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Altered glucocorticoid reactivity
and behavioral phenotype in
rx3-/- larval zebrafish

Ulrich Herget1,2*, Soojin Ryu1,3 and Rodrigo J. De Marco1,4*

1Research Group Developmental Genetics of the Nervous System, Max Planck Institute for Medical
Research, Heidelberg, Germany, 2Division of Biology and Biological Engineering, California Institute of
Technology, Pasadena, CA, United States, 3Living Systems Institute, College of Medicine and Health,
University of Exeter, Exeter, United Kingdom, 4School of Biological and Environmental Sciences,
Faculty of Science, Liverpool John Moores University, Liverpool, United Kingdom
Introduction: The transcription factor rx3 is important for the formation of the

pituitary and parts of the hypothalamus. Mutant animals lacking rx3 function have

been well characterized in developmental studies, but relatively little is known

about their behavioral phenotypes.

Methods: We used cell type staining to reveal differences in stress axis

architecture, and performed cortisol measurements and behavior analysis to

study both hormonal and behavioral stress responses in rx3 mutants.

Results and Discussion: Consistent with the role of rx3 in hypothalamus and

pituitary development, we show a distinct loss of corticotrope cells involved in

stress regulation, severe reduction of pituitary innervation by hypothalamic cells,

and lack of stress-induced cortisol release in rx3 mutants. Interestingly, despite

these deficits, we report that rx3-/- larval zebrafish can still display nominal

behavioral responses to both stressful and non-stressful stimuli. However, unlike

wildtypes, mutants lacking proper pituitary-interrenal function do not show

enhanced behavioral performance under moderate stress level, supporting the

view that corticotroph cells are not required for behavioral responses to some

types of stressful stimuli but modulate subtle behavioral adjustments under

moderate stress.

KEYWORDS
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Introduction

The hypothalamus-pituitary-adrenal (HPA) axis integrates sensory inputs and

generates a hormonal response to support an animal’s struggle against stressors (1, 2).

The hypothalamic control center mediating this response is the paraventricular nucleus

(PVN) in mammals, or the homologous neurosecretory preoptic area (NPO) in fish (3–5).

The pituitary offish is homologous to the pituitary of other vertebrates, and the homolog of
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the adrenal gland in fish is known as the interrenal gland (6). The

fish version of the HPA axis is therefore termed HPI axis (7–9) and

is already functional in larval zebrafish (10, 11). Neuroendocrine

cells in the PVN/NPO release corticotropin-releasing-hormone

(CRH) and arginine-vasopressin (AVP) in the pituitary, triggering

the release of adrenocorticotropic hormone (ACTH) from

corticotrope cells, which then acts on steroidogenic cells of the

adrenal/interrenal gland, causing the release of glucocorticoids like

cortisol as the final stress axis effectors (12). Important PVN/NPO

cell types relevant for stress regulation are those producing CRH

[primary stress peptide (13)] AVP [known for osmoregulation and

vasoconstriction, but also co-acting with CRH (14, 15)] and

oxytocin [OXT, mostly known for social functions, but also

involved in stress (16)]. OXT has also been implied in promoting

the formation of pituitary vascularization (17).

The neurohypophysis in teleosts consists of fiber bundles

protruding dorsally into the larger adenohypophysis (17, 18).

Adenohypophyseal cells are arranged in distinct subregions

[rostral lactotropes and corticotropes; intermediate somatotropes,

thyrotropes, gonadotropes; caudal melanotropes and corticotropes

(19–21)]. Corticotropes express proopiomelanocortin (POMC), a

precursor of ACTH in mammals and fish (22–24). One essential

transcription factor for the development of the pituitary and part of

the hypothalamus is Rax (mouse) or rx3 (zebrafish), which also is

essential for optic cup formation and eye development (25, 26). Loss

of Rax/rx3 function appears to prevent proper hypothalamic

patterning, since transcription factors and cell type markers

including pomc and avp are not expressed in the hypothalamus of

mutants (26–29). oxt expression was however reported not to be

affected (27) in rx3 mutants. The pituitary fails to develop properly

as well, with inhibited formation of the neurohypophysis (30, 31)

and malformation of the adenohypophysis that however still

produces secre tory ce l l s (32) . The rx3 mutant fi sh

adenohypophysis has seemingly normal pomc-expressing caudal

melanotropes, but lacks rostral corticotropes, leading to

glucocorticoid deficiency (27).

Corticotroph cells produce several active peptides derived from

the cleavage and processing of the precursor gene POMC (33).

