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Abstract: In this paper we predict Bitcoin movements by utilizing a machine-learning framework.
We compile a dataset of 24 potential explanatory variables that are often employed in the finance
literature. Using daily data from 2nd of December 2014 to July 8th 2019, we build forecasting models
that utilize past Bitcoin values, other cryptocurrencies, exchange rates and other macroeconomic
variables. Our empirical results suggest that the traditional logistic regression model outperforms
the linear support vector machine and the random forest algorithm, reaching an accuracy of 66%.
Moreover, based on the results, we provide evidence that points to the rejection of weak form
efficiency in the Bitcoin market.
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1. Introduction

Does Bitcoin respond to financial, cryptocurrency, and macroeconomic shocks? Should
Bitcoin follow the efficient market hypothesis? Do the other cryptocurrencies affect the
volatility of Bitcoin prices? Bitcoin emerged in 2009 as the world’s first cryptocurrency,
attracting new investors due to high returns. This is reflected by the returns of Bitcoin, as
quoted on Coinbase, increasing by more than 120% from 2016 to 2017, reaching USD20.000
from USD900 for the purchase of a single Bitcoin token. In early 2017, the market capital-
ization of Bitcoin grew significantly from around USD18 billion to nearly USD600 billion at
the end of that year. As an investment asset, Bitcoin was originally in the retail sector but
has now become the benchmark for all other digital currencies that have emerged, such as
Ethereum, XRP and Litecoin, among others.

Prior research has compared Bitcoin to gold due to its low correlation with other
financial assets [1]. In a similar vein to gold, Bitcoin can be used to hedge against inflation
or economic uncertainty, using futures contracts (Bakkt) and unregulated cryptocurrency
derivatives exchanges, such as BitMex, Huobi and OKex [2,3]. The motivation behind this
is that Bitcoin has a fixed supply, so it does not suffer from the devaluation problem of
paper money that occurs through quantitative easing.

Although there are also some studies that focus on predicting stock market price
movements, it is important to consider the cryptocurrency market, which, according to
Ferreira et al. [4], is characterized by high volatility, no closed trading periods, relatively
smaller capitalization, and high market data availability. However, in an efficient market [5],
prices of securities in financial markets fully reflect all variable information. Given that the
future is unknown, prices should follow a random walk; that is, future changes in stock
(security) prices should, for all practical purposes, be unpredictable. In the weak-form
efficiency case, future returns cannot be predicted based on past price changes. Therefore,
in the long run, one cannot outperform the market by using publicly available information.

However, Bitcoin and other digital assets are not backed by any tangible assets. In
general, Bitcoin and other cryptocurrencies are known to react to certain public market
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announcements [6,7]. In this regard, the cryptocurrencies market is highly efficient, with
prices reflecting accessible real-world information almost instantly.

Various types of modeling methodologies have been applied in an attempt to forecast
Bitcoin prices. Among the most prominent techniques are: random forest [8], artificial
neural networks [9,10], bayesian neural networks [11], and deep learning chaotic neural
networks [12]. However, irrational and unexpected factors such as sentiment have been
favored more in empirical research on the Bitcoin market [13–15]. Kraaijeveld and de
Smedt [14] study to what extent public Twitter sentiment can be used to predict price
returns for the nine largest cryptocurrencies, including Bitcoin. Nevertheless, some re-
searchers have examined unexpected US monetary policy announcements, considering
that these exercize a significant impact on Bitcoin [16], while others establish that there is a
connection between cryptocurrencies and news, more broadly through macroeconomics
news announcements. Corbet et al. [16] report that positive news after employment and
durable good announcements results in a decrease in Bitcoin returns. However, an increase
in the percentage of negative news surrounding these announcements is linked with an
increase in Bitcoin returns.

Akyildirim et al. [17] focus on the prediction of cryptocurrency returns by collecting the
twelve most liquid daily cryptocurrencies using machine-learning classification algorithms,
including the support vector machine (SVM), logistic regression models, artificial neutral
networks, and random forest. They find an average classification accuracy close to 50%
for all these techniques. Finally, they observe that the SVM gives superior and more
consistent results compared to those of logistic regression, artificial neural networks, and
random forest classification algorithms. Jaquart et al. [18] also apply machine-learning
techniques to predict high-frequency (one minute to 60 min) Bitcoin prices over the period
4 March 2019 to 10 December 2019. They discover that all tested models make statistically
viable predictions, forecasting the binary market movement with accuracies ranging from
50.9% to 56.0%. Chen et al. [19] apply several machine-learning methods to forecast
high-frequency (5-min intervals) Bitcoin prices. The authors collected daily data between
17 July 2017 and 17 January 2018. For daily forecasting, they observe that statistical methods
and machine learning achieve 66% and 65% accuracy, respectively, which outperforms
benchmark methods.

