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Abstract
Adverse outcome pathways (AOPs) were introduced in modern toxicology to provide evidence-based representations of the 
events and processes involved in the progression of toxicological effects across varying levels of the biological organisation 
to better facilitate the safety assessment of chemicals. AOPs offer an opportunity to address knowledge gaps and help to iden-
tify novel therapeutic targets. They also aid in the selection and development of existing and new in vitro and in silico test 
methods for hazard identification and risk assessment of chemical compounds. However, many toxicological processes are 
too intricate to be captured in a single, linear AOP. As a result, AOP networks have been developed to aid in the comprehen-
sion and placement of associated events underlying the emergence of related forms of toxicity—where complex exposure 
scenarios and interactions may influence the ultimate adverse outcome. This study utilised established criteria to develop 
an AOP network that connects thirteen individual AOPs associated with nephrotoxicity (as sourced from the AOP-Wiki) to 
identify several key events (KEs) linked to various adverse outcomes, including kidney failure and chronic kidney disease. 
Analysis of the modelled AOP network and its topological features determined mitochondrial dysfunction, oxidative stress, 
and tubular necrosis to be the most connected and central KEs. These KEs can provide a logical foundation for guiding the 
selection and creation of in vitro assays and in silico tools to substitute for animal-based in vivo experiments in the predic-
tion and assessment of chemical-induced nephrotoxicity in human health.

Keywords  Nephrotoxicity · Adverse outcome pathway · Key events · Molecular initiating event · New approach 
methodology
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Introduction

An adverse outcome pathway (AOP) is a scientific frame-
work which utilises the available mechanistic information 
related to a toxicological response to provide a comprehen-
sive description of sequential biological events, resulting in 
an adverse effect following exposure to a stressor (Ankley 
et al. 2010). Since its establishment in 2010, the concept of 
the AOP has gained significant attention within chemical 
risk assessment communities (Marx-Stoelting et al. 2023). 
As such, it presents a valuable means towards the advance-
ment of in silico tools such as quantitative structure–activ-
ity relationships (QSARs) and innovative in vitro toxicity 
screening tests (Cronin and Richarz 2017; OECD 2017; 
Vinken 2013). AOPs comprise a series of causal connections 
across varying levels of the biological organisation—origi-
nating from a molecular perturbation triggered by a stressor, 
known as the molecular initiating event (MIE), and proceed-
ing through a sequence of intermediate key events (KE), 
before culminating in the adverse outcome (AO) (OECD 
2018a; Vinken et al. 2017). These KEs are interconnected by 
key event relationships (KERs), which represent the causal 
link between perturbation in one and emergence of another. 
AOPs have gained importance as a valuable tool for the 
development and implementation of in vitro and in silico 
testing strategies for assessing toxicity in recent years, help-
ing to provide a novel understanding of regulatory-relevant 
in vivo outcomes (Kleinstreuer et al. 2016).

The Organisation for Economic Cooperation and Devel-
opment (OECD) has recognised the benefits of AOPs for 
improving the efficiency of chemical safety assessment and 
has been actively promoting their development since 2012 
(OECD 2017). As part of a programme to facilitate their 
advancement, the OECD established the AOP Knowledge-
base (https://​aopkb.​oecd.​org/) as a centralised repository for 
AOP-related information (OECD 2018a). Included within 
this knowledgebase, the AOP-Wiki (https://​aopwi​ki.​org/) 
offers a transparent platform for the collaborative develop-
ment of qualitative AOP descriptions, aiming to promote 
their incorporation into risk assessment strategies and to 
facilitate the reuse of mechanistic toxicological knowledge. 
As of May 2023, there have been over 400 AOPs and 2000 
KEs listed on the AOP-Wiki. AOPs and the mode-of-action 

framework are similar in that they describe molecular mech-
anisms that result in AOs. However, unlike the mode-of-
action framework, AOPs offer a purely dynamic and bio-
logical perspective to describe a toxicological process and 
are, therefore, chemical-agnostic (Vinken et al. 2017). This 
means that an AOP can be linked to any stressor that is bio-
available at the target site and possesses the characteristics 
needed to trigger the connected MIE.

Currently, a single AOP is designed as a practical unit to 
describe causal links between KEs, rather than a compre-
hensive biological representation of all possible molecular, 
biochemical, and physiological components involved in toxi-
cological processes. As a result, individual AOPs are often 
developed as “linear” constructs, without any converging or 
diverging pathways connected to them. Therefore, a single 
AOP may not encompass all events that could contribute 
to the relevant adverse effect being described (Sewell et al. 
2018). Most toxicologically relevant processes and real-
world scenarios would require multiple AOPs to describe 
and predict given AOs, particularly when concerning mix-
tures or the multigenerational effects of chemicals (Groh 
et al. 2015; Villeneuve et al. 2014). As such, the future uti-
lisation of AOPs for risk assessment would benefit from the 
development of multiple interacting pathways and networks. 
While individual AOPs only offer a linear description of bio-
logical processes, their merging via common shared KEs and 
KERs can provide an improved description of the biological 
complexities inherent to the system studied and, as such, 
offer additional value. As such, some authors have already 
begun submitting individual AOPs as networks instead of 
the typical linear format, e.g. AOP 138.

