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Abstract 

 

The allocation of resources is one of the most significant challenges met by decision-

makers because it affects any company's profitability. One sort of resource allocation 

problem is transportation problems; in this case, the decision-maker must choose the 

quantity of goods to be delivered from various sources to various destinations at the 

lowest possible cost. Therefore, in this research, we have explored the state-of-the-art 

method Total Opportunity Cost Matrix Vogel’s Approximation Method and noticed 

that it has a drawback as it arbitrarily makes allocations when there are ties in the 

decision-making process, and we have then developed a novel and effective algorithm 

after controlling for this limitation. The Total Opportunity Cost Matrix 

Tiebreaker Vogel’s Approximation Method, which is the proposed method, 

systematically breaks ties at several levels in the iteration process of decision-making 

and produces an improvement on the state-of-the-art method. Additionally, for 

continuous cost transportation problems, since it is difficult to have ties, an extension 

of the proposed method known as Total Opportunity Cost Matrix Tiebreaker Vogel's 

Approximation Method Threshold uses a percentage threshold to induce ties at the 

maximum penalty which provides the algorithm with alternative pathways to access 

more costs that can be considered as the minimum cost during the iteration process, 

resulting, on average, in a lower initial basic feasible solution. This study compared 

the performance of the state-of-the-art method with 20,000 simulated balanced 

transportation problems with real-valued costs and 35 benchmark balanced 

transportation problems with integer cost values from previously published literature. 

The results show that, on average, the state-of-the-art method can be improved by 

about 2% when we take a range of percentage thresholds as the maximum penalty. 
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Although we are aware of the modest increase in computational complexity of this 

proposed method (which is not expensive to run), we point out that the quality of the 

initial basic feasible solution obtained can have a significant impact on business 

overheads as it is generally believed that the better the initial basic feasible solution 

obtained, the smaller is the number of iterations required to obtain the optimal 

solutions saving the company time and money overall. Additionally, apart from the 

fact that it is simple to understand, this proposed method's best quality is that it can be 

used with other existing optimisation methods by inducing ties to break ties and can 

also add another step to methods that break ties, for example using the maximum mean 

cost to break a tie in the minimum cost for transportation problems. 
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CHAPTER ONE 

Research Overview 

1.0 Introduction 

The first chapter expresses the reasons for conducting the proposed research, 

beginning with a brief introduction to the research topic, the motivation behind the 

research, the research questions, the aims, and objectives, and finally, the expected 

contributions to knowledge. 

1.1 Research Overview 

Transportation problems have been a well-known problem in operations research since 

its first mathematical formulation in the 18th century, and it became more prominent 

during the First World War. At this time in the war, schedules were developed for 

concentrating troops with the necessary equipment at key depots, which were then 

quickly dispatched to the designated position, utilising efficient use of optimisation in 

transportation problems. 

Transportation has a major impact on both achieving the economic and social goals of 

an organisation. For example, the transportation of raw materials or goods from the 

warehouse to the consumer may be affected by the time taken to deliver the goods and, 

inevitably, the cost of the unit goods. Other challenges, such as route choice, traffic 

conditions, and vehicle types, may impede the movement of goods from suppliers to 

consumers, raising the unit cost of transportation. 

In the last two decades, there has been a significant contribution toward the 

development of a new generation of transportation systems that fit the value proposed 

to each company, focusing on distinct strengths such as quality, speed, reliability, or 

cost (Neves-Moreira et al., 2016). The concepts of logistics in operations research 
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continue to gain significant benefits because of advancement and efficiency in modern 

science and technology. Manufacturing companies strive to optimise their product 

costs by lowering overhead costs. For example, in the energy and mining industries, 

transportation costs account for a substantial portion of the expenses. 

According to Bienstock and Munoz (2015), freight accounts for one-third to two-thirds 

of the total cost of logistics, as a result, even a minor improvement in transportation 

efficiency would increase the company's net profit. Furthermore, transportation 

problems cannot be discussed without considering the economic link between demand 

and supply, which is critical to understanding the basic needs or problems that will be 

encountered. 

1.2 Research Motivation 

Transportation problems have many potentials as industries strive to reduce the cost 

of distribution of finished goods or essentials and move them to consumers at the 

lowest possible cost. However, there are some difficult issues with transportation that 

must be reviewed and addressed appropriately. In the traditional transportation 

problem, there is usually only one forwarder who moves goods from the manufacturer 

to the consumer while attempting to keep costs as low as possible. This research will 

look at several forwarders who transport goods from manufacturers to consumers to 

reduce transportation costs. As a result, the starting point of the research was 

previously to develop a systematic approach to improve on Vogel's Approximation 

Method (VAM), a well-known method for finding an initial basic feasible solution 

(IBFS) to a transportation problem that has the advantage of shortening the time 

required to compute the overall optimal solution, but the aim of this research is now 

focused on improving the state-of-the-art method of finding the IBFS for 

transportation problems.  
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This research initially addressed VAM's limitation of arbitrarily making allocations 

when there is a tie in maximum penalty and minimum cost. The previously proposed 

method Tiebreaker Vogel’s Approximation Method (TBVAM) (Madamedon et al., 

2022), improves on the initial basic feasible solution of VAM by systematically 

breaking ties at several levels. However, the initial basic feasible solution of TBVAM 

was not always better than the ones from the state-of-the-art methods such as Total 

Opportunity Cost Matrix-Vogel’s Approximation Method (TOCM-VAM). Therefore, 

this research aims to improve on the state-of-the-art method TOCM-VAM by 

proposing the Total Opportunity Cost Matrix-Tiebreaker Vogel’s Approximation 

Method (TOCM-TBVAM) and an extension method of inducing ties at the maximum 

penalty cost known as Total Opportunity Cost Matrix-Tiebreaker Vogel’s 

Approximation Method Threshold (TOCM-TBVAM-TH). TOCM-TBVAM-TH 

applies a percentage threshold interval on the maximum penalty cost to induce ties and 

has the advantage of allowing several pathways in the solution search process and 

provides, on average, much more efficient IBFS.  

1.3 Research Questions 

The focus of this transportation problem research is to provide answers to the 

following questions:  

1. Can an approach be proposed to address TOCM-VAM's limitations to improve 

the initial basic feasible solution? 

2. What are the potential benefits of this proposed method that addresses TOCM-

VAM’s limitations? 

3. Would the possibility of creating ties using a percentage threshold improve the 

initial basic feasible solution of TOCM-TBVAM? 
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To address these questions, two batches of 10,000 transportation problems were 

simulated using the statistical package R, and 35 well-established benchmark 

transportation problems were taken from previously published literature on the field. 

1.4 Aims and Objectives 

Aim of the Research 

As organisations continue to use Operations Research to manage their businesses, 

optimisation often comes into play, as they look to reduce overhead costs and 

maximise profits using their resources, including time. As a result, the goal of this 

research is to propose a new optimisation method that modifies and improves on 

TOCM-VAM in the decision-making process to enable it to solve transportation 

problems, more specifically, Demand and Supply Transportation Problems. 

Note: in the context of this study, these transportation problems refer to both demand 

and supply transportation problems.  

Research Objectives 

The following are the main objectives of this research: 

To present an overview of transportation problems in operations research in the form 

of a literature review. 

To draw attention to the shortcomings of the most efficient method used to solve 

transportation problems known as TOCM-VAM. 

To discuss and evaluate various published methods of finding an initial basic feasible 

solution.  
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Propose a novel approach that breaks ties in the allocation decision-making process 

and improves the performance of TOCM-VAM. 

To put the proposed method into practice, using simulation problems, evaluate and 

test it comparing the results to the current state-of-the-art algorithm. 

1.5 Expected Contributions to Knowledge 

Although numerous ways have been utilised in the past to solve transportation 

problems with potential benefits, some of these methods include utilising the 

minimum cost method, using the maximum penalty cost, using the maximum mean, 

and using the cost cells' standard deviation. The key contributions to knowledge in this 

research are as follows: 

 A method is proposed to improve TOCM-VAM’s IBFS by breaking ties at 

several levels such as maximum penalty cost, minimum cost, and quantity 

supplied. 

 TOCM-VAM can be further improved for real-value data sets by considering 

a user-defined percentage range to be taken as indicative of ties taking place 

using a novel proposed method, TOCM-TBVAM-TH.  

 The results also indicate that TOCM-VAM can be improved on the number of 

wins on average by about 2% when we consider a range of percentage ranges 

with minimum effort which is not expensive to run. 

1.6 Organisation of the thesis 

Chapter 2 

Provides a critical review of transportation problems in demand and supply in the 

context of optimisation. A wide-ranging overview of the current literature in obtaining 

an initial basic feasible solution for transportation problems, their advantages, and 
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shortcomings, and identifying the gaps in the literature, as well as the reasons as to 

why the literature review is significant to the research. 

Chapter 3 

Presents the mathematical formulation of transportation problems, as well as the two 

types of transportation problems (balanced and unbalanced). Justification of why and 

how to find the initial basic feasible solution using the standard methods of finding 

IBFS, namely, Northwest Corner Method, Minimum Cost Method, and Vogel’s 

Approximation Method. The optimal solutions to transportation problems and their 

benefit are discussed, including a review of using the Stepping-Stone approach and 

the Modified Distribution Method (MODI) to test for optimality. 

Chapter 4 

This chapter will present the starting proposed algorithm (TBVAM) and the link to 

the more recent proposed algorithm (TOCM-TBVAM), which is a method that 

improves on TBVAM and improves or has the same IBFS as TOCM-VAM. Two 

examples of transportation problems with integer costs are also presented. One 

example shows the procedures of TOCM-TBVAM without encountering any ties and 

thus performs in the same way as TOCM-VAM, while the other example breaks ties 

at several levels and the IBFS is compared to TOCM-VAM, which breaks ties 

arbitrarily. 

Chapter 5  

This chapter describes how the datasets for two batches of 10,000 simulated 

transportation problems were generated to be used as a real-valued cost to test the 

efficiency of the proposed method where banding transforms the continuity to induce 
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ties in the algorithm, as well as the application of TOCM-TBVAM-TH and TOCM-

VAM on the generated transportation problems. 

Chapter 6  

This chapter will discuss the findings and results of the comparison between TOCM-

TBVAM-TH and TOCM-VAM. This chapter also addresses the computational 

complexity of the proposed algorithm against the state-of-the-art method TOCM-

VAM and VAM, statistical analysis on the results obtained and the improvement on 

the state-of-the-art method as well as the overall effectiveness and applicability of the 

proposed methods are further analysed. 

Chapter 7 

This chapter will draw together all the other Chapters in this thesis and present a 

conclusion, the novel contribution to knowledge as well as the limitations and 

opportunities for future work. 

 

 

 

 

 

 

 



   

 

Page | 8  
 

CHAPTER TWO 

Literature Review 

2.1 Introduction 

This chapter provides a critical review of transportation problems in demand and 

supply in the context of optimisation, an in-depth review of the current literature in 

obtaining an initial basic feasible solution for transportation problems, their 

advantages, and shortcomings, and identifying the gaps in the literature, as well as and 

the reasons as to why the literature is significant to the research. 

 

2.2 Transportation Problem 

It was around 1947 that George B. Dantzig first conceived linear programming 

problem while working as a mathematical advisor to the United States Airforce 

Comptroller on developing a mechanised planning tool for a time-stage deployment, 

training, and logistical supply program (Bazaraa et al., 2009). Although T.C. 

Koopmans coined the term "Linear Programming" in 1948, it was Dantzig who first 

published the "simplex method" for solving linear programs. 

Linear programming initially referred to plans and schedules for training, logistical 

supply, and man deployment. However, linear programming is now used to plan all 

economic activities, such as the transportation of raw materials and products between 

factories, the sowing of various crop plants, and the cutting of paper rolls into shorter 

ones in sizes specified by customers (Matousek and Gärtner, 2006). Linear 

programming is concerned primarily with minimising or maximising (Optimization) 

a linear function while satisfying a linear equality and/or inequality constraint. 

According to Luenberger (1973), the popularity of linear programming stems 
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primarily from the formulation phase of analysis rather than the solution phase—and 

for good reason, as their problem formation is simple. Linear programming is a 

technique for obtaining an optimal solution when we have limited resources and many 

competing candidates who want to consume the limited resources in a specific 

proportion   (Murthy, 2005, Dantzig, 2016). Linear programming is one of the most 

versatile, powerful, and useful decision-making techniques. Sultan (2014) claimed that 

this and other applications aided in the victory of several major war battles.  

Setting up an efficient and flexible logistics network, as well as defining its planning 

and operational processes is one of the most difficult challenges in the transportation 

industry (Neves-Moreira et al., 2016). The Second World War (1939–45) saw many 

changes, and it became clear that planning and coordination among many projects, as 

well as efficient utilisation of limited resources, were essential (Bazaraa et al., 2009). 

The distribution of man and equipment to destinations from various sources was one 

of the most significant challenges. 

According to Ahmed et al. (2016a), transportation modelling is a technique used to 

plan the transportation of supplies from various sources to various destinations, 

therefore, the primary application of the transportation problem is to reduce the cost 

of distributing products or goods from various factories or sources to a variety of 

warehouses or destinations (Hitchcock, 1941). 
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Figure 1: A classic Transportation Problem showing more than one forwarder from 

suppliers to demand points (Stein and Sudermann-Merx, 2018)  

 

In the real world, as shown in Figure 1, each forwarder seeks to minimise 

transportation costs while sharing supply and demand constraints with other 

forwarders. It is expected that the precise values of transportation costs are known in 

transportation problems; however, in the real world, the exact price may not be certain 

due to uncontrollable factors (Uddin and Huynh, 2016). Hitchcock (1941) explained 

that the cost of a product in a specific city will sometimes vary depending on which 

factory supplies it due to freight rates and other factors. In this study, we look at 

transportation costs that are known and precise. 

2.3 Real-life Cases 

A real-life example was Procter and Gamble's distribution in the 1990s when they 

saved a significant amount of money by restructuring the supply chain in their North 
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American centre. Procter & Gamble deregulated the trucking industry, resulting in 

lower transportation costs and lower prices for goods. Secondly, the products were 

more compacted, allowing more goods to be transported per truckload. Another way 

this aided product quality was that they were more dependable. Similarly, the product 

Lifecycle was reduced, resulting in more frequent plant changes, and finally, product 

cost was reduced due to excess capacity. All of this resulted in Procter & Gamble 

saving approximately $200 million per year (Camm et al., 1997).  

Brenton Barr provided another example of a transportation problem, citing 

transportation costs as a factor in the location of the Soviet Wood Processing Industry. 

Due to Roundwood surpluses and deficits, the study's goal was to allocate Roundwood 

shipment from supply sources to deficit areas to reduce total transportation costs. Barr 

used the transportation problem to determine the best pattern of flow between supply 

and demand regions (Skorin-Kapov et al., 1996). 

2.4 Current Literature on finding IBFS to Transportation Problem  

It is essential to obtain an IBFS for transportation problems, particularly large 

transportation problems, to find the optimal solution. There are several heuristic 

approaches for obtaining an IBFS; however, while some heuristics can obtain an IBFS 

efficiently, the solution they find is sometimes not optimal in terms of the total cost. 

Other heuristics, on the other hand, may not produce an IBFS as quickly, but the 

solution they find is often quite good in terms of minimising the total cost (Anderson 

et al., 2018). As a result, many studies have implemented new approaches for 

determining the IBFS, including several VAM modifications. In these varied 

approaches, it is worth noting that some have considered a tie in the maximum penalty, 

while others did not. Additionally, some have considered minimum cost tie and, 
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supply and demand tie, while others have not. Consequently, this literature review can 

be divided into groups in which researchers considered ties in their approaches while 

others assigned arbitrary allocations when there are ties.  

The Harmonic Mean Method (HMM), for example, does not consider ties. Palanivel 

and Suganya (2018) apply the harmonic mean for each row and column, identifying 

the maximum cost among each row and column and then makes allocations to the 

minimum cost cell, and in case of a tie in minimum cost, it makes arbitrary allocations 

to the minimum cost.  

Although this approach claims to produce IBFS solutions as VAM and sometimes the 

optimal solution, which are some of its benefits, it does have certain drawbacks. For 

example, the solution to the transportation problems was only compared to the three 

common methods of finding the IBFS, i.e., Least Cost Method, Northwest Corner 

Method, and VAM, which will be discussed in detail in the next chapter, and the 

dimension of the transportation problem was quite small in contrast to real-world 

cases. In addition, the lack of considering tie at minimum cost is another drawback as 

it would take several paths to see an improvement to the IBFS. In their approach 

known as Improved Vogel’s Approximation Method (IVAM), Korukoğlu and Ballı 

(2011) did not consider a tie. This approach entails the three highest penalty costs as 

well as the total opportunity cost. This approach was evaluated on a few large size 

dimension transportation problems, and it was discovered that VAM was only better 

on small dimension transportation problems. When compared to VAM, this method 

obtains significantly more efficient IBFS for large-size transportation problems. 

Nevertheless, because of the calculation required to determine the total opportunity 

cost and the highest three penalty costs, as well as the additional two alternative 
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allocation costs, this approach has a disadvantage in terms of higher computational 

complexity. Additionally, the large transportation problem used in this approach did 

not include real-value cost. 

