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The impact of image and performance 
enhancing drugs on atrial structure 
and function in resistance trained individuals
Florence Place1, Harry Carpenter1, Barbara N. Morrison2, Neil Chester1, Robert Cooper1, Ben N. Stansfield3, 
Keith P. George1 and David Oxborough1* 

Abstract 

Background  Image and performance enhancing drugs (IPEDs) are commonly used in resistance trained (RT) indi-
viduals and negatively impact left ventricular (LV) structure and function. Few studies have investigated the impact 
of IPEDs on atrial structure and function with no previous studies investigating bi-atrial strain. Additionally, the impact 
of current use vs. past use of IPEDs is unclear.

Methods  Utilising a cross-sectional design, male (n = 81) and female (n = 15) RT individuals were grouped based 
on IPED user status: current (n = 57), past (n = 19) and non-users (n = 20). Participants completed IPED questionnaires, 
anthropometrical measurements, electrocardiography, and transthoracic echocardiography with strain imaging. 
Structural cardiac data was allometrically scaled to body surface area (BSA) according to laws of geometric similarity.

Results  Body mass and BSA were greater in current users than past and non-users of IPEDs (p < 0.01). Absolute 
left atrial (LA) volume (60 ± 17 vs 46 ± 12, p = 0.001) and right atrial (RA) area (19 ± 4 vs 15 ± 3, p < 0.001) were greater 
in current users than non-users but this difference was lost following scaling (p > 0.05). Left atrial reservoir (p = 0.008, 
p < 0.001) and conduit (p < 0.001, p < 0.001) strain were lower in current users than past and non-users (conduit: 
current = 22 ± 6, past = 29 ± 9 and non-users = 31 ± 7 and reservoir: current = 33 ± 8, past = 39 ± 8, non-users = 42 ± 8). 
Right atrial reservoir (p = 0.015) and conduit (p = 0.007) strain were lower in current than non-users (conduit: cur-
rent = 25 ± 8, non-users = 33 ± 10 and reservoir: current = 36 ± 10, non-users = 44 ± 13). Current users showed reduced 
LV diastolic function (A wave: p = 0.022, p = 0.049 and E/A ratio: p = 0.039, p < 0.001) and higher LA stiffness (p = 0.001, 
p < 0.001) than past and non-users (A wave: current = 0.54 ± 0.1, past = 0.46 ± 0.1, non-users = 0.47 ± 0.09 and E/A 
ratio: current = 1.5 ± 0.5, past = 1.8 ± 0.4, non-users = 1.9 ± 0.4, LA stiffness: current = 0.21 ± 0.7, past = 0.15 ± 0.04, 
non-users = 0.15 ± 0.07).

Conclusion  Resistance trained individuals using IPEDs have bi-atrial enlargement that normalises with allometric 
scaling, suggesting that increased size is, in part, associated with increased body size. The lower LA and RA reservoir 
and conduit strain and greater absolute bi-atrial structural parameters in current than non-users of IPEDs suggests 
pathological adaptation with IPED use, although the similarity in these parameters between past and non-users sug-
gests reversibility of pathological changes with withdrawal.
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Background
Image and performance enhancing drugs (IPEDs) are 
used by resistance trained (RT) individuals to increase 
muscle mass, reduce body fat and improve strength and 
perceived body image [1]. These include; anabolic ster-
oids, human growth hormone, clenbuterol and diuret-
ics [2], among others. Over 1 million people in the UK 
are using IPEDs, with this value increasing each year [3], 
likely due to their wider availability in the recreational 
gym population [4]. IPEDs have harmful effects including 
cardiomyopathy, hypertension, hepatotoxicity and ten-
don rupture [5, 6]. Previous studies have demonstrated 
the cardiotoxic effects of IPEDs, including left ventricu-
lar (LV) hypertrophy [7, 8], with a similar presentation 
to hypertrophic cardiomyopathy [1], reduced LV func-
tion [8–10], myocardial fibrosis [11, 12] and increased 
coronary plaque volume [13, 14]. The outlined evidence, 
alongside a report highlighting that 75% of male gym 
users have considered IPED use [15] and recent sud-
den deaths of high-profile bodybuilders, emphasises the 
importance of understanding the cardiac effects of these 
substances.

