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A B S T R A C T   

The integrated scheduling of quay cranes, internal vehicles, and yard cranes in container ter-
minals aims to improve port operations and often requires scheduling robustness under uncer-
tainty with cascade effects. In container terminal operations, uncertainty in equipment operating 
time poses challenges to effective scheduling, as even small fluctuations can create cascade effects 
throughout the operations, rendering the original schedule ineffective. This research aims to 
develop a new method that enables a balance between optimization and robustness in container 
terminal scheduling. Additionally, the double-cycling operation mode and U-shaped port layout, 
known for their improved efficiency in container terminals, are gaining increasing attention and 
hence are incorporated into this study. It creates a three-stage hybrid flow shop scheduling 
problem with bi-directional flows, waiting time, and uncertain operation time. To address the 
complex problem, a mixed integer programming model is proposed to characterize the integrated 
scheduling problem, and an index based on complex network structure entropy is designed to 
evaluate the anti-cascade effect as well as the robustness of the schedule. The index and makespan 
serve as the bi-objectives, transforming the original problem into a bi-objective optimization one. 
The non-dominated sorting genetic algorithm-II with appropriate coding and decoding rules is 
utilized to solve the model and obtain a set of Pareto frontier solutions. The feasibility of the new 
method is verified through a real case analysis. Specifically, comparative analysis with basic 
stochastic programming, basic robust optimization, triangular fuzzy programming, and maximum 
gap method are used to demonstrate the effectiveness of the new method. The paper also provides 
insightful practical implications for port managers, and the genericity of the method could also 
contribute to its practical values spreading to a wider scope of beneficiaries, such as 
manufacturing warehousing and distribution management.   
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1. Introduction 

Shipping transportation is responsible for 80 % of global trade cargos, making ports crucial logistics nodes in world trade (Li and 
Yang, 2023; Talley and Ng, 2022). Ports connect land and water transportation and have a significant impact on the economy of a 
region or a country (Li et al., 2023a). The use of containers has greatly reduced loading and unloading times, improving port efficiency 
(Guo et al., 2021). Equipment such as Quay Cranes (QCs), Yard Cranes (YCs), and Internal Vehicles (IV) supplement and facilitate 
container transport and operations in a container terminal (Yue et al., 2023; Zhen et al., 2018). However, the matter of using such 
equipment collectively and effectively influences efficient container handling and transportation, energy saving, greenhouse emissions 
reduction and decreased vessel turnover time (Li et al., 2022; Zhang et al., 2022b) and overall port competitiveness. 

The general flow of containers through port handling equipment and space resources is illustrated in Fig. 1. In the past, research 
primarily focused on the scheduling of individual resources or equipment, such as berth allocation problem, yard allocation problem, 
QC Scheduling Problem (QCSP), IV Scheduling Problem (IVSP), and YC Scheduling Problem (YCSP). Nonetheless, due to the necessity 
for containers to undergo multiple fixed operations that can be processed by parallel equipment, resembling a hybrid flow-shop 
scheduling problem, there has been a growing interest in multi-stage resources or integrated equipment scheduling. This includes 
Berth Allocation and QC Assignment and Scheduling Problem (BACASP) (Na and Zhihong, 2009; He, 2016; He et al., 2021; Ji et al., 
2022; Yu et al., 2023), integrated berth and yard space allocation (Zhen et al., 2022), QC and IV integrated scheduling problem (Hop 
et al., 2021; Zhen et al., 2019; Zhu et al., 2022), YC and IV integrated scheduling (Chen et al., 2020; Zhou et al., 2020; Hsu et al., 2021a, 
b), and QC, IV, and YC integrated scheduling problems (Zhuang et al., 2022) to further achieve global optimization. 

In addition to integrated scheduling, adopting efficient operation modes such as a double-cycling mode can also optimize the 
allocation and scheduling of container terminal resources (Zhang et al., 2015; Tan et al., 2021). In the relevant literature, it is called bi- 
directional flows (Zhuang et al., 2022). As shown by the red arrows in Fig. 1, QCs, IVs, and YCs can form a simple double-cycling 
container flow. In this double-cycling mode, both container flow and transportation equipment meet the characteristics of the 
cycle, leading to the term “double-cycling” for this mode. The principal difference between the double-cycling operation mode and the 
traditional operation mode lies in the transportation sequence of the IV. In the double-cycling mode, an IV can transport an inbound 
container from the shoreside to the yard and then proceed to transport an outbound container from the yard to the shoreside. 
Conversely, in the traditional operation mode, the IV typically undertakes a single loaded journey between the yard and the shoreside. 
Double-cycling IVs transportation has been well applied in world-leading container ports (e.g. Qingdao in China). The double-cycling of 
IVs can reduce unnecessary no-load movement times effectively and save energy consumption. Although showing the attractiveness, 
the double-cycling has revealed a new research challenge on multi-equipment integrated scheduling in its practical applications. 

Compared to traditional horizontal and vertical layouts of container terminals, a U-shaped container terminal model as an 
emerging port layout offers appealing advantages, evident by its pioneering implementation in Qinzhou Port and shows its huge 
potential to grow in container terminal developments. Fig. 2 illustrates a U-shaped terminal. The differences between the U-shaped 
layout and the traditional layout lie in that the U-shaped design improves its capacity to allow Intelligent Guided Vehicles (IGVs) better 
access the yard, enabling a larger number of unloading/loading points, while efficiently realizing the separation of the roads for IGVs 
and External Vehicles (EVs). This segregation reduces the number of crossroads, enabling a more efficient traffic flow within the 
terminal. As a result, the focus of this study is solely set to address the integrated scheduling problem of QCs, IGVs, and YCs, without 
the necessity to consider the impact of EVs or other external vehicles. Furthermore, even though the yard of a U-shaped terminal is 
perpendicular to the shoreline, it can function similarly to a yard that is parallel to the shoreline, allowing the IVs to travel deeper into 
the yard to easily arrive at specific bay positions. In contrast, in many terminals with perpendicular yards, IVs can only interact with 
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Fig. 1. The flow of containers in a container terminal.  
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YCs at the end of the yard, leading to unnecessary empty-load movements by the YCs. According to Niu et al. (2022), the energy 
consumption of YCs contributes to 25–30 % of the total energy costs of a container terminal, whereas the energy consumption of IVs 
accounts for only 1.04 % of the total energy consumption. Aligning the travel distance of IVs with that of YCs highlights the energy 
efficiency of IVs (He et al., 2015). Such advantages of the U-shaped terminals justify the significance of this study, revealing a sig-
nificant emerging research question on how to coordinator multi-equipment for optimal operations in theory and the feasibility of the 
solution in a new terminal setting of high value in practice. 

Due to the involvement of multiple scheduling equipment types at different stages of container operations, integrated scheduling 
exhibits a stronger coupling relationship between the operations within a schedule. However, this strong coupling could result in the 
scheduling being very fragile. As depicted in Fig. 3, various factors, such as weather conditions, collision avoidance, and equipment 
performance, can lead to deviations in the actual operation time, resulting in fluctuations and uncertainty (Xiang et al., 2017; He et al., 
2019a; Tan and He, 2021). Although the deviation in a single operation may be minor, the accumulation of these small fluctuations can 
ultimately disrupt the entire scheduling plan due to the strong coupling relationship and the associated possible cascade effects. In the 
small-scale scheduling plan illustrated in Fig. 3, some operation time is shorter than expected, while others are longer, leading to an 
overall increase in the makespan by approximately 10 % compared to the expected duration. This phenomenon can be interpreted as a 
cascade effect caused by uncertain fluctuations in operating time. It is worth noting that in large-scale cases, these cascade effects 
become more pronounced, further highlighting the need for developing new robust scheduling strategies. 

In conclusion, the integration of an increased number of unloading/loading points within the U-shaped layout, combined with the 
introduction of an additional mapping process to establish double-cycling pairs between inbound and outbound containers, signifi-
cantly amplifies the intricacies and demands of this integrated scheduling problem. To address these complexities, it is essential to 
employ a more sophisticated matrix that represents the distances travelled by IVs between unloading/loading points. Furthermore, it is 
necessary to incorporate relevant variables and constraints that accurately depict the double-cycling operations. Regarding uncer-
tainty, this port integrated scheduling problem addressed in this study can be conceptualized as a three-stage hybrid flow shop 
scheduling problem with bi-directional flows, waiting time, and uncertain operation time. Various approaches have been proposed by 
researchers to tackle the challenge of uncertainty in production scheduling. For instance, Chang et al. (2010), Liu et al. (2016), and 
Xiang et al. (2018) introduced a rolling time window rescheduling method to continuously adjust future schedules during the 
execution of berth allocation and QC assignment and scheduling plans. When dealing with the QCSP, Dik and Kozan (2017), Rouky 
et al. (2019), and Zhang et al., (2020b) developed robust scheduling plans capable of withstanding operation time fluctuations to a 
certain extent. In the case of the QC, IV, and YC integrated scheduling problem, Zhang and Jiang (2008), Cahyono et al. (2022), and 
Ahmed et al. (2021) devised real-time task dispatching rules to dynamically assign tasks instead of generating a global schedule. These 
methods correspond to predictive-reactive scheduling (PRS), robust-proactive scheduling (RPS), and completely-reactive scheduling 
(CRS) approaches, respectively (Cai et al., 2023b, 2022; Yang et al., 2024). Predictive-reactive scheduling, which requires frequent 
rescheduling, suffers from poor real-time performance due to the time-consuming schedule generation process. Completely-reactive 
scheduling, although more computationally efficient and flexible, is limited to local optimization and lacks the ability to generate a 
global optimal schedule. Both CRS and RPS are reactive scheduling approaches triggered by specific events or conditions, allowing for 
the generation of new schedules or modifications to the existing schedule. The key distinction lies in the scheduling window, with CRS 
having a narrower focus on local scheduling. Given their characteristics, CRS and RPS are better suited for addressing emergency or 
unforeseen events, such as sudden equipment failures. Robust-proactive scheduling incorporates uncertainty analysis to formulate a 
robust schedule with a certain level of predictability. As this paper primarily concerns the uncertainty of operation time fluctuations, 

Fig. 2. Simplified 3D layout of a U-shaped container terminal.  
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which exhibit a certain regularity and can be analyzed for generating robust and proactive schedules, its main focus is on the RPS. 
This paper aims to develop a new scheduling method to effectively address the gap time slots between operations in the schedules 

(as demonstrated in Fig. 3), as it has been identified as a key factor influencing schedule robustness in the current literature (e.g. Cai 
et al., 2023a) and the new solution will improve scheduling and generate significant economic benefits. It is argued that when two 
scheduling plans have similar makespans, the plan with a higher number of gap times slots and a more evenly distributed allocation of 
these gap times slots may be preferable. The slots of gap time are viewed as buffers to absorb uncertain fluctuations in operation time 
during schedule execution. Besides, the evaluation of the weight of each gap time slot should also take into account the uncertainty 
degree of the operation time in the vicinity of the gap time slot. If the time for a specific operation is more volatile, then the adjacent 
gap time slots should be considered more critical and assigned higher weights. Based on this concept and as a solution to this issue, the 
scheduling plan is treated as a complex network, and a novel evaluation mechanism based on complex network structure entropy is 
proposed to assess the robustness and anti-cascade effects of the scheduling plan. By combining this evaluation index with the 

Fig. 3. Scheduling plans with operational time fluctuations.  
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Table 1 
Review of the integrated scheduling involving QCs, IVs and YCs.  

Article The layout of the 
container terminal 

Where can IVs interact 
with YCs? 

Uncertain 
factors 

Is the cascade effect of 
uncertainty considered? 

