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Abstract

Dimensionality reduction is required to produce visualizations of high dimen-

sional data. In this framework, one of the most straightforward approaches to

visualising high dimensional data is based on reducing complexity and apply-

ing linear projections while tumbling the projection axes in a defined sequence

which generates a Grand Tour of the data. We propose using smooth nonlinear

topographic maps of the data distribution to guide the Grand Tour, increasing

the effectiveness of this approach by prioritising the linear views of the data

that are most consistent with global data structure in these maps. A further

consequence of this approach is to enable direct visualisation of the topographic

map onto projective spaces that discern structure in the data. The experimen-

tal results on standard databases reported in this paper, using Self-Organising

Maps and Generative Topographic Mapping, illustrate the practical value of the

proposed approach. It must be remarked the novelty of the proposed method

that improves some of the aspects of previous approaces based on the Grand

Tour.

Keywords: Manifold learning, Grand Tour, data visualisation, nonlinear

dimensionality reduction, linear projections
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1. Introduction

When exploring any environment, it would be unusual, or even counterintu-

itive, not to try to visualize it first. The same applies to the exploration of data

(Vellido et al., 2011). Visualisation processes are straightforward when data

sets comprise a handful of attributes, since data visualisation can be readily

implemented, for instance with multiple scatter-plots.

However, high dimensional data require the application of more advanced

methods. This may involve the application of projective or mapping algorithms

and becomes an important, or even necessary, stage of data analysis. This is

specially true when the interpretability of the results is a requirement of the

analysis Vellido et al. (2012). Such techniques are data visualisation-oriented

instances of the more general family of Dimensionality Reduction (DR) methods.

Some of the most frequently used DR methods involve only linear combina-

tions of the covariates. These methods have the advantage over their non-linear

counterparts that when a gap in the observed data is seen from a particular pro-

jection (revealing data grouping structure), then that gap is known to be present

and cannot close when the dimensionality of the projection is increased. A pop-

ular such method is Principal Component Analysis (PCA), which is typically

applied in practice using biplots Jolliffe (2002). This approach compensates for

one of its limitations, in particular sensitivity to noise and the lack of a ro-

bust criterion for choosing the adequate number of PCs, by the straightforward

interpretability of the resulting projections.

Alternatively, Non-linear Dimensionality Reduction (NLDR) (Lee and Ver-

leysen, 2007) methods are potentially more powerful to model complex high-

dimensional data. These methods are well-suited to map the topological struc-

ture of the data, especially when the regions of interest cannot be well-separated

using linear discrimination functions, or, equivalently, whenever mean values are

not representative of density functions due to deviations from normality.

Manifold learning methods are part of the NLDR family of techniques that

attempt to represent multivariate data by assuming they can be closely approxi-
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mated using low-dimensional manifolds, typically chosen to be 2-dimensional for

visualisation purposes. However, these methods can generate complex surfaces

with possible occurrence of folds, which are often the result of overfitting. More-

over, the projection of data onto the visualization maps is heavily conditioned

by the assumed structure of the map and so does not necessarily provide a clear

picture of the empirical data density. In order to increase the interpretability

of manifold learning techniques, it is of interest to combine generative models

and NLDR with linear projective methods.

An alternative approach is to produce different views of the data arising from

a succession of linear projections. A framework to generate a comprehensive

range of low-dimensional projections is the Grand Tour proposed by Diane Cook

and colleagues (Buja et al., 2005; Cook and Swayne, 2007). In this approach, the

data are effectively tumbled in a systematic way and viewed through the prism of

low-dimensional linear projections, looking for indicators of structure, typically

gaps between sub-population cohorts. Due to the usefulness of the visualisations

obtained, and the need of an easy and straightforward way to obtain them, this

method has been recently implemented in an R package (Wickham et al., 2011),

with a user-friendly graphical user interface (GUI) (Huang et al., 2012). While

this approach is powerful in principle, we reckon that the search procedure may

be expedited by prioritising the most informative views of the data; this is the

goal and main novelty of the proposed approach compared to (Buja et al., 2005;

Cook and Swayne, 2007). In (Lecerf and Bouchard, 2012), a method based on

selecting candidate projections from the space of all projections was proposed.

Our proposed method also pursues that goal but from a different and more

complete perspective, since it does not require any user-interaction and a two-

dimensional track is employed to guide three-dimensional projections of the data

without the need for space-filling patterns.