Despite the impact of IPEDs on LV structure and func-
tion, few studies have investigated the impact on atrial 
remodelling. This focus is important because the atria 
act as a reservoir during ventricular systole and aids fill-
ing during diastole. The left atrium (LA) contributes to 
approximately 30% of cardiac output, strongly influ-
encing overall cardiac function through the reservoir, 
conduit and booster phases [16]. Previously, atrial assess-
ment has been limited to echocardiographic assessment 
of structural parameters, such as diameter, area, and vol-
ume. Speckle tracking echocardiography (STE) is used to 
assess myocardial strain, and is frequently being applied 
to the assessment of atrial function allowing detection 
of subtle abnormalities [17]. Left atrial strain has been 
demonstrated to be a surrogate of LV end diastolic pres-
sure [18] and LA pressure [19] and may be more sensitive 
than conventional parameters including E/E’, E/A and LA 
volume index as well as providing an index of stiffness 
[20]. Additionally, a reduction in LA strain (conduit and 
reservoir) may occur prior to changes in parameters cur-
rently used to diagnose diastolic dysfunction i.e. lateral 
and septal E’ [21]. Similarly, right atrial (RA) strain rate 
has been correlated with RA pressure [22] and reservoir 
and conduit strain can be used to detect changes in right 
ventricular (RV) function, prior to changes in RV ejec-
tion fraction (EF) [23].

Of the few studies that have attempted to establish the 
association between LA structure and function in IPED 
users, a recent study of 35 male RT athletes (users n = 20, 
non-users n = 15) found impaired LA reservoir function 
in IPED users compared to non-users [24]. Similarly, 

Alizade [25] found that both decreased LA reservoir 
and conduit strain was associated with IPED use. Nota-
bly, both these studies, had a relatively small sample 
size, did not assess RA structure and function, and did 
not scale all chamber dimensions according to allomet-
ric rules. The importance of allometric scaling of car-
diac dimensions within athletic populations has been 
previously outlined [26] and has greater importance in 
RT athletes, particularly IPED users, whereby muscle 
mass is increased [1]. Further, no previous studies have 
investigated atrial strain in past users. It has been shown 
that, following a period of IPED discontinuation, LV sys-
tolic function improved, whereas diastolic dysfunction 
remained impaired [13] and therefore atrial function may 
provide significant insight in this population.

In view of this, the aim of this study was to investigate 
bi-atrial structure and function in RT individuals. This 
overarching aim leads to two objectives, 1: to determine 
the impact of IPED use on atrial structure and function 
in RT individuals, and 2: to establish differences between 
past, current, and non-users. It is hypothesised that, 1: 
there will be a stepwise increase in absolute and allo-
metrically scaled LA and RA size and volume from non 
to current users, and 2: current users will have the low-
est reservoir and conduit strain, and lowest function with 
non-users exhibiting the best function.

Methods
Study population and design
Male (n = 81) and female (n = 15) RT individuals (age 
29 ± 5 years) with a training duration of > 2 years and cur-
rently resistance training > 3  h per week were recruited 
into the study. Participants were grouped based on their 
self-reported IPED use status: current user defined as 
using IPEDs within 12 months of data collection (n = 57), 
past user defined as a previous user of IPEDs > 12 months 
from data collection (n = 19) and non-users defined as 
never using IPEDs (n = 20). Participants were excluded 
if they had a history of cardiovascular disease, diabe-
tes, renal or liver disease, were pregnant or were over 
80 years old. Participants provided written informed con-
sent prior to participation. Ethics approval was obtained 
from the ethics committee of Liverpool John Moores 
University (reference 21/SPS/078).

The study utilised a cross-sectional design whereby 
participants were required to attend the laboratory on 
one occasion. Athletes completed a detailed question-
naire to capture any cardiovascular symptoms, family 
history and to determine specific IPED use. A 12-lead 
electrocardiogram (ECG) and comprehensive transtho-
racic echocardiogram were undertaken, and results were 
reported by a sports cardiologist with clinical referrals 
made if required.