Approaches to 
address uncertainty 

Is double-cycling 
considered? 

Models and methods Case study 

Zhang and 
Jiang, 
2008 

? ? General 
disturbance 

× CRS × DES− >DR Container 
terminal in China 

Zeng and 
Yang, 
2009 

? ? Uncertain 
operation time 

× RPS × MIP− >(DR + GA +
NN)− >DES 

? 

Chen et al., 
2013 

? ? × × × √ CP− >MHA ? 

Lu and Le, 
2014 

Parallel yard Loading/Unloading 
point next to the bay 

Uncertain 
operation time 

× RPS × MIP− >PSO Container 
terminal in China 

Xin et al., 2014 Perpendicular yard AGV mate/buffer at 
the end of the yard 

× × × × DED(MIP + Cplex) + CTD ? 

He et al., 2015 Parallel yard Loading/Unloading 
point next to the bay 

× × × √ MIP− >(GA + PSO) ? 

Xin et al., 2015 Perpendicular yard The delivery point at 
the end of the yard 

× × × × MIP− >VNSMA ? 

Yang et al., 
2018 

Perpendicular yard AGV mate/buffer at 
the end of the yard 

× × × √ Two-level 
MIP− >Improved GA 

? 

Zhong et al., 
2019 

Perpendicular yard AGV mate/buffer at 
the end of the yard 

× × × √ MIP− >(GA + PSO) ? 

Kizilay et al., 
2020 

? ? × × × × CP− >HA Container 
terminal in Turkey 

Cahyono et al., 
2022 

Perpendicular yard The delivery point at 
the end of the yard 

General 
disturbance 

× CRS √ DES(MPA) Container 
terminal in 
Indonesia 

Luan et al., 
2021 

? AGV mate/buffer at 
the end of the yard 

× × × √ MIP(STN)− >(CRR + GA 
+ TSA) 

? 

Ahmed et al., 
2021 

? ? Uncertain 
operation time 

× CRS √ DES Real container 
terminal 

Hsu et al., 
2021a,b 

? ? × × × × MIP− >Improved PSO ? 

Xu et al., 2021 U-shape Loading/Unloading 
point next to the bay 

× × × √ MIP− >GA(RL) ? 

Xu et al., 2022 U-shape Loading/Unloading 
point next to the bay 

× × × × MIP− >GSOA ? 

Niu et al., 
2022 

U-shape Loading/Unloading 
point next to the bay 

× × × √ MIP− >DT(MCTS) Container 
terminal in China 

Zhuang et al., 
2022 

Perpendicular yard AGV mate/buffer at 
the end of the yard 

× × × √ MIP− >ALNS Container 
terminal in China 

Zhang et al., 
2022a 

? ? × × √ × CQN Container 
terminal in China 

Cai et al., 
2023a 

? Loading/Unloading 
point next to the bay 

Uncertain 
operation time 

√ RPS × MIP− >GA− >AERI ? 

This paper U-shape Loading/Unloading 
point next to the bay 

Uncertain 
operation time 

√ RPS √ Bi-objectives 
MIP− >NSGA-II(AERI) 

Container 
terminal in China 

AERI: Anti-cascade Effect and Robustness Index. ALNS: Adaptive Large Neighborhood Search Algorithm. CP: Constraint Programming. CRR: Conflict Resolution Rule. CRS: Completely-Reactive 
Scheduling. CQN: Closed Queuing Network. CTD: Continuous Time Dynamics. DED: Discrete Event Dynamics. DES: Discrete Event Simulation. DR: Dispatching Rule. DT: Decision Tree. GA: Genetic 
Algorithm. GSOA: Genetic Seagull Optimization Algorithm. HA: Heuristic Algorithms. MAS: Multi-Agent Simulation. MCTS: Monte Carlo Tree Search. MHA: Meta-Heuristic Algorithm. MIP: Mixed-Integer 
Programming. MPA: Model Predictive Algorithm. NN: Neural Network. NSGA-II: Non-dominated Sorting Genetic Algorithm-II. PSO: Particle Swarm Optimization. RL: Reinforcement Learning. RPS: 
Robust-Proactive Scheduling. STN: Space-Time Network. TSA: Tabu Search Algorithm. VNSMA: Variable Neighborhood Search Metaheuristic algorithm. “?”: Unknown. “− >”: Progressive Relation. “+”: 
Coordinate Relation. “( )”: Inclusion Relation or Priority . 
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makespan, a bi-objective optimization problem is formulated to optimize the scheduling plan. 
The remainder of this study is organized as follows: Section 2 discusses the relevant literature to highlight the novelty and sig-

nificance of our research. Section 3 illustrates the newly proposed RPS framework, outlining the general approach to solving the 
integrated scheduling problem. Section 4 describes a mixed integer programming model for the integrated scheduling problem of QCs, 
IGVs, and YCs under the double-cycling mode in a U-shaped container terminal. Section 5 introduces the robustness and anti-cascade 
effect index designed in this paper. Section 6 presents our experimental results and provides a discussion of the findings. Finally, 
Section 7 provides practical implications derived from the study, along with the conclusion and future research prospects. 

2. Related work 

Table 1 summaries a comprehensive review of the literature published in relevant journals pertaining to the integrated scheduling 
of QCs, IVs, and YCs in port settings. Overall, while this problem has gained attention as a research hotspot, there is a noticeable 
scarcity of associated research studies that explicitly address the challenges of uncertainty in scheduling. 

Approximately 30 % of the existing literature focused on scenarios with a perpendicular yard layout, 10 % focused on a parallel 
layout, 15 % focused on a U-shaped layout, and 45 % did not mention the port layout. It can be seen that the majority of the literature 
mentioned the port layout. The majority of the literature focused on scenarios with a perpendicular yard layout, often incorporating an 
AGV mate as an automated container transfer platform. This device serves as an auxiliary for AGVs, reducing waiting time between YCs 
and AGVs and providing container buffering capabilities. By disregarding the mutual waiting time between AGVs and YCs, the 
development of the mathematical model for the scheduling problem becomes simplified. However, this scenario’s drawback lies in the 
increased energy consumption due to the movement of YCs from their current positions to the end of the yard. On the other hand, in 
yard with parallel or U-shaped layouts, IVs offer greater flexibility, enabling them to penetrate deep into the yard and interact directly 
with YCs. It results in more energy-efficient operations, although it also introduces scheduling complexities. 

Furthermore, a significant observation from the literature is the increasing consideration of double-cycling, highlighting its 
growing applications. This observation underscores the growing adoption of the double-cycling operation in real-world ports, which 
justifies the necessity and also stimulate the incorporation of the double-cycling mode in this paper. 

To facilitate the discussion, the characteristics of the related research are presented from two perspectives: static integrated 
scheduling and dynamic integrated scheduling concerning uncertainty in the ensuing sections. 

2.1. Static QCs, IVs, and YCs integrated scheduling problem 

From a modeling perspective, the majority of studies in this field have employed mathematical programming models, with the 
mixed integer programming model being the most commonly used approach, followed by constraint programming (Chen et al., 2013). 
Some researchers have also developed simulation models. For instance, Zhang et al., (2022a) constructed a queuing theory model for 
the integrated scheduling of multiple pieces of equipment in a port, assessing various performance indicators such as total handling 
time, idle rate of QCs, and waiting time of AGVs. To attain a globally optimal solution to the greatest extent possible, a mathematical 
programming model is developed in this paper. 

From the perspective of optimization objectives, most studies have focused on optimizing the makespan (Hsu et al., 2021b; Xin 
et al., 2014; Yang et al., 2018; Zhong et al., 2019; Zhuang et al., 2022) or other time-related indicators. A smaller number of studies 
have considered energy consumption (He et al., 2015; Xin et al., 2014). For example, Xin et al. (2014) proposed a scheduling method 
based on a two-layer dynamics approach, where the DED in the upper layer optimized the makespan, while the CTD in the lower layer 
optimized energy consumption. He et al. (2015) optimized two objectives: the total vessel departure delay and the total energy 
consumption. They employed a linear weighting method to convert the two objectives into a single objective and designed a GA for 
global search and a PSO algorithm for local search. In this study, the focus is placed on both the robustness of the scheduling plan and 
the minimization of the makespan as our primary optimization objectives. 

On the one hand, the problem was simplified in certain studies. For instance, only one QC is involved in Xin et al. (2014). To address 
this limitation, subsequent research by Xin et al. (2015) focused on multiple QCs. However, the subsequent study did not specifically 
take into account the no-load movement time of YC and instead replaced it with a fixed reserved time. Similarly, Kizilay et al. (2020) 
disregarded the empty traveling time for the IVs to reduce the complexity of the problem. 

On the other hand, more detailed considerations were made in some studies, with a particular focus on the planning of routes for 
IVs and the resolution of conflicts. For instance, Xin et al. (2015) took into account collision-free trajectories for AGVs. Yang et al. 
(2018) developed a congestion prevention rule-based bi-level GA to address the route planning problem of AGVs. Luan et al. (2021) 
investigated conflict-free route planning for AGVs, utilizing an STN representation method and a bi-level optimization algorithm for 
conflict resolution. Within this context, the route conflicts of IVs are addressed in our study by taking into account the fact that the 
fluctuations in the travel time of IVs are caused by factors such as collisions in their routes. 

There is a research trend to further incorporate additional factors into the integrated scheduling problem of QCs, IVs, and YCs to 
better reflect the practical needs. Kizilay et al. (2020) considered the assignment problem of QC, YC, and yard space based on the 
original problem, albeit simplifying the complexity by neglecting the no-load transportation time of IVs. Hsu et al. (2021b) investi-
gated the integrated scheduling and allocation problem involving QCs, YCs, IVs, vessel stowage, and yard space. However, the inte-
gration of an increased number of elements into the schedule will potentially compromise its robustness and increase computational 
complexity. Therefore, the focus of this study seeks a solution to striking a balance between optimization and robustness in the process 
of integrating QCs, IVs, and YCs. 

L. Cai et al.                                                                                                                                                                                                             
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As discussed in Section 1, the integrated scheduling problem of multiple-equipment in ports can be categorized as a hybrid flow- 
shop scheduling problem. Consequently, several studies have simplified this problem by abstracting it into a general production 
scheduling model. For instance, Xin et al. (2014) approached the integrated scheduling problem of QCs, IVs, and YCs as a three-stage 
flow-shop problem. Taking into account the limited buffer constraints in AGV mate and the double-cycling operation mode, Zhuang 
et al. (2022) further abstracted this problem into a blocking hybrid flow-shop scheduling problem with bi-directional flows and limited 
buffers. In line with these approaches, the problem under investigation in this paper can be abstracted as a three-stage hybrid flow- 
shop scheduling problem with bidirectional flows and waiting time, while also concerning the uncertainty in operation time and its 
cascade effects. 

Lastly, it is worth noting that the integrated scheduling problem for multi-equipment in a U-shaped port has received considerable 
attention from researchers in recent years. Xu et al., (2022, 2021) addressed the integrated scheduling problem of QCs, conflict-free 
AGVs, and YCs in a U-shaped port, considering both with and without the consideration of double-cycling operation, respectively. Niu 
et al. (2022) extended the scope by incorporating EVs into the U-shaped port integrated scheduling model and emphasizing energy 
consumption in port operations. However, these works failed to incorporate the uncertain operation time and its cascade effects, 
revealing their limited contributions to practical solutions and the need to develop new solutions to the problem. 