Our conjecture is hence that prioritising, we are effectively introducing an

implicit narrative in the process of visual data analysis. This added contextual

information becomes a way of storytelling that should potentially provide more

actionable knowledge (Segel and Heer, 2010).
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The prioritisation of the most informative views of the data can effectively

be provided by the NLDR methods. Therefore, in this study, we propose using

NLDR manifolds as the base surface over which we roll-out sequences of linear

projections, knowing that they will cross regions of high data density. This

approach is intended to use the power of linear projections and leverage it on

the data coverage generated by NLDR methods, in particular Self-Organising

Map (SOM) networks (Kohonen, 2000) and Generative Topographic Mapping

(GTM) (Bishop et al., 1998a).

In particular, this method aims to quickly discover gaps in the data distri-

bution, which may be consistent with a hierarchical structure that may not be

explicitly available even with prior clustering. The proposed methodology is the

Manifold Grand Tour.

The remaining of the paper starts with a summary description of manifold

learning models such as SOM and GTM, together with an overview of cohort-

based linear visualisation, which improves on PCA by using data labels from

cluster or class membership, whenever this information is available. This is

followed by a detailed description of the Manifold Grand Tour procedure. Em-

pirical results for two public domain data sets illustrate the application of the

method.

2. Methods

2.1. Overview of Topographic Maps

The last decade has witnessed a quick development of nonlinear manifold

learning methods for the analysis of multivariate data. Some examples include

Locally Linear Embedding (Roweis and Saul, 2000) and Laplacian Eigenmaps

(Belkin and Niyogi, 2003). Surveying such methods is beyond the focus of this

paper. We instead focus on two consolidated techniques with similar goals but

very different formalisation, namely SOM (Kohonen, 2000) and GTM (Bishop

et al., 1998a).
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2.1.1. Self-Organising Maps

Probably the best-known and widely used NLDR method for data visualisa-

tion is Kohonen’s SOM, in its many variants. Although not strictly a manifold

learning model, this method attempts to model data through a discrete ver-

sion of a low-dimensional manifold consisting of a topologically ordered grid of

prototypes.

SOM is an algorithmic procedure that simultaneously performs a combina-

tion of vector quantisation and topographic representation. Its nonlinearity has

not prevented SOM from becoming mainstream in many application fields.

A SOM consists of a discrete layer (map) of units or neurons arranged in a

low dimensional regular grid (often 2D, for visualisation). Each of these neu-

rons k (k = 1, . . . ,K) is related, through an embedding function, with a d−

dimensional vector y, usually called prototype or weight vector.

Let X = {xn}Nn=1 be a data set with vectors x of dimension d. After

initialising the weight vectors yk, the algorithm finds the closest prototype to

each data vector xj (j = 1, . . . , N), which is also known as best matching unit

(BMU) ykj
of index kj , computed as kj = argmink {d(xj ,yk)}, where d(·, ·) is

commonly defined as the Euclidean distance L2(xj ,mk) = ‖xj −mk‖, although

alternatives such as L1 or L∞, for instance, can also be considered.

Each BMU relates to its closest neighbours through a neighbourhood func-

tion h(·, ·). Different functions can be considered, being the Gaussian the

most common choice. The prototype yi is updated according to y
(t+1)
i =

y
(t)
i + α(t)h(t)(xi,yc)

(
x(t) − y

(t)
i

)
, where t is time, x(t) ∈ X is randomly se-

lected at time t, and 0 ≤ α(t) ≤ 1 denotes the learning rate.

The original version of SOM makes a separate update of the model param-

eters for each data point, taken one at a time, whereas its batch version makes

the update on the basis of all data points. In this latter variant of the algorithm,

the update equation can be rewritten in a kernel regression form (Mulier and
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Cherkassky, 1995), for a given iteration, as:

yk =
∑
k′

(F (uk,uk′)x̄k′) (1)

where x̄k′ = 1
nV ′

k

∑
j∈G′

k
xj is the mean of the group Gk′ of nV ′

k
data points

assigned to a given node k′, and F (u,uk) = Nkh(u,uk)/
∑

k′ Nk′h(u,uk′)

2.1.2. Generative Topographic Mapping

The mostly heuristic definition of SOM inspired the development of a method

that, while retaining its many functional advantages, was set within a principled

probability theory framework. The resulting GTM (Bishop et al., 1998a) is a

manifold learning model that, as SOM, has its main appeal in the simultaneous

provision of multivariate data clustering and exploratory data visualisation. Its

basic formulation has been extended to target goals as diverse as time series

modelling (Olier and Vellido, 2008) , outlier detection (Vellido et al., 2009),

unsupervised feature selection (Etchells et al., 2006), or semi-supervised learning

(Cruz and Vellido, 2011), amongst others.