Page 3 of 12Place et al. Echo Research & Practice           (2023) 10:19 	

Procedures
Participant history
A training history was collected for all participants, 
including duration of training, training frequency (ses-
sions/week) and training hours per week. A history of 
IPED use was collected from those in the current user 
group including names of substances, dosage, admin-
istration method, cycling history, duration of use and 
frequency of use. Those taking IPEDs were interviewed 
by a study investigator who had extensive knowledge 
in IPEDs to ensure details of IPED use were reported 
accurately and thoroughly.

Anthropometry and examination
Anthropometric testing included an assessment of 
standing height (Seca Supra 719, Hannover, Germany), 
body mass (Seca217, Hannover, Germany) and manual 
blood pressure. Body surface area (BSA) was subse-
quently calculated using the Mosteller equation [27].

Electrocardiography
A resting, supine 12-lead ECG was conducted accord-
ing to Society for Cardiological Science & Technology 
(SCST) guidelines [28] using a commercially available 
system (Seca CardioPad-2, Birmingham, UK) and was 
interpreted in accordance with the International Crite-
ria for ECG Interpretation in Athletes [29]. Heart rate 
was recorded.

Echocardiography
Transthoracic echocardiography was performed by 
a single British Society of Echocardiography (BSE) 
accredited sonographer using a commercially available 
ultrasound system (Vivid E95, GE Healthcare, Horten, 
Norway) with a 1.5–4 MHz phased array transducer, 
with the participant lying in the left lateral decubitus 
position. Images were obtained according to BSE mini-
mum dataset [30] and athletic screening [31] guide-
lines. Images were stored as a raw digital imaging and 
communications in medicine (DICOM) format and 
exported to an offline analysis system (EchoPac version 
202, GE Healthcare, Horton, Norway) for subsequent 
analysis.

Conventional parameters
An assessment of LV diastolic function included pulsed 
wave Doppler of transmitral flow during early (E) and 
late (A) diastole and E/A ratio was calculated. Mitral 
annular early diastolic (E’) and late diastolic (A’) veloc-
ity was measured in the apical four chamber (A4C) 
view for the septum and lateral walls and average E’, A’ 
and E/E’ were calculated. The parasternal long axis view 

was used to assess LA anterior–posterior dimension at 
end-systole. Apical two chamber (A2C) and A4C views 
were optimised to maximise LA length and volume at 
end-systole and LA volume (end-systole) was measured 
using Simpson’s biplane method. RA area was meas-
ured in the RV focused A4C view at end-systole. Atrial 
dimensions were presented as absolute values and also 
scaled allometrically to account for geometric similar-
ity i.e. volumes indexed to BSA1.5 and linear dimensions 
to BSA0.5 [32].

Two‑dimensional myocardial speckle tracking 
echocardiography
Speckle tracking echocardiography derived atrial lon-
gitudinal strain was obtained from A2C and A4C views 
for the LA and the A4C view for the RA. Images were 
optimised to ensure optimal atrial spatial resolution with 
frame rates between 40 and 90 FPS.

Offline analysis of strain was made in accordance with 
current guidelines [33]. A single cardiac cycle was used, 
and zero strain reference was set at ventricular end dias-
tole. The region of interest (LA or RA myocardium) was 
traced and was divided into six equidistant segments 
which were then tracked, and global atrial strain for res-
ervoir, conduit, and booster strain were calculated as 
an average of the six segments (see Fig.  1). Satisfactory 
tracking was determined by the software and validated by 
the operator. Left atrial stiffness index was calculated as 
the ratio of E/E’ to LA reservoir strain [20].

Statistical analysis
Statistical analysis was performed using commercially 
available software package SPSS Version 28.0 for Win-
dows (SPSS, Illinois, USA). All indices were assessed for 
normal distribution using a Kolmogorov–Smirnov test. 
Mean differences between current, past, and non-users 
were analysed using a one-way ANOVA with post-hoc 
Bonferroni adjustment for assessment of between group 
differences or the Kruskal–Wallis one-way analysis of 
variance for non-normally distributed indices. Asso-
ciations between IPED use and atrial parameters were 
assessed using Pearson Product Moment correlation. Sta-
tistical significance was accepted at p < 0.05.

