral tube, such patients may have 
a reduced oral intake which might adversely impact on 
bioavailability.

The volume of distribution of rivaroxaban is approximately 
55 L indicating that it is primarily distributed within blood 
plasma with only low-to-moderate affinity for tissue [7,99]. It 
is therefore expected that extremes of body weight would 
have only limited impact on the pharmacokinetics of rivarox-
aban. A recent review of the effect of obesity on rivaroxaban 
found that both the pharmacokinetic and clinical profile of 
the drug was unchanged and that high body weight does 
not necessitate a change in dosing [106]. Although small 
changes in Cmax and prothrombin time have been observed 
in patients weighing <50 Kg, this was not considered clini-
cally relevant [107] and the manufacturers explicitly state 
that no doses adjustment is needed based on body weight 
[101,102,104].

The protein binding of rivaroxaban is high (approximately 
95%) with albumin being the primary binding component 
[7,99]. Although this might suggest a higher potential for 
interactions, this does not appear to be the case with rivarox-
aban having a favorable interaction profile [99,101–104].

Although a study examining the impact of age on the 
kinetics of rivaroxaban did demonstrate an increase in total 
exposure, factor Xa inhibition and prothrombin time in 
elderly patients, this was the result of reduced renal clear-
ance rather than age itself [108]. The same study concluded 
that gender had no impact on the pharmacokinetics or phar-
macodynamics of rivaroxaban [108] and no dose adjustments 
are currently recommended based on these parameters 
[101,102,104].

Rivaroxaban undergoes metabolism by the cytochrome 
P450 enzymes CYP3A4 and CYP2J2 as well as non-CYP medi-
cated hydrolysis with approximately 60% of the dose being 
subject to metabolic degradation [7,99]. Rivaroxaban is 
a substrate of P-gp and BRCP [7]. The inhibition of cytochrome 
P450 enzymes and/or P-gp would therefore be expected to 
decrease rivaroxaban clearance, however it is only the strong 

inhibition of both CYP3A4 and P-gp simultaneously that 
appears to significantly increase rivaroxaban exposure [109]. 
These interactions are predominantly limited to azole antifun-
gals and protease inhibitors. Strong inducers of CYP3A4 such 
as rifampicin, phenytoin, and carbamazepine have been 
shown to significantly reduce rivaroxaban exposure and 
increase the potential for treatment failure [110]. These find-
ings are reflected in the manufacturers’ recommendations 
[101,102,104]. Unchanged rivaroxaban is the predominant 
molecule found in plasma, accounting for approximately 
90%, and no major active metabolites are present [7].

The presence of mild hepatic impairment has limited 
impact on the pharmacokinetics of rivaroxaban, and it can 
be safely used in patients with Child-Pugh 
A [101,102,104,111,112]. In patients with moderate hepatic 
impairment, both Cmax and exposure are increased 1.27-fold 
and 2.27-fold, respectively, and elimination is prolonged [111] 
which is in keeping with the significant role that the liver plays 
in the clearance of rivaroxaban. Due to the increased exposure 
to rivaroxaban in the presence of moderate hepatic impair-
ment, factor Xa inhibition is significantly higher than in 
healthy subjects resulting in greater prolongation of pro-
thrombin time [111]. Consequently, rivaroxaban is contraindi-
cated in patients with Child Pugh B and C, or those with 
hepatic disease associated with coagulopathy and clinically 
relevant bleeding risk [101,102,104,112].

Rivaroxaban is excreted via a combination of metabolism, 
as already described, and renal clearance. Approximately 36% 
of the drug is eliminated unchanged in the urine with 
a further 30% eliminated by this route in the form of metabo-
lites [7,99]. Renal elimination of the active metabolite is highly 
dependent on active renal secretion involving both P-gp and 
BRCP [99]. Faecal clearance of both active drug and metabo-
lites accounts for a further 28% [7,99]. Rivaroxaban exhibits 
a clearance of approximately 10 L/hr and has a terminal half- 
life of 11–13 hours [99]. Studies examining the effects of renal 
impairment on rivaroxaban have demonstrated reduced clear-
ance resulting in increased exposure and higher levels of 
factor Xa inhibition when compared to healthy subjects 
[113]. Increases in rivaroxaban concentrations of 44%, 52%, 
64% and 56% have been observed in patients with mild, 
moderate, and severe renal impairment and end-stage renal 
disease respectively [114]. Despite this, rivaroxaban does 
undergo a significant amount of non-renal clearance allowing 
for its safe use down to quite low levels of renal function (≥15  
mL/min). Recommendations for dosing in renal impairment 
are dependent on both the level of renal function and the 
indication and vary slightly between Europe and the United 
States [101,102,104].