With the development of greater numbers of AOPs, it is 
inevitable that networks will emerge. These have the potential 
to consolidate a range of information, previously viewed in 
isolation, on the potential AOs that may arise from a distur-
bance of a biological pathway. AOP networks consist of sets 
or groupings of interrelated AOPs that share one or more KEs 
in common (Villeneuve et al. 2014). Alternatively, AOP net-
works can also be formed by AOPs that either diverge from 
a single MIE or converge to a single AO, even if they do not 
share any further intermediate KEs (Knapen et al. 2018). 
Combining MIEs, KEs, and AOs across various AOPs into 
a unified network offers a more realistic depiction of possi-
ble (bio)chemical effects. This approach provides additional 
insights into interactions between AOPs by presenting specific 
combinations or sequences of KEs, thus potentially unveiling 
previously undiscovered or unconsidered connections between 
biological pathways. In this way, AOP networks enable the 
visualisation and recognition of features of interest, includ-
ing those KEs most central and well-connected, the points at 
which AOPs converge or diverge, and also the presence of 
positive and negative feedback loops (Knapen et al. 2018; Vil-
leneuve et al. 2018). Furthermore, while the identification of 

https://aopkb.oecd.org/
https://aopwiki.org/
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common KEs within AOP networks can facilitate the develop-
ment of assays that detect adverse effects of regulatory inter-
est, distinctions should also be made when differentiating 
between generic and disease-specific KEs. A generic KE will 
be described in a general, abstract manner, and will be appli-
cable either across different AOPs or in multiple instances of 
a single AOP. While generic KEs capture common biological 
responses or events across different AOPs, disease-specific 
KEs focus on the unique characteristics and mechanisms 
associated with a particular disease or AO. Disease-specific 
KEs are typically discovered through scientific research, epi-
demiological studies, or clinical observations, which each may 
shed light on the distinct molecular, cellular, or physiological 
changes that take place throughout its advancement. Notably, 
they can both offer valuable insights into the pathways or pro-
cesses that play a crucial role in development, progression, or 
degree of severity. Such disease-specific KEs should be inter-
connected, either with generic or with other disease-specific 
KEs, to form a more comprehensive AOP network.

AOP networks are particularly important for addressing 
exposures to multiple stressors that lead to the same AO or 
else to individual stressors that perturb multiple MIEs. As 
such, they may aid in the understanding of potential inter-
actions between co-occurring AOPs (Knapen et al. 2015; 
Villeneuve et al. 2014, 2018). By describing the compo-
nents of an AOP (KEs and KERs) in a modular fashion, 
AOP networks can be constructed from individual pathways 
that share KEs—whereby KEs are represented as nodes and 
KERs as directed edges acting to link them (OECD 2018c). 
The tools of network science can utilise this modular format 
to quantitatively analyse AOP networks and identify KEs 
of interest (Villeneuve et al. 2018). For the modelling and 
prediction of nephrotoxicity, AOP networks can identify and 
integrate existing knowledge about the key biological events 
and pathways underlying kidney damage and translate this 
knowledge into practical applications for toxicology and risk 
assessment. In this study, we used an approach previously 
applied in AOP networks for neurotoxicity (Spinu et al. 
2019) and hepatotoxicity (Arnesdotter et al. 2021)—follow-
ing established guidelines for AOP network derivation, char-
acterisation and analysis (Knapen et al. 2018; Villeneuve 
et al. 2018)—to identify relevant KEs that could be used to 
inform the establishment of a battery of in vitro and/or in 
silico assays for the prediction of nephrotoxicity.

Materials and methods

AOP network derivation

A manual search of the OECD AOP-Wiki 2.0 (https://​
aopwi​ki.​org/) was conducted to identify individual AOPs 
concerning nephrotoxicity. Relevant information for each 

AOP, including KE titles, KE types (MIE, KE, AO), KERs 
(links between upstream and downstream KEs), KE rela-
tionship adjacency, qualitative weight of evidence (WoE), 
developmental stage, and OECD review and endorsement 
progress, was extracted and recorded in an Excel spread-
sheet. This information was collected on 1 May 2023 and 
is provided as supplementary data in Appendix 1. The 
development of the nephrotoxicity AOP network followed 
a four-step method described previously (Arnesdotter et al. 
2021; Spinu et al. 2019).