2.2. Dynamic QCs, IVs, and YCs integrated scheduling problem concerning uncertainty 

In general, there are limited studies that specifically address uncertainty in the context of integrated scheduling. Some studies have 
introduced general disturbances or uncertainties into DESs without specifying the types of uncertainty. For instance, Zhang and Jiang 
(2008) incorporated disturbances into the WITNESS simulation and evaluated the effectiveness of proposed DRs in improving the 
operating efficiency of container terminals. Similarly, Cahyono et al. (2022) considered general disturbances and integrated a HA into 
a DES to obtain near-optimal solutions. 

Other studies have specifically focused on uncertain operation time. For instance, Zeng and Yang (2009) assumed that the oper-
ation time of QCs and YCs followed a Uniform distribution and investigated the scheduling problem for outbound containers as a hybrid 
flow shop scheduling problem. They employed a GA to optimize the initial schedule generated by DRs and utilized simulation to 
evaluate the effectiveness of the schedule. Notably, they developed a surrogate model based on a NN to quickly predict the value of the 
fitness function. However, their study did not account for the fluctuation of IVs’ transportation time, while our research takes this 
factor into consideration. 

Ahmed et al. (2021), Cai et al., (2023a), and Lu and Le (2014) tackled the issue of uncertain operation time for IVs, and cranes. Lu 
and Le (2014) specifically optimized the operation time of YCs in coordination with QCs and ITs. However, their approach employed a 
PSO algorithm that substituted deterministic parameters with randomly generated parameters following a normal distribution, 
without sufficiently delving into an extensive analysis of the uncertainty-solving mechanism. Additionally, it is worth noting that they 
did not consider the double-cycling operation mode and U-shaped layout in their studies, whereas our study has specifically addressed 
this aspect. Ahmed et al. (2021) investigated the double-cycling operation mode, which was highly relevant to the problem addressed 
in our paper. Nevertheless, their study adopted a CRS approach and primarily focused on comparing the productivity rate, vessel 
turnaround time, and unit cost of double-cycling and single-cycling strategies, rather than placing emphasis on global optimization and 
schedule robustness, as we have done in this paper. Besides, the U-shaped layout was not considered in their work, whereas it is 
considered in this work. The study by Cai et al., (2023a) has not yet considered the U-shaped port layout and the double-cycling 
operation, requiring new exploration to make the new theoretical development best-fit the increasing practical needs in this field. 
Besides, in terms of the scale of their experimental case, it is evident that the current literature has not conducted the experiments to a 
large scale that can match reality and fully validate the feasibility of the new models in practice. Methodologically, this paper provides 
a new robust scheduling plan generation framework based on such scheduling plan’s robustness and AERI which is transforming this 
index into an optimization objective and transforming the original problem into a multi-objective optimization problem. 

2.3. Research gaps and our contribution 

Compared to the existing literature, this paper makes four significant contributions (i.e., C1-C4) to the field to fill the research gaps 
(i.e. R1-R4): 

R1: The simultaneous consideration of uncertain operation time, U-shaped port layout, and double-cycling mode in solving the 
integrated scheduling of QCs, IGVs, and YCs has not been addressed in prior research. 

C1: A new scheduling solution to the coordination of QCs, IGVs, and YCs in a U-shaped port terminal concerning uncertain 
operation time and its cascade effects under the double-cycling mode. 

Uncertain operation times are a frequent phenomenon in real-world port operations, and it is yet fully explored in integrated 
scheduling research. Furthermore, the U-shaped layout and double-cycling operation mode, which offer enhanced efficiency and 
energy savings, require a tailored scheduling approach to optimize the port’s container handling capacity. Consequently, the signif-
icance of this study lies in its ability to address a critical issue in the port industry and cater to the trend of a more efficient industrial 
mode. 

R2: Given the aforementioned challenges, the existing methods for addressing uncertain operation time seldom focus on the 
cascade effects of operation time fluctuations, upon which a more effective scheduling method can be developed. 

C2: A new robust-proactive scheduling framework concerning scheduling plans’ robustness and anti-cascade effect based on 
complex network structure entropy. 
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The significance of this new robust-proactive scheduling framework lies in its proactive approach to scheduling, which takes into 
account the potential cascading effects of disruptions in the schedule. By incorporating the concept of complex network structure 
entropy, the framework provides a method for evaluating the robustness of scheduling plans and mitigating the impact of critical 
components that may lead to cascading failures to a certain extent. This approach holds applicability not only in the multi-equipment 
integrated scheduling but also in other complex scheduling systems, including workshop production scheduling, warehouse AGVs 
scheduling and transportation vehicle scheduling, among others. 

R3: Only a limited number of studies have utilized real port cases. 
C3: A real case study upscaling the experiment size to best-fit the reality to demonstrate the feasibility of the new method and the 

supporting mathematic formulation and algorithms in the real world. 
The experimental parameters and port layout used in this study are derived from a comprehensive survey of real ports. The real- 

case study can help demonstrate the feasibility of the proposed method and validate the effectiveness of the mathematical formulation 
and algorithms in practical settings, which holds significant value. Future application of this method to a real-world port terminal will 
provide valuable insights into its performance and identify areas for further enhancement. Moreover, the case study can serve as a 
reference for other ports or logistics companies interested in implementing the new method. 

R4: The implications of their research for the industry are mentioned less frequently in existing studies. 
C4: Elaboration of the new method’s implications and significance in the port industry or other sectors facing similar problems. 
The cross-industry applicability of the new method is a notable feature. Its capacity to handle uncertain and dynamic situations, 

optimize complex scheduling systems, and consider the cascading effects of disruptions makes it valuable for other industries such as 
workshop production logistics scheduling, warehouse logistics AGVs scheduling and city logistics vehicles scheduling. These industries 

Fig. 4. A robust-proactive scheduling framework.  
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face similar challenges and can benefit from the application of the newly proposed method in this paper. 

3. The proposed robust-proactive scheduling framework 

This section outlines the development of the proposed robust-proactive scheduling framework. Fig. 4 illustrates the approach used 
to address the port multi-equipment integrated scheduling problem while concerning uncertainty with cascade effects. Additionally, it 
shows how the designed anti-cascade effect and robustness evaluation index are applied to feasible scheduling plans. The framework 
incorporates this index as an additional optimization objective in the original problem, effectively transforming it into a multi- 
objective optimization problem (Zhu et al., 2018). 

The approaches to solving multi-objective optimization problems can be classified into three categories: scalar-based, performance- 
based, and Pareto dominance-based (He et al., 2019b). The scalar-based approaches include those like weighted sum (Kaddani et al., 
2017) and decomposition-based (Jiang et al., 2021; Zhang et al., 2020a) methods, which are easy to implement but may have chal-
lenges in determining the weight values for each objective (He et al., 2022). The performance indicator-based approaches are less 
commonly used compared to the other two. It involves using indicators such as hypervolume, inverted generational distance, and 
generational distance to evaluate the quality of each solution and using these indicators as objective functions in evolutionary al-
gorithms. While this type of approach can accurately measure solution quality and handle objective interactions and solution set 
control, it may not align well with an actual problem, and the computational complexity can be high (Kaveh et al., 2012). The Pareto 
dominance-based approaches are widely popular, with Nondominated Sorting Genetic Algorithm II (NSGA-II) (Ming et al., 2022) and 
Strength Pareto Evolutionary Algorithm II (SPEA-II) (Yuan et al., 2017) being the most commonly used methods in this domain. This 
type of approach is effective but may be time-consuming in terms of computation. In this paper, the main focus is placed more on 
obtaining a robust scheduling plan than a multi-objective optimization algorithm itself. Therefore, the widely used and effective NSGA- 

Table 2 
Notations used in the mathematic formulation model.  

Notation Description Notation Description 

Sets and 
indices:    

CI Set of the serial number of inbound containers.CI = {1,⋯⋯,

NI}.

CO Set of the serial number of outbound containers.CO =

{NI +1,⋯⋯,NI + NO}.

C Set of all the serial number of containers. C = CI ∪ CO J Set of the serial number of operations that a container needs to go 
through. J = {1,2,3}. 

Q Set of the serial number of QCs. Q = {1,⋯⋯,NQ}. A Set of the serial number of IGVs. A = {NQ + 1,⋯⋯,NQ + NA}. 
Y Set of the serial number of YCs. Y = {NQ + NA + 1,⋯⋯,NQ +

NA + NY}. 
K Set of the serial number of equipment. K=Q ∪ A ∪ Y 

i,i′ Index for containers. When i, i′ ∈ CI , they refer to an inbound 
container. When i, i′ ∈ CO, they refer to an outbound 
container. 

j Index for operations that a container needs to go through. j = 1,
2, 3 refer to the unloading operation from the vessel, the 
transportation operation, and the loading operation onto the yard 
respectively. 

k Index for equipment. When k ∈ Q, k refers to a QC. When 
k ∈ A, k refers to an AGV. When k ∈ Y, k refers to a YC.   

Parameters:    
NI The total number of inbound containers to be handled. NI =

NO. 
NO The total number of outbound containers to be handled. NI = NO. 

NQ The total number of QCs. NA The total number of AGVs. 
NY The total number of YCs. Oij The jth operation of container i. 
t̃ij The loading, unloading or transportation time of operation 

Oij. 
H An exceptionally high positive integer. 

ṽk The movement speed of the kth equipment. Dii′k The distance that equipment k needs to travel between the ending 
position of operation Oij and the starting position of operation Oi′j. 
The value of j depends on the type of equipment, where j takes 
values of 1, 2 or 3, respectively when k ∈ Q,A or Y, respectively. 

Mi The index of the QC responsible for handling container i. Gi The index of the YC responsible for handling container i. 
0–1 variables:    
xik 1 if Oij is assigned to the equipment k and 0 otherwise. The 

value of j depends on the type of equipment, where j takes 
values of 1, 2 or 3, respectively when k ∈ Q,A or Y, 
respectively. 

yii′k 1 if Oij precedes Oi′j and 0 otherwise. The value of j depends on the 
type of equipment, where j takes values of 1, 2 or 3, respectively 
when k ∈ Q,A or Y, respectively. 

Pii′ 1 if an inbound container i ∈ CI can form a pair with an 
outbound container i′ ∈ CO and 0 otherwise. In a pair, the IGA 
operates in a double-cycling mode, where it will promptly 
proceed to transport the outbound container as soon as it 
completes the transportation of the corresponding inbound 
co/ntainer in the pair. 

u1 ii′ , u2 ik Auxiliary variables used to linearize constraints. 

Non 0–1 
variables:    

Cmax The makespan which is the time when all the operations are 
finished. 

Stij The start time of operation Oij.  
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II algorithm has been chosen to solve the multi-objective mathematical programming model presented in this study. 
This framework serves as a general approach to address the scheduling problem with uncertain operation time. By utilizing this 

framework, the generated scheduling plan not only improves the original optimization objective, such as makespan, but also maintains 
a high level of robustness when facing actual uncertain operation time. In particular, the framework can effectively absorb a certain 
degree of operation time fluctuations. Hence, the proposed framework is in naturally categorized as an improvement under the Robust- 
Proactive Scheduling (RPS) approach. 

4. Preliminary 

The integrated scheduling of QCs, IVs, and YCs in a U-shaped container terminal, taking into account uncertain operation time and 
the double-cycling mode, is formulated as a three-stage hybrid flow shop scheduling problem with bi-directional flows, waiting time, 
and uncertain operation time, as analyzed above. This section describes the detailed development of a new mathematical model for the 
formulated problem. The basic model primarily focuses on optimizing the makespan. However, in the subsequent section, an additional 
optimization objective related to robustness and anti-cascade effect is also introduced. 

