
Prone-Olazabal, D, Davies, I and González-Galarza, FF

 Metabolic Syndrome: An Overview on Its Genetic Associations and Gene-Diet 
Interactions

https://researchonline.ljmu.ac.uk/id/eprint/22370/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Prone-Olazabal, D, Davies, I ORCID logoORCID: https://orcid.org/0000-0003-
3722-8466 and González-Galarza, FF ORCID logoORCID: 
https://orcid.org/0000-0003-4233-313X (2023) Metabolic Syndrome: An 
Overview on Its Genetic Associations and Gene-Diet Interactions. Metabolic

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Metabolic syndrome: an overview on its genetic associations and gene-diet 

interactions

Prone-Olazabal Denisse1, Davies Ian2, González-Galarza Faviel Francisco3,* 

1Faculty of Medicine, Autonomous University of Coahuila, Torreon, Mexico

2The Institute for Health Research, Liverpool John Moores University, Liverpool, United 

Kingdom. 

3Center for Biomedical Research, Autonomous University of Coahuila, Torreon, Mexico

* Corresponding author:

Dr. Faviel Francisco González-Galarza

Address: Center for Biomedical Research, Autonomous University of Coahuila, Gregorio 

A. García 198 Sur, Centro, 27000, Torreon, Coahuila, Mexico.

E-mail address: faviel.gonzalez@uadec.edu.mx

Abstract
Metabolic syndrome (MetS) is a cluster of cardio-metabolic risk factors that includes 

central obesity, hyperglycemia, hypertension, and dyslipidemias and whose inter-related 

occurrence may increase the odds of developing type 2 diabetes and cardiovascular 

diseases. MetS has become one of the most studied condition, nevertheless due to its 

complex etiology this has not been fully elucidated. Recent evidence describes that both 

genetic and environmental factors play an important role on its development. With the 

advent of genomic-wide association studies (GWAS), single nucleotide polymorphisms 

(SNPs) have gained special importance. In this review, we present an update of the 

genetics surrounding MetS as a single entity as well as its corresponding risk factors, 

considering SNPs and gene-diet interactions related to cardio-metabolic markers. Here, 

we focus on the conceptual aspects, diagnostic criteria as well as the role of genetics, 

particularly on SNPs and polygenic risk scores (PRS) for inter-individual analysis. In 
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addition, this review highlights future perspectives of personalized nutrition with regards 

to the approach of MetS and how individualized multi-omics approaches could improve 

the current outlook. 
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Introduction

In recent decades, chronic diseases, such as metabolic and cardiovascular disorders, 

have become particularly important worldwide. For almost a century now, a set of risk 

factors has been described to increase the risk of developing type 2 diabetes (T2D) and 

cardiovascular disease (CVD),1 two of the top 10 worldwide diseases that cause 

mortality.2 It is forecasted that by 2040, the metabolic risk factors of high blood pressure, 

high body mass index (BMI), and high fasting blood glucose will be among the five leading 

global risk factors for years of life lost (YLLs), and the differences between risk-

attributable YLLs in the better/worse health scenarios will be at least 2.6 times.3 The term 

"metabolic syndrome" (MetS) began to be used until earlies 1980s to identify 

cardiometabolic abnormalities and recognizing their deleterious synergistic role for 

health.1,4 These factors include central obesity, insulin resistance, dyslipidemia and 

elevated blood glucose, characterized by an increase in triglyceride (TG) and a decrease 

of high-density lipoprotein cholesterol (HDL-C) serum levels, as well as high blood 

pressure. Later, a model with insulin resistance was proposed as the central axis of this 

condition, although the obesity factor was omitted, being called as "syndrome x".5 Since 

its conceptualization, various definitions have been suggested for the diagnosis of 

metabolic syndrome. These include common clinical markers, although other biochemical 

markers associated with inflammation, cardiovascular risk and energy metabolism have 

been also described. 6,7 

Among the most common definitions (Table I), are those proposed by the world health 

organization (WHO) in 1989,8 which highlighted the presence of insulin resistance (or its 

substitutes) as essential components. Subsequently, in 2001, the US National 
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Cholesterol Education Program: Adult Treatment Panel III (NCEP-ATPIII) published its 

diagnostic criteria, focusing on the detection of people with higher cardiovascular risk by 

giving an equal weighting to the presence of all markers.9 In 2004, the International 

Diabetes Federation (IDF) proposed a definition that sought to be applicable for the 

detection of the risk of CVD and T2D worldwide in a simple manner.10 Central obesity 

was included as an essential marker, establishing different cut-off points for waist 

circumference, specific to each ethnicity, in conjunction with at least two additional factors 

for diagnosis. Interestingly, the IDF mentioned additional criteria for future MetS research, 

such as tomographic evaluation of visceral and hepatic adiposity, adipose tissue 

biomarkers, apolipoprotein B (Apo B), low-density lipoprotein cholesterol (LDL-C) particle 

size, formal measurements of insulin resistance and glucose tolerance test, as well as 

inflammatory and thrombotic markers.10

There are other proposals for definitions such as the European Group for the Study of 

Insulin Resistance (EGIR),11 the American Association of Clinical Endocrinologists 

(AACE),12 the American Heart Association/National Heart, Lung, and Blood Institute 

(AHA/NHLBI).13 However, the efforts to harmonize definitions resulted in a consensus to 

use the IDF definition by Alberti et al in 2009.14 Although these different diagnostic criteria 

for MetS vary in terms of the factor considered "central", all definitions include common 

clinical markers and have undeniably contributed to the detection of the increasing 

prevalence of MetS worldwide.15

Lately, the approach of concepts such as metabolic health and subphenotyping of 

metabolic risk has attracted attention to the scientific community. There is evidence which 

suggests that cardiometabolic risk stratification is not superior to established risk 
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prediction models. However, the addition of risk factors and the clustering approaches to 

identify subphenotypes might be informative to improve the prediction of cardiometabolic 

risk in subgroups of individuals with particular characteristics such as those in different 

BMI categories or with diabetes diagnosis. In addition, the communication of 

cardiometabolic risk to patients is easiest through the concept of metabolic health. 