Results
Participant demographics and IPED use
The types of IPEDs used by current and past users are 
presented in Table 1. IPED users had a history of use of 
6.8 ± 5.1 years. Median dose was 1108 mg week−1 [range 
(40–5400)] and users were taking 3.4 ± 1.6 [range (1–6)] 
substances simultaneously. Administration was primarily 
through injection (81% injection, 19% oral tablet).
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Demographic and training data are shown in 
Table  2. Training load (duration and hours) were simi-
lar between groups [training duration (years): cur-
rent = 12 ± 7, past = 12 ± 6, non-user = 11 ± 9 and training 
hours (hours per week): current = 11 ± 3, past = 9 ± 3, 
non-user = 9 ± 3; p > 0.05]. Weight (p = 0.002, p < 0.001), 
BSA (p = 0.004, p < 0.001) and heart rate (p = 0.003, 

Fig. 1  Measurement of left atrial reservoir, conduit and booster strain in the apical four chamber view

Table 1  Image and performance enhancing drug use

Current 
users 
(n = 57)

Past users 
(n = 19)

Administration 
method

Testosterone 400 31 5 Injection/Oral tablet

Test enanthate 300 45 6 Injection/Oral tablet

Human growth hor-
mone

12 1 Injection

Boldenone 3 3 Injection/Oral tablet

Yohimbine 1 0 Not stated

Nandrolone decanoate 1 0 Not stated

Table 2  Participant demographics

a Denotes significance < 0.05 between current users and past-users
b Denotes significance < 0.05 between current users and non-users

Variable Current user
Mean ± SD

Past User
Mean ± SD

Non-user
Mean ± SD

Sample size 57 19 20

Age (years) 30 ± 4b 27 ± 5 27 ± 6

Weight (kg) 102 ± 18a,b 86 ± 16 76 ± 14

Height (cm) 178 ± 9b 173 ± 11 170 ± 9

BSA (m2) 2.24 ± 0.24a,b 2.02 ± 0.24 1.89 ± 0.22

Heart rate (bpm) 68 ± 11a,b 58 ± 11 56 ± 9

Systolic blood pressure (mm 
Hg)

127 ± 10b 122 ± 13 119 ± 11

Diastolic blood pressure (mm 
HG)

74 ± 9 71 ± 8 72 ± 10

Training duration (years) 12 ± 7 12 ± 6 11 ± 9

Training hours (per week) 11 ± 3 9 ± 3 9 ± 3
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p < 0.001) were greater in current users than past and 
non-users of IPEDs, respectively [weight (kg): cur-
rent = 102 ± 18, past = 86 ± 16, non-user = 76 ± 14; BSA 
(m2): current = 2.24 ± 0.24, past = 2.02 ± 0.24, non-
user = 1.89 ± 0.22; heart rate (bpm): current = 68 ± 11, 
past = 58 ± 11, non-user = 56 ± 9]. Systolic blood pres-
sure was higher in current users than non-users 
(127 ± 10  mmHg vs 119 ± 11  mmHg, p = 0.025), with no 
differences between past-users and any group (p > 0.05).

Atrial parameters
LA structural and functional parameters
Figure  2 demonstrates LA structural and functional 
parameters. Absolute LA volume was greater in current 
than non-users (60 ± 17 ml vs 46 ± 12 ml, p = 0.001), how-
ever, there was no significant difference following allo-
metric scaling (see Fig. 2 and Table 3). Past users showed 
no difference between either group in LA structural 
parameters (p > 0.05).

Fig. 2  Left Atrial Structure and Function. LA left atria, LAV left atrial volume. *Denotes significance < 0.05. **Denotes significance < 0.01. ***Denotes 
significance < 0.001. ****Denotes significance < 0.0001
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Left atrial reservoir (p = 0.008, p < 0.001) and con-
duit strain (p < 0.001, p < 0.001) were lower in current 
users compared to both past and non-users, respec-
tively (conduit: current = 22 ± 6, past = 29 ± 9 and non-
users = 31 ± 7 and reservoir: current = 33 ± 8, past = 39 ± 8, 
non-users = 42 ± 8). No significant differences were found 
in LA parameters between non-users and past users 
(p > 0.05). Left atrial conduit strain was significantly cor-
related with dose (mg wk−1) (r = 0.355, p = 0.025).