4.1. Problem assumptions 

Before presenting the mathematical formulation model, the following assumptions are outlined:  

1) All equipment, including QCs, IGVs, and YCs, are available at the start of the scheduling process.  
2) All tasks, including loading outbound containers from an investigated yard to a vessel and unloading inbound containers from the 

vessel to the yard, are available at the start, following the double-cycling mode. Each IGV can transport inbound and outbound 
containers alternatively as required.  

3) Each equipment can handle only one container at a time, performing operations such as loading, unloading, or transportation.  
4) Each container can be handled by only one equipment at a time, whether it’s for loading, unloading, or transportation purposes.  
5) The assignment of QCs and YCs is predetermined.  
6) The layout of the U-shaped port container terminal, including the distance between the two loading and unloading positions, is 

known and predefined. As such, the traveling distances matrix for IGVs between each unloading/loading point is ascertainable.  
7) The IGVs are shared among all QCs and YCs, enabling each IGV to serve multiple QCs and YCs.  
8) The average loading or unloading time of a QC or YC, as well as the horizontal moving speed of a QC, IGV, or YC, are known based 

on historical data.  
9) The actual loading or unloading time of a QC or YC, as well as the horizontal moving speed of a QC, IGV, or YC, may fluctuate 

around the average time due to uncertainties such as human operation, traffic congestion, weather changes, equipment obstacle 
avoidance, and failures, among others. 

4.2. Basic mixed-integer programming model 

Table 2 presents the symbols used in the mathematical formulation model. 
The objective function of this model is the makespan, which is defined as follows: 
Minimize f = makespan = Cmax (1). 
where Eq. (1) minimizes the maximum completion time of container operations. The constraints of the basic mathematic model are 

formulated as follows: 
Cmax ≥ Sti1 + t̃i1∀i ∈ CO(2). 
Stij + t̃ij ≤ Sti(j+1)∀i ∈ CI, j ∈ {1,2}(3). 
Stij + t̃ij ≤ Sti(j− 1)∀i ∈ CO, j ∈ {2,3}(4). 

Stij −

(

Sti′(j+1) +
Di′ik
ṽk

)

+ H
(
2+yii′k − xik − xi′k

)
≥ 0∀i ∈ C, i′ ∈ CI, j ∈ {1},k ∈ Q(5). 

Stij −

(

Sti′(j+1) +̃ti′(j+1) +
Di′ik
ṽk

)

+ H
(
2+yii′k − xik − xi′k

)
≥ 0∀i ∈ C, i′ ∈ CI, j ∈ {2},k ∈ A(6). 

Stij −

(

Sti′j +t̃i′j +
Di′ik
ṽk

)

+ H
(
2+yii′k − xik − xi′k

)
≥ 0∀i ∈ C, i′ ∈ CI, j ∈ {3},k ∈ Y(7). 

Stij −

(

Sti′(j− 1) +
Di′ik
ṽk

)

+ H
(
2+yii′k − xik − xi′k

)
≥ 0∀i ∈ C, i′ ∈ CO, j ∈ {3},k ∈ Y(8). 

Stij −

(

Sti′(j− 1) +̃ti′(j− 1) +
Di′ik
ṽk

)

+ H
(
2+yii′k − xik − xi′k

)
≥ 0∀i ∈ C, i′ ∈ CO, j ∈ {2},k ∈ A(9). 

Stij −

(

Sti′j +t̃i′j +
Di′ik
ṽk

)

+ H
(
2+yii′k − xik − xi′k

)
≥ 0∀i ∈ C, i′ ∈ CO, j ∈ {1},k ∈ Q(10). 

Sti′j −

(

Sti(j+1) +
Dii′k
ṽk

)

+ H
(
3 − yii′k − xik − xi′k

)
≥ 0∀i′ ∈ C, i ∈ CI, j ∈ {1},k ∈ Q(11). 
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Sti′j −

(

Sti(j+1) +̃ti(j+1) +
Dii′k
ṽk

)

+ H
(
3 − yii′k − xik − xi′k

)
≥ 0∀i′ ∈ C, i ∈ CI, j ∈ {2},k ∈ A(12). 

Sti′j −

(

Stij + t̃ij +
Dii′k
ṽk

)

+H
(
3 − yii′k − xik − xi′k

)
≥ 0∀i′ ∈ C, i ∈ CI, j ∈ {3}, k ∈ Y (13). 

Sti′j −

(

Sti(j− 1) +
Dii′k
ṽk

)

+H
(
3 − yii′k − xik − xi′k

)
≥ 0∀i′ ∈ C, i ∈ CO, j ∈ {3}, k ∈ Y (14). 

Sti′j −

(

Sti(j− 1) + t̃i(j− 1) +
Dii′k
ṽk

)

+H
(
3 − yii′k − xik − xi′k

)
≥ 0∀i′ ∈ C, i ∈ CO, j ∈ {2}, k ∈ A (15). 

Sti′j −

(

Stij + t̃ij +
Dii′k
ṽk

)

+H
(
3 − yii′k − xik − xi′k

)
≥ 0∀i′ ∈ C, i ∈ CO, j ∈ {1}, k ∈ Q (16). 

Pii′ ≥ 1 − u1 ii′ ∀i′ ∈ CO, i ∈ CI(17). 
Pii′ + xik + xi′k − 3 + Hu1 ii′ ≥ 0∀i′ ∈ CO, i ∈ CI,k ∈ A(18). 
∑

i∈Cyii′k −
∑

i′∈Cyi′ik − 1 + Hu1 ii′ ≥ 0∀i′ ∈ CO, i ∈ CI,k ∈ A(19). 
∑

i∈Cyii′k −
∑

i′∈Cyi′ik − 1 − Hu1 ii′ ≤ 0∀i′ ∈ CO, i ∈ CI,k ∈ A(20). 
xiMi = 1∀i ∈ C(21). 
xiGi = 1∀i ∈ C(22). 
∑

k∈QorAorYxik = 1∀i ∈ C(23). 
∑

i′∈Cyii′k +
∑

i′∈Cyi′ik −
∑

i∈Cxik + 1 − H(1 − u2 ik) ≤ 0∀i ∈ C,k ∈ K(24). 
∑

i′∈Cyii′k +
∑

i′∈Cyi′ik −
∑

i∈Cxik + 1 + H(1 − u2 ik) ≥ 0∀i ∈ C,k ∈ K(25). 
∑

i′∈Cyii′k +
∑

i′∈Cyi′ik −
∑

i∈Cxik − Hu2 ik ≤ 0∀i ∈ C,k ∈ K(26). 
∑

i′∈Cyii′k +
∑

i′∈Cyi′ik −
∑

i∈Cxik + Hu2 ik ≥ 0∀i ∈ C,k ∈ K(27). 
∑

i∈Cxik − u2 ik ≥ 0∀i ∈ C,k ∈ K(28). 
∑

i∈Cxik − Hu2 ik ≤ 0∀i ∈ C,k ∈ K(29). 
∑

i′∈CO
Pii′ = 1∀i ∈ CI(30). 

∑
i′∈CI

Pi′i = 1∀i ∈ CO(31). 
∑

i∈CI

∑
i′∈CO

Pii′ = NI = NO(32). 
xik,yii′k,Pii′,u1 ii′,u2 ik ∈ {0,1}∀i, i′ ∈ C,k ∈ K(33). 
Stij ≥ 0∀i ∈ C, j ∈ J(34). 
Constraint (2) ensures that the makespan is not smaller that the completion time of all outbound containers. The final task in an 

entire scheduling sequence must fall on an outbound container, as an IGV follows a double-cycling order of transporting containers, 
moving an inbound container and then an outbound container in a sequential manner. Constraints (3) to (4) enforce that the start time 
of a subsequent operation cannot be earlier than the completion time of its preceding operation. Constraints (5) to (16) establish the 
sequential relationships between two containers assigned to the same equipment. Constraints (17) to (20) are linearized versions of the 
constraints Pii′(xik +xi′k− 2) = 0∀i ∈CI, i′ ∈ CO, k ∈ A and Pii′

( ∑
i∈Cyii′k −

∑
i′∈Cyi′ik − 1

)
= 0 ∀i ∈ CI, i′ ∈ CO,k ∈ A. These constraints impose 

the condition that the IGV must transport inbound and outbound containers alternately, representing a double-cycling operation 
mode. Constraint (21) indicates that QCs are assigned to their respective containers based on a predetermined plan that considers 
collision avoidance between QCs. Constraint (22) specifies the assignment of YCs to their respective containers while avoiding col-
lisions between YCs. Constraint (23) ensures that each container operation is assigned to only one equipment of the same type, 
meaning that multiple equipment of the same type cannot simultaneously perform the operation on the same container. Constraints 

(24) to (29) linearize the constraint 
∑

i′∈Cyii′k +
∑

i′∈Cyi′ik =

⎧
⎨

⎩

∑

i∈C
xik − 1, if

∑

i∈C
xik ∕= 0

0, if
∑

i∈C
xik = 0

∀i ∈ C, k ∈ K, establishing the relationship 

between assignment variables and operation sequence variables for a piece of equipment. Constraints (30) to (31) indicate that each 
inbound container can only be paired with one outbound container, and each outbound container can only be paired with one inbound 
container, forming a double-cycling pattern. Constraint (32) ensures that every container is paired. Constraints (33) to (34) define the 
value range of the variables. 

5. Bi-objective optimization model concerning the anti-cascade effect and robustness evaluation index 

5.1. Bi-objective robust optimization model 

Using the basic mathematical model with a single optimization objective as a foundation, a bi-objective robust optimization model 
is developed by incorporating an additional objective to evaluate the robustness of a pre-scheduling plan. This approach aims to obtain 
a Pareto frontier consisting of solutions that exhibit both good makespans and strong robustness against cascade effects ability. 

If S represents a feasible pre-scheduling plan, which is determined by the variables and constraints outlined in Section 4.2 of the 
basic mathematical model, the original objective function can be reformulated as Eqs. (35) - (37): 

f(S) = Minimize[f1(S), f2(S) ] (35). 
f1 = Makespan(S) (36). 
f2 = − R(S) (37). 
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where f1 represents the makespan, as mentioned previously, and f2 indicates the anti-cascade effect and robustness evaluation index 
with regard to the schedule. 

5.2. Anti-cascade effect and robustness evaluation index based on complex network structure entropy 

5.2.1. Gap time slots between consecutive operations 
During the implementation of the schedule, uncertainties may arise, leading to fluctuations in operation time. While the fluctuation 

of a single operation may have minimal impact on that particular operation, the interdependence between operations can result in 
cascade effects when multiple operation time fluctuations occur. These cascade effects can propagate throughout the original 
scheduling plan, rendering it ineffective. Therefore, it is crucial to generate a robust pre-scheduling plan that can absorb operation time 
fluctuations during execution. One of the objectives of this paper is to develop a mechanism to evaluate the anti-cascade effect and 
robustness of schedules. This mechanism will aid in selecting a more suitable scheduling plan for implementation. 

In the Gantt Charts of the pre-scheduling plans, noticeable gap time slots are often observed between operations. A gap time slot 
refers to the duration between two consecutive operations within an equipment or job. It represents the idle time between tasks. The 
development of the anti-cascade effect and robustness evaluation mechanism for pre-scheduling plans involves analyzing the size and 
distribution of these gap time slots in the Gantt Charts. Having more gap time slots between operations indicates a greater ability of the 
pre-scheduling plan to absorb uncertainties. However, it is not only the total length of these gap time slots that matters but also their 
distribution that is important. 