Evidence is still missing with regards whether the allocation of individuals to a specific 

pathophysiological risk group could be helpful for prevention and treatment of 

cardiometabolic diseases.16

Due to the complex etiology behind the presence of each of the individual factors that 

comprise the MetS, its study as an interrelated entity becomes even more intricate. Its 

analysis across the ‘omics’ sciences offers a picture of greater potential, by improving the 

ability of novel biomarkers to refine risk assessment for the disease.17 Genetics and 

nutrigenetics stand out, explaining part of the interindividual variability in the presence of 

MetS and its relationship with dietary aspects. Although non-genetic factors such as diet 

and lifestyle remain the main trigger for the development of components of MetS linked 

to obesity, there is a growing evidence explaining how genetic variants, and their 

interaction with other environmental factors, modulate the risk of developing MetS.18

The aim of this review is to explore the most relevant and recent evidence on how genetic 

factors, particularly single nucleotide polymorphisms (SNPs) and their interaction with diet 

can determine an individual’s risk for developing MetS or maintaining optimal 

cardiometabolic health. In turn, the pathway and challenges towards personalized 

nutrition in cardiometabolic health are discussed.
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1. How do genetics affect cardiometabolic risk?

The risk components for MetS are complex entities, influenced by environmental factors 

such as diet, physical exercise, and lifestyle.19 The so-called "obesogenic environment" 

that promotes an unhealthy diet, sedentary lifestyle, along with aspects of urbanization 

and difficult access to adequate nutrition, also affect the other markers of cardiometabolic 

risk. 20

However, genetic variation remains an important force of phenotypic variation in MetS 

components.21 In polygenic studies of disease, single nucleotide polymorphisms (SNPs) 

have been widely associated with an individual's predisposition to develop 

cardiometabolic abnormalities, including components of MetS.22,23 The estimate of 

heritability of MetS as an entity varies between 10-30%.24-26 On the other hand, as 

individual components, HDL-C is the trait with the highest heritability (30-80%), followed 

by waist circumference (30-70%), systolic blood pressure (20-71%), TG levels (30-72%), 

diastolic blood pressure (10-50%), and insulin levels (20-55%).24,26 

Genome wide association studies (GWAS) and candidate gene studies have identified 

numerous SNPs significantly associated with the presence of MetS and its individual 

cardiometabolic components (Table II). 

One of the most recent GWAS using data from the UK Biobank,27 found 93 independent 

loci with a p-value <5x10-8, associated with the MetS as a binary trait. Eighty out of these 

93 variants had not been previously identified by their association with the trait; however, 

several variants had been associated with some of the individual components of the 

MetS. In a Korean population, 43 significantly associated loci were identified, in which 17 
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were novel.28 Moreover, the rs662799 variant in the APOA5 gene was associated with 

the presence of MetS, as previously reported in the Taiwanese population.29 The authors 

also found significant association of the rs16944558 SNP in the COLEC12 gene with the 

presence of MetS and an interaction with rs662799 in APOA5 that promotes high levels 

of TG and low HDL-C.29 Another study in India, comprising 10,093 individuals, reported 

two variants near the CETP gene, nominally associated with MetS, in addition to other 

modest signals reported for the first time.30 On the other hand, in the Han Chinese 

population, two loci were identified in the APOA5 and ALDH2 genes, rs651821 and rs671, 

respectively, associated with the presence of MetS. In combined analyses they reported 

ORs and 95% CI of 1.28 (1.20, 1.36) and 0.71 (0.67, 0.76) for MetS risk, with the presence 

of C and A alleles in rs651821 and rs671 SNPs, respectively.31

There is evidence of the widely studied cluster region APOA1/C3/A4/A5, through the 

rs964184 SNP, associated with the presence of MetS and several lipid phenotypes in 

Finnish cohorts.32 Also, in a population of European ancestry, 29 common variants 

associated with MetS (or at least with a couple of individual traits) were identified.33 Some 

of the genes that showed the greatest significance were LPL, CETP, APOA5, GCKR, 

LIPC, TRIB1, among others.

Notably, most of evidence indicates that the top genetic signals are located mostly in 

genes related to lipid metabolism and obesity pathways.34 Through metabolic and 

transcriptomic studies, it has been shown that most of the SNPs of greater association 

with MetS have shown significant association with various lipid metabolites such as very 

low-density lipoprotein cholesterol (VLDL-C),33 intermediate-density lipoprotein 

cholesterol (IDL-C) and Apo B and none with glucose or glycoproteins,32 which may 
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indicate that the genetic contribution to the development of MetS could be rather directed 

by the lipid component of this entity.

Regarding the approach of complex diseases such as MetS, it has been suggested to 

analyze their genetic etiology through polygenic risk scores (PRS), which include a series 

of risk alleles previously associated with the presence of MetS,35 either as an entity or 

their individual traits, which added and weighted (beta or OR values) result in a score that 

can help to identify individuals with greater genetic susceptibility to develop the disease.

In the past, there were studies including PRS of tens of loci that conferred a higher risk 

of developing T2D compared to that of individual SNPs.36 However, these marginally 

improved the predictive power of previously known clinical risk factors.37 With the 

appearance of GWAS in larger cohort populations, the number of variants associated with 

MetS has increased, improving the predictive power of derived PRS.38,39

The aim of identifying and classifying risk groups at the extremes of the population 

distribution (i.e., those with highest percentiles) is becoming more popular due to the 

progress made in including a greater number of SNPs in the calculation of MetS PRS, as 

well as larger sample sizes.40,41 However, the fact that greater inclusion of ethnically 

diverse populations, which are currently underrepresented in the GWAS is required, 

should not be overlooked.42 This will allow in the future to improve the generalization and 

application of the indisputable benefits that PRS could bring to the clinical practice.