1.3.4. Dabigatran
Dabigatran is administered as the inactive prodrug, dabigatran 
etexilate, and requires conversion into its pharmacologically 
active form in vivo [115]. It is primarily absorbed in the sto-
mach and small intestine, where the acidic environment aids 
dissolution and absorption [116,117], which is further 
enhanced by the tartaric acid within the capsules providing 
an acidic micro-environment [9,65,117]. Unsurprisingly, the 
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use of proton pump inhibitors has been shown to reduce Cmax 

at steady state by approximately 28% although this is not 
considered to be clinically significant, and they can be safely 
co-administered [9,10,28,29]. The oral bioavailability of dabi-
gatran etexilate is low, at approximately 6%, but once 
absorbed it is rapidly and almost completely converted into 
the active form by nonspecific esterase enzymes via two inter-
mediaries [9,65,117,118]. The presence of food does not 
impact the extent of absorption but can increase the time 
taken to achieve Cmax [9,117,118]. The manufacturers recom-
mend taking the capsules with or without food [10,28,29]. 
Following oral administration, Cmax is achieved in approxi-
mately 1.5 hours [117,119].

Unlike the other DOACs, dabigatran capsules should not be 
crushed or otherwise manipulated to aid in administration to 
patients with swallowing difficulties or enteral tubes 
[10,28,29]. Bioavailability is increased by 75% after a single 
dose and 37% after multiple doses if the capsule contents 
are taken without the shell [10,28,29].

The volume of distribution of dabigatran is approximately 
60–70 L which indicates moderate distribution of the drug into 
tissue [117] and suggests that extremes of body weight have 
the potential to impact on the pharmacokinetics of the drug. 
A study examining the effects of obesity (weight >120 Kg) on 
peak plasma concentration demonstrated that a significant 
proportion of patients (20%) had peak plasma concentrations 
below the usual range and below the median trough level 
reported in the literature [120]. In separate studies, dabigatran 
trough concentrations have also been found to be approxi-
mately 20% lower in patients weighing >100 Kg when com-
pared to those weighing 50–100 Kg [10,29]. Despite this, it is 
not possible to draw solid conclusions on the impact of 
extreme body weight on the clinical efficacy of dabigatran 
based on pharmacokinetic studies alone. Studies examining 
the clinical significance of obesity on the efficacy of dabiga-
tran in the management of AF have observed no difference in 
the rates of stroke or systemic embolism in obese patients, 
although case reports of treatment failure associated with low 
plasma levels have been reported in patients with a BMI >40  
Kg/m2 where the data is less robust [121–123]. Regarding the 
management of VTE, there is a lack of data to support to use 
of dabigatran in patients weighing >120 Kg [84]. In patients 
weighing <50 Kg, the manufacturers concede that this may 
have a minor impact in the pharmacokinetics of the drug but 
that it has not been sufficiently studied to make any specific 
dose recommendations [10,29].

The plasma protein binding of dabigatran is approximately 
35% which suggests that interactions involving displacement 
from plasma proteins are unlikely [117].

Pharmacokinetic studies of dabigatran have demon-
strated that exposure of dabigatran is significantly higher 
in elderly subjects, most likely as the result of the reduction 
in renal function associated with advancing age [9]. 
Additionally, both Cmax and exposure are higher in female 
than male patients [9,117,118]. Although no dose adjust-
ments are recommended based on gender [10,28,29], in 
the UK and Europe dose reductions are recommended in 
elderly patients [10,29].