RA structural and functional parameters
RA parameters are demonstrated in Fig.  3. Current 
users had a larger RA area than non-users (19 ± 4 cm2 vs 
15 ± 3  cm2, p < 0.001), however, there was no significant 
difference following allometric scaling (see Table 4). Past 
users showed no difference between either group in RA 
structural parameters (p > 0.05).

Right atrial reservoir strain (p = 0.015) and conduit 
strain (p = 0.007) were lower in current than non-users 
(conduit: current = 25 ± 8, non-users = 33 ± 10 and res-
ervoir: current = 36 ± 10, non-users = 44 ± 13). Past users 
showed no difference between either group in RA strain 
parameters (p > 0.05). Right atrial reservoir (r = 0.331, 
p = 0.034) and booster (r = 0.359, p = 0.021) strain were 
significantly correlated with dose (mg wk−1). Right atrial 
reservoir strain was significantly negatively correlated 
with number of substances used (r = -0.316, p = 0.044).

Left ventricular diastolic function
Current users showed lower A wave (p = 0.022, p = 0.049) 
and E/A ratios (p = 0.039, p < 0.001) than both past 
and non-users (A wave (m  s−1): current = 0.54 ± 0.1, 
past = 0.46 ± 0.1, non-users = 0.47 ± 0.09 and E/A ratio: 
current = 1.5 ± 0.5, past = 1.8 ± 0.4, non-users = 1.9 ± 0.4), 
see Table  5. E wave (m  s−1) was lower in current users 
than non-users (0.78 ± 0.2 vs 0.89 ± 0.2, p = 0.018) and 

average E/E’ was lower in past-users than current users 
(5.5 ± 0.9 vs 6.7 ± 1.7, p = 0.010). There was no differ-
ence in LV diastolic function between past and non-
users (p > 0.05). Current users also demonstrated higher 
LA stiffness than both past (p = 0.001) and non-users 
(p < 0.001) (current = 0.21 ± 0.7, past = 0.15 ± 0.04, non-
users = 0.15 ± 0.07). Left atrial stiffness was significantly 
correlated with number of substances used (r = 0.328, 
p = 0.039).

Discussion
To the best of our knowledge this is the first study to 
assess LA and RA structure and function in a resistance 
athlete cohort of current, past and non-users of IPEDs. 
The main findings of this study were that current users 
(1) demonstrated higher absolute LA volume and RA 
area than both past and non-users however, when scaled 
allometrically for BSA these differences were removed 
and, (2) had reduced values of both LA and RA reservoir 
and conduit strain, higher LA stiffness and decreased LV 
diastolic function. In addition, there were no significant 
differences between past and non-users in LA param-
eters highlighting the potential reversibility of these find-
ings through cessation of IPED use.

The atria significantly contribute to overall cardiac 
function, modulating ventricular function by acting as 
a reservoir during systole and a pump during diastole, 
attributing to ~ 30% of cardiac output [16]. As hypoth-
esised, the current study showed a greater atrial size in 
current users compared to non-users of IPEDs, however 
there were no differences following allometric scaling 
to BSA (a surrogate for fat-free mass (FFM) in athletic 
populations [34]). Fat-free mass represents metaboli-
cally active tissue with up to 99% of metabolism taking 
place in the body cell mass [35] and is significantly ele-
vated in IPED users [8]. Cardiac output is directly related 

Table 3  Left atrial structure and function

LA left atria, BSA body surface area
a Denotes significance < 0.05 between current users and past-users
b Denotes significance < 0.05 between current users and non-users