These POMC-derived peptides can lead to behavioral change when

injected into rats (34). Furthermore, ACTH fragments devoid of

adrenal function can also prompt behavioral change (35), although

mechanisms responsible for rapid behavioral effects of pituitary

peptides have yet to be reported. Also, fast glucocorticoid effects on

neural activity have been documented in multiple brain areas in

mammals (36–38), and behavioral correlates of glucocorticoid

injections occurring within minutes after injection have also been

reported (39–41). However, despite these advances, the limited

accessibility of the hypothalamus, pituitary, and adrenal gland

along with the coupled release of brain neuropeptides and

peripheral hormones upon stress onset has made it difficult to

specify rapid behavioral modulation by the pituitary-adrenal leg of

the HPA axis.

Larval zebrafish are particularly suitable for neuroendocrine

research since the tissues involved are functionally conserved and

optically accessible and behavioral testing can be performed with

full control of the environment (11, 42–45). Recent evidence from
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larval zebrafish highlights the role of the pituitary-interrenal leg of

the HPI axis in rapidly modulating adaptive responses to stressors

(43). Using optogenetic manipulation of pituitary corticotrophs in

combination with novel assays for measuring goal-directed actions

in short timescales, we showed that increased corticotroph cell

activity upon the onset of stress can enhance cortisol release from

steroidogenic cells and allow rapid adjustments of locomotion,

stressor avoidance, and stimulus responsiveness (i .e . ,

performance), which aid in coping with stressors (43). We

hypothesized that such enhanced performance (43, 46) may be

absent in rx3-/- mutants due to the lack of the rostral pomc cluster.

Here, we first tested behavioral responses to both stressful and non-

stressful stimuli in rx3-/- mutant larvae and show that they respond

to thermal (stressful) and subtle mechanosensory (non-stressful)

inputs as wild-type (rx3+/+) larvae do. Then, we report the absence

of stress-induced performance enhancement along with changes in

neurosecretory cell projections, neurohypophyseal innervation, and

stress hormone release when rx3 function is lost.
Results

Larvae lacking rx3 do not show
increased levels of circulating cortisol
after stressor exposure

We deployed three main approaches. Firstly, we exposed wild-

type (rx3+/+) and mutant (rx3-/-) larvae to a stressor of moderate

intensity. To pinpoint effects invariant to stressor identity, we used

not just one, but three different stressors: pH drop (pH),

hyperosmotic medium (salt), or fast water flows (flows) evoking

mechanosensory stress (see also Methods). Each of these

stimulations causes cortisol, the final effector of the HPI axis in

humans and zebrafish, to increase in a stimulus intensity-dependent

manner, as established elsewhere (10, 43, 46–49). To compare the

level of HPI axis activation produced by these stimulations, we

measured whole-body cortisol directly after stressor exposure. We

found that rx3-/- mutants did not show increased levels of cortisol

after stressor exposure, in contrast to wild-type larvae (Figure 1),

confirming altered HPI axis function upon stress onset in

rx3-/- mutants.
HPI axis elements in rx3+/+

and rx3-/- larvae

Secondly, we examined the expression of specific hypothalamic,

pituitary and interrenal markers in rx3+/+ and rx3-/- mutants

(Figure 2): corticotropin-releasing hormone (Crh), arginine

vasopressin (Avp) and oxytocin (Oxt) in the NPO, POMC in the

pituitary (19), and steroidogenic acute regulatory protein (StAR)

and tyrosine hydroxylase (TH) in the interrenal gland. Previous

work showed that NPO cells in rx3-/- mutant larvae express Oxt or

Crh (27). Using specific antibodies against Avp, Oxt and Crh, we

confirmed the presence of somata producing these peptides in rx3-/-

mutants and found that, compared to rx3+/+ larvae, the cell
frontiersin.org

https://doi.org/10.3389/fendo.2023.1187327
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Herget et al. 10.3389/fendo.2023.1187327
FIGURE 1

Glucocorticoid reactivity in rx3+/+ and rx3-/- zebrafish larvae. Whole-body cortisol in rx3+/+ (left) and rx3-/- (right) larvae (all data points shown, mean in red,
sample size in parentheses) after exposure to a pH drop (pH), hyperosmotic medium (salt) or stress-evoking fast water flows (flows). Baseline levels are those
of control (unexposed) larvae (unexp.), which were equally handled, omitting stressor exposure. Letters indicate results of Bonferroni’s tests (p < 0.001) after
one-way ANOVAs (left, rx3+/+: F(3,59)=42.8, p < 0.0001, right, rx3-/-: F(3,59)=2.7, p = 0.1), followed by post hoc comparisons.
FIGURE 2