The GTM is also a Latent Variable Model (LVM). An LVM attempts to

model observed data through the definition of a parsimonious set of non-observable,

or latent variables (Bishop, 1998). Specifically, an LVM expresses the distribu-

tion p(x) of the variables x1, . . . , xD of the observed data X in terms of a smaller

number of latent variables u1, . . . , uL, where L < D and, if used for visualisa-

tion, L ≤ 3. For that, the joint distribution p(x,u) is decomposed into the

product of the marginal distribution p(u) of the latent variables and the condi-

tional p(x|u) of the observed data given the latent variables. The conditional

distribution p(x|u) can be expressed in terms of a mapping from the latent

space to the data space that involves a noise process. The definition of an LVM

involves describing this conditional distribution as well as the mapping function

itself and the marginal distribution p(u). From these, the distribution p(x) of
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the data can be obtained by marginalising over the latent variables:

p(x) =

∫
p(x|u)p(u)du (2)

In the GTM, a finite number of latent points k = 1, . . . ,K, usually spaced

in a regular lattice, are mapped into the observed data space, each of them

defining a prototype point. This prototype is the image of the former according

to a mapping function in the form of a generalized regression model, so that

each of the D-dimensional prototypes, yk, is defined as:

yk = WΦ(uk), (3)

where Φ is a set of M basis functions φm (Gaussians in the standard model)

that introduce the nonlinearity in the model, and W is a D × M matrix of

adaptive weight parameters wdm, each associated to a basis function m and to

an observed data dimension d.

The prototype vector yk can be considered as a representative of those data

points xn which are closer to it than to any other prototype. In that sense,

this model clusters the data set as the result of a vector quantisation process.

The set of prototypes resides in a smooth manifold (where such smoothness is

conferred by the mapping function itself) that wraps around the observed data

X = {xn}Nn=1. The conditional distribution of the observed data variables,

given the latent variables, p(x|u), involves a noise model with variance β−1,

defined as:

p(x|u,W, β) = (
β

2π
)D/2 exp{−β

2

D∑
d=1

(xd − yd(u))2}, (4)

In order to integrate the latent variables out, we first need to define the marginal

distribution p(u). A regular square lattice of K latent points will be distributed

according to p(u) =
∑K

k=1 δ(u− uk). This definition makes the integration in
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Eq.(2) analytically tractable. The data distribution thus becomes:

p(x|W, β) =
1

K

K∑
k=1

p(x|uk,W, β)} (5)

From this expression, a complete model likelihood can be defined, and a maxi-

mum likelihood approach can be used for the estimation of the adaptive param-

eters of the model, usually through expectation-maximisation (EM) (Dempster

et al., 1977). Details of the complete procedure can be found in (Bishop et al.,

1998a,b).

For data visualisation, one of the results obtained in the maximisation step

of the EM algorithm can be used through a direct application of Bayes’ theorem

that inverts the mapping from latent space to observed data space, producing

the conditional probability of each latent point given each observed data point:

p(uk|xn) =
p(xn|uk,W, β)∑K

k′=1 p(xn|uk′ ,W, β)
, (6)

which is often referred to as the responsibility of each latent point for the gen-

eration of each observed data point, rkn ≡ p(uk|xn). This responsibility can

be used to obtain data visualisation in the form of a posterior mode projection

of xn: kmode
n = arg max{kn} rkn (which implies assigning each observed data

point to that latent point with the highest responsibility for its generation), or

a posterior mean projection umean
n =

∑K
k=1 rknuk (placing the observed data

point at a location in latent space that results from a responsibility-weighted

combination of all latent point locations).

2.2. The Grand Tour

The concept of the Grand Tour was published in its original form by Asi-

mov and colleagues (Asimov, 1985; Buja and Asimov, 1985) to explore high-

dimensional data by travelling along a series of 2D-planes in which the data

would be projected. In this way, the Grand Tour introduces a sequential ele-

ment to the exploration process with the aim of obtaining new insights from the

2D visualisation of the data that might remain occult otherwise. As pointed
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out in (Wegman, 2003), the grand tour is, in effect, an animation of the data.

This animation requires some illusion of continuity that can only be achieved

by ensuring that the navigation changes smoothly over time.

This is achieved in (Wegman, 2003) with a continuous geometric transforma-

tion of the coordinate system through all possible orientations of the coordinate

axes.