Ahmed et al. (2016b) utilise an allocation table to select the minimum odd cost from 

all cells and divide any even cost cells until they become an odd cost, but ties in the 

minimum odd cost cells are resolved by looking at the supply/demand point with the 

lowest quantity. Although this method is effective for obtaining the IBFS, its 

shortcoming is that the cost of transportation from each source to the destination 

cannot be reduced to a decimal number since it is impossible to predict whether the 

decimal number will be odd or even during the iteration. This indicates that 

implementing real-value cost is an area that needs additional research.  

Islam et al. (2012) extended this approach to the Total Opportunity Cost Table 

(TOCT). To calculate the penalty cost in TOCT, we subtract the minimum cost from 

the maximum cost. However, it breaks ties arbitrarily in the maximum penalty and 

minimum cost. Although this approach was limited to a single example, it has the same 

IBFS as VAM, which was the same as the optimal solution. The disadvantage of this 

approach is that it does not consider ties at some levels, and no work was done on large 

dimension transportation problems or the usage of real-valued cost. Similarly, 

Hosseini (2017) proposes three new algorithms known as Total Difference Method 

(TDM1), TDM2, and Total Difference Least Square Method (TDSM), all of which 

arbitrarily break ties. TDMI only uses the differences in the minimal cost between the 

rows and does not compute the columns. This is calculated by removing each 

minimum cost from each row, then adding the sum of all the differences and allocating 

it to the row with the maximum cost sum. This reduces computational time to attain 
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an IBFS because it just uses rows; however, the drawback of TDM1's IBFS is that it 

is not as efficient as VAM for small-scale transportation problems. Furthermore, when 

TDM1 was computed using a large dimension transportation problem, the results 

indicate that TDM1 is more efficient on average since it provides a better IBFS. TDM2 

computes the total difference by combining rows and columns, but neither TDM2 nor 

TDSM was as efficient as VAM with either a small or large dimension transportation 

problem. 

Similarly, in an attempt to exploit the opportunity cost by better taking into account 

the variation within the entries in the cost matrix, Akpan et al. (2015) modified VAM 

by using the idea of obtaining the standard deviation of the rows and columns and 

make allocations to the minimum cost cell with the greatest costs-standard deviation 

without taking into consideration when ties occur in the standard deviation of the row 

and column respectively. This approach's disadvantage is that it is not any better than 

VAM. Yet, it has the advantage of providing an IBFS that can be utilised to find the 

optimal solution with less computational time. Kirca and Şatir (1990) worked on 

transportation problems by generating the Total Opportunity Cost Matrix (TOCM) 

which is obtained by subtracting the minimum cost from each row and column and 

then adding the result to make a new transportation problem matrix. Mathirajan and 

Meenakshi (2004) extended TOCM with VAM to achieve a more efficient IBFS. This 

approach known as Total Opportunity Cost Matrix-Vogel’s Approximation Method 

TOCM-VAM is computed by applying VAM on TOCM. Using the transportation 

problem generated by TOCM, the penalty is calculated by subtracting the minimum 

cost from the next minimum cost. Should there be two or more minimum costs, then 

the penalty is equal to zero. Then maximum allocation according to the supply and 

demand constraints is made to the maximum penalty cost cell with the minimum cost. 
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In case there is a tie in the maximum penalty, allocation is done arbitrarily, and in case 

there is a tie in minimum cost, again allocation is done arbitrarily.  

These arbitrary allocations in maximum penalty and minimum cost are the 

shortcomings of this approach. Although this method produces more efficient IBFS 

than other existing methods which is an advantage as it requires less computational 

time to get the optimal solution, it would be good to see how it performs with large-

size dimension transportation problems and real-valued cost. 

Total Opportunity Cost Matrix Sum (TOCM-SUM) is another method of finding an 

IBFS of transportation problems (Khan et al., 2015). To achieve this, after obtaining 

the TOCM, pointer costs are assigned which are the sum of the cost in the rows or the 

cost in the column. Maximum allocation according to the demand and supply 

constraints is then given to the minimum cost cell with the highest pointer score. In 

this method, in the case of ties, allocations are done arbitrarily. This method has the 

advantage that it is easy to compute and understand, the shortcoming outweighs the 

advantages as this method makes arbitrary allocation when there is a tie. In addition, 

the IBFS obtained by this method was on a small size dimension, and in most cases, 

the result obtained was the same as TOCM-VAM. To make a variety to TOCM-SUM, 

another method of finding the IBFS known as the Total Opportunity Cost Matrix-

Median Extreme Difference Method (TOCM-MEDM) was proposed (Hossain et al., 

2020). This TOCM-MEDM was a modification on MEDM but first obtains TOCM. 

Whereas other methods subtract the two minimum costs to achieve the penalty, 

TOCM-MEDM achieves the penalty by subtracting the minimum cost from the 

maximum cost, and then makes allocations arbitrarily in cases of ties in the maximum 

penalty, however in cases of ties in minimum cost, it allocates to the cost cell where 
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maximum allocation can be obtained. The advantage of this method is that it is easy 

to compute to get the IBFS of transportation problem, however, the arbitrary allocation 

when there is a tie in maximum penalty is a shortcoming with this method. Similarly, 

although the IBFS obtained were the same as other existing methods, the 

transportation problem was also on small size dimension. Total Opportunity Cost 

Matrix-Highest Cost Difference Method (TOCM-HCDM) utilises the TOCM 

approach and arbitrarily breaks ties, this approach calculates the penalty by subtracting 

the next maximum cost from the maximum cost, which prevents the penalty from 

being assigned a zero cost. This method has the advantage of being simple to 

understand and compute, but the IBFS it obtained were not efficient or comparable to 

other methods. 

In contrast to the preceding approaches (which did not consider ties), some alternative 

methods consider ties when determining the IBFS of a transportation problem. 

Approaches such as Total Opportunity Cost Matrix-Minimal Total (TOCM-MT) by 

(Amaliah et al., 2019) use the TOCM, which is the result of subtracting the minimal 

cost from each row and column and then adding them to form a transportation problem 

matrix, and break ties by assigning allocation to the minimum cost cell when there is 

a tie in the maximum penalty, then to the maximum overall cost when there is a tie in 

the minimum cost, and finally to the greatest quantity demanded when there is a tie in 

maximum overall cost. The downside to this approach is that it requires more 

computational time and is only applicable to small-size dimension transportation 

problems. It does, however, have the advantage of obtaining a more efficient IBFS 

because it breaks ties at specific levels (maximum penalty, minimum cost, and 

maximum overall cost). Similarly, the Abdul Sum Method (ASM) method by 

Murugesan and Esakkiammal (2019) was proposed to work on getting the IBFS of 



   

 

Page | 17  
 

transportation problems. ASM applies the row minimum subtraction (RMS and 

column minimum subtraction (CMS) which then gives a reduced cost matrix (RCM). 

Each RCM then must have a zero-entry cell, this is the cell with a zero cost. The main 

concept is to make maximum allocations to a zero-cost cell, if a tie occurs in the zero-

cost cell, allocation to the cost cell with the maximum sum of the cost cell in the row 

or column. If a tie occurs, then any zero-cost cell is arbitrarily chosen for allocation. 

This is because the ASM method finds it difficult to identify the appropriate zero-entry 

cell for allocation in an RCM in case of a tie among certain zero-entry cells. This tends 

to be a drawback of this approach as it did not break ties at all levels. Therefore, to 

improve on the shortcomings of ASM, the Improved Abdul Sum Method (IASM) was 

proposed to address the tie-breaking method of ASM. Here IASM counts the total 

number of zeros cell (excluding the selected one in its row and column and then make 

maximum allocations to zero-entry cell for which the number of zeros counted is 

minimum. IASM may then produce a better IBFS than ASM. The drawback of this 

approach is that the improvements are mostly on small dimension transportation 

problems and unbalanced transportation problems, where the total quantity demanded 

is different from the total quantity supplied. This tie-breaking method shows the 

benefit of why ties need to be broken in a specific way. Juman and Hoque (2015) 

proposed an approach for computing penalty cost using only the columns and ignoring 

the rows. JHM breaks ties in the minimum cost by assigning the allocation to the cell 

with the highest quantity demanded. Another method, known as the New Method, 

finds the penalty cost and excludes it by using the row difference (Juman and 

Nawarathne, 2019). The benefit of these two approaches is that they sometimes create 

IBFS identical to VAM, the disadvantage is that they only work on small-size 

dimension transportation problems. The work from Amaliah et al. (2020) modified 
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JHM with a method known as Bilqis Chastine Erma (BCE) in ties by adding a 

procedure to move the excess quantity demanded to the second minimum cost cell. 

BCE worked on small size dimension transportation problems and not all the IBFS 

was better than other existing researched methods. For example, some of the IBFS 

were higher than methods such as VAM, TOCM-MT, and TDM1. However, BCE has 

the advantage of getting the optimal solution faster in some cases but opens further 

research to be undertaken for transportation problems with large size dimension that 

has large quantities of supply and demand. 

Some researchers have explored methods to improve VAM and break ties. One 

example is the Advanced Vogel's Approximation Method (AVAM), which uses the 

next two minimum costs to avoid assigning allocations to a greater cost in the next 

iteration (Das et al., 2014). Although AVAM is not as efficient as VAM, it can also 

provide an IBFS that is sometimes lower than VAM, but on average, VAM produces 

a better IBFS. Additionally, it would have been better to see the performance of the 

IBFS on AVAM on large-size dimension transportation problems and compare it to 

other existing methods. A recently improved edition of this algorithm also identifies 

the two minimum costs in each row and column as in VAM. It does, however, deal 

with a tie in the penalty cost by allocating it to the minimum cost cells. Similarly, if 

there is a tie in the minimum cost cells, allocation is made to the demand point where 

the maximum quantity supplied may be satisfied. In case of a tie in the demand points, 

allocation is made from the cell having the most available supply quantity. Khan et al. 

(2015b) proposed a method that works on TOCM, but instead of allocating the 

maximum penalty, it makes an allocation to the minimum cost with the minimum 

penalty, and if a tie occurs, allocation is made arbitrarily. This method has the 

advantage that it is easy to understand and compute, however, the small size of the 
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dimension of the transportation problem is a shortcoming. Furthermore, the IBFS 

obtained were the same as other known methods. Islam, Khan, Uddin, and Malek 

(2012) proposed a method that works on TOCM. This approach, known as the Extreme 

Difference Method (TOCM-EDM), allocates the minimum cost with the maximum 

difference after finding the penalty by subtracting the two maximum costs from the 

row and column, respectively. If the maximum penalty is a tie, the penalty will be 

zero. If there is a tie in minimum cost, allocation is done arbitrarily. TOCM-EDM has 

the advantage of being simple to understand and compute, but it has the disadvantage 

of producing the same IBFS as other existing approaches and being tested on a small-

size dimension transportation problem. Lekan et al. (2021)  proposed a method known 

as the Maximum Difference Extreme Difference Method (MDEDM) to find the IBFS 

of transportation problems. This method uses the maximum difference of the rows 

which is obtained by subtracting the immediate maximum cost from the maximum 

cost and then calculates the extreme difference of the columns by subtracting the 

minimum cost of the column from the maximum cost of the column and then makes 

an allocation to the minimum cost with the maximum difference. In the case of ties, 

allocations are made to the minimum cost cell at the topmost row and the extreme left 

corner. The advantage of this method is that it is to implement and does deal with ties 

at a level, but the drawback is that the IBFS obtained are the same or higher than other 

existing methods of finding IBFS. In addition, the dimension of the transportation 

problem solved was of a small-size dimension.  

Abdelati (2023) proposed an algorithm known as the Cost-Quality Method (CQM). 

This algorithm identifies the lowest cost in the cost matrix and divides all cost cells by 

it. It then determines the maximum amount that can be assigned to each row and 

column and divides each demand cell by the maximum demand values to generate 
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another matrix allocation table. These two allocation matrix tables are then multiplied 

to form a new allocation table. The allocations are then made to the cost cell with the 

highest values. We update the allocation tables with the original cost matrix values to 

calculate the total transportation cost. This method has the advantage of producing an 

initial basic feasible solution that is lower than the LCM and VAM, however, the 

shortcomings are that it is not as efficient as other existing methods including the state-

of-the-art method TOCM-VAM, and it was only used for small-size dimension 

transportation problem.   

Another algorithm known as the Demand-Based Allocation Method (DBAM) was 

proposed by Ackora-Prah et al. (2023). This algorithm uses the minimum demand with 

the lowest cost values to make allocations. Although this method has the disadvantage 

of lacking an expected way of breaking ties, which it does arbitrarily during the 

decision-making process, it does have the advantage of generating some efficient 

results when compared to other existing methods. 

Furthermore,  the use of the Mean Absolute Deviation Method was proposed by 

Thanoon (2022). This algorithm computes the mean absolute deviation of the rows 

and columns and allocates to the cell with the lowest cost and the highest mean 

absolute deviation. This method has the advantage of producing an efficient IBFS that 

is the same as VAM, but it has only been tested on one small size dimension 

transportation problem, and most importantly, it does not mention how to break ties 

in the decision-making process, which is a shortcoming of this method. 

To compare the various and more recent methods of obtaining IBFS to transportation 

problems, after rigorous experimental computation, Sultana et al. (2022) maintained 

that on average TOCM-VAM was more efficient as it produced better IBFS than all 
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other existing methods. It also maintained that for small-size dimension transportation 

problems, FSTP and the Modified Distribution Method produced the same optimal 

solution as the Modified Distribution Method. Therefore, these findings motivate the 

researcher to find a better method that would improve on the state-of-the-art TOCM-

VAM of finding an IBFS that is either as efficient as TOCM-VAM or better. Also, 

from the literature review, since only a few levels of ties are common which tends to 

be a drawback even in the most efficient method, the main focus of this research is to 

explore how the TOCM-VAM would perform in a large-size dimension transportation 

problems that use real cost values as against TOCM-TBVAM-TH, that creates ties in 

the maximum penalty since it would be extremely difficult to have ties in real-valued 

cost transportation problems.  

2.5 Overview and comparison of five state-of-the-art Benchmark Algorithms 

Five different algorithms for finding an initial basic feasible solution are compared 

with TOCM-VAM, TOCM-TBVAM and the extension of TOCM-TBVAM known as 

TOCM-TBVAM-TH. The majority of these algorithms have been evaluated on small-

scale transportation problems that can be solved by hand. The largest dimension size 

of transportation problems on which these algorithms were tested was a 7 x 8 matrix, 

while the smallest was a 3 x 4 matrix. As a result, they are typically basic 

transportation problems with few computations but several iterations, such as VAM, 

TOCM-SUM, and TOCM-VAM. Furthermore, when compared to other algorithms, 

these benchmark algorithms have consistently ranked as good or the best. For 

example, when VAM is compared to the other two algorithms like LCM and NWCM, 

VAM tends to be the best. Likewise, other algorithms, such as TOCM-MEDM, 

MDEDM, and JHM, have produced efficient initial basic feasible solutions. However, 
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they all have drawbacks in that they were only tested on small-size transportation 

problems with integer costs.  Table 1 shows a summary of the main features, 

advantages, and shortcomings of some of the state-of-the-art algorithms for solving 

transportation problems. 

Table 1. Summary of the main features, advantages, and shortcomings of some 

state-of-the-art algorithms that solve transportation problems. 

TP Algorithms  Main features Advantages Shortcomings 

VAM (1958) Uses two minimum 

costs to compute 

penalties. 

Makes allocations 

to the minimum 

cost cell with the 

maximum penalty. 

 

Produces on 

average a better 

IBFS than some 

standard methods, 

e.g., LCM and 

NWCM. 

Takes more time 

than LCM and 

NWCM to achieve 

the IBFS as it 

involves lots of 

iterations process. 

Makes arbitrary 

allocations in case 

of ties. 

TOCM-SUM 

(2015) 

Uses TOCM to 

compute penalties. 

Appoints pointer 

scores to the sum 

of rows and 

columns. 

Makes allocations 

to the minimum 

cost cell with the 

highest pointer 

score. 

Easy to compute 

and understand. 

Some of the IBFS 

obtained on 

average are the 

same or better than 

VAM’s algorithm. 

Makes arbitrary 

allocations in case 

of ties. 

Only tested on 

small-size 

dimension TP. 

TOCM-MEDM 

(2020) 

 

 

 

 

Uses TOCM to 

compute penalties. 

 

It subtracts the 

minimum cost from 

the maximum cost 

to obtain the 

penalty cost. 

Easy to compute 

and understand. 

 

The IBFS obtained 

on average are the 

same or better than 

other standard 

methods such as 

LCM and NWCM. 

Only considers 1 

level of tie-

breaking which is 

in the maximum 

penalty. 

Tested on only 

small size 

dimension TP. 
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JHM (2015) It computes penalty 

cost with only the 

columns, ignoring 

the rows. 

Makes allocations 

to the minimum 

cost cell. 

It breaks ties in 

minimum cost by 

making allocations 

to cells with the 

highest quantity 

demanded. 

Easy to compute 

and understand. 

 

Breaks tie at 1 

level, i.e., ties at 

the minimum cost. 

IBFS obtained on 

average are the 

same or better than 

VAM. 

Only works well 

on small size 

dimension TP. 

Only considers ties 

at 1 level in the 

decision-making 

process. 

MDEDM (2021) Uses maximum 

difference of rows 

by subtracting the 

two maximum 

rows cost. 