HPI axis elements in rx3+/+ and rx3-/- zebrafish larvae. A-F’’, The hypothalamic part of the HPI axis, illustrated by dorsal (A, B, C, D, E, F) and lateral
(A’, B’, C’, D’, E’, F’) views of dorsally imaged IHC stainings of three NPO cell types. Cells producing Avp (A-A’), Oxt (C-C’), or Crh (E-E’) form a cluster
in the NPO (arrowheads), and many of their fibers innervate the pituitary (arrows) in rx3+/+ wild-types (wt) via the hypothalamo-hypophyseal tract
(red dotted lines). See also dense innervation in dorsal pituitary closeup views of more examples (A’’, C’’, E’’). In rx3-/- mutant larvae, cells producing
Avp (B-B’), Oxt (D-D’), or Crh (F-F’) cluster less densely in the NPO (arrowheads) and their numbers are reduced. Pituitary innervation is present in
some of the stainings (e.g., arrows in B, B’, F, F’) but not in others (e.g., D, D’); generally, the projection patterns appear drastically different. See also
complete lack of innervation in dorsal pituitary closeup views of more examples (B’’, D’’, F’’). G-H, The pituitary part of the HPI axis, illustrated by
dorsal (G, H) and lateral (G’, H’) images of ISH stainings for pomc. Two pituitary clusters are formed by pomc-positive cells in rx3+/+ wild-types (G-
G’). The rostral cluster is absent, and the caudal cluster appears larger in rx3-/- mutants (H-H’). Another example is shown for each case as well (G’’,
H’’). I-J’, The interrenal part of the HPI axis, illustrated by combined staining for star (I’, J’, ISH, steroidogenic part) and TH (I’’, J’’, IHC, chromaffin
part). The interrenal gland is intact and both cell types are present in rx3+/+ wild-types (I-I’’) and rx3-/- mutants (J-J’’). Abbreviations: Avp, arginine
vasopressin; Crh, corticotropic hormone; Oxt, oxytocin; PO, preoptic area; pomc, proopiomelanocortin; Pit, pituitary; PT, posterior tuberculum; Tel,
telencephalon; Th, thalamus. Rostral to the left. Scale bars: 100 µm (A-D’, E-F’), 25 µm (A’’-D’’, E’’, F’’, G-H’’, I, J).
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numbers appeared reduced in larvae lacking rx3 (rx3+/+: averages of

10 avp cells, n=3; 25.25 oxt cells, n=4; 8.33 crh cells, n=3; rx3-/-: 5

avp, 9 oxt, 3.7 crh cells, n=3; Figures 2A-F’). Immunohistochemical

staining (IHC) also revealed alterations in the projection patterns of

NPO cells producing Avp, Oxt or Crh in rx3-/- mutants. Fibers of

the hypothalamohypophyseal tract connecting the NPO to the

pituitary (Figures 2A’, C’, E’) were much less organized

(Figure 2B, B’, F, F’), and pituitary innervation was not always

detectable (e.g., Figure 2B’’, D-D’’, F’’). Fluorescent in situ

hybridization (ISH) confirmed the drastic reduction of the rostral

pomc cluster in the adenohypophysis of rx3-/- mutants (Figure 2G-

H’’) found previously (27). In addition, the remaining caudal cluster

of pomc cells appeared to be enlarged in comparison to wildtype

larvae (rx3+/+: averages of 27 rostral and 32.75 caudal pomc cells,

n=4; rx3-/-: 2 rostral and 47 caudal pomc cells, n=3). Furthermore,

analysis of the interrenal gland combining ISH for star-positive

steroidogenic cells (homologous to the adrenal cortex) and IHC for

intermingled TH-positive chromaffin cells (homologous to the

adrenal medulla) showed that both cell types are present and

appear to be unaffected in rx3-/- mutants (Figure 2I- J’’). These

observations are consistent with the view that altered HPI axis

function in rx3-/- mutants emerges from incomplete pituitary

innervation and the absence of the rostral pomc cluster, and not

from analogous morphological alterations of the interrenal gland.
rx3-/- mutants respond to stressful and
non-stressful stimuli, but do not show
stress-induced performance enhancement