In our study, we attempt to uncover the potential relationship between cryptocurren-
cies and other financial variables using a machine-learning framework on weekly data. To
accomplish this, we compile a pool of 24 potential regressors based on economic theory
and prior research. Using three different techniques, an SVM model with a linear kernel
and a random forest algorithm, we examine the directional forecasting performance of our
models in comparison to the commonly used logistic regression model. The innovation of
our work stems from the application of state-of-art machine-learning methodology and the
empirical identification of a relationship between Bitcoin and other cryptocurrencies and
macroeconomic variables. We also specifically test the relationship between Bitcoin prices,
exchange rates, and interest rates as a possible empirical validation of the Efficient Market
Hypothesis (EMH) under a machine-learning framework.

The results of the empirical investigation provide evidence that the returns on Bitcoin
are independent of returns on other cryptocurrencies or macroeconomic determinants.
This reveals that Bitcoin is a special asset independent of monetary policy or other digital
currencies. According to this, investors could be able to utilize Bitcoin as a hedge against
regulatory frameworks affecting interest rates and inflation. Given its ability to act as
a hedge and its resistance to quantitative easing due to its limited supply, Bitcoin has
the potential to flourish and strongly influence alternative investments for several years
to come.

The remainder of the paper is organized in the following way: In the next section, we
describe the data. Section 3 outlines the methodology that we use in our research. Section 4
reports our empirical findings. Section 5 summarizes and concludes.



Entropy 2023, 25, 777 3 of 10

2. Data

We developed a binary classifier based on SVM to predict the stock price movements
of Bitcoin. The data was collected daily from Coinlore.com, a website providing high-
frequency cryptocurrency data. The macroeconomic variables and interest rates were
obtained from the Federal Reserve Bank of St. Louis (FRED), and the collection of selected
exchange rates were acquired from Yahoo finance. The data spans from the 2nd of De-
cember 2014 to 8th July 2019. We compiled a dataset of 24 variables, which included the
economic policy uncertainty (EPU) index as a factor, given that an increase in the EPU will
change investors’ sentiments for the worse, according to Yen and Cheng [20] (Panel A). We
included various exchange rates, such as EUR, GBP, JPY, and AUD, against the domestic
country’s USD exchange rate to check whether these currencies affect Bitcoin movements
(Panel B). We also assembled the main interest rates that were used as benchmarks for
the US and the European economy (Panel C). Moreover, following the literature review
that attributes Bitcoin’s movements, we considered that other cryptocurrencies [21] could
influence Bitcoin’s volatility (Panel D). Finally, in Panel E, we created three different vari-
ables: the momentum for each 5, 10 and 15 days from the start of the dataset, giving more
information to the model.

Overall, more than 700 observations were collected, but because the stock exchange is
closed on weekends and there were many missing values, we applied a filtering process to
the data. After we filtered the data, the final sample consisted of 239 observations. Financial
returns ( rt) = ∆Pt − ∆Pt−1 were calculated with P denoting the closing prices of each
variable in our sample. All the variables in our data, along with summary statistics, are
displayed in Table 1. The JPY/USD exchange rate and the cryptocurrency Deutsche eMark
(DEM), with values of 0.000436 and 0.000019 respectively, appear to have the smallest
positive standard deviations that are close to zero. This indicates that these two factors
have the lowest volatility. For the target (output), we modeled the return of Bitcoin, using a
binary-dependent variable coded as 0 or 1, where 0 indicates that the return of the Bitcoin
value is negative (the value decreased from the previous day) and the 1 indicates that the
return of the BTC is positive (the value increased from the previous day).

Table 1. Descriptive statistics of 18 cryptocurrencies and exchange rates.