Step 1: Definition of purpose

The aim of this study was to identify the most central and 
frequently occurring KEs and KERs in an AOP network 
describing nephrotoxicity. This information will serve as 
a foundation for identifying measurable in vitro assays 
that can predict the harmful effects of chemicals on the 
kidney. The scope of this study involved examining those 
individual AOPs, created for nephrotoxicity, which have 
previously been uploaded onto the AOP-Wiki resource.

Step 2: Definition of criteria for AOP selection

AOPs were selected based on several criteria: their devel-
opment stage, KER adjacency, and WoE assessment. The 
AOP development stage reflects the level of maturity of the 
AOP as it progresses through the OECD review process. 
KERs describe the connections between upstream and 
downstream KEs and may be considered either adjacent 
(direct) or nonadjacent (indirect). The WoE assessment 
reports the qualitative level of understanding of the KE 
relationships described by the individual AOP developers. 
Analysing these criteria can help in identifying areas of 
uncertainty within the network and thus may guide efforts 
to clarify the underlying mechanisms.

Step 3: Identification of appropriate AOPs 
from the AOP‑Wiki and data curation

The process of compiling selected AOPs involved manual 
evaluation, followed by consolidation of the relevant infor-
mation into an Excel database. In instances where multiple 
KEs shared one meaning, or else referred to similar pro-
cesses, they were grouped and assigned a common title. 
Abbreviations were also utilised where appropriate. Any 
modifications made to the KE titles are documented within 
the Excel database, which is included as supplementary 
information (Supplementary Information, SI1).

https://aopwiki.org/
https://aopwiki.org/


	 Archives of Toxicology

1 3

Step 4: Generation and analysis of the network

The AOP network was developed using the open-source 
software platform Cytoscape (v. 3.9.1;https://​cytos​cape.​org/) 
(Shannon et al. 2003). NetworkAnalyzer, a pre-installed 
Cytoscape application, was used for network analysis. Nodes 
within the network were manually positioned to optimise 
space and readability. Further annotations, including WoE, 
KE adjacency, and type, were added to enhance the clarity 
of the network's visual components. Although quantitative 
network analysis considers the multiple relationships which 
may exist between KEs as being distinct, single arrows are 
nevertheless used in pictorial representations.

Network analysis

Applying directional analysis, the Cytoscape NetworkAn-
alyzer module was used in order to compute standard net-
work metrics including degree, eccentricity, and between-
ness centrality. With the assistance of the PesCa plugin (v. 
3.0; https://​apps.​cytos​cape.​org/​apps/​pesca​30) an additional 
parameter, AOP simple path occurrence (normalised), was 
calculated (Scardoni et al. 2015). Described by Villeneuve 
et al., this represents an adaptation of standard between-
ness centrality, rendering it more informative within the 
context of the AOP network (Villeneuve et al. 2018). In 
brief, whereas betweenness centrality is determined through 
consideration of shortest-route connections linking all node 
pairs, the AOP simple path occurrence instead accounts only 
for those associating MIEs with AOs. Events scoring high-
est within this were considered most highly connected and 
influential. In-degree and out-degree counts were further 
used to identify convergence and divergence points, as well 
as overall connectivity.

Results

Development of the AOP network for nephrotoxicity

After manually searching the AOP-Wiki, an initial 18 indi-
vidual AOPs that pertained to nephrotoxicity were identi-
fied. Following our established criteria (as described within 
Sect. “Network analysis”), we deemed 13 of these AOPs 
to be suitable for integration into the network. Five AOPs 
were excluded due to either reporting no adjacency met-
rics, being too specifically focussed on the reported AOPs 
or being ill-defined (an overview of both the omitted AOPs 
and the exclusion criteria can be found in SI1).

Table 1 gives details on the selected AOPs and their 
developmental stage at the time of retrieval. Inconsistencies 
in KE annotation have been recognised as a challenge in 
the development of AOP networks (Spinu et al. 2019). In 

this study, discrepancies in KE naming conventions were 
reviewed to avoid conflicting events. For instance, KEs 
denoting mitochondrial dysfunction, such as KE 1483 (Dys-
function, Mitochondria), KE 1968 (Increase, Mitochondrial 
Dysfunction), and KE 177 (N/A, Mitochondrial Dysfunc-
tion), were harmonised and pooled to ensure that different 
KEs describing the same processes were not treated as dis-
tinct. Details of the annotation changes are provided in the 
supplementary material (SI1) for reference.