Uses the minimum 

difference of the 

column by 

subtracting the 

minimum cost from 

the maximum cost 

in the column. 

Easy to compute 

and understand. 

 

 

Consider ties at 1 

level. i.e., at 

maximum penalty 

only. 

The IBFS obtained 

on average are not 

better than other 

existing methods. 

 

Works well on 

only small size 

dimension TP. 

Considers ties only 

at 1 level. 

TOCM-VAM 

(2004) 

Uses TOCM to 

compute penalties. 

 

Then apply VAM 

to TOCM. 

 

Makes allocations 

to maximum 

penalty with 

minimum cost. 

Easy to compute 

and understand. 

 

IBFS obtained on 

average the same 

or better than all 

existing methods. 

 

 

Does not consider 

ties in the 

decision-making 

process. 

Needs to be rerun 

to get a lower 

IBFS as it makes 

arbitrary 

allocations when 

there are ties. 

Not tested on real-

valued cost. 

TOCM-TBVAM 

(2023) 

 

Uses TOCM to 

compute penalties. 

 

Easy to compute 

and understand. 

 

Takes more time 

to achieve IBFS as 

it considers ties at 

several levels. 
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TOCM-TBVAM 

(2023) 

(continued…) 

Makes allocations 

to minimum cost in 

maximum penalty 

cell. 

 

Makes allocations 

to the minimum 

cost with the 

maximum mean 

cost. 

Makes allocations 

to the maximum 

quantity that can be 

supplied which has 

the minimum cost 

that has the 

maximum mean 

cost cell. 

Considers ties at 3 

levels. i.e., 

maximum penalty, 

minimum cost, 

maximum mean 

cost. 

Systematically 

break ties at 

several levels. 

 

Each level of tie-

breaking, on 

average improves 

the IBFS 

compared to 

TOCM-VAM. 

The IBFS obtained 

are the same as 

TOCM-VAM 

when there are no 

ties, or better, on 

average, when 

there are ties. 

TOCM-TBVAM-

TH (2023) 

In addition to all 

steps in 

TOCMTBVAM, 

TOCM-TBVAM-

TH uses multiple 

percentage 

thresholds to 

induce ties at the 

maximum penalty. 

In addition to all 

the advantages of 

TOCM-TBVAM, 

the percentage 

threshold gives 

this algorithm 

opportunities to 

obtain a lower 

IBFS as it creates 

several pathways 

in the decision-

making process. 

Tested on large-

size dimension TP 

with real-valued 

cost. 

It takes more time 

than other existing 

methods as it 

induces ties at the 

maximum penalty 

and breaks ties at 

several levels. 
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2.6 Summary 

This chapter provided a thorough review of current research on finding the IBFS for 

transportation problems. It is maintained that TOCM-VAM is the most efficient 

approach, and it is also highlighted that arbitrary allocations often result in a less 

efficient IBFS due to ties at multiple levels in the iteration. Using real-valued cost on 

large size dimension transportation problem is also missing in most research; this, 

among other reasons, motivates the researcher to work on this area of transportation 

problem. The next chapter will present the mathematical formulation of transportation 

problems, as well as the two types of transportation problems (balanced and 

unbalanced), and the significance of finding the initial basic feasible solution and 

optimal solutions to transportation problems, including a review of using the Stepping-

Stone approach and the Modified Distribution Method (MODI) to test for optimality. 
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CHAPTER THREE 

Standard Methods of Finding the Initial Basic Feasible 

Solution 

3.1 Introduction 

The preceding chapter reviewed the literature and found that most studies on obtaining 

IBFS for transportation problems had various advantages, weaknesses, and 

limitations. It also highlighted the motivation for this research, which was to improve 

on the limitations of the state-of-the-art method (TOCM-VAM). This chapter covers 

the conventional approach for constructing a mathematical formulation procedure to 

represent transportation problems with their constraints. Furthermore, this chapter will 

discuss the two types of transportation problems, what the initial basic feasible 

solution and optimal solutions are, the three most used initial basic feasible solution, 

their significance, and a review of how to use the Stepping-Stone approach and the 

Modified Distribution Method (MODI) to test for optimality. 

3.2 Mathematical Formulation for Transportation Problems 

For a given transportation problem, the unit cost and constraints are specified by the 

following information: 

 A set of 𝑚 𝑠𝑢𝑝𝑝𝑙𝑦 𝑝𝑜𝑖𝑛𝑡𝑠 from which the goods are shipped. This is known 

as the supply point 𝑖 which can supply at most 𝑠𝑖 units. 

 A set of 𝑛 𝑑𝑒𝑚𝑎𝑛𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 to which the goods are shipped. This is known as 

the demand point 𝑗 which must receive at least 𝑑𝑗 units of goods. 

 Each unit produced at supply point 𝑖 and shipped to demand point 𝑗 incurs a 

variable cost of 𝐶𝑖𝑗 
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Let  

           𝑋𝑖𝑗 = Number of units shipped from supply point 𝑖 to demand point 𝑗  

Thus, the general formulation of a transportation problem is given as 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  ∑ ∑ 𝑐𝑖𝑗

𝑛

𝑗=1

𝑥𝑖𝑗

𝑚

𝑖=1

 (1) 

 ∑ 𝑥𝑖𝑗

𝑛

𝑗=1

 ≤  𝑠𝑖(𝑖 = 1,2, … . , 𝑚) 𝑆𝑢𝑝𝑝𝑙𝑦 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (2) 

 ∑ 𝑥𝑖𝑗

𝑚

𝑖=1

 ≥  𝑑𝑗  (𝑗 = 1, 2, … , 𝑛) 𝐷𝑒𝑚𝑎𝑛𝑑 𝐶𝑜𝑛𝑠𝑡𝑟𝑖𝑎𝑛𝑡𝑠 (2) 

 xij  ≥ 0 (i = 1, 2, … , m;  j = 1,2, … , n) (3) 

3.3 Balanced Transportation Problem 

When the total amount of goods at the origin equals the total requirement at the 

destination, the transportation problem is said to be balanced. This is required to 

resolve the transportation problem (Harrath and Kaabi, 2018). If the total goods 

available are less than the requirements, an imaginary dummy availability with zero 

associated transportation cost is added (Girmay and Sharma, 2013, Vasko and 

Storozhyshina, 2011). 

 For a balanced transportation problem, the formulation is: 

 ∑ 𝑠𝑖

𝑚

𝑖=1

= ∑ 𝑑𝑗

𝑛

𝑗=1

 (4) 
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3.4 Unbalanced Transportation Problem 

An unbalanced transportation problem occurs when the total availability of goods at 

the origin does not equal the total requirements at the destination. This could be 

because there is more demand than supply, or vice versa (Vasko and Storozhyshina, 

2011). If there is more availability at the origin than demand at the destination, an 

additional column is added to indicate the surplus supply with no transportation cost 

to obtain an initial basic feasible solution. If the total demand exceeds the supply, an 

additional row is added to represent unsatisfied demand (Vasko and Storozhyshina, 

2011). 

The mathematical formulation for unbalanced transportation problems is shown in 

equation 6. 

 ∑ 𝑠𝑖

𝑚

𝑖=1

≠ ∑ 𝑑𝑗

𝑛

𝑗=1

 (5) 

 

Figure 2: Graphical representation of transportation problems network flow from 

supply to demand. 
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As shown in Figure 2, the total number of goods to be transported from S1 to all 

destinations, i.e., D1, D2, D3, and D4 must be equal to 𝑎1, 𝑤ℎ𝑒𝑟𝑒 𝑆1 =

𝑎1, 𝑎𝑛𝑑 𝑆2, 𝑆3 =  𝑎2 , 𝑎3 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 

Thus 

 𝑥11 +  𝑥12 + 𝑥13 + 𝑥14 = 𝑎1 (6) 

 𝑥21 + 𝑥22 +  𝑥23 + 𝑥24 = 𝑎2 (7) 

 𝑥31 + 𝑥32 +  𝑥33 + 𝑥34 = 𝑎3 (8) 

Also, the total goods delivered to D1, from all units must equal 𝑏1, 𝑤ℎ𝑒𝑟𝑒 𝐷1 =

𝑏1, 𝑎𝑛𝑑 𝐷2, 𝐷3 𝑎𝑛𝑑 𝐷4 = 𝑏2,   𝑏3, 𝑏4, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 

Thus 

 𝑥11 +  𝑥21 +  𝑥31  = 𝑏1 (9) 

 𝑥12 +  𝑥22 +  𝑥32  = 𝑏2 (10) 

 𝑥13 +  𝑥23 +  𝑥33  = 𝑏3 (11) 

 𝑥14 +  𝑥24 +  𝑥34  = 𝑏4 (12) 

3.5 Initial Basic Feasible Solution 

An initial basic feasible solution is a significant step toward determining the optimal 

solution in general because it helps to reduce the number of iterations required to 

achieve the optimal solution (Amaliah, Fatichah and Suryani, 2020). As a result, as a 

first step toward the optimal solution, it is essential to find an initial basic feasible 

solution. As will be shown later, this proposed algorithm (TOCM-TBVAM) reflects 

achieving a lower cost as a foundation for finding the optimal solution by 
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systematically breaking ties at several levels instead of arbitrary allocations in case of 

ties at multiple levels when compared to TOCM-VAM. Fundamentally, it is expected 

that the initial basic feasible solution must have (m + n – 1) basic independent 

parameters out of (m x n) parameters, where m is the origin and n is the destination. 

However, in cases where the number of allocations in an initial basic feasible solution 

is less than (m + n -1), it is referred to as a degenerate basic feasible solution; 

otherwise, it is referred to as a non-degenerate basic feasible solution (Murugesan and 

Esakkiammal, 2020; Muthuperumal, Titus and Venkatachalapathy, 2020).  

3.6 Standard methods of finding IBFS to Transportation Problems 

Typically, well-known methods such as the Northwest Corner Method (NWCM), 

Least Cost Method (LCM), or Vogel's Approximation Method (VAM) are used to 

obtain the initial basic feasible solution of any transportation problem, and then MODI 

also known as Simplex Method is used to check the optimality of the given 

transportation problem.  

3.6.1 Northwest Corner Method (NWCM) 

The NWCM is a method to calculate a transportation problem's initial basic feasible 

solution. It starts in the northwest (top left) corner of the cost cell and assigns as many 

units as possible of goods to this cost cell according to the demand and supply 

constraints. After that, the quantities in the supply and demand columns are changed 

accordingly. Once the supply for the first row is depleted, a transfer down to the second 

row in the second column is necessary. However, if the demand for in first row cell is 

met, the next cell in the second column must be moved horizontally. This process will 

continue until all the available goods have been allocated. Furthermore, because the 
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NWCM does not account for the minimum cost of shipping when making the 

allocation, the IBFS obtained is frequently extremely high (Winston & Goldberg, 

2004).  

3.6.2 Least Cost Method (LCM) 

The LCM allocates the maximum possible quantity between supply and demand on 

the row and column using the variable with the lowest shipping cost. Cross out either 

the exhausted row or column and reduce the supply or demand of the crossed-out rows 

or columns once the allocations have been satisfied. Then choose a cell with the lowest 

cost from the cells that are not in a crossed-out row or column and repeat the process 

until all supply and demand are met. If a row fulfils both supply and demand 

constraints, just one row or column should be crossed out, not both. Furthermore, 

because LCM considers transportation costs when making allocations, it often yields 

a lower IBFS than NWCM (Lekan, Kavi and Neudauer, 2021).  

3.6.3 Vogel's Approximation Method (VAM) 

The VAM is an iterative approach that considers unit penalty and can produce a better 

IBFS that is sometimes the same as the optimal solution. However, providing a 

solution for a large size dimension transportation problem can take a long time 

(Winston & Goldberg, 2004). VAM starts by calculating a 'penalty' for each row or 

column, which is equal to the difference between the two lowest costs in the row and 

the two lowest costs in the column. Then choose the row or column with the highest 

penalty and select the cost cell in the row or column with the lowest cost to make 

allocations. Cross off the row or column when supply or demand has been fulfilled, 
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just as performed with the NWCM and LCM, and the process repeats until all supply 

and demand points are exhausted.  

3.7 Computational Time Complexity 

We consider demand and supply transportation problems with 𝑠 suppliers and 𝑑 

demand points. The problem is written as a (𝑠 × 𝑑) cost matrix as shown in Table 2.  

Table 2. Generic demand and supply transportation problem. 

In Table 2, 𝑐𝑖𝑗 is the cost per unit of sourcing a generic product from supplier 𝑖 to 

demand 𝑗. 𝑑𝑗 (demand of 𝑗) is the total number of units of the product required by 

demand point 𝑗. 𝑠𝑖 (capacity of 𝑖) is the total number of units of the product that 

supplier 𝑖 is able to supply. 

 demand 1 demand 2 demand 3 supply 

supplier 1 𝑐11 𝑐12 𝑐13 𝑠1 

supplier 2 𝑐21 𝑐22 𝑐23 𝑠2 

supplier 3 𝑐31 𝑐32 𝑐33 𝑠3 

supplier 4 𝑐41 𝑐42 𝑐43 𝑠4 

demand 𝑑1 𝑑2 𝑑3  

 

 

Henceforth, we will use 𝑛 to denote the size of a transportation problem where 𝑛 =

𝑠 + 𝑑. In addition, for simplicity of the calculations and without loss of generality, 

unless stated otherwise, for all transportation problems considered, the number of 

supply points is equal to the number of demand points, i.e. 𝑠 = 𝑑 (a square table). 

Because 𝑠 = 𝑑 and 𝑛 = 𝑠 + 𝑑, 𝑛 ≥ 2 and 𝑛 is even. 
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3.7.1 Time Complexity of NWCM 

NWCM is one of the simplest algorithms to find an IBFS for a transportation problem. 

The method is computationally efficient but does not consider the costs of 

transportation even though this is what it seeks to minimize. 

Unlike VAM and its derivatives, NWCM does not compute any penalties or look into 

costs to decide on assignments. Thus, the total number of decisions the algorithm 

executes is equal to the number of assignments, i.e. 𝑛 − 1 (recall that, with no loss of 

generality, we are considering 𝑛 = 𝑠 + 𝑑).        

As a result, the time complexity of NWCM is linear and equal to the number of 

assignments it performs 𝑂(𝑛 − 1) = 𝑂(𝑛). 

3.7.2 Time Complexity of LCM 

Like the NWCM, the LCM does not compute any penalties to decide on assignments. 

However, at each assignment, it does search for the minimum cost into the cost matrix 

to choose the assignment cell. Recall that we are assuming 𝑛 = 𝑠 + 𝑑 and 𝑠 = 𝑑. 

3.7.2a Worst-case scenario time complexity 𝑂(𝑓(𝑛)) for LCM 

Considering the first assignment for LCM: 

Time complexity to search for the minimum cost at each cell of the cost matrix is equal 

to the number of cells in the matrix which is equal to 𝑠 × 𝑑 =
𝑛

2
×

𝑛

2
= (

𝑛

2
)

2

. 

Assuming a worst-case scenario, the number of rows and columns will only decrease 

by 1 at a time and will alternate, for example {(𝑠, 𝑑), (𝑠 − 1, 𝑑), (𝑠 − 1, 𝑑 − 1), (𝑠 −

2, 𝑑 − 1), … , (1, 1)}.  
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Hence, the time to complete all 𝑛 − 1 assignments is: 

∑ (
𝑘

2
)

2𝑛

𝑘=1

+ ∑ [(
𝑘

2
− 1) (

𝑘

2
)]

𝑛

𝑘=2

= ∑ (
𝑘

2
)

2𝑛

𝑘=1

+ ∑ [(
𝑘

2
)

2

−  (
𝑘

2
)]

𝑛

𝑘=2

= 

= ∑ (
𝑘

2
)

2𝑛

𝑘=1

+ ∑ (
𝑘

2
)

2

− ∑ (
𝑘

2
)

𝑛

𝑘=2

𝑛

𝑘=2

 

=  ∑ (
𝑘

2
)

2𝑛

𝑘=1

+ ∑ (
𝑘

2
)

2

− (
1

4
) − (∑ (

𝑘

2
) − (

1

2
)

𝑛

𝑘=1

) =

𝑛

𝑘=1

 

= 2 ∑ (
𝑘

2
)

2𝑛

𝑘=1

− (
1

4
) − (∑ (

𝑘

2
) − (

1

2
)

𝑛

𝑘=1

) = 

=
1

2
∑ 𝑘2

𝑛

𝑘=1

− (
1

4
) − (

1

2
∑ 𝑘 − (

1

2
)

𝑛

𝑘=1

) = 

= (
𝑛 (𝑛 + 1)(2𝑛 + 1)

12
) − (

1

4
) − (

𝑛 (𝑛 + 1)

4
) + (

1

2
) ⇔ 𝑶(𝒏𝟑) 

The slope of the worst-case scenario time complexity for LCM (log(𝑛) vs 

log(time complexity)) is 
log(𝑛3)

log(𝑛)
= 3. 