For example, two sets of comparisons regarding gap time slots are provided in Fig. 5. In Fig. 5(a), it can be observed that scheduling 
plan 1 has a better makespan than scheduling plan 2, but it lacks any gap time slot between operations. Consequently, when facing 
operation time fluctuations during plan execution, scheduling plan 2 will exhibit greater robustness compared to scheduling plan 1. 
However, it is important to note that having more gap time slots does not automatically indicate a superior scheduling plan. As 
illustrated in Fig. 5(b), even though scheduling plan 4 has a larger total length of gap time slots than scheduling plan 3, the gap time 
slots in scheduling plan 3 are more evenly distributed. Therefore, concerning the cascade effects of uncertain operation time slots, 
scheduling plan 4 is expected to possess a greater capacity to absorb uncertainties at a higher level compared to scheduling plan 3. 

5.2.2. The construction of anti-cascade effect and robustness evaluation index 
In complex network theory, a metric known as complex network structure entropy is employed to measure the complexity of a 

network (Fu et al., 2023; Lei et al., 2019). An illustration of this concept is depicted in Fig. 6. The network depicted on the left, which 
appears more intricate and uniform, exhibits a higher level of network structure entropy compared to the one on the right. Conse-
quently, the network on the left demonstrates a greater degree of resilience, suggesting that it is more likely to remain operational and 
avoid complete failure in the face of node failures and their cascade effects. Specifically, the failure of one node in Fig. 6(a) does not 
incapacitate the entire system since alternative routes exist through other connections. Conversely, the failure of the central node in 
Fig. 6(b) can trigger a cascading effect that results in a system-wide failure. To quantify this anti-cascade effect and robustness, the 
theory of complex network structure entropy has been employed here. 

As previously expounded, a schedule’s robustness and anti-cascade effect directly correlate with the uniform distribution and 
greater lengths of gap time slots between operations. In such circumstances, the capacity of gap time slots to absorb uncertainty is 
enhanced, bolstering the schedule’s anti-cascade effect and robustness. This implies a certain correlation between gap time slots and 
the nodes and connections within a complex network. The fundamental concept underlying the application of this theory to scheduling 
is to transform the scheduling plan into a complex network, making it amenable to complex network theory analysis. Furthermore, it 
necessitates the incorporation of the significance and priority of operations with respect to uncertainty, achieved by devising a function 
reflecting the weight of each gap time slot’s importance. 

Fig. 5. The comparison of gap time slots among different pre-scheduling plans.  
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To enhance the application of this theory in evaluating the anti-cascade effects and robustness of a schedule, several steps are 
undertaken. Initially, the scheduling Gantt Chart is transmuted into a complex structure where operations are represented as nodes 
connected by solid lines, while gap time slots are denoted by dotted lines. Subsequently, the lengths of the dotted lines on the X-axis, 
signifying the gap time slots’ durations, are calculated. Thirdly, the importance of each dotted line (gap time slot) is computed. In this 
process, a function is employed to reflect the significance and priority of operations concerning uncertainty. Fourthly, the importance 
degree of each dotted line is subjected to entropy analysis to quantify the degree of dispersion. Ultimately, the summation of all 
dispersion degrees of each dotted line represents the network structure entropy or, in other terms, the anti-cascade effect and 
robustness index of the scheduling plan. 

Here are the following steps in detail. 
(1) Preparatory work: Introducing some new notations. 
As presented in Table 3, before introducing the anti-cascade effect and robustness evaluation index of a schedule, it is essential to 

introduce some additional notations. The uncertain operation time t̃ij can be represented in a revised form, as shown in Eq. (38), which 
includes both the deterministic component and the uncertain component. Furthermore, a random variable ξij can be extracted from the 
uncertain component. 

t̃ij =
(

1+ξij

)
• tij∀i ∈ C, j ∈ J(38). 

(2) The first step: Transforming the pre-scheduling plan into a complex network. 
To employ the complex network structure entropy theory for evaluating the anti-cascade effect and robustness, it is necessary to 

convert the schedule into a network format. A feasible pre-scheduling plan for the operation of three jobs utilizing three pieces of 
equipment is depicted in Fig. 7. During the transformation process, each operation is depicted by two nodes connected by a directed 
solid line, while each gap time slot is represented by a dotted line. 

(3) The second step: Calculating the projected length of the dotted line on the X-axis (gap time slot). 
While the dotted lines visually represent gap time slots, it is important to note that the lengths of the dotted lines do not directly 

correspond to the durations of the gap time slots. In reality, the lengths of gap time slots are measured as the projected distances of the 
dotted lines onto the X-axis. The calculation of gap time slots is demonstrated in Fig. 8 using Eqs. (39)-(40). 

Gij =

{
Sti(j+1) − Stij − tij, ifi ∈ CI, j ∈ {1,2}
Sti(j− 1) − Stij − tij, ifi ∈ CO, j ∈ {2,3} (39). 

Gk
ij =

∑
i′∈C

∑
k∈Kyii′k •

(
Sti′j′ − Stij − tij

)
∀i ∈ C, j ∈ J (40). 

(4) The third step: Calculating the importance degree of each dotted line (gap time slot). 
In the context of complex network structure entropy theory, there exists a concept that describes the importance level of nodes 

within a network. Specifically, if a node in the network has a higher proportion of connected edges, it possesses a greater degree of 
importance. This concept can be applied to the scheduling problem. If a gap time slot represents a higher proportion of the total 
duration of gap time slots, it can be assumed to possess a higher degree of importance. As a result, the importance level of each gap time 
slot can be defined using Eqs. (44)-(45). 

NG1 =
∑

xk
ij − NQC − NIGV − NYC (41). 

NG2 =
∑

xk
ij − NI − NO (42). 

NG = NG1 +NG2 = 2 •
∑

xk
ij − (NQC + NIGV + NYC + NC + NO) (43). 

IGij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h
(

ξij, ξi(j+1)

)
•

Gij
∑

Gk
ij +

∑
Gij

, ifi ∈ CI, j ∈ {1,2}

h
(

ξij, ξi(j− 1)

)
•

Gij
∑

Gk
ij +

∑
Gij

, ifi ∈ CO, j ∈ {2,3}
(44). 

IGk
ij
= h

(
ξij, ξi′j′

)
•

Gk
ij∑

Gk
ij+
∑

Gij
whereGk

ijisbetweenOijandOi′j′,∀i ∈ C, k ∈ K (45). 

It is noteworthy that the model takes into account the influence of the characteristics of uncertainties in adjacent operations. For 

Fig. 6. Two constructed networks with varying levels of complexity and entropy.  
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Table 3 
New notations used in the complex network structure entropy theory.  

Notation Description Notation Description 

Parameters 
tij The deterministic component of operation time ̃tij. ξij The random variable describing the uncertain component of operation time ̃tij . 
α A positive coefficient.   
Non 0–1 variables: 
Gk

ij The gap time slot between operation Oij and its subsequent operation in an equipment k. Gij The gap time slot between consecutive operations Oij and Oi(j+1) in a container i. 
NG1 The cumulative count number of gap time slots between operations in a piece of equipment. NG2 The cumulative count number of gap time slots between operations in a container. 
NG The total number of the gap time slots IGk

ij
, IGi(j+1) The importance degree of the gap time slot Gk

ij or Gi(j+1). 
dGk

ij
,dGi(j+1) The dispersion degree of the gap time slot Gk

ij or Gi(j+1)

Function: 
h() A function to manage the random variables of the two operations associated with the gap time slot.    
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instance, when an operation has a low degree of uncertainty and its execution time shows minimal fluctuations, it leads to decreased 
importance levels or priorities for the adjacent gap time slots. Thus, the function h(•) is employed to describe the impact or priorities of 
the random variables in the adjacent operations of a gap time slot on that specific gap time slot. The function h(•) can exhibit vari-
ability across different uncertain scenarios. In the scenario studied within this paper, because the operation time follows a Normal 

distribution, the function h(ξij, ξi(j±1)) or h
(

ξij, ξi′j′
)

can be expressed as α • [SD
(

ξij

)
+SD

(
ξi(j±1)

)]
or α • [SD

(
ξij

)
+ SD

(
ξi′j′

)]
, respec-

tively. Here, α represents a positive coefficient, and SD( • ) denotes the standard deviation of the random variable. 
(5) The fourth step: Calculating the dispersion degree of each dotted line (gap time slot). 
If the IGk

ij 
or IGij equals to 0, − IGk

ij
• lnIGk

ij 
and − IGij • lnIGij would become undefined. To address this, intermediate variables dGk

ij 
and 

dGij are introduced, as defined in Eqs. (46)-(47). 

dGij =

{
0, if IGij = 0

− IGij • lnIGij , if IGij ∕= 0 ∀i ∈ C, j ∈ J (46). 

dGk
ij
=

⎧
⎨

⎩

0, if IGk
ij
= 0

− IGk
ij
• lnIGk

ij
, if IGk

ij
∕= 0

∀i ∈ C, k ∈ K (47). 

The intermediate variables are referred to as the dispersion degrees of the gap time slots. A higher importance degree does not 
necessarily indicate a greater dispersion degree. This approach enables the incorporation of both the importance degree and distri-
bution of the gap time slots, resulting in a more comprehensive perspective. 

(6) The fifth step: Calculating the structure entropy of the pre-scheduling plan network. 
R(S) =

∑
dGk

ij
+
∑

dGij (48). 

The final step involves summing up the dispersion degrees of all gap time slots according to Eq. (48). R(S) is referred to as the anti- 
cascade effect and robustness evaluation index of the pre-scheduling plan S. The value of R(S) increases as the number of gap time slots 
and their even distribution increase. While standard deviation can assess the distribution of gap time slots, it does not capture the 
quantitative information of gap time slots. Therefore, if the robustness evaluation index is constructed solely based on standard de-
viation, it becomes necessary to consider multiple parameters such as standard deviation, mean value, and total value comprehen-
sively. If that is the case, the approach will indeed become more complex and cumbersome. 

Fig. 7. The approach of transferring the pre-scheduling plan into a network.  

Fig. 8. The gap time slots between adjacent operations.  
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6. Bi-objective robust optimization model solution algorithm 

6.1. Flows of solution algorithm based on NSGA-II 

By applying NSGA-II, a set of Pareto frontier solutions can be obtained. Let’s denote SF as the set of feasible solutions, SD as the set 
of dominated solutions, and SP as the set of Pareto frontier solutions. We have SF\SP = SD. If Si and Sj represent solutions, the Pareto 
frontier solution in this paper satisfies the following two properties: (i) ∀Si, Sj ∈ SP, we have 
[
f1(Si) ≤ f1

(
Sj
)
andf2(Si) ≥ f2

(
Sj
) ]

or[f1(Si) ≥ f1
(
Sj
)
andf2(Si) ≤ f2

(
Sj
)
]. (ii) ∀Si ∈ SP, Sj ∈ SD, we have f1(Si) ≤ f1

(
Sj
)
andf2(Si) ≤ f2

(
Sj
)
. 

As NSGA-II is a well-established algorithm, in this paper, we only provide an overview of its fundamental procedure. 
Step 1: Initialize the population of chromosomes according to the defined encoding rule. 
Step 2: Perform non-dominated ranking on the chromosomes within the population and categorize them into several rankings. 
Step 3: Calculate the crowding distance of chromosomes in the population, which can be used to evaluate the diversity of the 

population. 
Step 4: Initialize the iteration counter c to 1. 
Step 5: Generate the parent population by binary tournament selection. 
Step 6: Generate the offspring population through crossover and mutation operations applied to the parent population, based on a 

specified probability. 
Step 7: Merge the parent population and offspring population to form a new population. 
Step 8: Perform non-dominated ranking on the chromosomes within the new population and categorize them into several rankings. 
Step 9: Calculate the crowding distance of chromosomes in the new population. 
Step 10: Create the new offspring population using an elite strategy. 
Step 11: If c ≥ maximum generations, go to Step 12, otherwise c+ = 1 and go back to Step 5. 
Step 12: Output the solutions on the Pareto frontier. 
Step 13: Select the most appropriate solution as the final solution for execution. 