Variable Current user Mean ± SD Past user Mean ± SD Non-user
Mean ± SD

LA anterior–posterior dimension (mm) 39 ± 5 38 ± 4 35 ± 4

LA anterior–POSTERIOR DIMENSION (indexed to BSA0.5) 26 ± 3 26 ± 2 25 ± 2

LA volume end systole (ml) 60 ± 17b 53 ± 10 46 ± 12

LA volume end systole (index to BSA1.5) 18 ± 4 18 ± 2 18 ± 3

LA reservoir strain (%) 33 ± 8a,b 39 ± 8 42 ± 8

LA conduit strain (%) 22 ± 6a,b 29 ± 9 31 ± 7

LA booster strain (%) 12 ± 4 11 ± 4 12 ± 4

LA stiffness 0.21 ± 0.7a,b 0.15 ± 0.04 0.15 ± 0.07
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Fig. 3  Right atrial structure and function. RA right atria. *Denotes significance < 0.05. **Denotes significance < 0.01. ***Denotes significance < 0.001

Table 4  Right atrial structure and function

RA right atria
a Denotes significance < 0.05 between current users and non-users

Variable Current user 
Mean ± SD

Past user 
Mean ± SD

Non-user
Mean ± SD

RA Area (cm) 19 ± 4a 17 ± 3 15 ± 3

RA Area Index (cm2 m−2) 8 ± 1 8 ± 2 12 ± 18

RA reservoir strain (%) 36 ± 10a 43 ± 14 44 ± 13

RA conduit strain (%) 25 ± 8a 31 ± 14 33 ± 10

RA booster strain (%) 12 ± 5 13 ± 6 13 ± 5

Table 5  Left ventricular diastolic function

a Denotes significance < 0.05 between current users and past-users
b Denotes significance < 0.05 between current users and non-users

Variable Current 
user 
Mean ± SD

Past user 
Mean ± SD

Non-user Mean ± SD

E (m/s) 0.78 ± 0.2b 0.79 ± 0.1 0.89 ± 0.2

A (m/s) 0.54 ± 0.1a,b 0.46 ± 0.1 0.47 ± 0.09

E/A ratio 1.5 ± 0.5a,b 1.8 ± 0.4 1.9 ± 0.4

Average E/E’ 6.7 ± 1.7a 5.5 ± 0.9 5.9 ± 1.5
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to metabolism through tissue demands for oxygen [36] 
and increases to meet the demands of the larger muscle 
mass. This occurs through increased stroke volume (SV), 
brought about by increased absolute chamber volumes. 
This was supported by Whalley et al. [34] who found that 
both LV end diastolic diameter and LV mass were inde-
pendently predicated by FFM in athletes. Additionally, 
studies [37–39] have found normalisation of structural 
cardiac parameters with allometric scaling in athletic 
populations. In IPED users, Morrison et al. [8] found sig-
nificant differences in LV end diastolic volume and LV 
diameter between current users and non-users, with no 
difference following allometric scaling. It is therefore fea-
sible to suggest that the differences in unscaled atrial size 
are due to increased body mass of IPED users and may 
be indicative of physiological adaptation according to the 
laws of geometric similarity.

Increased atrial size can be indicative of pathology. In 
a meta-analysis of 68 studies (n = 50,720), Froehlich et al. 
[40] found that LA diameter had a significant association 
with major adverse cardiac events, stroke and thrombo-
embolic events in patients without atrial fibrillation (AF). 
Atrial diameter > 4.0 cm was also significantly associ-
ated with incident AF, stroke and death. Additionally, 
in hypertrophic cardiomyopathy, LA diameter, volume 
and strain show good predictive value of new onset of 
AF [41–43] and LA diameter is used within the Euro-
pean Society of Cardiology (ESC) guidelines [44]. This 
has further relevance with AF being the most common 
arrythmia seen in masters athletes with a prevalence 
greater than the general population [45], possibly due to 
increased atrial fibrosis or conduction disturbances [46]. 
The impact of IPED use on AF prevalence is unknown, 
however it can be speculated that the elevated chamber 
size demonstrated here may put these athletes at greater 
risk of developing AF in the future.