Relationships between KEs are typically represented as a 
linear pathway in AOP networks. However, it is also impor-
tant to consider the potential for nonlinear or branching path-
ways, where a single KE may have multiple downstream 
influences, or else may interact with other KEs in different 
ways. For an accurate quantitative simulation of the AOP 
network, it is necessary for the network to depend on directly 
connected KEs. The distinction between adjacent and nonad-
jacent KERs was considered, resulting in the identification 
of a total of four nonadjacent KERs within two separate 
AOPs, including AOP 138 (OAT1 inhibition leading to renal 
failure and mortality) and AOP 186 (unknown MIE leading 
to renal failure and mortality). Following curation, however, 
it was noted that all nonadjacent KERs documented were 
described as adjacent in other AOPs and will be reported 
as such. From the selection of 13 individual AOPs outlined 
within Table 1, a nephrotoxicity AOP network (Fig. 1) was 
derived. This included both adjacent and nonadjacent KERs, 
as presented in the supplementary material (SI1), and drew 
from individual AOPs associated with AOs ranging from 
kidney toxicity and failure to chronic kidney disease (CKD) 
and the increased occurrence of adenomas/carcinomas. Fur-
thermore, due its lack of contributory information towards 
a potential sequence of events leading to nephrotoxicity, the 
“Unknown, MIE” node was removed following construc-
tion of the network and not considered for all subsequent 
data analysis.

Characterisation and analysis

An examination of the nephrotoxicity AOP network yielded 
a total of 45 distinct KEs and their adjacent relationships 
(SI1). No KE was reported to appear in each of the 13 AOPs. 
The most frequently occurring KE (shared by 7 of the 13 
AOPs included) was cytotoxicity. This was followed by oxi-
dative stress, tubular necrosis, and mitochondrial dysfunc-
tion, which were each shared by six, five, and four AOPs, 
respectively (Fig. 2). Cytotoxicity was demonstrated to link 
the linear pathways of several common AOs, including 
CKD, kidney toxicity, kidney failure, the increased occur-
rence of adenomas and carcinomas, and increased mortal-
ity. Cytotoxicity was reported to serve as the MIE in AOP 
116 (cytotoxicity leading to renal tubular adenomas and 
carcinomas in male rat) and was shown in other AOPs to 

https://cytoscape.org/
https://apps.cytoscape.org/apps/pesca30
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be activated by factors including increased accumulation 
of alpha2u-microglobulin, disturbance of lysosomal func-
tion, decreased mitochondrial ATP (mtATP) production, 

disruption of the mitochondrial electron transport chain 
(mtETC), and increased mitochondrial dysfunction. KEs 
appearing downstream include kidney toxicity, increased 

Fig. 1   Network of 13 AOPs of nephrotoxicity available of on the 
AOP-Wiki containing adjacent key event relationships (extracted 1 
May 2023). MIEs are denoted in blue, KEs in green and AOs in yel-
low. Solid arrows indicate adjacent KERs with arrow direction rep-
resenting upstream to downstream KEs. KERs shared by multiple 

AOPs are represented by single arrows. The qualitative WoE between 
two KEs is annotated as either H (high), M (medium) or L (low). No 
label means there was a lack of information concerning the KER on 
the AOP Wiki. Curated KE titles, including abbreviations, have been 
included in the supplementary information

Fig. 2   a Summary of KEs shared between multiple AOPs with a 
score of 2 or higher. The score displays the number of AOPs of which 
the KE is reported. Cytotoxicity had the highest score, meaning that 

it appeared in the most AOPs used to develop the network. b The dis-
tribution of KEs within the individual AOPs selected for the network
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regenerative cell proliferation, and CKD. In addition, the 
KEs oxidative stress and tubular necrosis were shared by 
four AOPs, of which either kidney failure or increased mor-
tality was the AO.

Network analysis showed that, of all KEs, mitochondrial 
dysfunction and tubular necrosis possessed the highest 
degree of general connectivity—followed by cytotoxic-
ity, oxidative stress, and increased ROS (with degrees of 
9, 9, 8, 8, and 7, respectively). Conversely, the least con-
nected KEs, with a degree of 1, were typically the MIEs 
from each selected AOP. A single AO, increased adenomas/

carcinomas, also scored a degree of 1. A summary of the 
connectivity of those twelve KEs shared between multiple 
AOPs is depicted in Fig. 3. The level of KE connectivity 
within the network helps to determine key points of conver-
gence and divergence (Table 2). Convergent KEs correspond 
to stages in the AOP network at which different pathways, 
ultimately sharing common toxic outcomes, are noted to 
meet. Divergent KEs, by contrast, represent stages whereby 
the downstream course of a particular pathway is liable to be 
altered by different factors (i.e. a fork point). Locating and 
understanding convergent and divergent KEs can aid in the 
identification and development of measurable in vitro and 
in silico strategies to prevent or mitigate adverse effects, as 
well as enhance understanding of the mechanisms underly-
ing toxicity and disease. 