2. Genetic variants (SNPs) associated to cardiometabolic clinical markers

2.1 Obesity
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Depending on the selected criteria, obesity can be one of the central components of 

MetS. However, due to its complexity, much of the etiology behind its origin is still 

unknown. Higher genetic susceptibility can increase the risk of obesity, although the 

impact of genes is greater when combined with the increasingly worsening obesogenic 

environment.43 Recent evidence suggests that despite midlife obesity being 

independently associated with CVD, obesity influenced by genetic predisposition (i.e. 

individuals with genetically predicted high BMI) is less harmful than obesity influenced by 

environmental factors (i.e. individuals with obesity despite a genetically predicted low 

BMI). However, additional influencing factors such as other genetic variants could still 

affect these associations.44 

Obesity is defined by an excessive accumulation of fat mass, however, there is large 

variability in the risk associated to metabolic disease according to different 

subphenotypes. Evidence suggests this could be partly due to the variability in fat 

distribution patterns.45 The accumulation of visceral fat and an impaired ability to expand 

subcutaneous fat in the lower part of the body contributes to the increased incidence of 

cardiometabolic diseases.46 In addition, genetic factors are a key determinant of fat 

distribution47 with an heritability of 22-61%.48 Within the last decade, hundreds of genetic 

variants associated to measures of fat distribution have been identified in GWAS,49 mostly 

in European population. This is important since fat distribution patterns also differ among 

populations. For example, Asians have lower BMIs but higher total body fat and visceral 

fat accumulation than Europeans.48

The ratio of visceral adipose tissue (VAT) to subcutaneous adipose tissue (SAT) and the 

non-alcoholic fatty liver disease (NAFLD) lately named “metabolic dysfunction-associated 
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fatty liver disease” (MAFLD), play important roles in the increase of associated 

cardiometabolic diseases. VAT drains directly to the liver through portal circulation and 

contains a larger number of inflammatory and immune cells and a greater percentage of 

large and more metabolically active adipocytes, more sensitive to lipolysis and more 

insulin-resistant than SAT adipocytes.50 Since most of the mechanisms of lipid 

metabolism are mediated by hormonal pathways,51 and the adipose tissue is an 

endocrine organ itself, there is evidence that supports the association of adipokines to 

the development of metabolic diseases and T2D trough VAT augmentation. The chronic 

inflammation, neurohormonal activation and insulin resistance are among the proposed 

mechanisms involved in the progression of MetS and its comorbidities (Figure 1).52 

Notably, MAFLD is also an important cause of insulin resistance, its close relationship 

with visceral obesity conceals the role of fatty liver from VAT as the main pathomechanism 

of this relationship.53 To this matter, the determination of major hepatokines and 

adipokines has been proposed to cluster insulin resistance in MAFLD and VAT in a 

pathomecanism-based way, i.e. attempt to differentiate the drivers of insulin resistance in 

metabolic dysregulation of white adipose tissue, skeletal muscle, or liver dysfunction. 

Non-syndromic obesity can be classified as monogenic and polygenic, according to the 

participation of genes in its etiology. With regards the monogenic form, severe obesity 

(mainly early onset) is principally characterized by relative hyperphagia. Evidence 

suggests that around 5% of severe obesity cases in children can be attributed to this 

origin.54 Four of the genes of the greatest association and study include the leptin (LEP), 

leptin receptor (LEPR), pro-opiomelanocortin (POMC) and melanocortin receptor-4 

(MC4R).55 These genes belong to the leptin/melanocortin pathway and play an important 
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role in the regulation of food intake since they encode proteins that act in the process at 

the hypothalamic level. These are centrally or peripherally produced molecules that 

influence appetite regulation.56 Genetic variants in those genes have shown to be 

associated with variability on BMI and weight. For example, the variant Tyr35Ter 

(rs13447324) in MC4R has been associated with an excess of 7 kg of greater body weight 

in carriers (approximately 1 in 5,000 people).57 However, despite being a mutation that 

results in the loss of total function (LoF) of MC4R,58 it has been found to present 

incomplete penetrance, partly because normal-weight carriers of monogenic variants 

possess additional common variants that predispose them to a lower weight,59 i.e., its low 

polygenic risk for obesity could compensate, at least in part, the risk caused by the 

mutation in MC4R.

In counterpart, obesity of polygenic origin, also called ‘common obesity’, represents the 

highest proportion of cases in the world, besides to being complex and exacerbated by 

the environment. The genetic component of common obesity is mostly given by the 

cumulative presence of multiple common genetic variants with little individual etiological 

contribution although, when added together, it can explain a greater proportion of the 

variability of body weight. The most studied variants for their abundance in the human 

genome are also SNPs. To date, more than 900 nearly independent SNPs associated 

with BMI,60 and around 346 SNPs with body fat distribution.49 To quantify the genetic 

predisposition of an individual, several PRS models have been proposed, including 12,61 

20,62 32,63 56,64 97,65 and 941 SNPs,60 managing to explain a maximum proportion of the 

phenotypic variation of BMI of around 6%.60 There are also several studies where these 

PRS have been replicated.43 Furthermore, some genome-wide polygenic scores (GPS) 
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included 2.1 million genetic variants for the quantification of genetic predisposition to 

obesity over the life course of more than 300,000 people of European ancestry. 