3.7.2b Average time complexity 𝜃(𝑓(𝑛)) for LCM 

Note that 𝑂(𝑛3) is an upper bound for the time complexity of LCM. In practice, a 

single assignment can simultaneously eliminate both a demand point and its supplier 

from the cost matrix. This will happen every time that the remaining capacity of supply 

is equal to the demand required at the point of assignment and it is expected to happen 

multiple times during the execution of LCM. Consequently, on average, some 

assignments may reduce the size of the cost matrix by 2 (one row and one column 
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simultaneously) unlike the aforementioned worst-case scenario. For instance, for a 

giving assignment from supply 𝑖 to demand 𝑗, if  𝑠𝑖 = 𝑑𝑖, both the respective supply 𝑖 

(row) to demand 𝑗 (column) will be removed from the cost matrix and the problem 

size reduces from say 𝑛 to 𝑛 − 2 in one assignment. 

For the worst-case scenario, the time complexity to search for the minimum cost at 

each cell of the cost matrix is equal to 𝑠 × 𝑑 =
𝑛

2
×

𝑛

2
= (

𝑛

2
)

2

. In practice, because of 

the above-mentioned randomly occurring simultaneous reductions of rows and 

columns from the cost matrix, it is reasonable to assume (approximate) that the 

average time complexity to search for the minimum cost at each cell of the cost matrix 

is sublinear and approximately log ((
𝑛

2
)

2

). 

Considering the first assignment for LCM, the time to complete all 𝑛 − 1 assignments 

is: 

∑ log ((
𝑘

2
)

2

) =

𝑛−1

𝑘=1

∑ log ((
𝑘

2
)

2

)

𝑛

𝑘=1

− log(
1

4
) 

The summation term can be written as: 

∑ log ((
𝑘

2
)

2

)

𝑛

𝑘=1

= ∑ log (
𝑘2

4
)

𝑛

𝑘=1

= ∑ log(𝑘2)

𝑛

𝑘=1

− 𝑛 log (4) 

and 

∑ log(𝑘2)

𝑛

𝑘=1

= 2 ∑ log(𝑘)

𝑛

𝑘=1

= 2 log (∏ 𝑘

𝑛

𝑘=1

) = 2 log(𝑛!) 

Using Stirling's approximation (or Stirling's formula) (Romik, 2002) 
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log(𝑛!) = 𝑛 log(𝑛) − 𝑛 + 𝑂(log(𝑛)) 

Therefore, 

∑ log(𝑘2)

𝑛

𝑘=1

− 𝑛 log(4) = 𝑛 log(𝑛) − 𝑛 + 𝑂(log(𝑛)) − 𝑛 log (4) ⇔ 𝑶(𝒏 𝐥𝐨𝐠(𝒏)) 

For LCM, the slope of log(𝑛) vs log(time complexity) is: 

log(𝑛 log(𝑛))

log(𝑛)
=

log(𝑛) + log (log(𝑛))

log (𝑛)
= 1 +

log (log(n))

log (𝑛)
 

 

 

 

 

 

 

 

 

 

 

 



   

 

Page | 37  
 

3.7.3 Time Complexity of VAM 

The fastest algorithm to find the two largest numbers in a vector with 𝑘 elements has 

a time complexity equal to 𝑂(𝑘) as shown in pseudocode 1 below. 

Pseudocode 1: Algorithm to find the two largest numbers in a vector with 𝑘 elements. 

1. 𝑣 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑘} 

2. 𝑓𝑖𝑟𝑠𝑡 = 𝑠𝑒𝑐𝑜𝑛𝑑 = −∞ 

3. for  𝑖 = 1 to 𝑘  do  

4.  𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑣(𝑖)  

5.  if 𝑓𝑖𝑟𝑠𝑡 < 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 then 

6.   𝑠𝑒𝑐𝑜𝑛𝑑 = 𝑓𝑖𝑟𝑠𝑡 

7.   𝑓𝑖𝑟𝑠𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

8.  else if 𝑠𝑒𝑐𝑜𝑛𝑑 < 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 then 

9.   𝑠𝑒𝑐𝑜𝑛𝑑 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

10.  end if 

11. end for 

 

For non-degenerated transportation problems, the total number of assignments 

performed to solve the problem is always equal to 𝑠 + 𝑑 − 1 (or 𝑛 − 1 when 𝑠 = 𝑑 

and 𝑛 = 𝑠 + 𝑑).  
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3.7.3a Worst-case scenario 𝑶(𝒇(𝒏)) for VAM 

Recall that 𝑠 = 𝑑 and 𝑛 = 𝑠 + 𝑑. Considering the first assignment for VAM:  

time to compute penalties

= {
each single row       →  𝑠 =  

𝑛

2

each single column →  𝑑 =
𝑛

2

     (see pseudocode 1) 

time to compute all penalties =
𝑛

2
×

𝑛

2
+

𝑛

2
×

𝑛

2
=

𝑛2

2
 

Assuming the worst-case scenario, after each assignment only one supplier (row of 

the cost matrix) or demand (column of the cost matrix) is eliminated – depending on 

the smallest value between quantity demanded and supply capacity. For the next 

assignment, the problem size is then reduced from 𝑛 to 𝑛 − 1 and the assignment 

process is repeated on the remaining reduced cost matrix. Therefore, the time to 

complete all 𝑛 − 1 assignments is: 

∑
𝑘2

2

𝑛−1

𝑘=1

= (∑
𝑘2

2

𝑛

𝑘=1

) −
𝑛2

2
= (

𝑛 (𝑛 + 1)(2𝑛 + 1)

12
) −

𝑛2

2
⇔ 𝑶(𝒏𝟑) 

The slope of log(𝑛) vs log(time complexity) is 
log(𝑛3)

log(𝑛)
= 3.           

3.7.3b Average time complexity 𝜽(𝒇(𝒏)) for VAM 

Note that 𝑂(𝑛3) is an upper bound for the time complexity of VAM. In practice, a 

single assignment can simultaneously eliminate both a demand point and its supplier 

from the cost matrix. This will happen every time that the remaining capacity of supply 

is equal to the demand quantity required at the point of assignment and it is expected 

to happen multiple times during the execution of VAM. Consequently, on average, 
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some assignments may reduce the size of the cost matrix by 2 (one row and one column 

simultaneously) unlike the aforementioned worst-case scenario. For instance, for a 

giving assignment from supply 𝑖 to demand 𝑗, if  𝑠𝑖 = 𝑑𝑖, both the respective supply 𝑖 

(row) to demand 𝑗 (column) will be removed from the cost matrix and the problem 

size reduces from say 𝑛 to 𝑛 − 2 in one assignment. 

For the worst-case scenario, the time to compute the penalties in a row or column is 

linear 𝑂 (
𝑛

2
). In practice, because of the above-mentioned randomly occurring 

simultaneous reductions of rows and columns from the cost matrix, it is reasonable 

to estimate the actual time complexity to compute the penalties in rows and columns 

to be of sublinear time complexity, for example, 𝑂 (log (
𝑛

2
)).     

Considering the first assignment for VAM:  

time to compute penalties = {
each single row       →  log(𝑠) =  log (

𝑛

2
)

each single column →  log(𝑑) =  log (
𝑛

2
)
 

time to compute all penalties =
𝑛

2
× log (

𝑛

2
) +

𝑛

2
× log (

𝑛

2
) = 𝑛 log(𝑛) − 𝑛 log(2) 

 

Hence, the time to complete all 𝑛 − 1 assignments is: 

∑(𝑛 log(𝑛) − 𝑛 log(2))

𝑛−1

𝑘=1

= (∑ 𝑛 log(𝑛)

𝑛−1

𝑘=1

) − (log(2) ∑ 𝑛 

𝑛−1

𝑘=1

) 
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The time complexity of the second summation term is clearly 𝑂(𝑛2) because: 

log(2) ∑ 𝑛 

𝑛−1

𝑘=1

= log(2)
𝑛 (𝑛 + 1)

2
− 𝑛 log(2) ⇔ 𝑂(𝑛2) 

The time complexity of the first summation term is: 

∑ 𝑛 log(𝑛)

𝑛−1

𝑘=1

∝ ∑ 𝑛 log(𝑛)

𝑛

𝑘=1

= log(11 × 22 × 33 × … × 𝑛𝑛) = log (∏ 𝑘𝑘

𝑛

𝑘=1

) 

where: 

∏ 𝑘𝑘

𝑛

𝑘=1

= 𝐻(𝑛)  ∝  𝐴 𝑛(6𝑛2+6𝑛+1)/12 𝑒−𝑛2/4 

is the hyperfactorial of a positive integer 𝑛 (Kinkelin, 1860) and 𝐴 ≈  1.28243 the 

Glaisher–Kinkelin constant A. 

log(𝐻(𝑛))  ∝ log(𝐴 𝑛(6𝑛2+6𝑛+1)/12 𝑒−𝑛2/4)

= log(𝐴) + (
6𝑛2 + 6𝑛 + 1

12
) log(𝑛) −

𝑛2

4
log (𝑒) ⇔ 

⇔ 𝑶(𝒏𝟐 𝐥𝐨𝐠(𝒏)) 

Therefore, the estimated average time complexity of VAM is 𝜃(𝑓(𝑛)) =

𝜃(𝑛2 log(𝑛)) and the slope of log(𝑛) vs log(time complexity) is: 

log(𝑛2 log(𝑛))

log(𝑛)
=

2 log(𝑛) + log (log(𝑛))

log (𝑛)
=

log (log(n))

log (𝑛)
+ 2 

Comparing this theoretical time complexity with our computational simulations, 

𝜃(𝑛2 log(𝑛)) produces effective results as shown in Table 3.   
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Table 3. CPU times in seconds for the VAM algorithm with the theoretical slope using  

natural loge (base e). 

𝑛 
VAM (CPU time in 

sec.) 
(theoretical slope using log𝑒): 

log𝑒 (log𝑒(n))

log𝑒(𝑛)
+ 2 

50 0.23 2.36 

100 0.92 2.35 

200 3.93 2.33 

300 9.76 2.31 

400 18.97 2.31 

500 32.31 2.30 

600 49.45 2.29 

700 72.42 2.29 

800 101.71 2.29 

900 134.75 2.28 

1000 175.62 2.28 

1250 310.57 2.28 

1500 493.83 2.28 

2000 1046.90 2.27 

 

These values will be compared with the experimental measurements made later in the 

thesis and shown in Figure 4, Page 84. 

3.8 Optimal Solution 

In the context of the proposed method, the optimal solution occurs when the total cost 

of transportation is minimized, that is where no other initial basic feasible solution 

produces a better total transportation cost (Khatun, 2012; Ishaq Abu Halawa et al., 

2016). However, it should be noted that there are certain instances where the initial 

basic feasible solution is the same cost as the optimal solution. The Stepping-Stone 

and the Modified Distribution Mothed (MODI) are two well-known ways of verifying 

the optimality of an IBFS. The actual calculation will be shown in the following 

chapter to demonstrate the proposed method (TOCM-TBVAM) on a typical 

transportation problem where ties occur at multiple levels. 
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3.8.1 Testing for Optimality 

There are two ways to test whether an IBFS is optimal, they are Stepping-Stone and 

the Modified Distribution Method. The following chapter will look at MODI to 

determine whether the IBFS obtained with the proposed method is optimal. 

3.8.1a Stepping-Stone Method 

This method is used to determine the optimality of the IBFS of NWCM, LCM, or 

VAM. This method is derived from the analogy of crossing a pond using Stepping-

Stones, assuming that the transportation table is a pond, and the occupied cells are the 

stones needed to make the required movement within the stone (Winston and 

Goldberg, 2004; Ary and Herman, 2013). The main reason behind this is to check 

whether a transportation route that is not being used (i.e., an empty cell) would give a 

much lower total cost when used. In such an instance that the route is possible, then 

goods are allocated as much as possible to it until all requirements are satisfied. 

3.8.1b Modified Distribution Method (MODI) 

The MODI approach, also known as the U-V method or Simplex Method, checks 

whether a transportation problem solution is optimal by computing an improvement 

index for the unused square without sketching the entire closed path (Winston & 

Goldberg, 2004). As a result, when compared to other methods, the MODI method 

gives the best solution in the shortest amount of time (Ary & Herman, 2013; Limbore 

& Sachin Chandrakant, 2013). However, it should be noted that obtaining an IBFS 

before the application of MODI reduces the amount of time required to find the 

optimal solution.  
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3.9 Summary  

This chapter presented the mathematical formulations of transportation problems, the 

balanced and unbalanced transportation problems, and the three main methods of 

finding the IBFS, namely, NWCM, LCM, and VAM, with VAM being the most 

efficient of these three methods as it gives a better IBFS, despite having a longer 

iteration process, which is compensated by a better IBFS and saving the time required 

to reach the Optimal solution. Additionally, the Computational time complexities of 

these main methods of finding the IBFS were discussed along with the two methods 

of testing for optimality: the Stepping-Stone and MODI. As a result, the next section 

will describe TBVAM and a newly proposed method TOCM-TBVAM, which uses 

the total opportunity cost matrix before the application of TBVAM on integer cost 

transportation problems. 
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CHAPTER FOUR 

The Proposed Method (TOCM-TBVAM) 

4.1 Introduction 

In the previous chapter, we discussed the mathematical formulation of transportation 

problems, the two types of transportation problems, the three most widely used 

methods for obtaining the IBFS, and how to test for optimality using the Stepping-

Stone and MODI. This chapter will discuss TBVAM and the more recent proposed 

method TOCM-TBVAM which are both methods of finding the IBFS of 

transportation problems. Since TBVAM is not as efficient as the state-of-the-art 

method as highlighted at the initial stage of this research, TOCM-TBVAM will be the 

focus in this chapter. The steps and pseudocode will therefore be presented, and two 

examples of transportation problems with integer cost values will be explored. One of 

these transportation problems would not include ties, and therefore performs exactly 

like TOCM-VAM in terms of the IBFS it obtained, while the other transportation 

problem will include breaking ties at several levels and the results on 35 benchmark 

transportation problems will be presented. It should be noted that these proposed 

algorithms work on balanced transportation problems. 

4.2 TBVAM 

Procedure to compute TBVAM: 

1) Find the penalty cost from each row and column. This is done by subtracting the 

two minimum costs. 

 If two minimum costs are the same, the penalty cost is equal to zero. 

2) Find the maximum penalty cost from each row and column.  
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3) Make maximum allocation to the cost cell with minimum cost in the maximum 

penalty cost. 

4) If maximum penalty costs are the same, allocate the minimum cost in those cells. 

5) If minimum costs are the same, make an allocation to the maximum mean cost in 

those cells. 

6) If maximum mean costs are the same, make allocations to the maximum demand 

quantity that can be satisfied. 

7) If the maximum demand quantity is the same, make allocations arbitrarily. 

8) Repeat this iteration until all demand points have been met and supply points are 

exhausted. 

9) Calculate the IBFS 

The next approach is a recently proposed method that modifies TBVAM to achieve a 

better IBFS because TBVAM is not as efficient as the state-of-the-art method, but 

simply an improvement over VAM because it systematically breaks ties at several 

levels during the iteration process. 

4.3 TOCM-TBVAM 

The algorithm of TOCM-TBVAM works on getting the Total Opportunity Cost 

Matrix and then breaks ties during the iteration process.  

Procedure to compute TOCM-TBVAM: 

1) Subtract the minimum cost from each cost cell in the rows. 

2) Subtract the minimum cost from each cost cell in the columns. 

3) Add the corresponding cost from each row and column within each cost cell.  

4) This gives the Total Opportunity Cost Matrix (TOCM). 
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5) Find the penalty cost from each row and column. This is done by subtracting the 

two minimum costs. 

 If two minimum costs are the same, the penalty cost is equal to zero. 

 In the case of real-valued cost, a tie is assigned if the two costs are within a set 

percentage of each other. 

6) Find the maximum penalty cost from each row and column.  

7) Make maximum allocations to the cost cell with minimum cost in the maximum 

penalty cost. 

8) If maximum penalty costs are the same, make allocations to the minimum cost in 

those cells. 

9) If minimum costs are the same, make allocations to the maximum mean cost in 

those cells. 

10) If maximum mean costs are the same, make allocations to the maximum demand 

quantity that can be satisfied. 

11) If the maximum demand quantity is the same, make allocations arbitrarily. 

12) Repeat this iteration, until all demand points have been met and supply points are 

exhausted. 

13) Calculate the IBFS 
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4.4 TOCM-TBVAM Pseudocode  

 START 

1- In the cost matrix subtract the minimum cost in each row from each cost in 

the row.  

2- In the cost matrix subtract the minimum cost in each column from each cost 

in the column. 

3- Then add these costs in the cost matrix to make a new cost matrix (TOCM) 

4- Using the TOCM to replace the original cost matrix, find the two minimum 

costs in each row and each column and subtract them to get the penalty for the 

row and column, respectively. 

5- If the two minimum are equal, then the penalty is zero. 

6- Then find the maximum penalty of the row and the maximum penalty of 

the column. 

7- With TOCM-TBVAM-TH, multiply the maximum penalty with the 

required percentage threshold to achieve the threshold proximity with a 

range of costs to be considered as minimum cost. 

8- Make maximum allocation to the minimum cost cell within the chosen 

maximum penalty from either the row or column. 

9- If there is a tie in the maximum penalty, make maximum allocation to the 

maximum penalty with the minimum cost. 

10- If there is a tie in the minimum cost with maximum penalty, maximum 

allocation is made to the minimum cost cell with maximum mean. 

11- If there is a tie in the maximum mean with the minimum cost that has the 

maximum penalty, make maximum allocation to the cost cell where 

maximum demand can be satisfied. 