Thirdly, using established protocols (43, 46, 50), we exposed

rx3+/+ vs. rx3-/- larvae to the above three different stressors of

moderate intensity (Figure 1, see also Figures 1A-C in 46) and

compared their post-stress onset performance on distinct innate

behaviors driven by either thermal (stressful) or subtle

mechanosensory (non-stressful) stimuli. We chose these

behaviors because they entail teleonomic actions that can occur in

the dark without optical stimulation, thus fitting the eyeless

phenotype of the rx3-/- larvae. Prior to the behavioral tests, we

confirmed that rx3+/+ and rx3-/- larvae had similar levels of basal

swimming at 28 °C under infrared illumination (See Methods)

(Unpaired two-tailed t-test, t(28)=0.18, p = 0.86; mean distance

(mm) swum in 120 s ± S.E.M: rx3+/+, 484.5 ± 21, N = 15; rx3-/-,

489.7 ± 20.7, N = 15), in line with previous data (51).

Larval zebrafish can select best conditions in a thermal-gradient

environment (46) and react to rising temperature with fast turns

and increased swim velocity (43). Therefore, in a first assay, we

examined the relationship between pre-exposure to either ‘pH’,

‘salt’, or ‘flows’, and the actions of individual larvae encountering

increasing temperature. For this, we monitored the movements of

single larvae swimming in darkness in a cylindrical chamber with

opposite inlet/outlet before and after a sharp increase in the

temperature of a slowly flowing medium (Figure 3A, see also

Methods). Due to both heat conduction and the layout of the

chamber, the rapidly increasing temperature of the flowing medium

caused a substantial temperature difference between the
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surroundings of the inlet (high temperature, zone 1) and the

outlet (low temperature, zone 2). As a result, larvae moving into

zone 1 under increasing temperature displayed fast turns and

increased swim velocity. To quantify their response to varying

temperature, we measured ‘differential speed’ (DS) as the

difference (in %) between the swim velocity (mm × (40 ms)−1) in

zones 1 and 2 for each larva, or ((swim velocity in zone 1−swim

velocity in zone 2)/swim velocity in zone 2) × 100, before (30 s) and

after (60–90 s) the onset of the rise in temperature (for details, see

Methods and Figures 3C–E in 43). In rx3+/+ larvae, the distribution

of DS values across groups showed that, under increasing

temperature, unexposed (control) subjects swam faster in zone 1,

and that larvae pre-exposed to any of the above stressors had

equally distributed DS values that were, on average, 353.1% higher

than those of control larvae (Figure 3B). In rx3-/- larvae, DS values

also revealed that unexposed subjects swam faster in zone 1 under

increasing temperature. However, stressor exposure did not

change the distribution of DS values across groups of rx3-/-

larvae (Figure 3C).

Hydrodynamic sensing provides fish with various benefits (52)

and larval zebrafish have been shown to respond to subtle,

structured (i.e., 1-5 Hz), locally generated water motions

(henceforth minute water motions, or mWMs) with reduced

locomotion and positive taxis towards the stimulus source

(Figures 4A, B), a response that is highly sensitive to stimulus

features and sensory background (50). In contrast to the above

stressful ‘flows’, mWMs are non-stressful (50); they cause

structured interactions between a larva’s surroundings and its

mechanosensory machinery. Therefore, in a second assay, we

compared the response to mWMs of both unexposed (control)

and pre-exposed rx3+/+ and rx3-/- larvae. To quantify a larva’s

response to mWMs, we measured integrals of distance swum

against time for equal periods before and during stimulation (see

also Methods and Figures 3F, G in 43). In rx3+/+ larvae, the

distribution of motion values across groups gave responses for

pre-exposed subjects that were, on average, 176.9% greater than

those of unexposed subjects (Figure 4C), in line with previous work

(43, 46). In rx3-/- larvae, by contrast, both unexposed and pre-

exposed subjects showed equally distributed values like those of

unexposed rx3+/+ larvae (Figure 4D). Thus, in rx3-/- larvae,

enhanced performance did not follow the onset of stress.

Altogether, the results showed that the (three) different stressors

of moderate intensity caused positively correlated changes in

cortisol, DS and motion values in rx3+/+, but not in rx3-/- larvae.
Discussion

Consistent with the HPI axis functioning as a cascade of one

element triggering release from the next, the loss of pomc cells in the

rostral pituitary (and reduced neuroendocrine cell projections)

prevents the increased release of cortisol under stress. This effect

resembles impaired cortisol release following ablation of the NPO

or the interrenal (42, 44) and supports the assumption that the

rostral cluster of pomc cells is the part of the pituitary required for

HPI axis function.
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It was previously reported that avp expression is lost in rx3