6.2. Coding, crossover, and mutation rules for chromosomes 

The coding, crossover, and mutation rules for chromosomes are developed individually based on the specific problem and 
mathematical model. These rules play a crucial role in the implementation of the NSGA-II. 

6.2.1. Coding rule 
The chromosome is composed of a two-layer sequence of integer numbers. The top layer of the chromosome represents the 

operation tasks assignment and sequence of inbound containers, while the bottom layer represents the operation tasks assignment 
sequence of outbound containers. Each layer of the chromosome consists of four segments. The four segments represent the containers, 
QCs, IGVs and YCs, respectively. 

When generating a chromosome, the sequence of container numbers in the containers segment is randomized, and the numbers 
representing IGVs of the upper layer are also randomized. The number representing QCs and YCs is generated according to the pre-
determined assignments of QCs and YCs. Considering the double-cycling operation mode, the numbers representing IGVs in the bottom 

Fig. 9. A chromosome representing the scheduling of 3 inbound containers and 3 outbound containers.  
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layer are generated with the same values as those in the upper layer, maintaining the correspondence between the two layers. 
The number in the same position of each segment has a one-to-one correspondence, indicating the assignment of tasks. Addi-

tionally, the sequential arrangement of equipment numbers from left to right is directly linked to the operation sequence of containers 
for each equipment. Thus, a scheduling plan chromosome is constructed to represent the integrated scheduling of multiple port 
equipment, taking into account the double-cycling operation mode. 

An example of integrated equipment scheduling for three inbound containers and three outbound containers is illustrated in Fig. 9. 
Taking inbound container 2 as an example, it will be unloaded by QC 1 from the vessel onto IGV 4, transported by IGV 4 from the quay 
shore to the yard, and finally loaded by YC 5 from IGV 4 onto the yard. Taking IGV 3 as an example, it will transport inbound container 
1 from the quay shore to the yard, and then transport outbound container 6 from the yard to the quay shore, forming a double-cycling 
operation. 

6.2.2. Crossover rule 
The crossover operation may not occur on all containers. Each container has a probability of being selected for the crossover 

operation. After the crossover operation, the two parent chromosomes are transformed into two offspring chromosomes. An example of 
the crossover operation performed on the two chromosomes is illustrated in Fig. 10. The crossover operation involves the selected 
inbound containers 2 and 3, as well as the outbound container 5 with the two parent chromosomes. The selected containers’ numbers 
and their corresponding equipment’s numbers are swapped between the parent chromosomes. When performing the crossover 
operation, the relative sequence of the numbers is preserved. This means that the order of the selected containers’ numbers and their 
corresponding equipment’s numbers remain unchanged after the exchange between the parent chromosomes. It is worth mentioning 
that for the crossover operation of outbound containers in Fig. 10, as there is only one outbound container requiring the crossover 
operation, the off-spring chromosomes related to outbound containers remain unchanged alongside the parent chromosomes. This is a 
potential occurrence in real crossover operations. 

6.2.3. Mutation rule 
The mutation operations involve the exchange of positions for inbound or outbound containers and the change of the IGV number. 

The occurrence probability of the mutation operation is typically low. For example, the mutation of inbound containers 2 and 3, as well 
as outbound containers 5 and 6, are illustrated in Fig. 11. This mutation results in an exchange of the containers’ numbers and the 
corresponding QCs and YCs’ numbers. Additionally, IGV 4 at position 9 of the chromosome undergoes a mutation and is changed to 
IGV 3. 

6.3. Selection rule for the most appropriate solution 

Let f1min, f2min be the minimum values of the two objectives represented in the Pareto frontier, and let IP be the ideal point with 
objective values equal to f1min, f2min. To obtain the most appropriate solution from the Pareto frontier, the Euclidean distances ED(IP, Si)

between the solutions in the Pareto frontier Si ∈ SP and the IP needs to be calculated (see Fig. 12). 

ED(IP, Si) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[f1(Si) − f1min]
2
+ [f2(Si) − f2min]

2
√

,∀Si ∈ SP (49). 
However, since the dimensions of f1 and f2 may be different, it may not be appropriate to calculate the Euclidean distances 

ED(IP, Si) directly between the solutions in the Pareto frontier Si ∈ SP and the IP. To address this issue, it is necessary to normalize the 
objective values of each solution and the IP, and replace the original values with their normalized values in Eq. (50). The modified 
equation is as follows. 

Fig. 10. The crossover operation of the two chromosomes.  

L. Cai et al.                                                                                                                                                                                                             



Transportation Research Part C 158 (2024) 104447

18

ED′(IP, Si) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
f1(Si)− f1min
f1max − f1min

]2
+
[
β •

f2(Si)− f2min
f2max − f2min

]2
√

, ∀Si ∈ SP (50). 

The solution that corresponds to the minimum ED′(IP, Si) will be selected as the most suitable solution. In practical terms, when the 
fluctuation of the uncertain operation time is small, the value of β ∈ [0, 1] can also be small, indicating that the importance of the 
robustness of the scheduling plan is relatively low in such cases. 

Fig. 11. The mutation operation of a chromosome.  

Fig. 12. Schematic representation of Euclidean distances between the idea point and the solution Si.  

Table 4 
Parameters settings of experimental cases.  

Parameters value Parameters value 

The number of inbound and outbound containers 
handling tasks 

16 ~ 2000 The maximum number of 
QCs 

3 

The maximum number of YCs 2 The maximum number of 
IGVs 

72 

Operation time of cranes A normal distribution (100, σ2
1) 

(s) 
Movement time of cranes A normal distribution (0.75, σ2

2) 
(m/s) 

Movement time of IGVs A normal distribution (4.8, σ2
3) 

(m/s) 
The layout of the port U-shaped  
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7. Experiments and discussion 

This section first introduces the methods that will be compared with our method. To ensure a fair comparison, all the methods share 
the same GA kernel. The section then presents the experimental cases and their associated parameters. Finally, the experimental results 
are discussed, providing insights and analysis. 

7.1. Experimental settings 

The task information, distances between different positions in the port, the layout of the port, and the operation time and 
movement speed of the equipment are obtained from real port cases. The values of the parameters are provided in Table 4. 

As aforementioned, the same GA kernel is used. The number of iterative generations, the population size of chromosomes, and the 
probabilities of crossover and mutation are consistent across all methods in the same experimental case. The values of these parameters 
are shown in Table 5. 

Additional parameter values can be found in Table 6. In the new method, α is the positive coefficient used in the importance of gap 
time slots functions, and β represents the weight of robustness in the modified Euclidean distances function. Furthermore, NSAA sig-
nifies the number of sample scenarios employed in the Stochastic Programming (SP) method, as explained in Section 7.2.1. Addi-
tionally, γ represents the weight allocated to the total quantity of gap time slots in the Maximum Gap (MG) method, as detailed in 
Section 7.2.4. 

All experiments were conducted on a PC with a 64-bit Windows 10 system, running on an Intel i9-11900 processor with a clock 
speed of 2.50 GHz and 32 GB of memory. The programs were executed using MATLAB R2022a. 

7.2. Comparative methods 

This paper compares the performance of four commonly used methods belonging to the proactive scheduling approaches: SP, 
Robust Optimization (RO), Triangle Fuzzy Programming (TFP), and MG methods (see Table 7). These methods are compared with our 
newly proposed method to evaluate the effectiveness and performance of our method. In the comparison analysis, all the methods, 
including our new method, SP, RO, TFP, and MG, are based on the same GA kernel. This means they share key elements, from 
chromosome encoding and decoding rules to chromosome crossover and mutation rules. Additionally, they use the same probabilities 
for crossover and mutation events, and maintain consistent numbers of iterative generations and population sizes under the same 
experimental case. The reasons for not using solvers like CPLEX and Gurobi to solve the model include: 1) The mixed-integer pro-
gramming model discussed in this paper encompasses numerous variables and constraints, in addition to uncertain parameters. 
Therefore, it becomes overly time-consuming and impractical to use a solver to solve the model. 2) While solvers are capable of 
addressing comparative methods like SP and RO, the proposed method in this study, which constitutes a bi-objective optimization 
model extending beyond the classical SP and RO, cannot be directly tackled through solver-based approaches. Consequently, a 
heuristic approach is employed to solve the proposed mixed-integer programming model. 

7.2.1. Stochastic programming method 
The SP method has been widely applied to solve various port equipment scheduling problems, such as QCSP (Ma et al., 2021), YCSP 

(Zheng et al., 2019), BACASP (Han et al., 2010), and IVSP (Li et al., 2023b), concerning uncertain operation time. Similar to the 
approach taken by the above studies, in the SP method used for comparison in this paper, the expectations of functions related to 
uncertain parameters have been optimized. In the SP method, the objective function (1) is reformulated as follows: 

Minimize f = E(makespan) = E(Cmax) (51). 
where the term “E(makespan)” signifies the expected value of makespans under all uncertain scenarios. 
An approach known as Sample Average Approximation (SAA) is adopted to handle the matter of expectation value of the objective 

function. The fundamental idea behind SAA is to generate a collection of samples through the extraction of uncertain parameter values 
from probability distributions representing uncertainty integrated with a Monte Carlo Simulation (MCS) method. With a sufficiently 
large sample size, the average value of the objective function derived from these samples closely approximates the real expectation 

Table 5 
Parameters settings of GA.  

Parameters value Parameters value 

The number of chromosomes within a population 100–300 The probability of crossover operation 0.5 
The probability of mutation operation 0.1 The iterative generations of chromosomes 1000–2500  

Table 6 
Other parameters settings.  

Parameters value Parameters value 

α 2 β  0.01 
NSAA 10 γ  0.01  
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Table 7 
Attributes of the comparative methods and the new method.  

Methods Advantages Fitness Limitations References 

SP Solid theoretical foundation The probability distribution of uncertainty is 
needed 

Much prior knowledge is needed, and it is often difficult 
to obtain in reality; Too much computation time 

Han et al., 2010; Li et al., 2023b; Liu et al., 
2022; Ma et al., 2021; Zheng et al., 2019 

RO Excellence in the worst-case The value range of uncertainty is needed Too conservative Rodrigues and Agra, 2021 
TFP Easy to operate and flexible The triangle fuzzy numbers of uncertainty are 

needed 
Much computation Expósito-Izquiero et al., 2016 

MG Easy to operate; Less computation time A small amount of information about 
uncertainty or even no information is needed 

Poor effectiveness Dik and Kozan, 2017; Yu et al., 2021 

The new 
method 

Good effectiveness when facing a large degree 
of uncertainty; Less computation time 

A small amount of information about 
uncertainty or even no information is needed 

High requirement for learning and need of time for its 
popularity 

This paper  

L. Cai et al.                                                                                                                                                                                                             



TransportationResearchPartC158(2024)104447

21

Table 8 
Average makespans of 20,000 simulation experiments and CPU times.  