12- If there is a tie in the maximum demand that can be satisfied where the 

maximum mean with the minimum cost in the maximum penalty, make 

allocation arbitrarily. 

13- Repeat step 4 until all demand and supply points have been exhausted. 

14- Calculate the Transportation Cost by multiplying the original cost in each 

cost cell by the allocations in that cost cell and add all results together. 

 END 

 

4.5 Time complexity of TOCM-TBVAM 

The main difference between VAM and TOCM-TBVAM is that the latter, computes 

the TOCM, in addition to the penalties for rows and columns (like VAM), and 

computes the average cost for each row and column in the cost matrix. 
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4.5.1 Worst-case scenario 𝑶(𝒇(𝒏)) for TOCM-TBVAM 

Considering the first assignment for TOCM-TBVAM:  

time to compute penalties = {
each single row       →  𝑠 =  

𝑛

2

each single column →  𝑑 =
𝑛

2

  

time to compute averages = {
each single row       →  1
each single column →  1

  

time to compute all penalties and averages =
𝑛

2
×

𝑛

2
+

𝑛

2
×

𝑛

2
+

𝑛

2
× 1 +

𝑛

2
× 1

=
𝑛2

2
+ 𝑛 

Assuming the worst-case scenario, the time to complete all 𝑛 − 1 assignments is: 

∑
𝑘2

2
+ 𝑘

𝑛−1

𝑘=1

= (∑
𝑘2

2

𝑛

𝑘=1

) −
𝑛2

2
+ (∑ 𝑘

𝑛

𝑘=1

) − 𝑘

= (
𝑛 (𝑛 + 1)(2𝑛 + 1)

12
) −

𝑛2

2
+ (

𝑛 (𝑛 + 1)

2
) − 𝑛 ⇔ 

⇔ 𝑶(𝒏𝟑) 

Like for VAM, the slope of the worst-case scenario time complexity for TOCM-

TBVAM is log(𝑛) vs log(time complexity) is 
log(𝑛3)

log(𝑛)
= 3. Thus, the time complexity 

of VAM and TOCM-TBVAM is comparable and both scale as a function of 𝑂(𝑛3) as 

𝑛 increases. 

4.5.2 Average time complexity 𝜽(𝒇(𝒏)) for TOCM-TBVAM 

Note that 𝑂(𝑛3) is an upper bound for the time complexity of TOCM-TBVAM. Both 

VAM and TOCM-TBVAM follow the same assignment procedure. Analogously to 
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VAM, for TOCM-TBVAM, in practice, a single assignment can also simultaneously 

eliminate both a demand point and its supplier from the cost matrix. Therefore, using 

the same assumption of sublinear time complexity to compute the penalties of rows 

and columns, consider the first assignment for TOCM-TBVAM: 

time to compute penalties = {
each single row       →  log(𝑠) =  log (

𝑛

2
)

each single column → log(𝑑) =  log (
𝑛

2
)
 

time to compute averages = {
each single row       →  1
each single column →  1

 

time to compute all penalties and averages =
𝑛

2
× log (

𝑛

2
) +

𝑛

2
× log (

𝑛

2
) +

𝑛

2
+

𝑛

2

= 𝑛 log (
𝑛

2
) + 𝑛 

time to compute all penalties and averages = 𝑛 log(𝑛) − 𝑛 log(2) + 𝑛 

Hence, the time to complete all 𝑛 − 1 assignments is: 

∑(𝑛 log(𝑛) − 𝑛 log(2) + 𝑛)

𝑛−1

𝑘=1

= (∑ 𝑛 log(𝑛)

𝑛−1

𝑘=1

) − (log(2) ∑ 𝑛 

𝑛−1

𝑘=1

) + (∑ 𝑛 

𝑛−1

𝑘=1

)

⇔ 𝑶(𝒏𝟐 𝐥𝐨𝐠(𝒏)) 

In conclusion, the estimated average time complexity of TOCM-TBVAM is 

𝜃(𝑓(𝑛)) = 𝜃(𝑛2 log(𝑛)) and the average time complexity of both algorithms is 

comparable as each scale as a function of 𝜃(𝑛2 log(𝑛))  as 𝑛 increases. 

4.6 Advantages and disadvantages of TOCM-TBVAM 

 The concept of using the proposed algorithm TOCM-TBVAM to systematically break 

ties at severally levels to improve the initial basic feasible solution of the state-of-the-



   

 

Page | 50  
 

art method TOCM-VAM is a new algorithm in contrast to breaking ties arbitrarily. 

This provides TOCM-TBVAM with the advantage of being an efficient method for 

finding the initial basic feasible solution, which is sometimes close to or the same as 

the optimal solution.  Another advantage of this proposed method is that the 

improvement of the initial basic feasible solution over the state-of-the-art algorithm 

would reduce the time required to achieve the optimal solution, as businesses would 

see this as a viable and more robust algorithm than TOCM-VAM, which would 

provide a better initial basic feasible solution that has been tested on large size 

transportation problems, saving the company time and money as it requires less time 

to achieve the optimal solution. In addition to the benefits of TOCM-TBVAM, an 

extension algorithm known as TOCM-TBVAM-TH is proposed to induce ties by 

using a percentage threshold in the maximum penalty as an indicative of ties in the 

minimum cost of both integer cost and real value cost, this gives the algorithm 

alternative pathways to access more costs that can be considered as minimum cost in 

the decision-making process.  Furthermore, the systematic method of breaking ties 

used by this algorithm is simple to understand and can be applied to existing 

algorithms that break ties arbitrarily or those that require additional levels of ties 

breaking in the decision-making process to improve on the initial basic feasible 

solutions.  This proposed algorithm, however, has a limitation in that it is only intended 

to perform on balanced transportation problems. 

4.7 Numerical examples with illustration using TOCM-TBVAM 

We illustrate TOCM-TBVAM by considering two typical transportation problems, 

one that does not have ties (Example 1) and one that has ties (Example 2). 
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4.7.1 Example 1 

A company manufactures electrical generators and has three factories S1, S2, and S3 

whose weekly production capacities are 15, 25, and 10 pieces of electrical generators, 

respectively. The company wants to supply electrical generators to its four retail shops 

located at D1, D2, D3, and D4 whose weekly demands are 5, 15, 15, and 15 pieces of 

electrical generators, respectively. The unit costs are displayed in Table 4. 

Find the cost of transportation using TOCM-TBVAM. 

4.7.1.a Solution to Example 1 

The first step is to ensure that the transportation problem is balanced. Since the 

quantities supplied (50) is equal to the quantity demanded (50), it is a balanced 

transportation problem. 

Table 4. Data from Example 1 shows the cost, demand, and supply matrix. 

  Destinations   

Source D1 D2 D3 D4 Supply 

S1 10 2 20 11 15 

S2 12 7 9 20 25 

S3 4 14 16 18 10 

Demand 5 15 15 15  

 

Iteration 1: We start by subtracting the minimum cost from each row in the cost 

matrix. For example, in Table 4, the minimum cost in the first row is 2, so we subtract 

2 from each cost in row S1.i.e, (10 -2 = 8, 2 - 2 = 0, 20 – 2 = 18, 11 - 2 = 9). We also 

do the same for rows S2 and S3 which has the minimum cost of 7 and 4 respectively 

and subtract the minimum cost of 7 from rows S2 and 4 from row S3 and the result is 

shown in Table 5.  

Iteration 2: From Table 4, we look for the minimum cost in each of the columns and 

subtract each column’s minimum cost from each column. For example, column D1 
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has a minimum cost of 4, so we subtract 4 from column D1. I.e., (10 - 4 = 6, 12 - 4 = 

8, 4 - 4 = 0). We then do the same with each minimum cost in each column by 

subtracting 2, 9, and 11 from columns D2, D3, and D4 respectively, and the result is 

shown in Table 6. 

Iteration 3: We add the cost cells of Table 5 and Table 6 to form the TOCM in Table 

7. For example, the first column D1 has costs of 14, 13, and 0 because we have added 

costs from column D1 of Table 5 to column D1 of Table 6. i.e., (8 + 6 = 14, 5 + 8 = 

13, 4 + 0 = 4). We do the same for each column by adding the cost in Table 5 and 

Table 6. This forms Table 7 and will be used for the rest of the allocation process. 

 

Table 5. Formation of opportunity cost matrix by subtracting the minimum cost in 

each row from each row. 

  Destinations   

Source D1 D2 D3 D4 Supply 

S1 8 0 18 9 15 

S2 5 0 2 13 25 

S3 0 10 12 14 10 

Demand 5 15 15 15   

 

 

Table 6. Formation of opportunity cost matrix by subtracting the minimum cost in 

each column from each column. 

  Destinations   

Source D1 D2 D3 D4 Supply 

S1 6 0 11 0 15 

S2 8 5 0 9 25 

S3 0 12 7 7 10 

Demand 5 15 15 15   
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Table 7. The addition of the opportunity cost in Table 3 and Table 4 forms this Total 

Opportunity Cost Matrix. 

  Destinations   

Source D1 D2 D3 D4 Supply 

S1 14 0 29 9 15 

S2 13 5 2 22 25 

S3 0 22 19 21 10 

Demand 5 15 15 15   

 

 

Iteration 4: we find the two minimum costs from each row and each column and 

subtract the smallest cost from the next smallest cost to get a cost known as the penalty 

cost. In case of having two smallest costs as the same values or cost, the penalty will 

be 0. In Table 8, the penalty for D1 is 13 because we have subtracted 0 from 13. 

Likewise in column D2, D3 and D4, we do 5 – 0 = 5, 19 - 2 = 17, 21 – 9 = 12, 

respectively. We also do the same for the rows i.e., S1 = 9 - 0 = 9, S2 = 5 - 2 = 3, and 

S3 = 19 - 0 = 19. We then look for the maximum penalty which is 19 and it is in row 

S3. Along that row, we look for the minimum cost and make the maximum possible 

allocations to that cost cell. The minimum cost in row S3 is 0, so we make the 

maximum possible allocations according to the demand and supply constraints which 

is 5, denoted by 0[5] in Table 8. Find the smallest cost in row S3, which is 0, and 

make the maximum possible allocations. Here 5 is the maximum possible allocation 

because of the demand constraint and what is left in S3 supply of 10 is 5, denoted as 

10|5. Once the demands are met or the supply is exhausted, we cross out the column 

or row. In this case, we cross out D1 because demand has been met shown in Table 8.  

 

 



   

 

Page | 54  
 

Table 8. TOCM with the first allocation to cell S3D1. 

 Destinations   

Source D1 D2 D3 D4 Supply Row Penalty Cost 

S1 14 0 29 9 15 9 

S2 13 5 2 22 25 3 

S3 0[5] 22 19 21 10|5 19 

Demand 5|0 15 15 15   

Column Penalty Cost 13 5 17 12   

 

Iteration 5:  With D1 demand satisfied, we again subtract the smallest of the minimum 

cost from the next minimum cost of each row and column as before to form the row 

and column penalty cost. We then look for the maximum penalty cost which is 17 in 

column D3 and look for the minimum cost in that column to make allocations. The 

minimum cost is 2, we, therefore, make allocations (15 units) to the cell S2D3 and 

adjust both demand and supply accordingly as shown in Table 9. 

Table 9. TOCM with the second allocation to cell S2D3. 

 Destinations   

Source D1 D2 D3 D4 Supply Row Penalty Cost 

S1 - 0 29 9 15 9 

S2 - 5 2[15] 22 25|10 3 

S3 [5] 22 19 21 5 2 

Demand - 15 15|0 15   

Column Penalty Cost - 5 17 12   

 

Iteration 6: with column D3 fully met, we do as before in columns D2 and D4 to find 

the penalty (D2 = 5, D4 =12), and likewise with rows S1 = 9, S2 = 17, and S3 = 1. 

Since 17 is the maximum penalty, will look at the minimum cost in row S2. The 

minimum cost is 5 and we make a maximum allocation of 10 to cell S2D2 and cross 

out row S2 since the supply is fully exhausted as shown in Table 10.  
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Table 10. TOCM with the third allocation in cell S2D2. 

 Destinations   

Source D1 D2 D3 D4 Supply Row Penalty Cost 

S1 - 0 - 9 15 9 

S2 - 5[10] [15] 22 10|0 17 

S3 [5] 22 - 21 5 1 

Demand - 15 - 15   

Column Penalty Cost - 5 - 12   

 

Iteration 7: In Table 11 we have rows S1 and S3 with penalty costs of 9 and 1, 

respectively. Likewise in columns D2 and D4, we have penalty costs of 22 and 12, 

respectively. Since D2 has the maximum penalty, we look for the minimum cost in 

that column which is 0 and make maximum allocations possible of 5, and this ensures 

that D2 demand is met as seen in Table 11 and we cross out the column. 

Table 11. TOCM with the fourth allocation to cell S1D2. 

 Destinations   

Source D1 D2 D3 D4 Supply Row Penalty Cost 

S1 - 0[5] - 9 15|10 9 

S2 - [10] [15] - - - 

S3 [5] 22 - 21 5 1 

Demand - 5|0 - 15   

Column Penalty Cost - 22 - 12   

 

Iteration 8: With only column D4 left to be satisfied, we then make allocations 

according to the demand and supply constraint. Therefore, cells S1D4 and S3D4 will 

have 10 and 5 units respectively as shown in Table 12.  
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Table 12. TOCM with the fourth allocation to cells S1D4 and S3D4. 

 Destinations   

Source D1 D2 D3 D4 Supply Row Penalty Cost 

S1 - [5] - 9[10] 10 9 

S2 - [10] [15] - - - 

S3 [5] - - 21[5] 5 1 

Demand - - - 15   

Column Penalty Cost - - - 12   

 

Iteration 9: The occupied cells are then replaced with the original cost accordingly as 

shown in Table 13, this completes the decision-making process in this example. 

Table 13. Final allocation table with the cost for each unit transported. 

 Destinations  

Source D1 D2 D3 D4 Supply 

S1 - 2[5] - 11[10] - 

S2 - 7[10] 9[15] - - 

S3 4[5] - - 18[5] - 

Demand - - - -  

 

Total transportation cost = (4 × 5) + (2 × 5) + (7 ×  10) + (9 × 15) +

                     (11 × 10) + (18 × 5) = 𝟒𝟑𝟓 

TOCM-TBVAM = 435 

TOCM-VAM = 435 (Previously computed) 

Optimal Solution = 435 (Previously computed) 

In this first example, both TOCM-VAM and TOCM-TBVAM produced the same 

IBFS as there were no ties throughout the iteration process. As a result, TOCM-

TBVAM would function similarly to TOCM-VAM, except when there are ties either 

in the maximum penalty, minimum cost, or maximum mean cost and maximum 

quantity demanded. 
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4.7.2 Example 2 

Using the proposed method TOCM-TBVAM, the following example will look at the 

effect and benefit of having and breaking ties at several levels. 

Table 14. Data for Example 2 shows the cost, demand, and supply matrix. 

 Destinations 

Source D1 D2 D3 Supply 

S1 1 1 1 12 

S2 1 8 1 14 

S3 1 1 1 16 

Demand 8 22 12  

 

4.7.2a Solution to Example 2 

Iteration 1: We start by subtracting the minimum cost from each row in the cost 

matrix. For example, in Table 14, the minimum cost in the first row is 1, so we subtract 

1 from each cost in row S1.i.e, (1 - 1 = 0, 1 - 1 = 0, 1 – 1 = 0). We also do the same 

for rows S2 and S3 which has the minimum cost of 1 and 1 respectively and subtract 

this minimum cost of 1 from row S2 and 1 from row S3 and the result is shown in 

Table 15.  

Iteration 2: From Table 14, we look for the minimum cost in each of the columns and 

subtract each column’s minimum cost from each column. For example, column D1 

has a minimum cost of 1, so we subtract 1 from column D1.i.e, (1 - 1 = 0, 1 - 1 = 0, 1 

- 1 = 0). We then do the same with each minimum cost in each column by subtracting 

1 and 1 from columns D2 and D3 respectively, and the result is shown in Table 16. 

Iteration 3: We add the cost cells of Table 15 and Table 16 to form the TOCM in 

Table 16. For example, the first column D1 has costs 0, 0, and 0 because we have 

added costs from column D1 of Table 15 to column D1 of Table 16. i.e., (0 + 0 = 0, 

0 + 0 = 0, 0 + 0 = 0). We do the same for each column by adding the cost in Table 15 
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and Table 16. This forms TOCM as Table 17 and it will be used for the rest of the 

allocation process. 

Table 15. Formation of opportunity cost matrix by subtracting the minimum cost in 

each row from each row. 

 Destinations 

Source D1 D2 D3 Supply 

S1 0 0 0 12 

S2 0 7 0 14 

S3 0 0 0 16 

Demand 8 22 12  

 

Table 16. Formation of opportunity cost matrix by subtracting the minimum cost in 

each column from each column. 

 Destinations 

Source D1 D2 D3 Supply 

S1 0 0 0 12 

S2 0 7 0 14 

S3 0 0 0 16 

Demand 8 22 12  

 

Table 17. The addition of the opportunity cost in Table 15 and Table 16 forms this 

Total Opportunity Cost Matrix. 

 Destinations 

Source D1 D2 D3 Supply 

S1 0 0 0 12 

S2 0 14 0 14 

S3 0 0 0 16 

Demand 8 22 12  

 

Table 18. TOCM with the first allocation to cell S3D2. 