mutants, and that oxt cells seemed to be unaffected (27, 28). Our

results show that Crh, Avp, and Oxt are still detectable, but with

reduced cell numbers (avp -50%, oxt -64%, crh -56%) and

drastically altered projection patterns in rx3 mutants. Formation

of the neurohypophysis was shown to be blocked in rx3 mutants

(30, 31), which agrees with our observation that Oxt projections do

not seem to innervate the pituitary, while Crh and Avp projections

to the pituitary are strongly reduced. It is plausible that, like Oxt

projections, a neurohypophysiotropic subpopulation of Avp cells no

longer projects to the pituitary, since Oxt and Avp are known as the

typical magnocellular cell types that project to this part of the

pituitary that fails to develop. Avp is however also coexpressed in

Crh cells (53–57), and those cells project to the adenohypophysis,

which does form at least partially and would explain the sparse and

faint innervation we see there. The specific loss of pomc expression

in the rostral adenohypophyseal corticotrope cluster (rostral pomc

-93%, caudal pomc +44%) was also observed after treatment with

the GR agonist dexamethasone (8, 9, 58) and after chronic

optogenetic interrenal steroidogenic cell activation (59).
Frontiers in Endocrinology 05
While we focus on the HPI axis, it should be noted that loss of

rx3 affects hypothalamic patterning and cell type specification

beyond the NPO, pituitary, and interrenal gland. The

transcription factors otpa and otpb are expressed in the NPO and

both required for NPO cell differentiation (60). Otpb expression is

lost in rostral hypothalamic regions in rx3-/- (29). It is possible that

otpa is still expressed and compensates the loss of otpb. Previous

results suggested that rx3 is required for proper avp cell

differentiation (28), but that oxt and crh are still expressed when

rx3 is lost (27). Our results demonstrating the presence of NPO cells

do however also show that their neuronal projections are much less

organized in rx3-/- and often fail to reach the pituitary. While both

hypothalamic and pituitary development are affected (26), other

indirect effects on the stress regulation system, such as impaired

axonal pathfinding during development, or changes to forebrain

structures beyond the NPO and pituitary, cannot be ruled out.

Apart from experiments on their locomotor reaction to light (61,

62), the behavior of rx3-/- larvae has remained unexplored until now.

Here, we present behavioral data that support the view that rx3-/-

larvae can display complex behavioral schemes like those of wild-
frontiersin.o
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FIGURE 3

Response to rising temperature in rx3+/+ and rx3-/- zebrafish larvae under basal and stressed conditions. (A) Representative 1 s swim paths from
larvae showing increased speed and turns near the inlet (bottom right arrow) as the temperature inside the swimming chamber increases faster in
zone 1. White dots indicate start positions. Scale bar, 2.5 mm. Adapted from 43. (B, C) Differential speed, i.e., the difference between swim velocity
(mm per 40ms) in zones 1 and 2 (in %), across groups of unexposed (control) and pre-exposed (to either ‘pH’, ‘salt’ or ‘flows’) rx3+/+ (B) and rx3-/-

(C) larvae before and after the onset of temperature rise (see also Methods). Sample size in parentheses. (B, C) Letters and asterisks indicate results
of Bonferroni’s tests (P<0.001) after two-way repeated measures ANOVAs; (B) time factor: F(1,56)=215.2, P<0.0001, treatment factor: F(3,56)=7.7,
P=0.0002, time × treatment factor: F(3,56)=9.2, P<0.000; (C) time factor: F(1,56)=163.0, P<0.0001, treatment factor: F(3,56)=0.2, P=0.91, time ×
treatment factor: F(3,56)=0.3, P=0.83.
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type larvae. Further studies focusing on other behavioral reactions/

responses to the environment could elucidate how impaired these

mutants are, and which types of behavioral motifs remain unaffected

despite major alterations in brain development. It is conceivable, for

example, that fast reactions involving reflex circuits via unaffected

brain regions operate just as well as in wild-types, and that more

elaborate responses that require suitably developed brain regions

like the hypothalamus are significantly hampered in mutants. It is

likely that various stress processing pathways (like catecholamine

release via the sympathetic nervous system) enable mutants to deal

with antagonistic environments. Several mutant alleles of rx3 have

been described besides the ‘strong’ allele (chkt25327, 66) studied

here, including a ‘weak’ allele (chkt25181) that lacks the severe

reduction in corticotrope cells seen in the strong rx3 mutants. While

still lacking eyes, the weak rx3 mutant larvae retain a wild-type

appearance of corticotrope cells and of cells expressing pomc in the
Frontiers in Endocrinology 06
arcuate nucleus and show normal basal cortisol levels as well as