66 Longitudinally, a significant weight gradient was found between GPS deciles, which 

began in early childhood and reached a maximum difference of 12 kg at age 18. Notably, 

GPS allowed to identify 1.6% of the population with an increase in BMI like those with 

monogenic mutations. The model explained about 9% of the BMI variation, similarly to 

those results obtained in a Norwegian population.67

Despite the modest, but significant advances in the study of polygenic obesity, there is 

still a gap between BMI heritability that can be explained by SNPs (h2
SNPs) according to 

the literature (21-30%).65,68 However, the great potential of increasing the sample size of 

several populations in GWAS to detect a greater amount of common and rare associated 

loci and thus be able to explain more proportion of the total h2
SNP is recognized.

Among the genes associated with obesity, the most widely studied is the fat mass and 

obesity-associated (FTO) gene.69 In 2007, its polymorphisms were the first to be 

reproducibly associated with BMI.70 Since then, the association of being a carrier of risk 

alleles in SNPs in the FTO gene has been replicated by several authors.71 However, the 

contribution of these SNPs to BMI variability remains modest, with carriers of the 

rs9939609 risk allele estimated to weigh about 3 kgs more and being 1.67 times more 

likely to develop obesity compared to non-carriers.70 Other genes identified by their 

association with obesity have been studied. Interestingly, many of them have been found 

to be involved in neurogenesis, central nervous system (CNS) development, and in 

signaling pathways related to appetite and dietary intake regulation.60 A compendium of 

human genes that regulate eating behavior and body weight was published, including 578 
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genes which were ordered according to their biological role in the regulation of body 

weight and classified by their expression patterns or functional characteristics.72

Among the main genes whose loci have been identified and replicated by various studies 

for their association to body weight and BMI are FTO ,70,73 MC4R,74,75 POMC,63,76 BDNF, 

77,78 TCF7L2,49,65,79 LINC01875, TMEM18,80-82 ADCY3,49,76,83 among many others.

Beyond genetic factors, some of the latest advances in obesity study have been directed 

to the identification of multiomic signatures of BMI. Despite the use of a single targeted 

metric (for example, BMI) or a single specific biomarker that provides useful information 

to quantify health and disease states, multiomic blood profiling which includes human 

genomes and longitudinal measurements of metabolomics, proteomics, clinical 

laboratory tests, gut microbiomes, physical activity, and health/lifestyle data, could help 

close the knowledge gaps between BMI and heterogeneous physiological states in a 

multifaceted manner. With regards to lifestyle interventions, the multiomic signatures can 

predict responses in a heterogeneous way; omics-inferred BMI behaves different than the 

actual BMI measurement in response to treatment. This highlights the fact that multiomic 

profiling could be a resource to quantify the changes in obesity status and metabolic 

health for predictive and preventive medicine.84

2.2. Insulin resistance and type 2 diabetes

Insulin resistance, defined as the inability of insulin to stimulate the use of glucose in the 

body that can eventually lead to T2D, is the central component of most pathophysiological 

models of MetS. For several authors, this represents the underlying factor for the 

development of this pathological entity. Insulin sensitivity/resistance is closely related to 
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coronary artery disease (CAD),85 one of the main outcomes of MetS. Its presence has 

increased in recent years, with a current prevalence of 15.5-40% worldwide.86

Depending on the diagnostic criteria, insulin resistance may be represented by different 

biochemical concepts and parameters. The inclusion of easily accessible biochemical 

parameters associated with hyperglycemia and insulin resistance, such as plasma 

glucose measurements, arose from the need to have criteria that would allow a lower cost 

and affordable diagnosis, particularly in studies including large study populations.87 

According to the American Diabetes Association (ADA), diabetes could be diagnosed by 

a fasting plasma glucose ≥126 mg/dl (7.0 mmol/L) or a 2-h plasma glucose ≥200 mg/dl 

(11.1 mmol/L) during OGTT or A1C ≥6.5% (48 mmol/mol) or by classic symptoms of 

hyperglycemia or hyperglycemic crisis, a random plasma glucose ≥200 mg/dL (11.1 

mmol/L).88

Insulin resistance has been studied through GWAS and association studies where 

common genetic variants involved in the presence of T2D as a phenotypic trait have been 

evaluated. To date, more than 240 loci associated with T2D have been found, 

corresponding to more than 400 genetic variants.41 The vast majority of loci related to this 

pathology are those associated with insulin secretion and beta cell function in the 

pancreas and to a lesser extent with insulin resistance.89 This has a possible explanation 

in the complex etiology and pathophysiology of T2D, as well as its close relationship with 

obesity and plasma lipid levels. Some of the genes that have shown association with IR 

and T2D are PPARG,90 IRS1,91 ADAMTS9,92 KLF14,93 ARL15,94 FTO,95 among others.

One of the genes with the greatest contribution to T2D susceptibility is TCF7L2 ,96 in 

which the risk allele has been related to insulin secretion.97 These effects have been 
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replicated in various populations by GWAS,83,98 with the SNP rs7903146 being one of the 

most relevant SNPs. This SNP, which is located in an intronic region, has similar allelic 

frequencies worldwide, with the exception of East Asia where the risk allele remains 

relatively rare.99 The presence of the T allele in rs7903146 has been shown to strongly 

predict the development of T2D and it is associated with increased expression of TCF7L2 

in human islets, as well as altered insulin secretion both in vitro and in vivo studies.100 

Another gene of great importance for its association with diabetes mellitus, insulin 

resistance and MetS is HMGA1 which has among its functions the regulation of insulin 

receptor (INSR) gene expression. HMGA1 is a master regulatory factor for 

gluconeogenesis and glycogenolysis, as well as a positive regulator of insulin expression; 

101 consequently, being associated with the presence of T2D in different populations.102

One of the studies of greater collaborative effort aimed to elucidate the genetic 

architecture of T2D  hypothesized that the heritability of T2D, not yet fully explained by 

common variants, could be given by low-frequency variants.103 However, the associated 

variants that they found (approximately 126 variants) were mostly common and identified 

by previous studies.