Dabigatran is not a substrate for cytochrome P450 enzymes 
and is therefore not metabolized by this family of isoenzymes, 
nor does it impact on the metabolism of other drugs via these 
processes [9,117,124]. Aside from the initial metabolism of 
dabigatran etexilate into the pharmacologically active dabiga-
tran by nonspecific esterase enzymes, the only other meta-
bolic process that the molecule undergoes is glucuronidation 
[9,115,124]. This process results in the production of four 
pharmacologically active dabigatran acylglucuronides, which 
account for between 10% and 24% of total plasma dabigatran 
[9,10,28,29,119,124,125]. Overall, hepatic metabolism plays 
only a minor role in the clearance of dabigatran, accounting 
for approximately 20%, with most of the absorbed dose being 
subject to renal clearance [65,115]. Although dabigatran etex-
ilate is a substrate of P-gp, dabigatran is not, suggesting that 
any interactions related to this transporter are limited to 
absorption [117]. Because of the role of P-gp in the efflux of 
dabigatran etexilate into the intestinal lumen, co- 
administration of P-gp inhibitors results in increased exposure. 
Concomitant use of strong inhibitors such as ketoconazole, 
dronedarone, itraconazole, cyclosporin and glecaprevir/ 
pibrentasvir result in a significant increase in dabigatran expo-
sure and is contraindicated in the UK and Europe [10,29] 
although these recommendations differ from those in the 
United States [28]. Weaker P-gp inhibitors, such as verapamil 
can also increase exposure and some dose reductions are 
recommended by UK and European manufacturers [10,29]. 
Conversely, strong inducers of P-gp, such as rifampicin, carba-
mazepine, and phenytoin are known to reduce dabigatran 
exposure [10,28,29].

The presence of moderate hepatic impairment, defined as 
Child-Pugh B, does not appear to have any significant impact 
on pharmacokinetics or pharmacodynamics of dabigatran 
[126]. Furthermore, the study authors concluded that moder-
ate impairment does not impact negatively on the safety 
profile of dabigatran and that it could be used in these 
patients without dose adjustment [126]. Despite this, and 
although recommendations differ between locations, in 
Europe and the UK dabigatran is contraindicated in patients 
with hepatic impairment or liver disease that is expected to 
have any impact on survival [10,29].

Dabigatran is highly dependent on renal elimination with 
approximately 80% of plasma dabigatran being eliminated 
unchanged via the kidneys [9,65,117,119]. The remaining 
20% undergoes hepatic glucuronidation (as outlined above) 
with the resultant metabolites being almost exclusively 
excreted in the bile with only traces found in the urine 
[65,124]. Total plasma clearance is estimated to be between 
71 and 144 L/hr and half-life is between 12 and 14 hours with 
steady state plasma concentrations being achieved after 2–3  
days of regular dosing in healthy patients [9,117]. Given the 
significant role of renal clearance in the elimination of dabiga-
tran, it is unsurprising that clearance is prolonged and both 
Cmax and exposure increase in proportion with the degree of 
renal impairment present [127]. The effect is more pro-
nounced on exposure than Cmax with a 1.5-, 3.2-, and 
6.3-fold increase in exposure observed with mild, moderate 
and severe renal impairment respectively following a single 
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dose [127]. This increase in exposure is associated with an 
increase in several measures of clotting time such as activated 
partial thromboplastin time [127]. An additional study exam-
ining the impact of renal impairment on dabigatran kinetics 
demonstrated an inverse relationship between renal function 
and trough plasma levels [128]. Analysis of data from the RE- 
LY trial has shown that bleeding risk corresponds positively 
with trough dabigatran levels with the risk of bleeds doubling 
when trough levels were above 210 ng/mL [128]. Both the UK 
and European manufacturers contraindicate the use of dabi-
gatran in patients with a creatinine clearance <30 mL/min and 
recommend dose reductions in certain circumstances in 
patients with a creatinine clearance between 30 mL/min and 
50 mL/min [10,29]. These recommendations differ from those 
in America, although dose reductions are recommended there 
due to impaired renal function [28].

2. Practicalities of DOAC use in specific populations

2.1. Estimating renal function when dosing DOACs

When calculating renal function for the purpose of dosing, the 
Cockcroft-Gault formula (estimated creatinine clearance) 
should be used in preference to estimated glomerular filtra-
tion rate [129–133]. This is a consequence of the fact that 
during clinical trials, estimates of renal function were deter-
mined using Cockcroft-Gault with subsequent dosing recom-
mendations being based on this, and subsequent analysis of 
data has shown that by using other estimates of renal function 
there is a failure to dose correctly in a substantial proportion 
of patients [133,134]. In addition to using the correct formula 
for estimating renal function, it is important to use actual body 
weight in the creatinine clearance calculation as was done in 
the phase three clinical trials [131,133]. These points are uni-
versal to all DOACs and doing otherwise risks incorrect dosing 
[131–133].