Case size Uncertainty 
degree 

SP RO TFP MG Our method 

Makespan (s) CPU (s) Makespan (s) CPU (s) Makespan (s) CPU (s) Makespan (s) CPU (s) Makespan (s) CPU (s) 

8/8/1/3/2 5–0.04–0.3 4697.51 ± 0.63 905.84 4697.67 ± 0.63 50.67* 4697.61 ± 0.63 190.1 4697.65 ± 0.63 54.80 4697.17 ± 0.63  96.89 
10–0.08–0.6 4717.10 ± 1.27 923.34 4714.73 ± 1.28 49.67* 4717.17 ± 1.26 184.95 4716.23 ± 1.27 51.13 4716.59 ± 1.28  106.31 
15–0.12–0.9 4752.13 ± 1.97 897.83 4751.52 ± 1.99 48.84* 4750.86 ± 2.00 184.05 4751.46 ± 2.00 48.91 4750.91 ± 1.99  100.69 
20–0.15–1.2 4819.91 ± 6.64 878.30 4812.80 ± 5.20 49.31* 4817.25 ± 3.27 185.52 4829.35 ± 26.9 Δ 54.84 4815.46 ± 3.39  107.05 

15/15/2/5/2 5–0.04–0.3 4634.36 ± 0.59 1677.98 4551.83 ± 0.60 123.61* 4497.13 ± 0.59 303.03 4486.91 ± 0.59 130.61 4478.80 ± 0.59*  128.30 
10–0.08–0.6 4606.83 ± 1.23 1687.17 4691.80 ± 1.25 123.66* 4543.09 ± 1.20 304.03 4595.75 ± 1.22 128.47 4532.00 ± 1.17*  126.11 
15–0.12–0.9 4581.62 ± 1.98 1690.06 4656.71 ± 1.91 123.56* 4719.14 ± 1.95 307.05 4700.57 ± 1.89 126.34 4577.98 ± 1.97  126.91 
20–0.15–1.2 4716.87 ± 5.98 1357.69 4701.77 ± 8.20 122.33 4685.69 ± 3.40 306.72 4783.99 ± 5.51 126.25 4672.03 ± 6.37*  119.72* 

30/30/2/7/2 5–0.04–0.3 8791.94 ± 0.83* 3183.03 8855.42 ± 0.83 327.02 8968.21 ± 0.82 737.66 8805.84 ± 0.79 299.19* 8801.07 ± 0.80  392.86 
10–0.08–0.6 8957.76 ± 1.68 3228.72 9182.79 ± 1.71 337.17 8932.97 ± 1.67* 850.69 8949.70 ± 1.62 336.50* 8996.11 ± 1.67  498.20 
15–0.12–0.9 8968.62 ± 2.54 3276.55 8932.52 ± 2.55 258.00* 8954.66 ± 2.55 816.95 8939.79 ± 2.51 345.25 8897.60 ± 2.51*  511.47 
20–0.15–1.2 9155.65 ± 9.86 3224.25 9115.64 ± 10.2 292.73* 9190.07 ± 12.0 836.95 9209.85 ± 32.3 Δ 320.97 9046.49 ± 7.90*  623.13 

60/60/2/20/2 5–0.04–0.3 16945.8 ± 1.14 15773.8 16731.9 ± 1.14 1636.45 16739.4 ± 1.11 4698.17 16894.6 ± 1.14 1540.97* 16728.4 ± 1.14*  2282.72 
10–0.08–0.6 16664.0 ± 2.22* 15771.6 17194.1 ± 2.28 1635.42 17194.6 ± 2.26 4766.44 17191.7 ± 2.25 1572.83* 16751.6 ± 2.21  2873.42 
15–0.12–0.9 17039.3 ± 3.53 15889.5 16941.7 ± 3.54 1614.78 16659.5 ± 3.48* 4677.83 17250.5 ± 3.46 1299.30* 16957.2 ± 3.36  1529.63 
20–0.15–1.2 17133.0 ± 480 Δ 15776.1 17375.1 ± 24.1 1631.16 17158.4 ± 15.9 4703.41 17582.7 ± 18.6 1570.25* 17088.0 ± 22.4  2267.11 

100/100/2/35/2 5–0.04–0.3 27935.7 ± 1.44 53350.5 28509.7 ± 1.50 3554.44 27794.6 ± 1.46 11429.22 28160.5 ± 1.46 3483.91* 27722.4 ± 1.44*  4823.00 
10–0.08–0.6 27794.8 ± 2.87 51685.0 28616.5 ± 3.00 3118.06* 27561.7 ± 2.90* 8714.61 29089.3 ± 2.96 3512.86 27593.3 ± 2.89  4078.47 
15–0.12–0.9 28102.3 ± 4.54 52926.1 27636.0 ± 4.48* 4032.64 27952.6 ± 4.45 9759.50 29368.0 ± 4.61 2995.41* 28941.2 ± 4.61  4386.67 
20–0.15–1.2 29035.6 ± 119 Δ 53580.8 29167.2 ± 36.6 3840.77* 29888.9 ± 1176 Δ 7110.53 29177.6 ± 409 Δ 4209.83 28015.4 ± 28.1*  6437.53 

250/250/3/45/2 5–0.04–0.3 51855.5 ± 1.98 129,090 50701.8 ± 2.14 9813.58* 50683.2 ± 1.96 24225.2 52104.3 ± 2.00 11718.8 49222.6 ± 1.87*  10926.0 
10–0.08–0.6 50194.6 ± 3.85 127,827 51083.8 ± 4.01 9792.58* 51251.3 ± 3.96 24006.1 52202.8 ± 3.93 11670.4 49198.0 ± 3.68*  10943.9 
15–0.12–0.9 51795.7 ± 6.06 127,765 53821.7 ± 8.59 9535.02* 52205.9 ± 6.11 23312.4 53350.3 ± 6.20 11228.9 50188.0 ± 5.77*  11187.0 
20–0.15–1.2 53758.7 ± 53.15 128,169 55971.7 ± 289 Δ 9746.56* 53162.0 ± 62.4 24153.7 53144.4 ± 82.5 11196.7 50614.4 ± 65.8*  11356.9 

500/500/3/56/2 5–0.04–0.3 111,797 ± 3.00 348,220 110,348 ± 2.96 27645.1* 112,580 ± 2.97 71803.4 114,470 ± 2.98 27869.5 110,112 ± 2.93*  34513.5 
10–0.08–0.6 113,597 ± 5.96 360,442 112,238 ± 5.98 27490.3* 111,858 ± 5.96 80398.8 115,397 ± 6.11 27672.4 108,558 ± 5.81*  31296.3 
15–0.12–0.9 111,973 ± 9.10 352,051 117,846 ± 9.34 27616.2* 113,066 ± 9.15 80798.6 116,425 ± 9.29 27712.6 107,408 ± 8.66*  33370.3 
20–0.15–1.2 116,104 ± 44.2 358,198 119,581 ± 649 Δ 27413.2* 116,160 ± 128 Δ 79660.1 119,184 ± 570 Δ 27658.4 114,271 ± 95*  33483.2 

1000/1000/3/72/2 5–0.04–0.3 244,447 ± 4.44* 727,836 246,242 ± 4.42 64688.2 247,434 ± 4.46 157875.6 248,997 ± 4.50 56952.8 245,662 ± 4.47  50749.8* 
10–0.08–0.6 244,749 ± 8.87 748,056 251,379 ± 9.11 70409.6 246,896 ± 9.01 153,290 254,849 ± 9.09 69749.2 243,476 ± 8.52*  47309.1* 
15–0.12–0.9 250,398 ± 13.9 757,026 252,951 ± 14.0 70007.4 254,051 ± 13.8 153,549 252,903 ± 14.2 70295.7 241,306 ± 13.5*  50592.3* 
20–0.15–1.2 258,009 ± 202 737,705 263,082 ± 362 70180.3 256,318 ± 368 153,203 257,941 ± 374 70068.9 250,527 ± 189*  50538.6* 

Winning count 3 0 1 19* 3 0 0 8 19* 5 

Notes: 
Case size indicates No. of inbound containers/No. of outbound containers/No. of QCs/No. of IGVs/No. of YCs. 
Uncertainty degree indicates standard deviation of operation time and movement speed (σ2

1 − σ2
2 − σ2

3). 
“±” indicates 99% confidence intervals for the makespans. 
“*” indicates the best result within a scenario of a case. 
“Δ” indicates the makespans of the scheduling plan exhibit significant fluctuations compared to others within a specific case scenario, primarily attributable to the influence of uncertainty and its 
consequent cascading effects. This observation also suggests that the scheduling plan possesses comparatively limited anti-cascade effects and robustness.  
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value of the objection function in SP, in accordance with the law of large numbers. The employment of SAA has garnered recognition in 
recent years for its application in resolving port resource scheduling problems that embrace uncertainty in the realm of SP (Li et al., 
2023b; Zheng et al., 2019). 

Nonetheless, while an increased quantity of samples tends to enhance the quality of solutions in SAA, it simultaneously engenders a 
significant rise in computation time (Han et al., 2010; Li et al., 2023b; Zheng et al., 2019). In this study, 10 sample scenarios within the 
framework of SAA are employed to circumvent the extensive computation time. 

Fig. 13. Pareto frontiers of the new method.  
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7.2.2. Robust optimization method 
The RO method is utilized to address uncertain problems where the probability distribution of uncertain parameters is unknown, 

but the value range or uncertainty set is known. In RO, the objective is to optimize the worst-case scenario to ensure that the pre- 
scheduling plan remains feasible for all scenarios related to uncertainty. In the RO method, the objective function (1) is reformu-
lated as follows: 

Minimize f = max
t
∼

ij∈Tij ,v
∼

k∈Vij ,∀i∈C,j∈J
makespan = max

t
∼

ij∈Tij ,v
∼

k∈Vij ,∀i∈C,j∈J
Cmax (52). 

where ̃tij and ṽk represent uncertain parameters, as previously detailed, and Tij and Vij denote the value sets for these uncertain 
parameters. The expression max

t̃ij∈Tij ,ṽk∈Vij ,∀i∈C,j∈Jmakespan 
pertains to the worst-case scenario arising from such uncertainties. Consequently, 

the primary goal of this objective is to optimize the outcome under the most unfavorable circumstances precipitated by these 
uncertainties. 

The RO method has been employed to solve the BACASP while concerning uncertain vessel arrival times, as demonstrated by 
Rodrigues and Agra (2021). In the RO method used for comparison in this paper, the maximum values of the uncertain parameters are 
utilized to represent the worst-case scenarios. 

7.2.3. Triangle fuzzy programming method 
In the TFP method, uncertain parameters are represented using triangular fuzzy numbers (Lei, 2012). Expósito-Izquiero et al. 

(2016) applied this method to solve BACASP. They defined fuzzy membership functions for uncertain arrival times of vessels and 
uncertain processing times of operations. Similarly, in TFP used for comparison in this paper, associated fuzzy membership functions, 
as well as operation and comparison rules, are defined for triangular fuzzy numbers. If ̃b represents the uncertain parameter, it can be 
further defined as b̃ = (bmin, b, bmax) in our paper, where the bmin,b and bmax are the minimum, average and maximum values of the 

uncertain parameter, respectively. Let b̃′ represent another uncertain parameter. The sum and difference operations of triangle fuzzy 
number are defined as follows: 

b̃ ± b̃′ = (bmin ± b′
min,b ± b′,bmax ± b′

max)(53). 

The μ
(

b̃
)

is used to compare fuzzy numbers, and b̃ ≤ b̃′ when μ
(

b̃
)
≤ μ

(
b̃′
)

. μ
(

b̃
)

is defined as follows: 

μ
(

b̃
)
= (bmin + 2b + bmax)/4 (54). 

7.2.4. Maximum gap method 
In the MG method, the schedules with the largest sum of gap time slots are selected. The gap time slots are considered as buffers that 

can absorb some uncertainty. This method has been applied to solve the QCSP concerning uncertain handling times of QCs (Dik and 
Kozan, 2017), and the BACASP concerning uncertain arrival times of vessels (Yu et al., 2021). In the practical application of this study, 
the objective function (1) is reformulated as follows: 

Minimize f = min
[
makespan − γ •

(∑
Gk

ij +
∑

Gij

) ]
(55). 

where (
∑

Gk
ij +

∑
Gij) represents the total gap time slots of a pre-scheduling plan, and γ means the weight assigned to (

∑
Gk

ij +
∑

Gij). While the quantity of gap time slots has received attention from some researchers, the distribution of these gaps has not been 
sufficiently paid attention to. This paper fills this research gap. 