2.3. Serum triglyceride and HDL cholesterol levels

The presence of MetS increases the risk of cardiovascular disease and atherosclerosis, 

however, alterations in lipid metabolism are an independent risk factor for CAD.104 The 

lipid markers considered for MetS are TG and HDL-C levels. The presence of 

hypertriglyceridemia (HTG) alone, defined as an elevation of circulating TG levels, usually 

>150-175 mg/dL (1.71-2 mmol/L), or in conjunction with other abnormalities such as 
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decreased levels of HDL-C tend to cluster in families.105 Genetic factors influencing 

plasma TG levels explain about 40% of interindividual variations, while 49% is explained 

on the variation of the TG/HDL-C index.106

In the postgenomic era, HTG, formerly classified as primary or secondary, is accepted as 

a complex ethology phenotype, except for the very rare familial chylomicronemia 

syndrome (FCS), with an autosomal recessive Mendelian inheritance. In most cases, 

their predisposition is given by the presence of common genetic variants of small effects 

that interact with rare heterozygous variants of great effect in genes that regulate the 

synthesis or catabolism of triglyceride-rich lipoproteins or with non-genetic factors, this 

can lead to the expression of more severe HTG phenotypes.107

GWAS studies have identified SNPs in at least 45 loci associated with plasma TG levels 

alone or in combination with other lipoproteins.108,109 For example, the locus 1q21-23 has 

been associated with different lipid traits such as HTG, where the group of genes 

APOA1/C3/A4/A5 is related to the presence of FCS.110 Similarly, the USF1 gene is related 

to various target genes related to glucose and lipid metabolism.111

The polygenic risk for HTG can be quantified by using PRS.112,113 A recent study found 

that ~2% of patients with severe HTG had a high PRS (16 loci) compared to 9.5% of 

normolipemic controls.107 However, the genotype-phenotype relationship is probabilistic 

and non-deterministic. Some of the loci belonging to this PRS are located in the DOCK7, 

KLHL8, GALNT2, MLXIPL, LPL, FADS, APOA, CETP, SUGP1, PLTP genes, among 

others. The results found by recent studies suggest that non-genetic factors may lead to 

the presence of HTG in people with genetic predisposition, either through a rare variant 

or a high polygenic risk, or both.
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Low HDL-C levels are a widely discussed risk marker for CAD and its functionality has 

been reappraised in recent years. Its role is mainly affected by both the heterogeneity of 

this lipoprotein class and the extensive remodeling of the HDL size and lipid and protein 

content during their physiological maturation.114 However, as a risk marker, represents 

the most common lipid abnormality in patients with CAD.115 HDL particles have multiple 

antiatherogenic effects, mainly through the removal of cholesterol from peripheral tissues 

to the liver, this reverse transport of cholesterol prevents macrophages from arterial walls 

from turning into foamy cells, which are progenitors of atherosclerotic plaque.116 

Additionally, HDL has antioxidant, antithrombotic, and anti-inflammatory properties.117

As for the genetic factors associated with decreased HDL-C levels, there are monogenic 

forms that lead to extreme phenotypes; however, these causes are rare and explain a 

minimal portion (∼1%) of low HDL-C cases. For example, APOA1 deficiency causes 

HDL-C levels <5 mg/dl (0.13 mmol/L), normal LDL-C and TG levels .118,119 Likewise, 

defects in genes such as ABCA1,118,120 LCAT,121 and LPL,122 among others, cause 

deficiencies and familial syndromes causing extremely low HDL-C levels.

The most common genetic disorder causing low HDL-C levels is familial 

hypoalphalipoproteinemia (FHA)123 but even in this case, studies suggest that most 

hereditary patterns for low HDL-C are polygenic.124 Several studies have constructed 

PRS for the risk of low HDL-C in conjunction (or not) with other lipid traits and risk of CVD. 

107,125 

Regarding the relationship of HDL-C levels and MetS, a 5-year longitudinal follow-up 

study showed that the incidence of MetS is higher in individuals with decreased HDL-C 
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levels.126 The authors mention that this important factor appears to be a pre-existing 

phase of MetS and could be a crucial state for prevention.  

2.4 High blood pressure

Hypertension (HTN) is characterized by high systolic and/or diastolic blood pressure, and 

is a major risk factor for heart failure, stroke, kidney disease, and cardiovascular death. 

127

Several studies, mostly GWAS have set out to reveal the genetic architecture of HTN, 

uncovering hundreds of novel common and rare variants in trans-ethnic study populations 

of hundreds of thousands individuals.128,129 Additionally, most blood pressure-associated 

SNPs are non-coding and found in regulatory elements of the genome.130

However, being an extremely complex entity, the environment and gene-environment 

interactions have a contribution of great weight that is not taken into account in most 

current GWAS studies.131 Within these elements of interaction, prenatal environmental 

factors such as intrauterine and parental132 and other postnatal factors such as the living 

environment, lifestyle, age, sex, socioeconomic status, ethnicity, among others, are also 

considered.133 

Environmental risk factors traditionally considered such as an excess sodium in the diet 

were adaptive traits for the hot, humid, salt-free environment of ancient Africa. From an 

evolutionary point of view, there is a discrepancy between the current lifestyle and that of 

ancestors, which results in a poor adaptation that can lead to an increased risk of 

developing HTN.134
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In Figure 2, we present a summary of some of the genes most frequently mentioned in 

GWAS and candidate genes studies.