circadian changes in cortisol (27). It would be interesting to examine

projection patterns of hypothalamic neurons as well as stressor-

derived cortisol reactivity and behavioral task performance in weak

rx3 mutants. The strong rx3 mutant’s failure to show enhanced

performance upon stress onset (43, 46) however supports the idea

that the pituitary-interrenal leg of the HPI axis plays a role in rapidly

modulating responses to stressors (43) and opens an opportunity for

further analysis of acute stress and behavior under deficient

pituitary-adrenal/interrenal interaction. Genetic tools to modify

corticotroph and steroidogenic cell activity are being developed

(43, 44, 59) and more mutants relevant for steroidogenesis are

now available (63, 64). These tools and mutants can be combined

with phenotyping, pERK immunostaining, and optogenetics to

provide further insights into neuroendocrine and behavioral

reactions under altered pituitary/interrenal function.
A B

DC

FIGURE 4

Response to minute water motions in rx3+/+ and rx3-/- zebrafish larvae under basal and stressed conditions. (A) Representative average trace of a
wildtype larva’s distance to the stimulus source (top) and swimming activity (bottom) after the onset of mWMs. Red arrow heads in A depict the
onset of stimulation. (See also Figure 3 in 50.) (B) Representative examples of consecutive x-y coordinates (swim trajectories) measured every 40
msec from rx3+/+ and rx3-/- larvae without (top) and with (bottom) mWMs. Top, 50 x-y coordinates per larva without mWMs (source off) measured
over the last 2 s before the onset of mWMs. Bottom, 500 x-y coordinates per larva with mWMs (source on) measured over the last 20 s before the
offset of mWMs. The time window in bottom (20 s) is enlarged 10 times relative to top (2 s) with the sole purpose of highlighting the mWMs-derived
lack of locomotion observed typically at the end of a 2 min stimulation period. (C, D) Motion level, i.e., the area under the swim velocity-time curve
over 120 s, across groups of unexposed and pre-exposed (same groups as in Figure 3B, C) rx3+/+ (C) and rx3-/- (D) larvae before and during mWMs
(see also Methods). Sample size in parentheses. (C, D) Letters and asterisks indicate results of Bonferroni’s tests (P<0.001) after two-way repeated
measures ANOVAs; (C) time factor: F(1,56)=359.3, P<0.0001, treatment factor: F(3,56)=1.6, P=0.20, time × treatment factor: F(3,56)=5.6, P=0.002;
(D) time factor: F(1,56)=317.0, P<0.0001, treatment factor: F(3,56)=0.03, P=0.99, time × treatment factor: F(3,56)=0.14, P=0.94.
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Methods

Zebrafish husbandry and handling

Zebrafish breeding and maintenance were performed under

standard conditions (65). Heterozygous rx3+/- fish (‘strong’ allele

chkt25327, 66) were in-crossed and embryos collected in the

morning and raised on a 12:12 light/dark cycle in E2 medium at

28 °C. rx3+/- offspring was screened for homozygous mutants based

on morphology (i.e., strong pigmentation and absence of eyes in

rx3-/-), as described elsewhere (66). All experiments were carried out

with larvae at 6 days post fertilization (dpf). Tests were performed

between 09:00 hours and 18:00 hours, with different experimental

groups intermixed throughout the day. Zebrafish experimental

procedures were performed according to the guidelines of the

German animal welfare law and approved by the local

government (Regierungspräsidium Karlsruhe; G-29/12).
Whole-mount fluorescent in situ
hybridization, immunohistochemistry,
and imaging

Riboprobes for the steroidogenic acute regulatory protein (star)

(9) and pomc (19) were synthesized from linearized plasmids

following instructions provided with the digoxygenin labeling mix

(Roche, #11277073910). Whole-mount fluorescent in situ

hybridization and immunohistochemistry were performed as

described elsewhere (67, 68), using primary rabbit antibodies

labeling Avp, Oxt (5), Crh (Advanced Targeting Systems AB-02,

RRID : AB_171828), TH [(69), RRID : AB_2631248] and the

secondary anti-rabbit antibody Alexa 488 (invitrogen). For

imaging, specimens were cleared in 80% glycerol (Gerbu) in PBS

for 1 h. Confocal stacks were recorded using a Leica SP5 confocal

microscope with a Nikon 20x glycerol objective. Each channel was

recorded sequentially to reduce interfering signals from overlapping

emission spectra. Zoom, dimensions, gain, offset, average, and speed

were adjusted for each stack to obtain the optimal image quality of

the desired volume. Stacks were evaluated using Amira 5.4 (Thermo

Fisher, SCR_007353) to create maximum intensity projections and

rotated voxel views. They were spatially restricted to the volume of

interest, excluding signals from planes in front or behind.