 Destinations  

Source D1 D2 D3 Supply Row Penalty Cost 

S1 0 0 0 12 0 

S2 0 14 0 14 0 

S3 0 0[16] 0 16|0 0 

Demand 8 22|6 12   

Column Penalty Cost 0 0 0   
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Iteration 4: Since all the penalty is = 0, the maximum penalty will be considered as 

0, which is considered a tie. We then look for the minimum cost in these rows and 

columns, we also noticed that the minimum cost of 0 appears in all rows and columns, 

then the deciding factor is to calculate the mean cost to break the tie. The mean is equal 

to 0 in rows S1 and S3 and columns D1 and D3. Column D2 and row S2 have the 

maximum mean which is approximately 4.7 (0 + 14 + 0 = 14 ÷ 3 = 4.66). This is also 

a tie, then the tie is broken by looking at which of these with the maximum mean have 

the maximum demand quantity that can be satisfied. So S3D2 is allocated 16 units 

according to the demand and supply constraints, and we cross out S3 since all supply 

is exhausted as shown in Table 18. 

Table 19. TOCM with the second allocation to cell S1D2. 

 Destinations  

Source D1 D2 D3 Supply Row   Penalty Cost 

S1 0 0[6] 0 12|6 0 

S2 0 14 0 14 0 

S3 - [16] - - - 

Demand 8 6|0 12   

Column Penalty Cost 0 14 0   

 

Iteration 5: The maximum penalty is 14 which is in column D2 (14 – 0 =14), and then 

make maximum allocations to the minimum cost cell, S1D2. We then adjust demand 

and supply quantities accordingly in Table 19. 

Table 20. TOCM with the third allocation to cell S2D3. 

 Destinations  

Source D1 D2 D3 Supply Row Penalty Cost 

S1 0 [6] 0 6 0 

S2 0 - 0[12] 14|2 0 

S3 - [16] - - - 

Demand 8 - 12|0   

Column Penalty Cost 0 - 0   
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Iteration 6: since all the penalty costs are the same, and minimum costs are the same, 

and the mean costs are the same as shown in Table 20, allocation is made to the cost 

cell where maximum demand can be satisfied. i.e., S2D3. We make a maximum 

allocation of 12 units to cell S2D3 and then cross out column D3 since all demand is 

satisfied in that column. 

Table 21. TOCM with the fourth allocations to cells S1D1 and S2D1. 

 Destinations  

Source D1 D2 D3 Supply Row Penalty Cost 

S1 0[6] [6] 0 6|0 0 

S2 0[2] - [12] 2|0 0 

S3 - [16] - - - 

Demand 8|0 - -   

Column Penalty Cost 0 - -   

 

Iteration 7: Since D1 is the only unmet column, allocation is made accordingly in 

Table 21. 

Iteration 8: The occupied cells are then replaced with the original cost accordingly as 

shown in Table 22, this completes the decision-making process in this example. 

Table 22. Final allocation table with the cost for each unit transported. 

 Destinations 

Source D1 D2 D3 Supply 

S1 1[6] 1[6] - - 

S2 1[2] - 1[12] - 

S3 - 1[16] - - 

Demand - - -  

 

Total transportation cost = (1 x 6) + (1 x 2) + (1 x 6) + (1 x 16) + (1 x 12) = 42 

TOCM-TBVAM = 42 

TOCM-VAM = 56 (Previously computed) 

Optimal solution = 42 (Previously computed) 
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Example 2 shows that 42 is the optimal solution which differs from the IBFS of 

TOCM-VAM which is equal to 56.  

The next step is to check for Optimality using MODI as discussed in Chapter Three.  

4.8 Checking for Optimality using MODI in Example 2. 

Using the Modified Distribution Method on the IBFS by TOCM-TBVAM, we 

consider the following steps. Using Table 22 with the occupied cells of cost and 

quantity shipped from supply to demand points. We then follow these steps: 

Step 1- We set up an equation for each occupied cost cell. 

 𝑅1 +  𝐾1 = 1 (13) 

 𝑅1 +  𝐾2 = 1 (14) 

 𝑅2 +  𝐾1 = 1 (15) 

 𝑅2 +  𝐾3 = 1 (16) 

 𝑅3 +  𝐾2 = 1 (17) 

 

Step 2 - We compute the improvement index for each unused cost cell in Table 22. 

Thus, let 𝑅1 = 0, we can solve for 𝐾1 , 𝐾2 , 𝐾3 , 𝑅2  𝑎𝑛𝑑 𝑅3  

 0 +  𝐾1 = 1, 𝐾1 = 1 (18) 

 0 +  𝐾2 = 1, 𝐾2 = 1 (19) 

 𝑅2 +  1 = 1, 𝑅2 = 0 (20) 

 0 +  𝐾3 = 1, 𝐾3 = 0 (21) 

 𝑅3 +  1 = 1,       𝑅3 = 0 (22) 

 

Step 3 - We compute the improvement index for each unused cell in Table 22. 
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Thus,  

Improvement index    =𝐼𝑖𝑗 =  𝐶𝑖𝑗 −  𝑅𝑖 − 𝐾𝑗 (23) 

   =𝐼13 =  𝐶13 −  𝑅1 − 𝐾3 =1 - 0 - 0 = 1 (24) 

 =𝐼22 =  𝐶22 −  𝑅2 − 𝐾2 = 8 – 0 – 1 = 7 (25) 

 =𝐼31 =  𝐶31 −  𝑅3 − 𝐾1 = 1 – 0 – 1 = 0 (26) 

 =𝐼33 =  𝐶33 −  𝑅3 − 𝐾3 = 1 – 0 – 0 = 1 (27) 

 

Therefore, from the result of the improvement index for the unused cell not having a 

negative value, the IBFS of TOCM-TBVAM is optimal. 
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Table 23. Benchmark results for 35 transportation problems with integer values. 

VAM TBVAM TOCM-VAM TOCM-TBVAM 
Best of TOCM-TBVAM 

(TOCM-TBVAM-TH) 
OPTIMAL 

5600 5600 5600 5600 5600 5600 

1220 1165 1165 1165 1165 1160 

68 68 68 68 68 68 

390 390 390 390 390 390 

355 355 355 355 355 355 

114 114 111 111 111 111 

199 199 183 183 183 183 

2657000 2657000 2658000 2658000 2658000 2655600 

92 92 83 83 83 83 

1500 1390 1450 1450 1390 1390 

859 859 799 799 799 799 

955 955 880 880 880 880 

285 285 285 285 285 285 

322 322 322 322 322 322 

290 290 290 290 290 290 

779 779 743 743 743 743 

112 112 112 112 112 112 

1104 1104 1104 1104 1104 1102 

2224 2224 2224 2224 2224 2202 

116 116 116 116 116 112 

2130 2070 2130 2130 2130 2070 

1930 1930 1900 1900 1900 1900 

59 59 59 59 59 59 

2310 2220 2170 2170 2170 2170 

21030 21030 20550 20550 20550 20550 

470 410 470 470 440 410 

750 674 674 674 674 674 

56 42 56 42 42 42 

3663 3663 3513 3513 3513 3513 

28 28 28 28 28 28 

475 475 435 435 435 435 

80 80 76 76 76 76 

150 139 145 145 145 139 

849 849 809 809 809 809 

465 465 417 417 417 417 

 

The proposed algorithm TOCM-TBVAM, is compared with VAM, TBVAM, TOCM-

VAM, and the optimal cost for 35 benchmark transportation problems with integer 

costs, from the published literature which can be seen in Appendix 2 of this thesis, 
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with the results shown in Table 23. It should be noted that because of the arbitrary 

allocation that occurs when there is a tie, TOCM-VAM does get different IBFS 

because ties do give different paths and therefore different IBFS (Hossain et al., 2020, 

Murugesan and Esakkiammal, 2020, Sultana et al., 2022). Therefore, the TOCM-

VAM algorithm must be performed several times to get a better IBFS, which will 

increase the computational time for large transportation problems. In addition, to 

maintain consistency and accuracy in this research, computer-generated results are 

used throughout.  

The results in Table 23 shows that TOCM-VAM and TOCM-TBVAM generated the 

same IBFS cost except in one instance where TOCM-TBVAM outperformed TOCM-

VAM because of the tie-breaking method of TOCM-TBVAM. This emphasises the 

significance of the tie-breaking method in integer cost transportation problems 

utilising the proposed TOCM-TBVAM algorithm. Although the proposed method 

includes the formation of TOCM before implementing TBVAM (which systematically 

breaks ties at multiple levels), it should be noted that TOCM-VAM has never 

outperformed TOCM-TBVAM. It should also be noted that VAM never outperformed 

any of the proposed algorithms. i.e., TBVAM, TOCM-TBVAM, and TOCM-

TBVAM-TH. 

Furthermore, to illustrate the benefit of inducing ties at specific percentage threshold 

intervals in integer cost transportation problems, which may also be applied to real 

value cost transportation problems, the extension of TOCM-TBVAM known as 

TOCM-TBVAM-TH shows a slight improvement on the proposed algorithm TOCM-

TBVAM in two instances shown in Table 23, resulting in a more efficient solution 
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that is closer to the optimal solution and another instance that is the same as the optimal 

solution. 

The overall number of wins and the average proportional difference from the optimal 

cost are shown in Table 24. 

In pairwise comparisons in Table 24, where a tie in the number of wins is considered 

as 0.5 because they share the win of 1 equally, TOCM-VAM had 14 more wins than 

TBVAM, but TOCM-TBVAM outperforms TOCM-VAM. When the number of wins 

for TOCM-VAM is compared to TOCM-TBVAM-TH, the algorithm that uses a 

percentage threshold in the maximum penalty to induce ties, the best of TOCM-

TBVAM-TH has 4 more wins, indicating an improvement when different percentage 

thresholds are applied which is significant to getting the optimal solutions. In terms of 

proximity to optimal cost, the results revealed that the method that achieves the closest 

cost to optimal is TOCM-TBVAM-TH, and TOCM-TBVAM-TH with an average 

proportional difference to the optimal score of 0.44% whereas TOCM-VAM was on 

average 1.85% off, which is four times more showing the significant improvement of 

the extension of the proposed algorithm. The application of TOCM-TBVAM-TH will 

be discussed in more detail in Chapter 5. 
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Table 24. Wins and proportional difference from optimal cost for cost matrices with 

integer values. Half scores indicate ties. 

TBVAM vs 

TOCM-VAM 

All Best TOCM-TBVAM-

TH vs. 

TOCM-VAM 

Proportion diff 

from Optimal: 

TOCM-TBVAM-

TH 

Proportion diff 

from Optimal: 

TOCM-VAM 

0.5 0.5 0.5 0.5 0.00% 0.00% 

0.5 0.5 0.5 0.5 0.43% 0.43% 

0.5 0.5 0.5 0.5 0.00% 0.00% 

0.5 0.5 0.5 0.5 0.00% 0.00% 

0.5 0.5 0.5 0.5 0.00% 0.00% 

0 1 0.5 0.5 0.00% 0.00% 

0 1 0.5 0.5 0.00% 0.00% 

1 0 0.5 0.5 0.09% 0.09% 

0 1 0.5 0.5 0.00% 0.00% 

1 0 1 0 0.00% 4.32% 

0 1 0.5 0.5 0.00% 0.00% 

0 1 0.5 0.5 0.00% 0.00% 

0.5 0.5 0.5 0.5 0.00% 0.00% 

0.5 0.5 0.5 0.5 0.00% 0.00% 

0.5 0.5 0.5 0.5 0.00% 0.00% 

0 1 0.5 0.5 0.00% 0.00% 

0.5 0.5 0.5 0.5 0.00% 0.00% 

0.5 0.5 0.5 0.5 0.18% 0.18% 

0.5 0.5 0.5 0.5 1.00% 1.00% 

0.5 0.5 0.5 0.5 3.57% 3.57% 

1 0 0.5 0.5 2.90% 2.90% 

0 1 0.5 0.5 0.00% 0.00% 

0.5 0.5 0.5 0.5 0.00% 0.00% 

0 1 0.5 0.5 0.00% 0.00% 

0 1 0.5 0.5 0.00% 0.00% 

1 0 1 0 7.32% 14.63% 

0.5 0.5 0.5 0.5 0.00% 0.00% 

1 0 1 0 0.00% 33.33% 

0 1 0.5 0.5 0.00% 0.00% 

0.5 0.5 0.5 0.5 0.00% 0.00% 

0 1 0.5 0.5 0.00% 0.00% 

0 1 0.5 0.5 0.00% 0.00% 

1 0 1 0 0.00% 4.32% 

0 1 0.5 0.5 0.00% 0.00% 

0 1 0.5 0.5 0.00% 0.00% 

Total TBVAM Total TOCM-VAM 

Total 

TOCM-

TBVAM-

TH 

Total 

TOCM-

VAM 

Average for 

TOCM-

TBVAM-TH 

Average for 

TOCM-VAM 

13.5 21.5 19.5 15.5 0.44% 1.85% 



   

 

Page | 67  
 

4.9 Summary 

The proposed approach TOCM-TBVAM was introduced in this chapter along with 

the pseudocode and the computational time complexity of TOCM-TBVAM. 

Furthermore, two examples were used to illustrate its similarities and differences from 

the state-of-the-art method TOCM-VAM in the context of breaking ties. Table 23 

compares the results with VAM, TBVAM, which was the initial proposed approach, 

TOCM-VAM, and TOCM-TBVAM. The comparison also includes the extension of 

TOCM-TBVAM known as TOCM-TBVAM-TH, which considers the threshold 

proximity on the maximum penalty that gives different pathways and takes advantage 

of breaking ties at several levels that improve the IBFS. Nevertheless, before 

comparing the results to TOCM-VAM in terms of real-valued cost, the next chapter 

will look at how and why two batches of 10,000 transportation problems were 

simulated and generated in this research. 
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CHAPTER FIVE 

Data Description and Application of TOCM-TBVAM-TH 

5.1 Introduction 

The preceding Chapter evaluated the proposed method (TOCM-TBVAM), which 

considers total opportunity cost before making allocations in each iteration. It also 

demonstrated that when there is a tie, TOCM-TBVAM outperforms the state-of-the-

art, TOCM-VAM in the transportation problems tested. TOCM-VAM makes arbitrary 

allocations in ties, resulting in the algorithm receiving a lower IBFS in some cases, 

and a higher IBFS in the same transportation problems with ties. The results also 

demonstrate an improvement in TBVAM, which was the starting point of the research 

algorithm. Also included is the result of TOCM-TBVAM-TH, which induces ties at 

the maximum penalty cost by giving different pathways and takes the benefit of 

systematically breaking ties to produce a lower IBFS. This method additionally 

indicates an improvement over the state-of-the-art method with integer cost and 

therefore should be applied to real-value costs. As a result, this Chapter will look at 

how the 20,000 transportation problems were generated with real-valued costs to 

evaluate the performance of both TOCM-VAM and TOCM-TBVAM-TH. The key 

reason for this is that the two batches of 10,000 simulated transportation problems will 

represent real-world transportation problems that have a large size dimension with 

real-valued costs, while also addressing a research gap because, according to 

published literature, most algorithms for finding IBFS have not been tested on a large 

set of transportation problems with large size dimensions and real-valued costs. In 

addition, this gives the findings in this research a statistically significant meaning 

substantiated by consistent and credible results.  
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5.2 Simulation of Transportation Problems 

A set of two batches of 10,000 simulated transportation problems were generated with 

real-valued cost matrices to ascertain the effectiveness of the application of the 

proposed TOCM-TBVAM-TH compared with the state-of-the-art method TOCM-

VAM. Apart from the fact that no data was accessible after writing letters to several 

logistic organisations, the purpose of the stimulation of these transportation problems 

was to mirror real-world cases of transportation problems. For instance, as indicated 

by the publications, using a real-valued cost matrix was also found to be a gap in the 

literature review. The use of a large-size dimension for both demand and supply points 

were also identified in the literature as a gap because most IBFS obtained in the 

publications were of small-size dimensions, i.e., 3x4 and 7x7. The simulated 

transportation problems were generated uniformly at random with continuous cost 

values to reflect real-world cost values for which exact ties are less likely.  

To generate the first set of 2,000 simulated transportation problems, the minimum cost 

values and maximum cost values were set at 10% below and 10% above a fixed cost 

(100) accordingly. For instance, the minimum cost for the first set of 2,000 simulated 

transportation problems was 90, while the maximum cost was 110. The fixed cost for 

the following 2,000 simulated problems was set at 20% below and 20% above 100, 

making the minimum cost as 80 and the maximum cost as 120. This process is repeated 

at 30% and 40% until the fixed cost of 100 is 50% below and 50% above, in other 

words, the randomly generated cost in these 2,000 simulated transportation problems 

will fall between a minimum cost range of 50 and a maximum cost range of 150. We 

have used the range of 50% below and 50% above the fixed cost value because a real-

world cost value for a unit good should be within that range. Another set of 10,000 
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simulated transportation problems is then generated and this forms 2 different lots of 

5 sets of 2,000 transportation problems making a total of 20,000 simulated 

transportation problems. With these generated simulated transportation problems, it is 

expected that real product costs will not deviate too much from a fixed cost, therefore 

using 100 as the fixed cost or any other value will not have any impact because the 

fixed cost is scale-invariant. The minimum and maximum number of the supply points 

are 10 and 100, while the minimum and maximum number of the demand points are 

50 and 200, respectively. The supply and demand points denote the number of sources 

and the number of destinations, respectively. Similarly, the minimum demand quantity 

is set at 100 and the maximum demand quantity is set at 1000, so the simulation 

randomly generated the demand quantity within this range. The minimum supply 

quantity is set at 500 and the maximum supply quantity is set at 5000, therefore the 

generated simulated quantity of supply was within this range. In all the simulated 

transportation problems, the sum of the quantities supplied is equal to the sum of the 

quantities demanded making it a balanced transportation problem. Please, see the R 

code in Appendix 1 for the simulations, and the benchmark datasets along with the 

20,000 simulated transportation problems in Appendix 2, which are available for 

download. 