3. Gene-diet interactions associated to cardiometabolic markers.

The study of the genetic component, responsible for the variation in phenotypes 

associated with MetS, has managed to explain only a proportion of this variability. Part of 

this "lost heritability" could be given by the interactions between genes and the 

environment (GxE) of individuals.135 

One of the most studied GxE with regards to the components of MetS are those of the 

FTO gene and its interaction with diet. For example, in a recent study in a Middle Eastern 

population, dietary fiber consumption was found to modulate the association of a PRS of 

6 SNPs in relation to obesity, where people with a higher PRS but a consumption ≥14 

g/day were less likely to develop obesity, compared to those with lower PRS but low fiber 

intake.136 Previous studies also found similar interactions.137,138

Other interactions of the FTO gene with dietary patterns such as adherence to a 

Mediterranean diet have been studied, for example, modulating the risk of diabetes. The 

increased risk effect of diabetes in individuals with the common variant rs9939609 is 

neutralized with high adherence to the Mediterranean diet.139 

Similarly, a study that included a PRS with 16 genetic variants previously associated with 

obesity found significant interaction between higher animal protein intake and higher body 

fat mass in people within the higher genetic risk group, and a protective effect of higher 

plant protein intake for people belonging to the lower genetic risk group.140
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The consumption of fried food has also shown interaction in a PRS with 32 variants 

associated with BMI, where the greatest effect of genetic predisposition was observed in 

individuals with a high consumption (≥4 times per week) of fried foods, compared to those 

who consumed them less than 1 time per week, regardless of their high PRS.141

Sodium intake is a significant environmental factor in modifying blood pressure values, 

and unexplained blood pressure variability in GWAS may result from gene-environment 

interactions (GxE).142,143 For example, sodium consumption has shown interaction with 

various loci in genes such as CLGN, MKNK1, EPHA6 and CASP4,143 among others; 

however, the mechanisms through which these regulate blood pressure are still 

unknown. Nevertheless, interesting interaction trends have been observed, where people 

with higher PRS are less sensitive to modifications in dietary sodium intake, denoting that 

apparently for them the greatest influence comes from genes.144

On the other hand, it has been postulated that dietary fatty acid consumption might not 

uniformly influence individuals' blood lipid levels. A recent publication showed evidence 

of interactions of variants such as rs5882 in the CETP gene, where a higher consumption 

of monounsaturated fatty acids in carriers of the main allele presented lower serum TG 

levels, as well as the rs13708 variant of the LPL gene whose interaction was observed in 

higher HDL-C levels when consuming a diet with higher lipid content.145

These findings may explain the variation in the effectiveness of certain dietary 

interventions for the prevention or treatment of obesity and other traits of MetS, 

highlighting the importance of a healthy diet and lifestyle, especially in people who might 

have a higher genetic susceptibility to develop MetS.
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4. What is the future of personalized nutrition for the improvement of 

cardiometabolic health?

Personalized nutrition has its focus on the design of "tailored" nutritional 

recommendations and treatments, based on the individual genetic arrangement, to treat 

or prevent various pathologies and metabolic disorders.146 Personalized nutrition is a 

strategy that can help individuals to adopt lasting changes in dietary behavior, which are 

beneficial to their health.147

As previously mentioned, several studies focused on gene-environment interaction have 

provided relevant results in the study of MetS and its components. These could be a key 

piece in the implementation of personalized interventions based on genetic 

arrangement. Additionally, the fact that nutrigenetics has improved from analyzing 

individual genetic variants to integrating PRS and looking for complex interactions with 

pathological states such as obesity, denotes the important and necessary evolution in this 

field.148 However, what evidence do we have so far of its effectiveness and 

implementation in the clinical practice? Through the generation of PRSMetS and their 

validation on big datasets it has been possible to test early prevention strategies in 

individuals with high genetic risk, demonstrating benefits, for example, in reducing 

cardiometabolic events such as atherosclerotic cardiovascular disease (Fig. 3).149

Furthermore, there are some studies that have evaluated the effectiveness of 

interventions based on personalized nutrition.150-152 These results suggest that the use of 

this strategy offers advantages over generalized "one-size-fits-all" diets, improving clinical 

outcomes and achieving greater reductions in discretionary food intake, as well as, 

facilitating the change in people's dietary behavior and improving acceptance and 
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adherence to nutritional treatment. However, multiple questions remain, and it is not 

entirely clear which aspects of personalization offer the greatest advantage over 

generalized strategies.

Regarding cardiometabolic health, studies have revealed that different dietary patterns 

and macronutrient intake have weight in modifying and reversing the presence of MetS 

components.153,154 For example, there have been revealed genetic variants that could be 

considered when referring to certain dietary treatments, such as the low-carbohydrate 

diet, whose results could be affected by the presence of SNPs such as rs694066 (GAL)155 

and rs5950584 (AGTR2),156 where people carrying different alleles tend to lose more or 

less weight and body fat when following a ketogenic diet.

There are recent GWAS that have been shown evidence about the potential clinical utility 

in the assessment and treatment of MetS and other related cardiometabolic traits (Table 

III).149,157 

However, it is necessary to consider other factors, not only genetic, but others such as 

epigenetics, metabolomics, microbiome, to name a few, in the study of such complex 

entities as MetS.158 This leads to the advancement from personalized nutrition to 

precision nutrition, whose main goal is to efficiently anticipate people's response to dietary 

recommendations, by considering the greatest number of biological-environmental 

aspects associated with health and disease states.159,160
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Conclusions

There is evidence of the important role of genetics on the development of MetS and its 

individual components, however, there is still an important gap in the clinical 

implementation of personalized nutrition, successfully achieving prevention and 

decreasing of the prevalence of this pathological entity around the world. The most 

current evidence mentions that the study of the interaction of genes with the growing 

obesogenic environment is possibly a key piece to unite this gap. The advance towards 

precision nutrition in cardiometabolic health issues is still in its infancy, however, its 

progress has been increased in the last decade with the growth of omics sciences.
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≥ 3 risk factors≥ 3 risk factors

Table I. Diagnostic criteria for MetS, according to ATP III, WHO, IDF and AHA/NHLBI.