Since the KERs in the AOP network are directional, the 
connectivity (degree) of an individual KE can be further 
specified—either as in-degree (i.e. denoting the quantity of 
incoming/downstream events) or as out-degree (quantity of 
outgoing/upstream events). The ratio of in-degree to out-
degree values can be used to determine whether a KE is 
convergent or divergent. Degree scoring of the AOP net-
work identified 11 convergent and 13 divergent KEs, where 
convergent KEs connect to more upstream than downstream 
KEs and divergent KEs connect to more downstream than 
upstream (Villeneuve et al. 2018). Tubular necrosis, oxida-
tive stress, and cytotoxicity were identified as points of high 
convergence, each possessing in-degree scores of five. Thus, 
they were indicated to represent common and significant 
general features in nephrotoxicity. Conversely, mitochon-
drial dysfunction was a point of high divergence, having an 

Fig. 3   Summary of connectivity of KEs shared between multiple 
AOPs with a score of 3 or higher. The score displays the number of 
KERs associated the reported KEs from each AOP. Tubular necrosis 
had the highest score, meaning that it was the most interconnected 
KE among the network

Table 2   List of the identified 
11 convergent and 13 divergent 
KEs

ACE angiotensin-converting enzyme, Ang-II angiotensin II, AO adverse outcome, AT1R angiotensin-1 
receptor, COX1 cytochrome c oxidase 1, MIE molecular initiating event, Mt mitochondria, mtDNA mito-
chondrial DNA, mtETC mitochondrial electron transport chain, NRF2 nuclear factor erythroid 2-related 
factor 2, OAT1 organic anion transporter 1, ROS reactive oxygen species

Convergent KEs Divergent KEs

KE type KE name KE type KE name

KE Occurrence, tubular necrosis KE Increase, Mt dysfunction
MIE/KE Increase, cytotoxicity KE Increased, ROS
KE Increase, oxidative stress KE Increase, lipid peroxidation
KE Increased sodium-sensitive hypertension KE Altered NRF2 antioxidant pathway
KE/AO Increased, kidney failure MIE Inhibition, mtETC complexes
KE/AO Occurrence, kidney toxicity MIE Alkylation, protein
KE Increase, apoptosis MIE Increased, Binding of chemicals to 2u
KE Increased blood uric acid concentration MIE Inhibition, OAT1
AO Chronic kidney disease MIE Binding of substrate endocytic receptor
AO Increased mortality MIE Inhibition of mtDNA (Pol gamma)
AO Increase, adenomas/carcinomas MIE Binding, thiol proteins/selenoproteins

MIE Inhibition, COX1 activity
MIE Hyperactivation of ACE/Ang-II, AT1R axis
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out-degree score of five, highlighting its importance in the 
early onset of kidney disease aetiologies.

Interestingly, despite being identified as a point of con-
vergence, tubular necrosis had a high number of outgo-
ing KERs, likely due to its association with extensive cell 
death ahead of acute kidney injury (AKI) and CKD. Simi-
larly, mitochondrial dysfunction possessed a high num-
ber of incoming KERs despite being labelled as a diver-
gent KE, thus indicating its crucial role within a variety 
of nephrotoxic adversities. All MIEs within the network 
were identified as points of divergence, except glutathione 
oxidation, which was connected to both an upstream and 
downstream KE. Glutathione is the main thiol-containing 
peptide involved in protecting against oxidative stress, and 
its oxidation can result in an increase in ROS downstream. 
However, it can also be activated upstream by the binding 
and activity of other thiol proteins/selenoproteins, such 
as thioredoxin reductase (https://​aopwi​ki.​org/​aops/​284). 
Eccentricity describes the centrality of a node (KE) within 
the network, by measuring the distance from that node to 
all other nodes within. Those with high eccentricity are 
further from most others, while those with low eccentric-
ity are closer. The degree to which a KE is shared among 
AOPs varies from one to seven, but the interconnectivity 
of AOPs in the network is limited, since 58% of KEs are 
present in only one AOP (Fig. 4a). Additionally, based 

on directional eccentricity parameters, 24% of KEs were 
classified as occupying net upstream positions (eccentric-
ity < 3) and 16% net downstream positions (eccentric-
ity > 6). However, 60% of KEs could not be classified 
as either upstream or downstream owing to their greater 
interconnectivity (Fig. 4b). The statistical distribution of 
the number of KEs in relation to their in-degree and out-
degree levels revealed that the majority within the network 
are connected only to one other—with 53% of in-degree 
KEs (Fig. 5a) and 76% of out-degree KEs demonstrating 
this pattern (Fig. 5b).