5.3 A step-by-step guide on how the 20,000 transportation problems were generated 

An explanation of each step used to create the 20,000 balanced transportation 

problems with real-valued costs using the R Code provided in Appendix 1. 

Guide to how the first set of 2,000 simulated transportation problems with real-

valued cost was generated. 
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To simulate the next 2000 transportation problems, we retain nProbs at 2000 because 

we are generating another 2000 to make 4000 simulated transportation problems, we 

just extend the cost range to be 20% above and 20% below the fixed cost of 100. For 

the next 2000 transportation problems to make 6000 simulated transportation 

problems, we keep nProbs as 2000 and extend the cost range to 30% above and 30% 

below the fixed cost of 100. Similarly, to generate the next 2000 transportation 

problems to make 8000 simulated transportation problems with nProbs as 2000, we 

extend the cost range to be 40% above and 40% below the fixed cost of 100. Finally, 

to generate the last 2000 transportation problems to make 10,000 simulated 

transportation problems with nProbs still at 2000, we extend the cost range to be 50% 

above and 50% below the fixed cost of 100. This completes the procedure of creating 

the first 10,000 simulated transportation problems and this process can be repeated to 

Here nProbs is set to 2000 to generate the first 2000 

transportation problems with real-valued cost. 

We set the cost range 10% below the fixed cost of 

100 and 10% above the fixed cost of 100. 
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create the remaining 10,000 transportation problems resulting in a total of 20,000 

simulated transportation problems for the experiment. 

Table 25. An example of a simulated balanced transportation problem with 10 supply 

points and 8 demand points. 

 D1 D2 D3 D4 D5 D6 D7 D8 Supply 

S1 84.47 84.87 85.23 81.28 85.57 83.91 84 82.78 112 

S2 81.75 82.37 85.96 83.21 83.17 79.25 79.73 80.98 746 

S3 79.64 82.85 82.01 81.04 85.29 78.59 85.61 83.18 755 

S4 84.49 82.45 81.66 80.65 83.3 79.58 83.93 83.72 742 

S5 78.23 80.66 80.63 82.59 83.36 85.23 81.59 81.09 654 

S6 80.36 81.1 81.23 82.85 85.09 82.01 80.23 85.65 601 

S7 85.02 85.61 84.61 79.52 78.05 84.13 81.99 84.78 673 

S8 80.95 85.73 82.59 84.53 85.9 81.58 83.21 84.84 542 

S9 78.82 85.49 78.03 81.75 78.96 78.04 85.09 78.4 891 

S10 81.55 78.41 82.54 82.35 80.22 79.22 82.91 79.49 635 

Demand 554 944 983 855 834 702 919 560 6351 

Table 25 shows a simulated balanced transportation problem that was generated with 

the R software tool showing real-valued costs. However, this is a small-dimension 

transportation problem when compared to the size of the transportation problems used 

in this research which are available for download (see Appendix 1 and Appendix 2). 

5.4 Application of TOCM-VAM and TOCM-TBVAM-TH on the simulated 

transportation problem with real-valued costs. 

A set of 20,000 simulated transportation problems was generated with real-valued cost 

matrices to ascertain the effectiveness of the application of the proposed TOCM-

TBVAM-TH compared with the state-of-the-art method TOCM-VAM.  Ties are 

induced at multiple proximity thresholds at 10% intervals. Do note that TOCM-

TBVAM never loses compared with TOCM-VAM because while TOCM-VAM 
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works on arbitrary allocation when there is a tie in maximum penalty cost and 

minimum cost, TOCM-TBVAM on average improves the IBFS by way of 

systematically breaking ties. Therefore, for TOCM-VAM to have a better IBFS, it will 

have to run the algorithm multiple times to get a chance at the required improvement, 

and the TOCM-VAM-TH solution corresponds to an extreme of the values of the 

interval width to declare a tie. Both methods come at a computational cost that is 

discussed in the conclusion chapter. 

The 20,000 simulated transportation problems were produced randomly and 

independently. They were then analysed in sets of 1000 transportation problems to 

estimate the variation due to chance. For this reason, the means of each set of 1000 

were calculated along with the means of the percentage improvement and the standard 

deviation in these sets are reported in Table 26. 

Table 26 shows the number of wins for the twenty sets of 1,000 simulated 

transportation problems when TOCM-TBVAM-TH is compared with TOCM-VAM. 

For example, set 1000A comprises 1000 simulated transportation problems resulting 

in 22 wins for TOCM-TBVAM-TH over TOCM-VAM. In this set, the percentage 

difference of TOCM-TBVAM-TH to the optimal cost is 10.40% while that of TOCM-

VAM is higher (12.83%), resulting in about 2.43% improvement on TOCM-VAM by 

the application of ties in maximum penalty with TOCM-TBVAM-TH. Therefore, on 

average, the results indicate that there is a 2% improvement on TOCM-VAM when 

TOCM-TBVAM-TH is used on real value cost transportation problems.  
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Table 26. Number of wins from twenty batches of 1000 simulated transportation 

problems with real-valued cost matrices, using multiple proximity thresholds in 

TOCM-TBVAM-TH. 

Set of 1000 

Transportation 

Problems 

Number of wins 

of TOCM-

TBVAM-TH 

TOCM-TBVAM- 

TH percentage 

difference to 

Optimal cost 

TOCM-VAM 

percentage 

difference to 

Optimal cost 

Percentage 

improvement 

1000A 22 10.40% 12.83% 2.43% 

1000B 17 7.49% 9.74% 2.25% 

1000C 27 11.51% 13.75% 2.25% 

1000D 24 11.08% 13.73% 2.65% 

1000E 27 11.80% 14.54% 2.74% 

1000F 19 9.69% 11.83% 2.14% 

1000G 23 11.46% 14.71% 3.24% 

1000H 20 9.75% 11.75% 1.99% 

1000I 23 10.75%. 13.07% 2.32% 

1000J 19 7.75% 9.70% 1.95% 

1000K 21 9.94% 11.37% 1.43% 

1000M 21 10.48% 12.84% 2.36% 

1000N 20 9.30% 10.75% 1.45% 

1000O 25 12.38% 13.79% 1.41% 

1000P 23 10.36% 12.41% 2.05% 

1000Q 22 8.49% 10.27% 1.77% 

1000R 18 9.13% 10.27% 1.44% 

1000S 24 10.78% 12.86% 2.08% 

1000T 28 13.00% 14.80% 1.81% 

1000U 20 9.96% 11.79% 1.83% 

Average 22.15 10.18% 12.34% 2.08% 

Standard Deviation 3.07 1.43% 1.63% 0.43% 

 

5.5 Summary 

This chapter explained and provided a step-by-step guide on how the 20,000 simulated 

transportation problems were generated, which is to reflect the real-world 

transportation problems with real value cost and large size dimensions. These were 

noted as the research gap and motivation for the research in the literature review. 

These transportation problems were also used to compare the performance of TOCM-

TBVAM-TH to the state-of-the-art method TOCM-VAM. The multiple pathways 

created by TOCM-TBVAM-TH, which is the key factor in this proposed 

method, take advantage of inducing ties at maximum penalty so that more real 
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value cost could be regarded as minimum cost in the sample space during the iteration 

process. These IBFS obtained in the simulated transportation problems have shown 

that TOCM-TBVAM-TH can improve on the state-of-the-art method TOCM-VAM 

by providing a more efficient way of inducing ties and then breaking ties at several 

levels during the iteration process of the algorithm to provide a lower IBFS that saves 

time to get the optimal solution. The following chapter will discuss the findings and 

results of the comparison between TOCM-TBVAM-TH and TOCM-VAM. 
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CHAPTER SIX 

Results and Discussion 

6.1 Introduction 

The previous chapter presented TOCM-TBVAM-TH applications on the simulated 

transportation problems generated, which are available for download (see Appendix 

2). The generated datasets were of real-valued costs and since it was extremely 

difficult to have ties in real-valued costs transportation problems, percentage threshold 

proximity was applied using TOCM-TBVAM-TH to induce ties and that gives the 

algorithm different pathways during the iteration process to have more alternative 

solutions to choose from so that the next iteration will not make allocations to a higher 

cost. This application of TOCM-TBVAM-TH has shown that on average it can 

improve on the state-of-the-art method, TOCM-VAM by providing a more efficient 

and lower IBFS that would in turn make the process of obtaining the optimal solution 

much faster, this can potentially save companies money and time. Therefore, whatever 

the situation may be, TOCM-TBVAM-TH is an improvement on TOCM-VAM by 

inducing ties and systematically breaking ties. This chapter will present the statistical 

analysis of the results, and computational complexity and provide the basis for 

discussion. 

6.2 Findings 

The results obtained in this research are outlined as follows. 
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6.2.1 Statistical Analysis 

To start a statistical analysis of the results of TOCM-VAM and the best of TOCM-

TBVAM-TH with real-valued costs, we require a graphical representation of the 

findings in the form of a histogram. 

 

Figure 3: Histogram showing the distribution of the IBFS of TOCM-VAM and best 

of TOCM-TBVAM-TH. 

Figure 3 shows a histogram for one of the sets of 1,000 randomly grouped non-

overlapping transportation problems discussed and presented in chapter five. Visual 

inspection of Figure 3 indicates that both TOCM-VAM and the best of TOCM-

TBVAM-TH are skewed to the right, signifying that the results do not seem to follow 

a normal distribution. However, as this is only a visual analysis-based suggestion, a 

more robust statistical test in the form of the Shapiro-Wilk test was conducted on both 

results to test for normality. The p-value of TOCM-VAM = 1.903e-05 and TOCM-

TBVAM-TH = 3.474e-05, both less than 0.05, indicates that there is evidence that 

suggests both TOCM-VAM and best of TOCM-TBVAM-TH IBFS results do not 
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follow a normal distribution and for that reason, a non-parametric test is required. In 

addition, the statistical results on the best of TOCM-TBVAM-TH shows a minimum 

value of 5335.23, a first quartile of 20812.17, a second quartile of 28717.73, third 

quartile of 38229.66 and a maximum value of 77458.38, with the standard deviation 

of 13522.51. 

To further provide additional findings with the IBFS obtained on TOCM-VAM and 

TOCM-TBVAM-TH, a two-tailed Wilcoxon signed-rank test, which compares two 

paired groups, was conducted on the best of TOCM-TBVAM-TH against TOCM-

VAM for the full set of 20,000 simulations with the null hypothesis that the 

distributions of both populations of IBFS costs are identical. We recall that the "best 

of TOCM-TBVAM-TH" is where there is an improvement over TOCM-VAM when 

the percentage threshold is applied on the maximum penalty to induce ties in other to 

gain from the benefit of ties to achieve a lower IBFS with an efficient way of 

systematically breaking ties at several levels and that both TOCM-VAM and TOCM-

TBVAM-TH would produce the same IBFS when there are no ties. The test generated 

a p-value < 2.2e-16 which is less than 0.05, thus rejecting the null hypothesis, which 

indicates that the distributions of both populations are not identical. Therefore, 

introducing a systematic method to break ties in the cost optimisation for 

transportation problems results in an improvement in the IBFS beyond chance effects. 

Furthermore, the size of the improvement obtained in extensive simulations is 1.4-

2.1% with a consistently greater number of wins for TOCM-TBVAM and TOCM-

TBVAM-TH compared to the state-of-the-art method, TOCM-VAM, by 2-11%. We 

also recall that TOCM-TBVAM is the algorithm where no threshold is applied to 

induce ties, although it also systematically breaks ties at several levels and then shows 

improvement when the threshold is applied using TOCM-TBVAM-TH on integer cost 
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transportation problems. With the integer cost threshold application, the percentage 

threshold tends to be much higher to see the effect of improvement on the state-of-the-

art method because the cost difference may be greater.  

6.2.2 Computational Complexity 

Table 27. Computational Complexity for TOCM-VAM and TOCM-TBVAM-TH 

with various thresholds of 10% interval for 10,000 simulated transportation problems 

with real-valued costs. 

 Time in seconds 

Methods User  System  Elapsed  

TOCM-VAM 17862.73 314.02 18533.87 

TOCM-TBAVM-TH 100 21901.86 312.15 22481.37 

TOCM-TBAVM-TH 90 21393.94 320.01 22129.11 

TOCM-TBAVM-TH 80 21021.41 320.28 21766.61 

TOCM-TBAVM-TH 70 21113.27 321.93 21860.43 

TOCM-TBAVM-TH 60 21094.17 319.97 21850.36 

TOCM-TBAVM-TH 50 21061.78 320.86 21805.96 

TOCM-TBAVM-TH 40 21035.03 320.11 21767.21 

 

Table 27 shows the computational time of 10,000 simulated transportation problems 

on a laptop (Intel(R) Processor i3-4030U with 8GB RAM, Windows 10) of both the 

TOCM-VAM and TOCM-TBVAM-TH algorithms which are presented in seconds. 

The average number of demand points for these 10,000 simulated transportation 

problems is 120, while the average number of supply points is 50 which is a relatively 

large size compared to published articles. Additionally, the size of the transportation 
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problem is important because fewer supply and demand points would result in less 

computational time. In Table 27, the User time shows the amount of CPU time 

charged for the user's instruction used to run the code, the System time shows the 

amount of CPU time charged for the system's execution on behalf of the operating 

system time, and the Elapsed time is the approximate total of the User and System 

time. Two of these time executions are significant to this research, first, the User time 

because we want to know how long it takes for the code to run, and then the Elapsed 

time to know the length of time it takes the algorithm to complete from beginning to 

end to produce the IBFS for the 10,000 transportation problems, which is more useful 

to businesses that require a fast algorithm. Based on the experimental findings, 

TOCM-VAM's average User time and Elapsed time for a particular transportation 

problem are 1.79 and 1.85 seconds respectively, while the average User time and 

Elapsed time for TOCM-TBVAM-TH are 2.12 and 2.20 seconds, respectively. This 

suggests that TOCM-VAM tends to be faster than TOCM-TBVAM-TH, with an 

average User time of 0.33 seconds faster and Elapsed time of 0.35 seconds faster. 

Please note that smaller-size transportation problems may take a shorter time to 

complete. In general, the User time and Elapsed time of TOCM-VAM indicates that 

on average it is lower than the average of TOCM-TBVAM-TH, and this is because 

while TOCM-VAM allocates resources arbitrarily when there are ties, this is done in 

a shorter amount of time (arbitrarily), while TOCM-TBVAM-TH goes through a 

systematic analysis to decide on the allocation by first inducing ties and then breaking 

ties based on a set of predefined rules. As a result, the average computational time of 

the proposed method will increase. However, since there is an improvement on the 

state-of-the-art method TOCM-VAM when TOCM-TBVAM-TH is applied, the 

shortcoming of TOCM-TBVAM-TH is that it would have to run several times to 
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achieve the improvement, and the magnitude of the increase is equal to the number of 

replications of the method at different proximity thresholds. For example, since there 

is no precise threshold for the improvement because transportation problems may 

differ, and when there is no tie in the decision-making process, TOCM-VAM and 

TOCM-TBVAM-TH would produce the same IBFS, to induce ties, TOCM-TBVAM-

TH would have to run multiple times to see the improvement on TOCM-VAM, i.e., 

TOCM-TBVAM-TH may have to run at 90%, 80%, 70%, 60% and 50% threshold, 

which is five times as long as TOCM-VAM, please do note that the improvement may 

be seen at 80% or 70% threshold depending on the transportation problems. The 

reason for setting a 10% threshold interval is that this steady adjustment may result in 

a gradual improvement in the quality of the IBFS. This makes this proposed method 

time-consuming, however, this modest increase in time difference appears 

insignificant when compared to the better and more efficient IBFS obtained by 

TOCM-TBVAM-TH over TOCM-VAM. 

Additionally, to achieve the time complexity of TOCM-TBVAM-TH, which is the 

amount of time required for TOCM-TBVAM-TH to run as a function of the length of 

the input and is a component of computational complexity, we first need to understand 

that the Big O notation is a standard way to measure the performance of an algorithm 

on how the time scales with respect to the size of the input. Therefore, we have 

generated 10 sets of size N by N transportation problems. i.e., equal supply points 

(rows) and demand points (columns), where N is 10, 20, 50, 100 and 200. i.e., double 

the scaling of the input. We generated 10 sets of size 10 by 10, 10 sets of 20 by 20, 10 

sets of 50 by 50, 10 sets of 100 by 100, and 10 sets of 200 by 200, making a total of 

50 simulated transportation problems and recorded the log of average CPU times and 

the log of the input size N. For the Big O notation, N represents the number of rows 
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plus the number of columns (N=“number of demand points” plus “number of supply 

points”). Hence, we calculate log(N) as N= R + C, where R = rows and C = columns. 