Risk factors ATP III9 WHO8 IDF14 AHA/NHLBI13

Blood pressure ≥130/≥85 mmHg ≥160/≥90 mmHg ≥130/≥85 mmHg ≥130/≥85 mmHg or 
drug treatment

Glucose levels Fasting: ≥110 
mg/dL (6.1 mmol/L) 

or T2D

IGT or IFG
orT2D and/or IR

≥100 mg/dL (5.6 
mmol/L) or drug 
treatment or T2D

≥100 mg/dL (5.6 
mmol/L) or T2D or 

drug treatment

 Triglyceride levels ≥150 mg/dL 
(1.7 mmol/L)

≥150 mg/dL 
(1.7 mmol/L)

≥150 mg/dL
(1.7 mmol/L) or drug 

treatment 

≥150 mg/dL
(1.7 mmol/L) or drug 

treatment

HDL-C
<40 mg/dL 

(1 mmol/L) M 
<50 mg/dL 

(1.7 mmol/L) W

<35 mg/dL 
(0.9 mmol/L) M 

<39 mg/dL 
(1 mmol/L) W

<40 mg/dL 
(1 mmol/L) M 

<50 mg/dL 
(1.7 mmol/L) W or 

drug treatment

<40 mg/dL 
(1 mmol/L) M 

<50 mg/dL 
(1.7 mmol/L) W or drug 

treatment

Abdominal 
obesity

WC >102 cm 
(40 in) M

>88 cm (35 in) W

WHR >0.90 M
>0.85 W 

and/or BMI >30 
kg/m2

Population- and 
country-specific 

definitions

WC ≥102 cm
(≥40 in) M

≥88 cm (≥35 in) W

Microalbuminuria - Urinary excretion 
rate ≥20 µg min-1 or 
albumin:creatinine 

ratio ≥20 mg g-1

- -

Diagnosis of 
MetS:

IFG, IGT or T2D 
and/or IR together 
with ≥2 additional 

risk factors

Abdominal obesity 
and ≥2 risk factors

AHA/NHLBI, American Heart Association/National Heart, Lung, and Blood Institute; ATP III, the Panel for the 
Treatment of Adults III; BMI, Body Mass Index; F, female; HDL-C, high-density lipoprotein cholesterol; IDF, 
International Diabetes Federation; IFG, impaired fasting glucose, defined by WHO as  fasting <110 mg/dL (<6.1 
mmol/L) and 2-h post glucose load ≥110 mg/dL (≥6.7 mmol/L) <180 mg/dL (<10 mmol/L); IGT, impaired glucose 
tolerance, defined by WHO as  fasting  ≥100 mg/dL (≥5.6 mmol/L) <110mg/dL (<6.1 mmol/L) and 2-h <120 mg/dL 
(<6.7 mmol/L); IR, insulin resistance; M, male;  MetS, metabolic syndrome; T2D, type 2 diabetes; WC, waist 
circumference; WHO, World Health Organization; WHR, waist-hip ratio.
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Table II. Principal GWAS published with metabolic syndrome as associated trait.

Publication 
year

Title Discovery sample 
and ancestry

Reference

2021 Genome-wide association analysis of metabolic 
syndrome quantitative traits in the GENNID 

multiethnic family study

1520 Multiethnic 161

2020 Genome-wide association study of metabolic 
syndrome in Korean populations.

7423 East Asian 28

2019 Genome-Wide Association Study of the Metabolic 
Syndrome in UK Biobank.

291107 European 27

2019 Genome-Wide Association Study of Metabolic 
Syndrome Reveals Primary Genetic Variants at 

CETP Locus in Indians.

2158 South Asian 30

2019 Identification of female-specific genetic variants 
for metabolic syndrome and its component traits 
to improve the prediction of metabolic syndrome 

in females.

4659 East Asian 162

2018 Multiple genotype-phenotype association study 
reveals intronic variant pair on SIDT2 associated 
with metabolic syndrome in a Korean population.

7198 East Asian 163

2018 New Common and Rare Variants Influencing 
Metabolic Syndrome and Its Individual 
Components in a Korean Population.

8373 East Asian 164

2017 Detection of susceptibility loci on APOA5 and 
COLEC12 associated with metabolic syndrome 

using a genome-wide association study in a 
Taiwanese population.

10300 East Asian 29

2017 Susceptibility loci for metabolic syndrome and 
metabolic components identified in Han Chinese: 

a multi-stage genome-wide association study.

1742 East Asian 31

2014 Pathway Analysis of Metabolic Syndrome Using a 
Genome-Wide Association Study of Korea 

Associated Resource (KARE) Cohorts.

8842 East Asian 165

2012 Genome-wide screen for metabolic syndrome 
susceptibility Loci reveals strong lipid gene 

contribution but no evidence for common genetic 
basis for clustering of metabolic syndrome traits.

10564 European 32

2011 A bivariate genome-wide approach to metabolic 
syndrome: STAMPEED consortium.

22161 European 33

2010 A genome-wide association study of the metabolic 
syndrome in Indian Asian men.

2554 South Asian 166
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Author, 
year

Populatio
n studied

PRS model Results Conclusions Potential Clinical utility

Song H 
et al., 
2022

3 Korean 
cohorts of 
28,445, 
8840 and 
4333 
individual
s.

PRS
MetS

-
ASCVD: 
construction 
of the most 
optimal 
combination 
of PRS’s for 
prediction of 
ASCVD.

6.7% of the 
population was 
at high genetic 
risk with 3.3-fold 
(95% C.I. 1.7-
6.1, p<0.001) 
higher risk for 
incident 
ASCVD. 

The polygenic risk 
of metabolic 
disease 
independently 
predicts those at 
an increased risk 
of ASCVD, 
identifying those 
at a genetically 
high risk of 
incident ASCVD.