The development and analysis of a network can be influ-
enced by the number of AOPs sharing a given KE, since 
network modelling is improved when KEs are shared 
between at least two individual AOPs. Sharing a KE across 
multiple AOPs enhances network reliability by validating 
its importance for multiple AOs, reducing reliance on a sin-
gle pathway. Betweenness centrality is a measure of node 
centrality within a network, quantifying the extent to which 
a KE may be seen to bridge the shortest path between two 
other KEs. This metric can be used to identify events that 
are particularly influential within a network. However, in 
this instance, the related but modified parameter of AOP 
simple path occurrence (as described within Sect. “Network 
analysis”), was adopted. Through it, the events of increased 
cytotoxicity, tubular necrosis, oxidative stress, ROS and 

Fig. 4   a KE distribution among 
shared AOPs show restricted 
interconnectivity within 
network. b KE distribution 
according to directed eccentric-
ity score shows that 60% of KEs 
are unable to be characterised as 
either upstream or downstream 
due to their interconnectivity 
(eccentricity score between 3 
and 6)

Fig. 5   a The number of KEs 
and associated number of 
incoming KEs. b The number of 
KEs and associated number of 
outgoing KEs

https://aopwiki.org/aops/284
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mitochondrial dysfunction (with respective scores of 0.514, 
0.443, 0.414, 0.386 and 0.329) were highlighted as most 
central.

This information supports the results given by the degree 
scoring and conforms to the assortment of KEs in the graphi-
cal representation of the AOP network. An overview of 
available assays for measuring endpoints and a selection of 
stressors associated with these five KEs are presented in 
Table 3.

Previously, a comprehensive network was designed in 
order to analyse the connectivity of existing AOPs present 
on the AOP-Wiki (Pollesch et al. 2019). However, it was 
found that the majority of AOPs submitted lacked informa-
tion in user-defined fields. Out of all KERs in the network, 
35% were reported to have either a moderate (13%) or a 
higher (23%) level of qualitative understanding, as deter-
mined by individual AOP developers (Fig. 6). Interestingly, 
a majority of the KERs with high understanding (10 from 
18) are present within just three of the adopted AOPs. For 
many AOPs (covering all 65% of reported KERs), the quali-
tative level of KER understanding remains unspecified. It 
is worth noting that AOPs submitted to AOP-Wiki may be 
at very different stages of development. Some are not yet 
finalised, thus ensuring that the level of understanding for 
reported KERs often remains unreported. In this case, all 
AOPs that recorded unspecified levels of qualitative KER 
understanding were reported to still be under development. 
All AOPs, regardless of their developmental stage, were 
nevertheless included in the characterisation and analysis 
of the network.

Discussion and conclusions

The present study utilised an established method (Arnesdot-
ter et al. 2021; Spinu et al. 2019) to construct and examine 
an AOP network for nephrotoxicity. Although the network 
may not encompass all mechanisms of nephrotoxicity, this 
exercise nevertheless provided valuable direction for prior-
itising KEs for purposes of testing. Except in highly spe-
cific cases, AOP networks can serve as predictive functional 
units for most chemically induced AOs (Knapen et al. 2018). 
Thus, it is reasonable to focus on KEs shared across multiple 
AOPs relevant to nephrotoxicity. Analysis of the network 
identified tubular necrosis, mitochondrial dysfunction, and 
oxidative stress as the most connected and central KEs. 
Therefore, these should be considered during the selection, 
development, and optimisation of in vitro or in silico assays 
for predicting chemical-induced nephrotoxicity. However, 
it is important to note that consideration should also be 
given to the application of all appropriate in vitro assays, 
in order to combat potential redundancies when establish-
ing future models. Cytotoxicity was the most reported KE 

in the network, based on the prerequisites defined previ-
ously. However, due to the assumed commonality of this KE 
across AOPs describing various biological systems, it was 
not judged sufficiently unique to warrant exclusive consid-
eration for in vitro assay development relating to nephrotox-
icity. Instead, it is recommended that testing of this KE be 
combined or substantiated with additional, more disease-
specific endpoints.

Network analysis showed that kidney toxicity was com-
monly caused by increased cytotoxicity and tubular necrosis, 
leading ultimately to increased mortality. Chemical-induced 
tubular necrosis can occur via several upstream mechanisms, 
including oxidative stress, inflammation, lipid peroxidation, 
ischaemia through vasoconstriction, and urate deposition. 
Perturbations of this KE can trigger downstream processes, 
including increased blood potassium and uric acid con-
centrations, kidney toxicity, and kidney failure. Oxidative 
stress and mitochondrial dysfunction were also identified 
as primary upstream KEs. Oxidative stress can emerge 
from several KEs, including alterations to the nuclear fac-
tor erythroid 2-related factor 2 (Nrf2) antioxidant pathway, 
the increased general production of reactive oxygen spe-
cies (ROS), and kidney ischaemia (Chazelas et al. 2021; 
Ma 2013). In turn, this may lead to downstream mitochon-
drial dysfunction (incorporating ETC disruption) and tubu-
lar necrosis. Mitochondrial dysfunction can further mani-
fest through decreased mitochondrial membrane potential 
(MMP), depletion of mitochondrial DNA (mtDNA), and 
the alkylation of key proteins (Lax et al. 2011; Zorova et al. 
2018). Downstream influences of mitochondrial dysfunction 
included inhibition of NF-κβ, increased apoptosis, decreased 
mtATP production, and increased cytotoxicity. It was also 
shown to be part of a feedback loop with oxidative stress and 
alterations to Nrf2 signalling. Increased ROS, blood potas-
sium concentrations, and cardiac arrhythmia were shared by 
three AOPs, whereas glutathione oxidation, increased hyper-
plasia, blood uric acid concentration, urate deposition, and 
increased regenerative cell proliferation were shared by two. 
Inhibition of the mtETC complexes was the only MIE to 
be shared by multiple AOPs, all leading to kidney toxicity.