Table 28. Average log of CPU times in seconds with log of the size of the input 

  Average log CPU times for each algorithm for the values of log(N) 

log(N) VAM TOCM-VAM TOCM-TBVAM-TH 

2.995732 -0.63131 -0.5807514 0.1571447 

3.688879 0.060346 0.1256629 0.59371 

4.60517 1.729048 1.631951 1.928893 

5.298317 3.072705 3.014529 3.24227 

5.991465 4.553696 4.509223 4.731019 

 

Table 28 shows that on average the proposed algorithm TOCM-TVBAM-TH takes 

more average log time than VAM and TOCM-VAM as the input size increases. 

However, to achieve the time complexity, we need to find the slope of the average log 

of CPU time against the log of scaling size of the input log(N). A visual display of the 

plot of the average log of CPU time vs the log of scaling in input size log(N) is shown 

in Figure 4. 

 

Figure 4: Average log of CPU time for VAM, TOCM-VAM, and TOCM-TBVAM-

TH vs log(N). 
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Using the statistical software tool R, we calculate an estimate of the slope for the three 

algorithms taking the last two rows, i.e., 100 by 100, and 200 by 200, VAM = 2.13, 

TOCM-VAM = 2.15 and TOCM-TBVAM-TH = 2.14 all to 2 decimal points. These 

slopes which are estimates, are similar to the estimates of average scaling derived 

analytically in Section 3.7, Page 38. They show that the time complexity for VAM, 

TOCM-VAM and TOCM-TBVAM-TH are similar, with TOCM-TBVAM-TH having 

the lowest slope estimates, suggesting that inducing ties in the sorting algorithm is 

efficient. Therefore, the inclusion of the tie-breaking method does not reduce the 

scaling factor, although it does add a multiplier according to the desired number of 

thresholds and indeed shifts the corresponding CPU time up as shown in Figure 4. 

We can then conclude that the time complexity of TOCM-TBVAM-TH is 

O(N2log(N)) in the worst-case scenario.  

6.3 Discussion 

Two methods are proposed in this research, TOCM-TBVAM, and TOCM-TBVAM-

TH, while TOCM-TBVAM systematically breaks ties at several levels thereby 

resulting in an improvement on the IBFS, and TOCM-TBVAM-TH systematically 

induces ties in real-valued costs transportation problems in the maximum penalty cost 

by the application of using percentage threshold. This method, TOCM-TBVAM-TH, 

allows alternative solution paths for the algorithm to find the minimum cost for a given 

total opportunity cost matrix during the iteration process of allocations. This enables 

the algorithm to achieve a lower total cost on average than the state-of-the-art, TOCM-

VAM. It is also important to note that when ties do not exist, then both TOCM-

TBVAM-TH and TOCM-VAM would achieve the same IBFS, however, the benefit 

of the application of TOCM-TBVAM-TH is an improvement on the IBFS when 
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proximity thresholds in the maximum penalty are applied. As noted in the results 

obtained, with real-valued cost transportation problems, this algorithm on average 

outperforms the state-of-the-art algorithm TOCM-VAM, and it is beneficial to users 

who want to minimise the total cost of product transportation when dealing with 

logistics and supply chain problems. Also, the use of these proposed algorithms would 

provide the company with a faster way to reach the optimal solution than the current 

state-of-the-art algorithm, as on average, the optimisation would start from an 

improved, higher-quality solution. For example, a company that invests hundreds of 

millions of pounds in their logistics and supply costs would gain from even a small 

reduction of 2% in their costs.  

Furthermore, an attractive feature of these methods (TOCM-TBVAM and TOCM-

TBVAM-TH) is that it is easy to use as it follows the same applications of TOCM-

VAM which takes advantage of using the total opportunity cost matrix and then 

transforms it into a standard transportation problem cost matrix. In addition to that, 

our proposed methods break ties at several levels more systematically, creating the 

opportunity to have more minimum costs within an allocation process. Similarly, the 

concept that TOCM-TVBAM-TH may be used to solve transportation problems and 

create improvements in IBFS with both real-valued cost and integer cost values is one 

of its many noteworthy qualities and this can be applied to other existing algorithms 

that break ties arbitrarily. 
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6.4 Summary 

This chapter presented the findings and general discussion on the research and 

highlighted that when the total opportunity cost matrix is applied to both the initially 

proposed algorithm, TBVAM, which transforms to TOCM-TBVAM, and the 

percentage threshold to induce ties (TOCM-TBVAM-TH), there is an improvement 

on the state-of-the-art algorithm, TOCM-VAM. The statistical study shows that the 

results obtained were not due to chance, as the improvement in the IBFS generated by 

TOCM-TBVAM-TH outperforms that of TOCM-VAM. It should also be recalled that 

there is no fixed threshold for all transportation problems because the threshold is 

dependent on the transportation problems, however, a couple of good threshold values 

to start with seem to be 100% to run without ties, and then 70% on the maximum 

penalty to induce ties. In addition, the computational complexity of the proposed 

method is not expensive to run since the improvement in the IBFS obtained 

compensates for the time required to utilise the proposed method, and of the three 

algorithms VAM, TOCM-VAM and TOCM-TBVAM-TH, TOCM-TBVAM-TH is 

more efficient. The following chapter will draw on all the previous chapters to present 

the conclusion, the novel contribution to knowledge, the limitations of the research, 

and future research opportunities. 
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CHAPTER SEVEN 

Conclusions and Future Work 

7.1 Introduction 

The previous chapter discusses the results of the statistical analysis and 

demonstrates that certainly TOCM-VAM can be improved by utilising a percentage 

threshold to induce ties at the maximum penalty in other to allow the algorithm several 

pathways to obtain minimum cost in the iteration process. The chapter also noted that 

the computational complexity of the proposed algorithm TOCM-TBVAM-TH is 

slightly higher than the state-of-the-art method, TOCM-VAM but recognised that time 

spent in the algorithm to induce ties and break these levels of ties in a systematic way 

does compensate for the improvement on TOCM-VAM and is not expensive to run. 

This chapter will therefore present the concluding part of the research by linking all 

previous chapters, detailing the novel contributions to knowledge, the limitation of the 

research and opportunities for future research. 

7.2 Conclusions 

The research began with an overview of transportation problems, and the first chapter 

of this thesis includes the research motivations, research questions, the research aims 

and objectives, and finally the expected contribution to knowledge of the research. 

Chapter two of the thesis presented a broad literature review on transportation 

problems, with a focus on some of the published literature on how to obtain the IBFS 

for transportation problems, as well as their shortcomings and advantages. It was this 

literature that affirmed that TOCM-VAM was the state-of-the-art method for finding 

the IBFS for transportation problems since it is an efficient method for 

providing an IBFS that is close to or same as the optimal solution. However, it does 
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have the shortcoming of making arbitrary allocations in the decision process when it 

encounters a tie in the maximum penalty cost, minimum cost and quantity of the 

demand that can be satisfied. This observation highlighted the research gaps which 

then led to part of the research motivation.  

The lack of publications incorporating real-valued costs in the cost matrix and 

publications where methods are tested on transportation problems with significant 

numbers of demand and supply points were noted as research gaps.  

In chapter three of this thesis, the two distinct types of transportation problems, 

balanced and unbalanced, were described together with their mathematical 

formulations. Chapter three also presented three commonly used methods for finding 

the IBFS for transportation problems, namely the Northwest Corner Method, the Least 

Cost Method, and the Vogel Approximation Method. It was found that due to the many 

iterations in the decision-making process involved, the Vogel Approximation Method 

does require a bit more computational time than the other two algorithms to produce 

an IBFS; however, this computational time is offset by the high quality of the IBFS 

that is produced. The two methods of evaluating optimality, MODI, and Stepping-

Stone, were also covered in this chapter. It was noted that before using either of these 

approaches, it is vital to obtain an IBFS because it will take less time to achieve the 

optimal situation. The proposed methods, TBVAM, TOCM-TBVAM, and TOCM-

TBVAM-TH, were introduced in Chapter Four.  TOCM-VAM, which is the state-of-

the-art method was a better comparison than the initially proposed algorithm, 

TBVAM, therefore TOCM-TBVAM and TOVCM-TBVAM-TH were developed. The 

benefit of these proposed methods is that they all break ties at various levels in the 

iteration process; however, TOCM-TBVAM and TOCM-TBVAM-TH only break ties 
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once they have obtained the total opportunity cost matrix and then transform to the 

cost matrix of transportation problems which is then used for the decision-making 

process. The unique feature of TOCM-TBVAM-TH is that it not only breaks ties at 

several levels but also induces ties at the first level of tie-breaking which is at the 

maximum penalty, giving the algorithm multiple pathways for decision-making by 

allowing a range of costs to be considered as minimum costs to achieve a lower IBFS. 

The procedures for computing TBVAM, TOCM-TBVAM, and TOCM-TBVAM-TH 

were also provided, with TOCM-TBVAM-TH just being an extension of TOCM-

TBVAM because of the application of threshold proximity to the maximum penalty 

cost. Two examples of transportation problems from the literature were taken into 

consideration, and it was noted that TOCM-VAM and TOCM-TBVAM would both 

produce the same IBFS in the absence of ties, but that TOCM-TBVAM would, on 

average, produce a lower IBFS in the presence of ties. The 35 benchmark balanced 

transportation problem results were also shown, including the number of wins and the 

average proportional difference between the best TOCM-TBVAM-TH and TOCM-

VAM, which showed an improvement over TOCM-VAM. Chapter Five presented 

how the real-valued costs in 20,000 simulated transportation problems were generated 

to test the efficiency of TOCM-TBVAM-TH. It also noted that the reason for these 

generated datasets was to reflect real-world cases of transportation problems with 

large size dimensions which was one of the identified gaps in the literature. The results 

and analysis from the 20,000 simulated transportation problems were reported in 

Chapter Six, and it was noted that the result achieved by TOCM-TBVAM-TH, which 

was an improvement over TOCM-VAM, was not the result of chance. Although it was 

noted that TOCM-TBVAM-TH takes more time to induce and then continuously 

break ties at various levels in the decision-making process, the additional 
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computational complexity of TOCM-TBVAM-TH is offset by the improvement in the 

resulting IBFS, which is lower and reduces the amount of time needed to achieve the 

optimal solution. Another suggestion is to compute the TOCM-TBVAM-TH twice at 

two different percentage thresholds, such as 100% and then 70%. 70% because it is 

just an indicative threshold based on the simulated transportation problems tested and 

there is no set threshold to be taken because all transportation problems may differ in 

the cost matrix, and demand and supply size dimensions, and 100% because it also 

represents TOCM-VAM where no ties are considered. 

7.3 Novel Contribution to Knowledge 

This research has been able to adequately provide answers to the research questions 

outlined in the first chapter of the thesis. First, the research was able to provide both 

TOCM-TBVAM and TOCM-TBVAM-TH to address the limitations of TOCM-VAM 

which is making arbitrary allocations in cases of ties. This study showed that the 

proposed methods can be used to improve the IBFS for transportation problems where 

ties exist at some levels of the decision-making process as seen in the results obtained 

in the research presented in Table 23, Table 24, and Table 26. Second, the benefit of 

the proposed algorithms of inducing ties and breaking ties does improve the IBFS 

obtained when compared to the state-of-the-art method, TOCM-VAM. Such benefits 

include achieving a significantly lower IBFS, which would take less time to achieve 

the optimal solution and be beneficial for businesses looking to cut costs in their 

supply chain and logistics. This proposed algorithm would undoubtedly be a top 

option to consider when solving transportation problems. Lastly, the application of 

threshold proximity to induce ties in real-valued cost has also shown to be an 

improvement over the state-of-the-art method with the results obtained in Table 26. 
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Therefore, the research contributions to knowledge are as follows: 

 The proposed algorithms TOCM-TBVAM and TOCM-TBVAM-TH can 

improve on TOCM-VAM’s IBFS by breaking ties at several levels such as 

maximum penalty cost, minimum cost, and quantity supplied which tends to 

be the limitation of the state-of-the-art algorithm TOCM-VAM. 

 TOCM-TBVAM-TH for real-valued cost transportation problems can improve 

TOCM-VAM’s IBFS by considering a certain percentage range to be taken as 

indicative of ties to give the algorithm different pathways to consider minimum 

cost in the maximum penalty. 

 My simulations shows that it is feasible to achieve improvements in the 

number of wins on average by about 2% when we consider a range of 

percentage thresholds with minimum additional effort. This level of 

improvement can have a significant impact on business costs.  

 

7.4 Research Limitations 

The main limitation of this research is that the proposed methods were tested only for 

balanced transportation problems. Although unbalanced transportation problems can 

be converted to a balanced transportation problem by adding dummy demand and 

supply points appropriately, this is beyond the scope of this thesis.  

7.5 Future Research 

There are opportunities for future research due to the time limit for completing the 

PhD. Therefore, the following are the future research opportunities: 

 With this use of threshold proximity on maximum penalty cost, there is a need 

for more research. Any algorithm that resolves ties in the maximum penalty 
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cost, for example, may benefit from having a range of minimum costs within 

that iteration, resulting in a lower IBFS than when the maximum penalty cost 

is at an exact value. 

 Another potential area for future research is to look two steps ahead in the 

iteration and see how it can implement the best move. The limit of only looking 

two steps ahead is in place to keep the number of possibilities manageable. 

 Furthermore, the opportunity for future research can be discussed on how to 

break ties when there is a tie in the maximum demand quantity that can be 

satisfied as these proposed methods make arbitrary allocations in cases when 

there is a tie in the maximum demand quantity that can be satisfied. 
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Appendix 1 

R Code for the Simulated Transportation Problems 

## R Code for Simulated Transportation Problems with Continuous Cost 

#Clears the memory 

rm(list=ls(all=TRUE)) 

 

library(openxlsx) 

### nprobs denotes the number of transportation problems that need to be simulated  

nProbs = 2000 

### rangeDemand denotes the minimum and maximum demand quantities. 

rangeDemand = c(100, 1000) 

#### rangeSupply denotes the minimum and maximum supply quantities. 

rangeSupply = c(500, 5000) 

###### nDem denotes the minimum and maximum demands points 

nDem = c(50, 200) 

### nSup denotes the minimum and maximum supply points 

nSup = c(10, 100) 

### rangeCost denotes the minimum and maximum cost range for the simulated TP 

rangeCost = c(50, 150) 

##### costChange controls the variation (min & max) values of random costs around 

a randomly drawn central mean value 

costChange = 10 

 

for (i in 1:nProbs) 

{ 

  print(sprintf("Creating file %d of %d ...", i, nProbs)) 

  n1 = round(runif(1, min = nDem[1], max = nDem[2]), digits = 0) 

  demand = round(runif(n1, min = rangeDemand[1], max = rangeDemand[2]), digits 

= 0) 

   

  n2 = round(runif(1, min = nSup[1], max = nSup[2]), digits = 0) 

  supply = round(runif(n2, min = rangeSupply[1], max = rangeSupply[2]), digits = 0) 

  ### ensures transportation problem is balanced 

  supply = round((supply / sum(supply)) * sum(demand), digits = 0) 

   

  pick = 1:n2 

   

  while(sum(supply) < sum(demand)) 

  { 

    k = sample(pick, 1, replace = TRUE) 

    supply[k] = supply[k] + 1 

  } 

   

   

  avg_cost = round(runif(1, min = rangeCost[1], max = rangeCost[2]), digits = 0) 

  

  centerCostLower = round(avg_cost - ((avg_cost * (costChange / 100))) / 2, digits = 

0) 
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  centerCostUpper = round(avg_cost + ((avg_cost * (costChange / 100))) / 2, digits = 

0) 

   

  costs = matrix(round( 

    runif(n1 * n2, min = centerCostLower, max = centerCostUpper), 

    digits = 2 

  ), 

  nrow = n2, ncol = n1) 

   

  prob = rbind(costs, demand) 

  prob = cbind(prob, c(supply, sum(supply))) 

   

  #fname = "place to save files" 

  

  fname = "C://Users//Ltopp//Desktop//sample dataset" 

  fname = sprintf("%s/tb%d_%d_%d.xlsx", fname, i, n1, n2) 

   

  prob = as.data.frame(prob) 

  colnames(prob) = c(sprintf("D%d", 1:(ncol(prob)-1)), "Supply") 

  rownames(prob) = c(sprintf("S%d", 1:(nrow(prob)-1)), "Demand") 

   

  write.xlsx(prob, file = fname, 

             colNames = TRUE, 

             rowNames = TRUE) 

} 

 

print(prob) 
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Appendix 2 

Website for the datasets of Transportation Problems 

The Simulated transportation problems can be seen and downloaded on the following 

website. 

1) 35 Benchmark Dataset 
 
https://www.mediafire.com/file/efepl8bl286t2ev/35.zip/file 

 

2) First 10,000 Simulated Dataset with real-valued cost 
 
https://www.mediafire.com/file/3rqlb00qudaxzpw/10000_simulated_TP_with_rea

l_valued_cost.zip/file 

 

3) Second 10,000 Simulated Dataset with real-valued cost 
 
https://www.mediafire.com/file/4alg9gqdcom8snm/10000_simulated_TP_with_Re

al_valued_cost_2.zip/file 

 

 