Brightness and contrast were adjusted for each channel, and

somata were counted by eye.
Stressors

Groups of thirty larvae in 30 mm Petri dishes were exposed to

three different stress protocols of moderate intensity using known

protocols (11, 43, 46, 47, 70, 71), each based on one of the following

stimuli: HCl (pH drop, ‘pH’), NaCl (hyperosmotic medium, ‘salt’),

or fast water flows preventing normal swimming (‘flows’). Larvae
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were then used for cortisol measurement or transferred to a custom-

made swimming chamber for behavioral testing. pH: larvae were

incubated for 3 min in either steady-state E2 medium (unexposed)

or E2 + hydrochloric acid (Merck, #109063) (pH = 4) at 28 °C under

white-light illumination. They were then washed three times with

E2 medium and kept in a small container for cortisol detection (6

min later) or transferred to the swimming chamber for behavioral

testing (12 min later). The wash and transfer period lasted 3 min (±

10 s) and was performed at room temperature. Salt: larvae were

incubated for 10 min in either steady state E2 medium (unexposed)

or E2 + NaCl (Merck, #106404) (NaCl concentration = 25mM) at

28°C under white light illumination. They were also washed three

times with E2 medium and kept in a small container for immediate

cortisol detection or transferred to the test chamber (5 min later).

The wash and transfer period also took 3 min (± 10 s) and was

performed at room temperature. Flows: larvae were presented with

stress-evoking fast water flows (71) caused by the rapid lateral

displacements of a silica bar (Polymicro Technologies, AZ, 360 µm

OD, Optronis GmbH; Kehl, Germany) fixed to a multilayer piezo

bender actuator (PICMA® PL140.10, Physik Instrumente (PI)

GmbH and Co. KG; Karlsruhe, Germany). The actuator had an

operating voltage of 0–60V, a maximum displacement of ±1000 µm,

and an unloaded resonant frequency of 160 Hz. The bender was

connected to a dual-piezo-amplifier (maximum voltage: 10 V), a

pulse generator and a TTL control box (USB-IO box, Noldus

Information Technology, Wageningen, The Netherlands) allowing

for computer control. The tip of the silica bar was submerged (2

mm) at the centre of a 30 mm Petri dish, half filled (1.8 ml) with E2

medium (orientation relative to water surface: 90°). The voltage

applied to the bender (Vact) determined the speed of the capillary’s

lateral displacements, or stimulus strength (in % relative to

maximum voltage). Groups of 30 larvae were exposed to 6

stimulation units delivered with an inter-stimulation-interval of

250 ms. Each unit consisted of 99 repetitions of 40 ms lateral

displacements. We used a Vact of 3. Stimulations were carried out

under white illumination at 28°C. After stimulation, larvae were

kept in Petri dishes for cortisol measurement (9.5 min later), or

transferred to the swimming chamber for behavioral testing, where

they remained without perturbation for 10 min before recordings.
Independent sampling

Cortisol and behavioral measurements were made on different

groups of equally treated larvae and therefore constitute fully

independent samples. For the behavioral measurements, each

replicate involved a single larva. These individual measurements

were made on larvae that had also been kept in wells containing a

total of thirty larvae per well. The number of single larvae thus

matched the number of independent wells. In this manner, the

density of larvae per well during stressor exposure remained a

constant factor for both the cortisol and behavioral measurements.

For each cortisol measurement, all thirty larvae in a well were used,

whereas each behavioral measurement involved only one larva - the
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remaining twenty-nine larvae in the well were used elsewhere. Each

replication was fully independent from the others thus avoiding

pseudo-replication.
Whole-body cortisol

Cortisol extraction and detection were carried out using a

customized ELISA protocol, as described elsewhere (70). Each

replicate consisted of a well with 30 larvae. The groups of thirty

larvae were immobilized in ice water after being exposed to either

‘pH’, ‘salt’, or ‘flows’, as described above. Unexposed larvae (control

samples) were collected after equal handling, omitting stressor

exposure. Samples were then frozen in an ethanol/dry-ice bath

and stored at −20 °C for subsequent extraction.
Test overview

Behavioral experiments using increasing temperature of the

flowing medium or minute water motions were conducted under

infrared illumination delivered through a custom-made array of

infrared-LEDs mounted inside a light-proof enclosure. The

complete behavioral setup was placed on a vibration-free platform

(Newport Corp, Irvine, CA, USA). Larvae were imaged at 25

frames s−1 (camera: ICD-49E B/W, Ikegami Tsushinki Co, Ltd,

Japan) with a lens (TV Lens, Computer VARI FOCAL H3Z4512

CS-IR, CBC; Commak, NY, USA) positioned above a cylindrical

custom-made swimming chamber. The swimming chamber

(internal diameter: 10 mm, height: 10 mm) had a transparent

bottom and two opposite overtures, inlet and outlet (width:

2.5 mm, height: 400 mm; (see also Figure S7B, C in 43), allowing

E2 medium to constantly flow at 200 ml min−1 by means of a

peristaltic pump (IPC Ismatec, IDEX Health and Science GmbH,

Wertheim, Germany). The chamber also had two cylindrical side

channels (internal diameter: 400 mm) opposite to each other

opening 200 mm above the transparent glass bottom, with their

longest axis oriented at an angle of 30° relative to horizontal. One

such channel held a thermocouple (TS200, npi electronics GmbH,

Tamm, Germany) monitoring the temperature inside the chamber

and providing feedback to a control system (PTC 20, npi electronics

GmbH; Exos-2 V2 liquid cooling system, Koolance, Auburn, WA,

USA) that either kept the flowing medium at 28 °C ( ± 0.1 °C) or

increased its temperature rapidly in a highly controlled manner (see

below). The second side channel allowed passage of the end of a

rigid silica capillary tube, or stimulus source (outer diameter:

350 mm, full length: 25 mm, Polymicro Technologies), submerged

∼400 mm into the chamber’s inner medium (depth: 5 mm). The

opposite end of the capillary tube was fixed to a multilayer bender

actuator (PICMA PL140.10, Physik Instrumente (PI) GmbH+Co.

KG, Karlsruhe, Germany) with an operating voltage of 0–60 V, a

maximum displacement of ±1,000 mm and an unloaded resonant

frequency of 160 Hz. The bender, coupled to a pulse generator, a

dual piezo amplifier and a TTL control system, produced
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unidirectional lateral displacements (of 50 mm and controllable

speed) of the capillary’s submerged end, creating minute water

motions (mWMs) within the chamber. The input voltage applied to

the actuator (0.5 V) determined the speed of the capillary’s lateral

displacements (see also 50). EthoVision XT 7 software (Noldus

Information Technology, SCR_000441) was used to monitor the

movements of individually swimming larvae. Prior to the test, each

larva was given an initial time of ten minutes to adapt to the

chamber’s conditions. Experiments were conducted at 28 ± 1°C,

unless otherwise stated. A thermocouple (npi electronics GmbH;

Tamm, Germany) connected to a temperature control system (PTC

20, npi electronics GmbH; Tamm, Germany; Exos-2 V2 liquid

cooling system, Koolance; Auburn, WA, USA) monitored the

temperature inside the swimming chamber. All the experiments

were performed in a blind fashion as to group identity. Control

animals for each group were handled in the same fashion but

omitting stressor presentation.
Thermal input

Single larvae were video recorded for 240 s with the temperature

of the flowing medium kept at 28 °C ( ± 0.1 °C). The input of the

temperature control system was then stepped up by 10 °C, causing

the temperature of the flowing medium to reach 34 °C after 120 s.

The rising temperature produced a temperature difference between

the area near the inlet (zones 1, high temperature) and the area near

the outlet (zone 2, low temperature). Such temperature difference

reached its maximum 60–90 s after the onset of temperature rise, a

time window used to measure ‘differential speed’. See also

Figures 3C, D in 43.
Minute water motions

Single larvae in the swimming chamber were video recorded for

120 s under infrared light and constant temperature. They were

presented with mWMs caused by 1 ms lateral displacements of the

silica capillary tube delivered at 1 Hz (input voltage: 0.5 V) for 120 s,

as described above and elsewhere (50). Motion before and during

stimulation was calculated using the integrals of motion over 120 s.
Statistics

All data are shown as boxplots (Figure 1, median and whiskers:

min to max) or as single measurement points (Figures 3, 4). We

used a random experimental design and ANOVAs for multiple

group comparisons (followed by Bonferroni’s post hoc tests).

Normality was tested using Kolmogorov–Smirnov, Shapiro–Wilk

and D’Agostino tests. Analyses were made with MS-Excel

(Microsoft Corp; Redmond, WA, USA, SCR_016137) and Prism

9 (Graphpad Software Inc, San Diego, CA, USA, SCR_002798).
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