Nonadjacent KERs can help in identifying branching 
pathways and areas of potential crosstalk between different 
AOPs by detailing the causal relationship between KEs that 
occur relatively distant from one another (Villeneuve et al. 
2018). Nonadjacent KERs have been reported to be associ-
ated with multiple biological processes and have helped to 
identify steps in the causal chain that can be targeted for 
intervention to prevent or mitigate the AO (Spinu et al. 
2019). The incorporation of both adjacent and nonadjacent 
KERs in AOP networks implies the presence of additional 
connections and increasing biological complexity. Further-
more, it may aid in defining the supporting WoE, while 
simultaneously preserving the modular network layout. 
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However, this may also influence network parameters—lead-
ing to increased node degree and AOP simple path occur-
rence values or to decreased eccentricity (Villeneuve et al. 
2018). It should be noted that two events labelled as non-
adjacent under an individual AOP may become “bridged” 
upon integration into a network. This is possible in instances 
where the very same sequence is found described through an 
alternative pathway, albeit with the presence of intermedi-
ate, adjacent, linking steps. The AOP network developed in 
the present study exhibited limited interconnectivity, likely 
due to the diverse mechanisms involved in nephrotoxicity 
(Kim & Moon 2012; Kwiatkowska et al. 2021). As such, 
some pathways did not pass through the common KEs, pos-
sibly due to differences in reported detail among the con-
stituent AOPs. It is important to note that the “AOP min-
ing” method used was restricted to available information on 
AOP-Wiki, leading to potential coverage gaps and incom-
plete information as regards certain pathways. Therefore, 
not all AOPs from the literature may have been included. 
The lack of validated AOPs related to nephrotoxicity also 
posed a significant challenge. However, these points should 
not be seen as a direct criticism of their developers, but 
rather as highlighting areas that are in need of improvement 
for the effective utilisation of AOPs. While the AOP-Wiki 
serves as an invaluable resource for the advancement and 
dissemination of knowledge concerning AOPs, its inherent 
reliance on user-uploaded information impacts the precision 
and dependability of the content displayed on the platform. 
For example, AOP 105 (alpha2u-microglobulin cytotoxicity 
leading to renal tubular adenomas in male rat) and AOP 116 
(cytotoxicity leading to renal tubular adenomas and carcino-
mas in male rat) were connected to the network by the cyto-
toxicity KE, albeit without inclusion of details relating to the 
exact contributory mechanisms underlying its emergence. 
While proximal tubule toxicity was identified as the common 
KE, indication as to any additional events occurring at the 
molecular or cellular level was not given.

The AOP framework considers both empirical evidence 
and the biological plausibility of KERs to capture the WoE 
for causal linkages (Becker et al. 2017; Villeneuve et al. 
2014). In this regard, AOPs are generally constructed 
based on empirical data that describe the biological path-
way in one or in several species. While the developers may 
presume that the biological plausibility of an AOP implies 
a broad taxonomic domain of applicability, supporting evi-
dence is often drawn from only a limited species range. 
Defining the extent of taxonomic applicability is of great 
importance, since it helps to ensure confidence in the rele-
vance and utility of the AOP across varying organisms and 
settings (OECD 2018b). However, different species often 
have diverse physiological and biochemical characteristics 
that serve to affect how they respond to chemical exposure, 
thus presenting a challenge when attempting to extrapolate 
these outcomes to human populations. For example, AOP 
138 (OAT1 inhibition leading to renal failure and mortal-
ity) and AOP 177 (COX1 inhibition leading to renal failure 
and mortality) were developed utilising data drawn from 
various bird species. While the kidneys of humans and 
birds are similar in function, there are significant differ-
ences in their anatomy and physiology, meaning that the 
results of nephrotoxicity studies conducted in one may 
not accurately reflect the effects of a particular substance 
on the other.