The combination of 
PRS

MetS
-ASCVD and 

conventional risk factors 
(such as age, sex, BMI, 
smoking, hypertension, 
diabetes 
and hyperlipidemia) could 
provide a better 
performance for predicting 
ASCVD, especially in 
younger individuals.

Eva S. 
van 
Walree 
et al., 
2022

3 cohorts 
of 
European 
and multi-
ancestry 
represent
ation

Polygenic 
risk score 
drafted from 
the MetS 
factor 
GWAS.

PRS predicts 
5.9% of the 
variance in 
MetS.
Of the 235 loci 
identified in the 
GWAS, 53 
(22.5%) overlap 
with loci 
identified for 
two or more 
MetS 
components.

Genetic correlations 
are best captured by 
a genetic one factor 
model. The MetS 
components genetic 
overlapping indicates 
that this entity is a 
complex, 
heterogeneous 
disorder.

These results provide 
mechanistic insights into 
the genetics of MetS 
and suggestions for 
drug targets, especially 
fenofibrate, which has 
the promise of tackling 
multiple MetS 
components.

Hardy, 
D.S. et 
al., 
2021

10,681 
European 
American
s and 
African 
American
s.

PRS and its 
interaction 
with dietary 
patterns to 
increase 
MetS risk.

Among each 
racial group 
within PRS 
tertiles, the 
Western dietary 
pattern was 
associated with 
development 
and cycling of 
MetS status 
between visits, 
and the high-fat 
dairy pattern 
with being free 
from MetS (p < 
0.017).

The influence of 
dietary patterns on 
MetS risk appears to 
differ by genetic 
predisposition and 
racial ancestry.

Dietary patterns 
assessment becomes 
more important, 
especially for 
individuals with higher 
genetic risk for MetS.
Routinely clinical-
nutritional consultations 
could provide a clearer 
image of the overall 
increased risk for MetS 
in some individuals.

PRS, polygenic risk score; ASCVD, atherosclerotic cardiovascular disease; PRS
MetS

-ASCVD, metabolic PRS to identify atherosclerotic 
cardiovascular disease incidence; BMI, body mass index; MetS, Metabolic syndrome; GWAS, Genome-wide association study.

Table III. Evidence from recent large GWAS and PRS studies and their potential clinical 
utility in the assessment and treatment of MetS and other related cardiometabolic traits.
  

Author, year Population studied PRS model Results Conclusions Potential Clinical utility

Song H et al., 
2022

3 Korean cohorts of 
28,445, 8840 and 4333 
individuals.

PRSMetS-ASCVD: 
construction of the 
most optimal 
combination of PRS’s 
for prediction of 
ASCVD.

6.7% of the population was at high 
genetic risk with 3.3-fold (95% C.I. 
1.7-6.1, p<0.001) higher risk for 
incident ASCVD. 

The polygenic risk of metabolic 
disease independently predicts 
those at an increased risk of 
ASCVD, identifying those at a 
genetically high risk of incident 
ASCVD.

The combination of PRSMetS-ASCVD and 
conventional risk factors (such as age, sex, 
BMI, smoking, hypertension, diabetes 
and hyperlipidemia) could provide a better 
performance for predicting ASCVD, 
especially in younger individuals.

Eva S. van 
Walree et al., 
2022

3 cohorts of European 
and multi-ancestry 
representation

Polygenic risk score 
drafted from the MetS 
factor GWAS.

PRS predicts 5.9% of the variance 
in MetS.

Of the 235 loci identified in the 
GWAS, 53 (22.5%) overlap with 
loci identified for two or more 
MetS components.

Genetic correlations are best 
captured by a genetic one factor 
model. The MetS  components 
genetic overlapping indicates that 
this entity is a complex, 
heterogeneous disorder.

These results provide mechanistic insights 
into the genetics of MetS and suggestions 
for drug targets, especially fenofibrate, 
which has the promise of tackling multiple 
MetS components.

Hardy, D.S. et 
al., 2021

10,681 European 
Americans and African 
Americans.

PRS and its interaction 
with dietary patterns 
to increase MetS risk.

Among each racial group within 
PRS tertiles, the Western dietary 
pattern was associated with 
development and cycling of MetS 
status between visits, and the high-
fat dairy pattern with being free 
from MetS (p < 0.017).

The influence of dietary patterns 
on MetS risk appears to differ by 
genetic predisposition and racial

ancestry.

Dietary patterns assessment becomes 
more important, especially for individuals 
with higher genetic risk for MetS.

Routinely clinical-nutritional 
consultations could provide a clearer 
image of the overall increased risk for 
MetS in some individuals.

PRS, polygenic risk score; ASCVD, atherosclerotic cardiovascular disease; PRSMetS-ASCVD, metabolic PRS to identify atherosclerotic cardiovascular disease incidence; BMI, body mass 
index; MetS, Metabolic syndrome; GWAS, Genome-wide association study.
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Figure legends

Figure 1. Main pathomecanisms associated to the development of MetS.
Ang II, angiotensin II; CRP, C-reactive protein; DAMPs, damage-associated molecular patterns; FFAs, free 
fatty acids; GLUT4, glucose transporter type 4; IL-6, interleukin 6; IR, insulin resistance; IRS-1/PI3K, insulin 
receptor substrate-associated phosphoinositide 3-kinase activity; LDL, low density lipoprotein; LOX-1 
lipoprotein receptor-1; LPS, lipopolysaccharides; MetS, metabolic syndrome; NF-kB, nuclear factor kappa-
light-chain enhancer of activated B cells; NO, nitric oxide; PAMPs, pathogen-associated molecular patterns; 
RAS, renin–angiotensinogen system; ROS, reactive oxygen species; TLRs, Toll-like receptors; TNF α, 
tumor necrosis factor α; VAT, visceral adipose tissue.

Figure 2. Main genes associated to the presence of MetS components.

Figure 3. Generation, validation, and application of PRS
MetS 

and its components.
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