2.2. The use of DOACs in obesity and morbid obesity

Historically, the use of DOACs in obese patients has been 
discouraged. The 2016 International Society of Thrombosis 
and Haemostasis (ISTH) guidance recommended against 
using DOACs in patients with a BMI >40 Kg/m2 or those 
weighing >120 Kg due to the lack of clinical data and pharma-
cokinetic/pharmacodynamic studies suggesting decreased 
exposure in these patients [135]. However, evidence and clin-
ical experience has evolved and a more recent review by the 
ISTH has concluded that there are similar outcomes in terms of 
VTE for apixaban and rivaroxaban when compared to warfarin 
and there is sufficient evidence to recommend the use of both 
agents at standard doses for the prevention and management 
of VTE in patients with a BMI >40 Kg/m2 or weighing >120 Kg 
[84]. This is supported by a recent study demonstrating that 
anti-Xa levels among obese patients are not substantially 
different from patients with normal BMI and weight [136]. At 
present, they recommend against the use of dabigatran, edox-
aban, and betrixaban due to a lack of convincing data [84]. 
A recent retrospective study conducted through the VENUS 
network demonstrated that DOACs were associated with 

lower major bleeding than warfarin in obese patients treated 
for VTE [137]

As with the management of VTE, there is evidence to 
support the use of DOACs for AF in obese patients. A recent 
review concluded that, when compared to warfarin, DOACs 
were associated with a better efficacy and safety profile 
across all categories of BMI, including those who were 
morbidly obese [138], supporting data from the studies 
already mentioned [48,85,122]. Despite this, the European 
Society of Cardiology advises that once a patient’s BMI 
exceeds 40 Kg/m2, data on the safety and efficacy of 
DOACs is less robust, and that in those with BMI >50 Kg/ 
m2, therapeutic drug monitoring or switching to a vitamin 
K antagonist may be a reasonable approach [123].

3. Conclusion

Although there are similarities in some of the pharmacoki-
netic properties, there is much more diversity with respect 
to this in terms of absorption, distribution, metabolism, and 
elimination. These differences, far from being purely aca-
demic, have real-world consequences and can impact on 
the choice of DOAC for patients. Differences in renal clear-
ance, distribution into body tissue, interaction potential and 
issues such as their suitability for dosage form manipulation 
should influence prescribing decisions. Ultimately, it is not 
the case that one DOAC is ‘better’ than another, but that 
one might be more suited to a particular patient and their 
current circumstances.

4. Expert opinion

The class of DOAC drugs have revolutionized the manage-
ment of atrial fibrillation (and other thrombotic diseases) by 
enabling patients to be treated without routine, inconveni-
ent, and costly monitoring of INR, as it the case when 
warfarin is used. Data from pharmacovigilance endeavors, 
and interrogation of routine healthcare data in registries 
and observational studies have afforded a more granular 
picture of the specific benefits and disadvantages of parti-
cular DOAC agents than is feasible in randomized controlled 
trials, which are by comparison small, and recruit 
a restricted cohort which may not fully represent the full 
cohort of patients treated in clinical practice. Together the 
available data suggest that the DOAC class of agents are 
broadly similar in many respects. This observation underlies 
initiatives to switch patients from one agent to another 
when patent expiry or other market forces affect the rela-
tive cost of drugs within the class. However, such initiatives 
must allow for inter-individual differences and patient- 
centered care, particularly in patients with hepatic or renal 
dysfunction where the routes of elimination of particular 
drugs may have important consequences for the elimination 
of these drugs, and therefore the anticoagulant effect of 
treatment. Increasing research into the ‘real-world’ safety 
and efficacy of DOACS is likely to expand their use into 
new populations, as has been the case with obesity which 
was initially a contra-indication for all DOACs, but which is 
now known to be compatible with prescribing of particular 
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agents. Whilst great care should be taken in interpreting the 
results of non-randomized data in making treatment recom-
mendations, the increasing availability of data is likely to 
expand the benefits of DOACs to a wider population.
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