Similarly, AOP 413 (oxidation of reduced glutathione 
leading to mortality) focussed on investigating the mech-
anisms of uranium toxicity for acute renal failure in fish 
species, with a scope limited exclusively to consideration 
of events occurring following exposure in aqueous media. 
Yet, despite the recent emergence of zebrafish as a model to 
study kidney function and disease (Outtandy et al. 2019), the 
kidneys of fish and humans also differ in structure and func-
tion; fish kidneys are less complex and lack the same level 
of specialisation. However, in this particular case, an article 
expanding on AOP 447, with a focus on the applicability 
of uranium toxicity to human health has been published—
referencing several reports reviewing informative cases of 
acute human exposure to uranium (Gueguen & Frerejacques 
2022). They expand on how observed alterations in kidney 
biomarkers for individuals who have been overexposed to 
uranium may be attributed to tubular necrosis, which was 
deemed the most significant clinical outcome of acute expo-
sure in humans. By considering taxonomic applicability dur-
ing development, researchers may ensure that an AOP can 
be used with confidence to predict potential adverse effects 
across different species. If an AOP is only applicable across 
a narrow range of taxa, then it may be necessary to con-
duct additional studies to fill data gaps within other species. 
However, the approach utilised for the development of this 
AOP network helped to provide a means to compare the 
results of two distinct AOPs, thus simultaneously enabling 

Fig. 6   Distribution of the weight of evidence for AOP KERs as 
reported by the developers



	 Archives of Toxicology

1 3

the identification of similarities in nephrotoxic responses, 
while preserving the species-specific findings for each.

AOPs should be chemical-agnostic since they aim to 
provide a general framework for understanding the biologi-
cal pathways and potential AOs associated with a MIE and 
its downstream effects, regardless of the specific chemi-
cal involved (Vinken et al. 2017). This allows for greater 
flexibility in applying the AOP framework across a range 
of chemicals and chemical classes, as well as the ability 
to identify commonalities in pathways that lead to AOs. 
Although AOPs are not limited to specific chemicals, they 
can still be employed to facilitate the application of a mode 
(and/or mechanism) of action framework in understanding 
the harmful impacts of established stressors. In brief, the 
term “stressor” is used to refer to agents (either chemical or 
non-chemical) which are associated with the initiation of a 
given AO. Proposing stressors is important in AOP devel-
opment, as it can help towards identifying specific mecha-
nisms and pathways involved in the incidence of the AO 
(Aguayo-Orozco et al. 2019). Yet, only six of the thirteen 
AOPs used to develop this network have listed stressors in 
their respective submissions to the AOP-Wiki—despite it 
being reasonable to assume that most supporting empirical 
evidence would have been derived from the chemical stress-
ors affecting them. Likewise, quantitative KERs established 
using these stressors can introduce elements of uncertainty, 
given that chemicals often exert their effects through mul-
tiple mechanisms or pathways (Perkins et al. 2019). Proper 
identification of appropriate stressors will be important for 
establishing a foundation of knowledge that can be built 
upon in the future development of robust AOPs. Without it, 
the AOP may be considered incomplete or inaccurate and 
lacking in specificity, thus making it difficult to establish 
causal relationships between exposure and the AO.

AOPs and their networks provide a framework to organ-
ise and integrate information on the mechanisms by which 
chemicals or stressors lead to kidney toxicity and failure. 
This can help identify KEs and biological pathways that 
are important in the development of nephrotoxicity. AOPs 
can also help in guiding the selection of appropriate in vitro 
assays to detect and assess nephrotoxicity and thus provide 
a mechanistic basis for interpreting their results. Moreover, 
AOPs can aid in the development of novel testing strategies 
and risk assessment approaches, such as in silico models and 
read-across methods (Pletz et al. 2018; Vinken et al. 2021). 
Applications of the individual AOPs used to derive the net-
work have varied, between continued development and WoE 
assessment, through to the evaluation of published literature 
(Goyak et al. 2022; Gueguen and Frerejacques 2022), and 
the formulation of a proof of concept for the viability of 
an in vitro-based risk assessment via integration of mecha-
nistic endpoints and toxicokinetic modelling (Jarzina et al. 
2022). The AOP network established in this study provides 

a comprehensive and advanced mechanistic representation 
of nephrotoxicity, detailing connections between multiple 
pathways and adverse effects, including kidney failure and 
CKD. The OECD AOP-Wiki serves as an exceptional data-
base for curating, assessing, and authenticating linear AOPs. 
It not only ensures the reliability of mechanistic data, but 
also aids in identifying gaps in knowledge and prioritising 
testing techniques. By providing a more comprehensive 
understanding of the mechanisms underlying nephrotoxic-
ity, AOP networks can contribute to more accurate predic-
tions of the potential hazards and risks of chemicals and 
ultimately improve the protection of human health and the 
environment.
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