The Grand Tour defines a trajectory through the Grassmannian manifold

G(2, D), which is the space of all 2D planes through the origin. This is an

efficient calculation of a space-filling curve in the manifold of low-dimensional

projections of high-dimensional data spaces. A number of different algorithms

to implement the Grand Tour have been developed over time and their descrip-

tion is beyond the scope of this paper. The reader is referred to (Wegman

et al., 2002), where a discussion of several approaches can be found, and to a

more recent publication (Buja et al., 2005) on Grand Tours and related data

visualisation methods.

In this paper, we alternatively propose restricting the sliding of the view-

finder of the Grand Tour to a trajectory through the previously obtained smooth

manifold model of the data distribution, obtained with a nonlinear topographic

model. This will generate a limited but faster visualisation process that aims

to visit the most informative perspectives by simply complementing the NLDR

manifold methods through the addition of linear projections of the data, where

the interpretation of structural features such as gaps between clusters or marginal

shape profiles, is more straightforward.

A further improvement will arise if the linear projective axes are chosen with

as much knowledge about the data as possible, for instance cohort labels arising

from clustering or class tags. This is the subject of the next section.

2.3. Cohort-Based Visualisation with Scatter Matrices

Purely linear DR methods for visualisation frequently utilize singular values

spanning the largest variance in the data, as in PCA biplots (Jolliffe, 2002).

While this approach is useful to visually verify known correlations between at-
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tributes, the first two or three PCs that could be used for visualisation may well

explain only a relatively small proportion of the data variance in the data. As

already mentioned in the introduction, there is no guarantee that those PCs will

provide a faithful enough representation of the data. As a result, true compact

groups of data are severely mixed in the representation space due to the loss of

information incurred by the projection.

When population cohorts are labelled, it is straightforward to decompose

the data covariance matrix using the cohort means and the variance of each

cohort with respect to the corresponding mean point. This is justified for linear

modelling of discriminant features to separate the cohorts, on the basis that

second order statistics are sufficient for the parameterisation of multivariate

normal distributions which, in turn, are consistent with the assumption of linear

separating surfaces.

The cohort-based visualisation with scatter matrices method described in

(Lisboa et al., 2008) starts with the following identity showing that the total

variance matrix, ST , can be expressed as the sum of within- and between-group

scatter matrices defined around the cohort means mi:

ST = SW + SB , (7)

where

ST =

N∑
i=1

((Xi −m)T (Xi −m)), (8)

SW =

Nc∑
j=1

Nj∑
i=1

((Xi −mj)
T (Xi −mj)), (9)

SB =

Nc∑
j=1

(Nj(mj −m)T (mj −m)) (10)

and m is the overall data mean; Nc is the number of labelled cohorts and Nj is

the number of items in cohort j.
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The so-called separating matrix is defined by extending the intuitive concept

of the ratio of the variance of the means over the within-covariance matrix, as

follows

MT = S−1W SB . (11)

This matrix replaces the data covariance matrix in the calculation of the

eigenvectors with the largest eigenvalues, which form the projection directions,

now informed by the cohort labels. An extension of this method to the case

where the covariance matrix of the data is singular can be found in (Lisboa

et al., 2008).

2.4. The Manifold Grand Tour (MGT)

The proposed visualisation of the data is now straightforward. Given a

topographic map of the data, which passes through the peaks in the data density

distribution, and assuming a 2D structure to the map, the MGT procedure can

be described as follows:

• Fit a topographic map to the data (a GTM in the experiments reported

in this paper, although variants of SOM or alternative methods could be

used).

• Start at an arbitrary node, e.g. one of the corners of the map, and the

direction along the edges of the node defined by that node and its nearest

neighbours. The two-dimensional structure of the first square cell defines

a plane, for which orthonormal spanning coordinate axes can be obtained

using Gram-Schmidt orthogonalisation.

• With the cohort-based visualisation method described in Section 2.3 (or,

for instance, with PCA), find the direction of maximum spread of the data

and with Gram-Schmidt and define a third projective axis.

• The complete data can now be displayed, along with a projection of the

manifold and coordinate axes, if required, by projecting onto the linear
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3D space spanned by the axes defined above.

• Move onto the next node and repeat the previous steps.

If further views of the data are required over each node in the topographic

map, then the third axis can rotate from each eigenvector of the covariance (or

separating) matrix to the next. This can be done either in order, or reducing

the size of the corresponding eigenvalue, returning from the last to the first

eigenvalue before proceeding to the next node, for which the first two dimensions

change slowly, due to the smoothness of the topographic map. Each successive

iteration will be less informative since the separation between data cohorts will

gradually reduce.