Atrial dilatation in pathological populations can also 
relate to both atrial myopathy [47] and diastolic dys-
function [48]. In hypertrophic cardiomyopathy patients, 
bi-atrial myocyte hypertrophy and disarray have been 
suggested to cause dilatation and contribute to the 
increased AF prevalence in this population [49]. During 
ventricular diastole, the atria are exposed to ventricular 
filling pressures [48]. In cases of decreased diastolic func-
tion and elevated filling pressures, atrial pressures must 
increase to maintain adequate ventricular filling and thus 
cardiac output [50]. This pressure overload increases wall 
tension, triggering myocardial hypertrophy and fibrosis 
[51], resulting in atrial dilatation. Therefore, LA volume 
is reflective of diastolic dysfunction severity [50]. Con-
sidering the lower LV diastolic function in current users 
compared to non-users (decreased E wave, A wave, E/A 
ratio and tissue Doppler imaging) in this study, alongside 

multiple previous studies linking IPED use to diastolic 
dysfunction [9, 10, 13, 52, 53], it can be suggested that 
this mechanism, may in part, be responsible for the LA 
dilatation demonstrated here, although longitudinal 
studies should aim to assess this further.

The addition of atrial strain into the standard echo-
cardiographic examination has proven useful in other 
settings, including heart failure [21, 54] pulmonary 
hypertension [22, 23] and the general population [55], 
and provides additional insight into the impact of IPEDs 
on the heart. We demonstrate lower reservoir and con-
duit LA strain in current users compared to both past 
and non-users of IPEDs, alongside lower reservoir and 
conduit RA strain in current users compared to non-
users. Reduced LA reservoir strain is associated with 
increased stroke risk in both heart failure patients with 
sinus rhythm [54] and the general population [56, 57]. 
Similarly, LA reservoir and conduit strain predict cryp-
togenic stroke in both general and embolic stroke [55]. 
In hypertrophic cardiomyopathy patients, peak LA strain 
is predictive of 12-month outcome regarding death and/
or hospitalisation [58]. Atrial compliance and stiffness 
govern both conduit and reservoir strain [59], thus, con-
sidering the differences in LA stiffness between current, 
past, and non-users of IPEDs in the current study, it is 
feasible to suggest that this likely played a role.

Low LA strain has been inversely correlated with 
degree of fibrosis through electromechanical mapping 
[60], contrast enhanced MRI [47] and histopathology 
[61, 62]. This suggestion is supported by multiple stud-
ies finding interstitial, perivascular and subendocardial 
fibrosis in IPED users [63–65]. Fibrosis in IPED users 
is suggested to be caused by multiple factors. Rapid 
myocardial hypertrophy can cause the myocardium to 
outgrow angiogenesis rates, resulting in necrosis and 
therefore fibrosis [66, 67]. In support, rat [68] and neu-
ron-like cell [69] studies confirmed a role of apoptosis in 
IPED-related damage, causing fibrosis through necrosis 
[67]. Myocardial inflammation causes fibrosis through 
activation of profibrotic pathways [67] and, in mice, IPED 
administration caused increased myocardial expression 
of inflammatory cytokine interleukin 1-β and tumour 
necrosis factor-α showed more extensive expression [70] 
with a human autopsy study confirming the presence 
of inflammatory infiltrates in the myocardium of IPED 
users with sudden cardiac death [11]. Fibrosis acts as an 
arrhythmogenic substrate and may cause the increased 
rate of sudden cardiac death in IPED users [71] and 
therefore further studies to determine the nature of any 
involvement in the intrinsic reduction in atrial function is 
recommended.

Following diagnosis of IPED induced pathology, the 
primary treatment is immediate cessation of use [72]. 
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Baggish et al. [13] found that following a period of IPED 
cessation, LV systolic function improved, with past users 
demonstrating similar LVEF to non-users, whereas dias-
tolic function remained impaired, with decreased LV 
early relaxation velocity. The current study found no 
difference in LA and RA reservoir and conduit strain or 
LA volume and RA area between past and non-users of 
IPEDs. Although this cannot be definitively attributed to 
IPED cessation due to the cross-sectional nature of the 
study, it is supportive of past users showing a degree of 
functional and structural recovery following IPED cessa-
tion. A small case series (n = 3) found an improvement in 
LV diastolic function during the “off” period of an IPED 
cycle [73]. Additionally, due to the correlation between 
LA conduit strain, LA stiffness, RA peak strain and RA 
booster strain and IPED dose, drug cycling may tran-
siently affect functional parameters. Therefore, larger 
longer duration longitudinal studies of greater sample 
size are required to clarify the impact of IPED cessation 
and drug cycle timing on atrial structure and function 
and ultimately cardiac risk.