Fig. 13. (continued). 
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7.3. Results of the experiments 

The experiments were carried out on various scales of cases, each with a different number of inbound containers, outbound 
containers, and equipment. Each case was assigned four degrees of uncertainty, which were measured by the standard deviation of the 

Fig. 14. Convergence curves of compared methods.  
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uncertain parameters. A higher standard deviation indicated a higher degree of uncertainty. 
To evaluate the performance of the different methods, the pre-scheduling plans generated by each method were implemented in a 

simulation environment that incorporated uncertainty. Each experiment was repeated 20,000 times, and the average makespans of 
these repeated experiments were recorded. Additionally, the CPU times required for generating the pre-scheduling plans were also 
recorded. 

Table 8 presents the performance results of different methods across various cases, including the average makespans, which indicate 
the execution performance of pre-scheduling plans generated by different methods, and the CPU times required for generating these 
pre-scheduling plans. 

Based on the experimental results in Table 8, several findings are observed. Regarding the average makespan with 99 % confidence 
intervals: 1) The new method consistently outperforms the compared methods, achieving a total of 19 wins in terms of the average 
makespan. Its superiority generally becomes more pronounced as the problem scale and degree of uncertainty increase. 2) The SP, RO 
and TFP methods perform moderately well, winning 3, 1, and 3 counts, respectively. 3) The MG method has the worst performance 
with zero wins. 

Regarding CPU time: 1) The new method consumes the third highest amount of computational resources but achieves the best 
results in terms of average makespans. Its CPU time is approximately 20–50 % higher than that of the RO methods, which show the 
lowest CPU time. However, as the problem scale expands, the excess ratio starts decreasing. It is worth noting that in the largest-scale 
case, the computational time of the new method is the shortest among all the methods. 2) The SP method consumes the most 
computation resources, which is 10–15 times greater in comparison to other methods. However, its substantial computational ex-
penses did not yield significant improvements in makespans optimization. 3) The TFP method consumes the second-most computa-
tional resources, approximately 1.5 to 3 times more than the RO and MG methods, even though its performance in terms of average 
makespans is comparable to the other methods. 4) The MG method consumes slightly more computational resources than the RO 
method, but it performs the worst in terms of makespan. 

Regarding 99 % confidence intervals for the makespans: 1) The stability of our method is exceptional as it possesses no cases in 
which the makespans of the scheduling plan exhibit significant fluctuations compared to the other concerned methods within the 
specific scenario containing uncertainty. 2) When the confidence intervals are introduced, various methods exhibit nearly indistin-
guishable performance in very small-scale cases. 

The Pareto frontiers generated by the proposed method are depicted in Fig. 13. Each case consists of four scenarios with varying 
degrees of uncertainty. Therefore, there are a total of 32 Pareto frontier figures. However, the Pareto frontier figures within the same 
case exhibit minimal differences. Due to space constraints, only 8 Pareto frontier figures are shown, with each figure representing a 
case. In the small-scale case, the number of solutions in the Pareto frontier is limited. However, in the medium and large-scale cases, 
the Pareto frontier exhibits a larger number of solutions that are uniformly distributed. This demonstrates the effectiveness and ef-
ficiency of using NSGA-II in our study. 

The convergence curves of the compared methods are shown in Fig. 14. Similar to Fig. 13, there are a total of 32 figures repre-
senting 8 cases and 32 scenarios. However, due to minimal differences in the convergence curves generated by the same method within 
the same case and space limitations, only 8 figures from 8 cases are displayed. Each figure represents a unique case. In the small-scale 
case, the solution algorithm converges quickly. However, in the medium-scale case, the convergence curves flatten out after numerous 
generations. In the large-scale case, the convergence curves exhibit a gradual and steady decline. It appears that if the iteration were to 
continue, the convergence curve would continue to decline further. However, due to the limitations of computation time, this could be 
further investigated in the future. Since the SP and TFP methods share the same fitness value function, their convergence curves can be 

Fig. 14. (continued). 

L. Cai et al.                                                                                                                                                                                                             



Transportation Research Part C 158 (2024) 104447

26

compared. 

7.4. Discussions 

The SP method performs moderately, likely because of a relatively limited number of samples utilized in SAA for computing the 
expectation values of the objective. Nevertheless, such a modest quantity of samples has the potential to result in impractical levels of 
computational time, let alone with a larger number of samples. Consequently, excessive computational time renders the SP impractical 
for implementation. 

The RO method’s solutions, which have the worst fitness values among the SP and TFP methods, align with theoretical expecta-
tions. The RO method is designed to optimize performance in the worst-case scenario, but it only outperforms in a very limited case. In 
most cases, its poor fitness values result in high makespans, rendering its conservative nature meaningless. 

The TFP method, which has gained popularity in recent years, performs slightly better than the RO and SP methods. However, its 
relatively long computation time also poses difficulties for practical implementation. One of the challenges with the TFP method is to 
accurately estimate the triangle fuzzy number of uncertain operation times. 

The poor experimental results of the MG method demonstrate that solely pursuing the maximum number of gap time slots is error- 
prone. Some large gap time slots may have minimal impact on absorbing fluctuations of uncertain operation times. 

In small-scale cases, the new method demonstrates its strengths in many cases, despite showing relatively weaker performance in a 
limited number of alternative solutions. Indeed, in larger scale cases, where the scale of the case exceeds 100/100/2/35/2, the new 
method’s advantages become more apparent. It aids to achieve the aim of selecting solutions that not only have better theoretical 
makespans but also possess a greater quantity of gap time slots with a more uniform distribution. 

For a more in-depth analysis, Gantt charts depicting the pre-scheduling plans generated by different methods in a 30/30/3/7/3 
case are presented in Fig. 15. 

When examining the Gantt Charts, it can be observed that the port operations exhibit a double-cycling characteristic. After an IGV 
completes the operation of an inbound container from the shoreline to the yard, it immediately proceeds to transport an outbound 
container from the yard to the shoreline. There are interaction time slots between IGVs and cranes, which refer to the time spent by 
IGVs near the unloading/loading points while waiting for the crane to lower the rope. Therefore, the Gantt Charts provide evidence 
that the developed integrated scheduling model and related algorithm by this study greatly align with the reality and practicality of 

Fig. 15. Gantt Charts of schedules generated by compared methods and our method in Case 3.  
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port operations. 
All the Gantt Charts generated by different methods exhibit similar makespans since they share the same GA kernel with identical 

parameters. The RO method may have a slightly larger makespan, but it aligns with theoretical expectations. When considering the gap 
time slots, it is found that the pre-scheduling plans generated by the SP, RO, TFP, MG, and the new method have 101, 99, 97, 96, and 
110 gap time slots, respectively. The schedule generated by the new method has the highest number of gap time slots. Although the MG 
and new methods have both revealed a high total length of gap time slots, these gap time slots in the new method are more uniformly 
distributed than those in the MG method. Such a substantial number of uniformly distributed gap time slots can withstand fluctuations 
in uncertain operation times and have therefore shown superior performance as the problem scale increases. This explains why the new 
method exhibits superior stability compared to others when subjected to the 99 % confidence interval test within the context of 20,000 

Fig. 15. (continued). 
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repeated experiments conducted in an uncertain environment. 
Considering the number, sum, average value, and standard deviations of gap time slots comprehensively may yield similar effects. 

However, this approach would involve a larger number of parameters and variables, making it more complex and challenging 
compared to the proposed method in this paper. 

7.5. Implications 

In the large-scale cases involving 2000 containers, the computation time required for the new method is approximately 14 h. 
Although this may seem lengthy, it does not necessarily imply impracticality, as the experiments were conducted using a personal 
computer. Ports typically have more powerful servers that can compute 10–20 times faster. In practical port applications, it is therefore 
reasonable to expect a much shorter computation time to an acceptable level. Additionally, the pre-scheduling plan is not a real-time 
schedule and can be created a few days in advance based on the cargo information provided by the shipping companies (Li et al., 
2023a; Li and Yang, 2023). Therefore, the actual port operations may not require the pre-scheduling plan for all tasks, which require 
extensive computation. Instead, the port can create schedules for a subset of tasks using a rolling time window approach. From this 
perspective, the new method has exposed a huge potential for its applications in actual port operations. 

Furthermore, the new method demonstrates strong generalization capabilities. Unlike the SP and TFP methods that require 
knowledge of the probability distribution or more detailed information about uncertain parameters, it does not rely heavily on precise 
value rules of uncertain parameters. Although having knowledge of the distribution of random variables is advantageous when 
calculating the importance degree of each gap time slot, even when only the average values of uncertain parameters are used, it can 
still be effective. In contrast, the SP, RO, and TNP methods may not be applicable in such situations. 

Besides, within the RPS framework, the NSGA-II algorithm, which is a bi-objective optimization algorithm, can be replaced with 
other more suitable algorithms, depending on the applied context. The solution algorithm can be more adaptive to make the proposed 
RPS framework more generic. In this paper, the widely used and effective NSGA-II algorithm is employed for a fair comparison. 

In addition to addressing integrated scheduling problems in port logistics, the new method also has the potential to be applied to 
solve berth allocation problems concerning the uncertain arrival time of vessels and operation time. Furthermore, it can also be applied 
to solve problems of workshop scheduling, warehouse sorting AGV scheduling or vehicle scheduling that consider uncertain operation 
times in the fields of production logistics, warehouse logistics or city logistics. The new method may have a particularly significant 
impact on workshop or warehouse sorting AGV scheduling scenarios. Time control is more crucial in production and sorting compared 
to port operations because saving time in workshops and warehouses can yield more substantial benefits. Furthermore, workshops 
often involve jobs with multiple operation procedures, whereas port operations typically involve three operation procedures for 
containers. In scenarios with large-scale and complex operation procedures, the new method exhibits a distinct advantage, making it 
well-suited for such applications. 

8. Conclusion 

More efficient operations can improve the service level of the port and reduce costs, including energy consumption. In response to 
this demand, a new and efficient U-shaped layout and double-cycling operation mode have emerged, placing higher requirements on 
the new integrated scheduling of equipment in ports. Additionally, the pervasive uncertainty and its cascade effects further complicate 
the formulation of pre-scheduling plans. To address these challenges, this paper proposes a proactive scheduling framework that 
incorporates anti-cascade effects and a robustness evolution index based on complex network entropy. The framework aids to solve the 
U-shaped port integrated scheduling problem involving QCs, IGVs, and YCs, while concerning uncertain operation times and the 
double-cycling operation mode. The experimental cases are based on real port operations, providing evidence of the practicality of the 
new method. 

In this study, the new method is compared with four widely used and state-of-the-art proactive scheduling methods to demonstrate 
its superiority. The results demonstrate that it is capable of generating a robust pre-scheduling plan with a reduced makespan, along 
with a higher number of gap time slots between operations and a more uniform distribution of these gap time slots. Moreover, some 
implications are provided based on the findings. 

One limitation of this study is that it only compares the fundamental state-of-the-art SP, RO and TFP methods. It will be insightful to 
take into account their extended or the combination of the new method with the SP, RO, and TFP methods. The other possible 
development following this research is to incorporate more relevant objectives, such as energy consumption, to improve the ability of 
the new method to better address the real demands. The multi-objective optimization algorithm in the new RPS framework can be 
further developed to achieve even higher performance. 
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