A limitation of the method is that the views of the data are bound to lie in

the space spanned by the edges linking successive nodes in the topographic map

and the span of the matrix used to define the third axis for each visualisation

perspective. If this matrix is the separating matrix, then the dimensionality of

this space is limited by the rank of that matrix, which is the number of distinct

cohorts minus one. However, if the variance matrix is used, then this is clearly

of full rank.

In both cases, the quality of the visualisation depends on how well the to-

pographic maps cover the data. In each case, the eigenvector structure of the

matrices derived from the second-order statistics take over from the Grassman-

nian manifolds as the “tour guides”.

In the following experiments, it was sufficient to show the first iteration

where the eigenvector with the largest eigenvalue of the separating matrix was

used to define the orthogonal direction in each cell of the topographic surface

covering the data.

3. Experiments

3.1. Materials

The proposed methodology for multivariate data visualisation was tested in

two different real data sets: Italian olive oil (Cook and Swayne, 2007; Forina
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et al., 1983) and music (Cook and Swayne, 2007).

The Italian olive oil data set consists of 572 samples and 10 variables. Eight

variables describe the percentage composition of fatty acids found in the lipid

fraction of these oils, which is used to determine their authenticity. The remain-

ing two variables contain information about the classes, which are of two kinds:

three “super-classes” at country level: North, South, and the island of Sardinia;

and nine collection area classes: three from the Northern region (Umbria, East

and West Liguria), four from the South (North and South Apulia, Calabria, and

Sicily), and two from the island of Sardinia (inland and coastal Sardinia).

The goal is to distinguish the oils from different regions and areas in Italy

based on their combinations of the fatty acids. The clusters corresponding to

classes all have different shapes in the eight-dimensional data space defined by

the concentration of fatty acids.

The music data set consists of 62 samples and seven variables. Data were

produced by reading different songs using the music editing software Amadeus

II R©, and then snipping and saving the first 40-second clip of each as a WAV

file. Audio was converted into numeric data using the R programming language.

The meaning of the variables is the following:

• Artist: Abba, Beatles, Eels, Vivaldi, Mozart, Beethoven, Enya.

• Type: rock, classical, or new wave.

• Average, variance and maximum of the frequencies of the left channel

(three variables).

• Amplitude of the loudness of the sound.

• Median of the location of the 15 highest peaks in the periodogram.

The analysis goal for this data set is to group the tracks into a small number

of clusters according to their similarity in terms of audio characteristics, thus

enlightening whether, for instance, rock and classical tracks are distinguishable.

This knowledge can be applied, for instance, to arrange tracks on a digital music

player, or to make recommendations based on track similarity.
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3.2. Experimental Settings

The adaptive parameters of the GTM models used to analyze the data de-

scribed in the previous section were initialized following a standard procedure

described in (Bishop et al., 1998a): The weight matrix W, which embodies the

mapping from the latent to the observed data space, was defined so as to mini-

mize the difference between the prototype vectors yk defined in Eq.(3) and the

vectors that would be generated in the observed space by a partial PCA process.

The inverse noise model variance parameter β is initialized as the inverse of the

3rd PCA eigenvalue. This initialisation procedure has been shown to be reliable

while ensuring the replicability of the results that could not be guaranteed by

a random initialisation of parameters.

Different GTM square lattice sizes were explored but, in the end, it is conve-

nient to achieve a trade-off between detail (which would be proportional to the

size of the lattice) and practical visual interpretability. For the analysed data,

a suitable layout for the GTM lattice was found to be a 15× 15 grid, which was

thus chosen for all the reported experiments.

In order to avoid data overfitting, a regularized version of GTM was used.

Regularisation encourages smoother manifolds in what, in fact, becomes a com-

plexity control process that is achieved with the addition of a regularisation

term to the log-likelihood of the model, which becomes:

Lreg =

N∑
n=1

ln p(xn|W, β)− 1

2
α‖w‖2. (12)

Here, α is a regularisation coefficient and w is the vector resulting from the

concatenation of the different column vectors of the weight matrix W. The

optimisation of the parameters can be accomplished using the Bayesian formal-

ism and, more in particular, the evidence approximation (Mackay, 1991; Vellido

et al., 2003).