The recovery of atrial structure and function could be 
attributed to multiple factors. Firstly, attenuation of IPED 
induced interstitial fibrosis may lead to improvements 
in intrinsic function and compliance. In a mice model 
of fibrotic interstitial cardiomyopathy due to ischemia, 
discontinuation of the ischemia protocol resulted in 
fibrosis reversal [74]. Similarly, in patients with LV hyper-
trophy and diastolic dysfunction, treatment with an 
angiotensin-converting enzyme inhibitor over 6-months 
attenuated fibrosis with an association between fibrosis 
reduction and improved diastolic function [75]. Stud-
ies are needed to directly measure fibrosis following 
IPED cessation to clarify this link. Secondly, differences 
in diastolic dysfunction between current users and past 
users, as found in the current study (A wave, E/A ratio 
and average E/E’) likely contributes to the reversal of 
pathological structural and functional remodelling fol-
lowing IPED cessation. In a study of heart failure patients 
(n = 107), bi-atrial pump function (emptying fraction) 
was significantly improved and LA size was reduced fol-
lowing cardiac resynchronisation therapy due to pressure 
and volume unloading effects from reverse ventricular 
remodelling [76]. Studies have found similar improve-
ments in atrial structure and function due to decreased 
atrial loading following valve replacement [77] and in AF 
patients following ablation [78]. Notably, previous stud-
ies have also found a lower systolic blood pressure and 
improvement in diastolic function in past users com-
pared to current users [79, 80] [81, 82]. As LA strain has 
been demonstrated as a surrogate of LV diastolic func-
tion [18], decreases in blood pressure and thus after-
load with cessation of IPED use may also be responsible 

for the decrease in LA strain between past and current 
users. Further research is needed to investigate this in 
IPED users. Additionally, it is unclear whether reversal of 
remodelling results in decreased mortality risk and sud-
den cardiac death in IPED users [83] and the extent of 
reverse remodelling may be influenced by duration and 
dose of IPED use [13, 84]. It is plausible to suggest that 
the response to cessation will differ between individuals 
depending on the extent of disease [67].

Limitations
There are some limitations to this study. Absolute IPED 
use and training volumes were self-reported and hence 
are potentially subject to bias. That aside participants 
were fully aware of the aims and nature of the study and 
were generally actively open regarding their substance 
use. Also, sensitivity and specificity of self-report in the 
detection of urinary anabolic steroids has previously 
been found to be high [85]. Nevertheless, the authenticity 
of IPEDs used is an ongoing issue.

Additionally, polypharmacy in all participants means 
that the effects of specific substances cannot be dis-
cerned. It is important to note that this is representa-
tive of IPED use and highlights the impact of the regime 
/ cocktail of drug use in this population. Between group 
differences in atrial structural parameters normalised fol-
lowing allometric scaling, possibly suggestive of physi-
ological remodelling, however, further studies could look 
at additional factors that could contribute to this within 
this unique population. Moreso, although there were no 
significant differences between training duration (years) 
or hours (per week), other factors such as training inten-
sity or type may have caused differences in training load 
and cardiac demand between groups.

The cross-sectional nature of the study limits the appli-
cability to long-term clinical implications and therefore 
any future studies should aim to address longitudinal 
changes, adverse outcomes, mortality and their associa-
tion to specific IPED use.

Conclusion
In conclusion, absolute LA volume and RA area are 
higher in current users of IPEDs than both past and 
non-users, however, when scaled allometrically for BSA 
these differences were removed and therefore these dif-
ferences could be associated with an increased muscle 
mass. Atrial reservoir and conduit strain are reduced, 
and LA stiffness is higher in current users than past and 
non-users. There was no difference in LA and RA res-
ervoir and conduit strain alongside LA volume and RA 
area between past and non-users, although this cannot 
be definitively attributed to IPED cessation due to the 
cross-sectional nature of the study. The outlined findings 
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of potential pathological adaptation, alongside the recent 
rise in IPED use and high use within gym communities, 
highlights the clinical importance of the current study.
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