Using the manifolds yielded by GTM, visualisations were produced according

to the procedure described in section 2.4.
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3.3. Results and Discussion

3.3.1. Italian Olive Oil data set

We expected the GTM-based MGT to produce useful visualisations when

projecting the data into the axes defined in some of the GTM nodes using

the procedure described in Section 2.4. Figure 1 shows a selection of three

representative projections for illustration: the top plot represents a projection

in which the three clusters are mixed up and extensively overlap. It is difficult

to separate the three regions from mere visual inspection. The bottom plot,

instead, shows a projection in which the three clusters are neatly separated,

while an intermediate case (neither so well-separated as the bottom plot, nor

mixed-up as the top one) is shown in the middle plot.

Although, for the sake of brevity, many results are omitted, it should be

emphasized that the projections into many of the nodes produced quite a few

very meaningful plots that showed the difference between the three main classes

(South, Sardinia and North) clearly. Moreover, results matched those achieved

in (Cook and Swayne, 2007), revealing the presence of internal structure spe-

cially in Cluster 2 (Sardinian origin), which is shown to be formed by two sub-

clusters (Inland or Coastal Sardinia). This is clearly revealed by the detailed

nine sub-classes (Umbria, East and West Liguria, North and South Apulia, Cal-

abria, Sicily, and inland and coastal Sardinia) representation in Figure 2, where

Inland is represented by blue triangles and Coast by black pentagrams.

3.3.2. Music data set

As for the Italian Olive Oil data set, the regularized GTM corresponding to

the music data set also generated a manifold with some degree of folding, hence

relevant visualisations were produced when projecting the data into the axes

defined by the GTM nodes according to the proposed MGT procedure. Again

summarily, Figure 3 shows three projections of the data into different nodes of

the GTM. While the top and middle plots represent visualisations that are not

especially helpful, since the three different clusters (rock, classical, new wave)

do not appear clearly separated, the situation is reversed in the bottom plot,

15



−3

−2

−1

0

1

2

3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

−5

0

5

−3
−2

−1
0

1
2

3
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−3

−2

−1

0

1

2

3

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 1: Three chosen illustrative MGT projections of the Italian Olive Oil data set, colour-
labelled to show the main three classes (South: red crosses, Sardinia: green circles and
North: magenta squares), defined in three different GTM nodes. The bottom plot exempli-
fies a projection in which the three clusters are clearly separated, while the top and middle
plots correspond to projections in which it is more difficult to visually disentangle the cluster
structure.

which represents one of the projections in which the three clusters can be easily

differentiated.

As in the previous data set, the presence of an internal structure, which
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Figure 2: Two chosen illustrative MGT projections of the Italian Olive Oil data set, this
time colour-labelled to show the detailed nine sub-class structure, defined in two different
GTM nodes. The internal structure of Sardinian cluster is shown in two sub-clusters (black
pentagrams and blue triangles)

would not be obvious from the single flat visualisation of the data provided

by the GTM, is remarkable. This is particularly true for rock, but a certain

internal structure within classical can also be visually discerned. This might be

explained by the fact that classical music is a more normative style than rock

and, as a result, the influence of the artist is not as relevant in the former as

it is in the latter for the definition of the internal structure. Such an effect is

likely to be more predominant in small data sets such as the one analyzed in

these experiments.
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Figure 3: Three chosen illustrative MGT projections of the Music data set, colour-labelled to
show the main three classes (Rock is represented by red stars, classical by green circles and
new wave by blue squares), defined in three different GTM nodes. The bottom plot exemplifies
a projection in which the three clusters are clearly separated, while the top and middle plots
once again correspond to projections with different degree of visual cluster overlapping.

4. Conclusions

This paper has presented a new approach for NLDR methods oriented to

multivariate exploratory data visualisation that combines the modelling flex-
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ibility of one such method, namely GTM, with the interpretability of linear

models for data visualisation. In the reported experiments, GTM has been used

to guide a Grand Tour of some real data sets that uses a recently proposed lin-

ear DR method for data visualisation, which is based on a clustering approach.

The achieved results illustrate the suitability of the proposed method to produce

useful representations that intuitively reveal the internal data structure.

This paper involves a relevant theoretical advance with respect to the stan-

dard Grand Tour since views are not random but selected according a smart

guide, such us GTM. This work also improves and completes the approach

presented in (Lecerf and Bouchard, 2012) since neither user interaction nor a

two-dimensional track is required to guide three dimensional projections. The

main limitation of the study is related to the number of class structures since a

high number of classes might difficult the visualization; this is however a com-

mon problem in this kind of visualizations. It is finally remarkable that an

appealing advantage of the proposed method is that it could straightforwardly

be extended to alternative manifold learning algorithms.
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