Variables Name Std Mean Skew Kurt

TARGET Bitcoin 0.491265 0.401674 0.403676 −1.852619

Panel A: Macroeconomic Variables

USEPUINDXD Economic Policy Uncertainty Index
for United States 44.333749 87.418201 1.409511 4.538997

Panel B: Exchange Rates

EUR/USD EUR/USD 0.045994 1.133789 0.455684 −0.134286

GBP/USD GBP/USD 0.106192 1.370556 0.548099 −1.066357

JPY/USD JPY/USD 0.000436 0.008880 0.010883 −0.234481

AUD/USD AUD/USD 0.031169 0.749203 0.203230 −0.407285

Panel C: Interest Rates

TB3MS 3-Month Treasury Bill Secondary
Market Rate, Discount Basis 44.33288 87.412762 1.409956 4.540290

DFII10
Market Yield on U.S. Treasury
Securities at 10-Year Constant

Maturity
0.414795 2.325826 0.085033 −0.639574
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Table 1. Cont.

Variables Name Std Mean Skew Kurt

Panel D: Cryptocurrencies

BTC Real Bitcoin Real Price 3783.646 3371.3188 1.320277 1.466443

DOGE Dogecoin 3781.398 3375.7582 1.320594 1.469247

MAID MaidSafeCoin 0.197630 0.195004 1.814227 −0.328242

XRP XRP 0.349752 0.231999 3.025756 13.524215

NVC Novacoin 1.998961 1.882093 1.768265 2.927803

NMC Namecoin 0.937335 0.955977 2.516421 8.185247

LTC Litecoin 60.35639 43.998117 2.018088 4.684777

GLC Goldcoin 0.071203 0.053806 2.404576 7.640745

DASH Dash 218.0163 142.67451 2.471539 6.954688

DEM Deutsche eMark 0.000019 0.000009 3.678487 15.999390

ABY ArtByte 0.005136 0.002809 3.464867 15.451262

DIME Dimecoin 0.011868 0.009364 3.020989 10.973465

ORB Orbitcoin 0.163214 0.139930 2.294509 6.639723

GRS Groestlcoin 0.380965 0.246300 2.019766 4.325836

Panel E: Momentum Variables

MOM5 Momentum 5-Days 1.146598 0.246300 0.412184 −0.195015

MOM10 Momentum 10-Days 1.591595 3.979079 0.349793 −0.117683

MOM15 Momentum 15-Days 2.102353 6.016736 0.311525 −0.487390

3. Methodology
3.1. Logistic Regression Model

Undertaking directional forecasting requires that the dependent variable be binary
and take two states: 0 or 1, expressing the next negative and positive Bitcoin return
values, respectively. The basic drawback of the ordinary least squares (OLS) regression
methodology is that the nature of the dependent variable makes OLS regression results
irrelevant due to the heteroskedasticity of the estimated errors and the hypothesis violations
in the asymptotic efficiency of the estimated coefficients. To solve this issue, we estimated
the probability Pi = E(yi = 1|xi) = exi β

1+exi β that the dependent variable is equal to 1. Given the
conversion of the dependent variable to binary, the logarithm of the probability of being in
state 1 to state 0 is obtained from the following equation, which is called the “logit,” where
xi is the vector of the independent regressors and β is a vector of the estimated coefficients.

Li= Ln

(
Pi

1− Pi

)
= xiβ

T

If the estimated Li is above 1, we classify it as belonging to class 1, while if it is below
1, we classify it in class 0.

3.2. Support Vector Machine

Data classification and regression tasks usually include the use of the SVM, a super-
vised machine-learning methodology. It has gained great popularity due to its ability to
provide highly accurate prediction results without making a priori assumptions concerning
the phenomenon under investigation. Finding the ideal hyperplane that maximizes the
distance between the two classes and the highest level of accuracy enables the SVM to
classify the data into two classes [22]. A tiny minority of data points known as support
vectors (SV) that were found using a minimization technique define the hyperplane. This
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process is shown visually in Figure 1. In our study, the initial dataset is split into two
subsamples: the training set and the testing set. The training step, when the hyperplane is
established, receives 80% of the data. The remaining 20% of the total sample is used in the
testing set, where the generalization ability of the model is tested on the small part of the
dataset that was set aside during the training set.
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The hyperplane is defined as:

ŵ =
N
∑

i=1
aiyixi

b̂= ŵTxi−yi, i ∈ V

where V = {i:0 < yi < C} is the set of support vector indices.
The SVM with a linear kernel has become widespread, given that it possesses faster

training and classification speeds with significantly fewer memory requirements than
nonlinear cores due to the SBM’s compact representation of the decision function. In our
research, we also examine the linear kernel where it detects the separating hyperplane
in the original dimensional space of the dataset. The mathematical representation of the
Radian Basis Function (RBF) kernel is the following:

RBF : K (x1, x2 ) = e−γ‖x1−x2‖2

Over-fitting is a common issue that appears in the training set, where the model
“learns” to accurately describe the training data, while giving worse performance to the test
set. This concern is described in the literature as the “low bias–high variance” [23,24]. To
avoid over-fitting, we use a cross-validation framework, displayed in Figure 2. The initial
training set is split into n equal-sized parts. The training step is performed n times, using a
different sample for testing, and the rest of the model is repeated in n − 1 parts, each time
holding one part for test purposes. This process is reiterated n times with the same set of
parameters until all parts of the test process have passed, evaluating the average accuracy
of the model performance for that set of hyperparameters in all n parts of the test. Based
on our study, we use a 5-fold cross-validation procedure 5 times, applying and evaluating
its accuracy on the sample of 20% of the data.
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3.3. Random Forests

Random forest is an ensemble technique that combines the idea of decision trees
with the bootstrapping and aggregating procedure to create a diversified pool of individ-
ual regression systems [25]. The random forest algorithm is referred to in the literature
by many researchers as a method commonly used to avoid overfitting issues that may
arise in decision trees by combining multiple decision trees into a setup called random
forest [26,27]. Each tree is constructed from a random set of features where there is a
replacement subsample of size n, the same as in the initial dataset. The observations that
were not selected in the bootstrapping process form the out-of-bag (OOB) set used for the
testing generalization ability of the trained model. To reduce the dependence of the models
on the training set, each tree uses a randomly selected subset of the explanatory variables
(features). Normally, we use the square root of the total number of features. The system
aggregates the classification of each tree and retains the most popular class.

3.4. Performance Matrix

Our study uses four separate performance indicators to illustrate how effectively the
machine-learning categorization models execute detailed forecasting. The confusion matrix
is created as shown in Table 2, where the predictive scores are binary and just one single
confusion matrix can analyze it. Each category of the confusion matrix (TN, FN, FP, TP) is
evaluated separately. Specifically, the TN expresses the number of predictions that were
correctly classified in the negative category, while the FP implies the number of predictions
that were incorrectly classified in the positive category. Also, the FN expresses the number
of predictions that were incorrectly classified in the negative category, while the TP declares
the number of predictions that were correctly classified in the positive category.

Table 2. Classification Results using Confusion Matrix.

Predicted Label

0 1

Actual

0
TN FP

(True Negatives) (False Positives)

1
FN TP

(False Negatives) (True Positives)
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Based on the results of the confusion matrix, the following performance metrics are
computed to evaluate the models.

Recall =
TP

TP + FN
(1)

Accuracy =
TP + TN

TP + FN + FP + FN
(2)

Precision =
TP

TP + FN
(3)

F1-Score = 2 × Precision× Recall
TPrecision + Recall

(4)

All performance metrix ratios range from 0 to 1. In our research, accuracy is the key
performance matric to evaluate and compare the machine-learning models, as the models
do not have balanced problems between the two classes of the target variable. Accuracy
is expressed as the ratio of all the true predictions (positives and negatives) to the total
number for all datasets. Moreover, accuracy is considered a significant performance metric
in classification problems [28,29]. However, when the dataset has unbalanced data, a high
value of accuracy can be a misleading factor since the models tend to choose the majority
class, achieving extremely high accuracy (“Accuracy Paradox”) [30].

Precision estimates the ratio of true positives cases among all cases (both true and
false), showing how many times our model predicted the positive class, and the numerator
counts how many of those classes were actually positive, while the F1-Score is the harmonic
mean of precision and sensitivity. Recall is the fraction of the true positive instances (cases)
among all the cases (both true and false), reporting all the positive cases. The numerator
counts how many of those cases were correctly predicted by our model.

4. Empirical Results

Given the scope of this study, we apply a coarse-to-fine grid search scheme on the
training set. We can obtain the optimal values of the hyperparameters that maximize the
predictive ability of the SVM and random forest models. To accomplish this, we use a
5-fold cross validation process, avoiding overfitting issues. Given the balanced nature of
our dataset, the procedure continued to identify the best parameters of the optimal model.
The results of the hyperparameters of the SVM model with an RBF kernel are c = 0.0001
and γ = 100, while the optimal hyperparameters for the random forest model that we tested
were n-estimators = 75 (total numbers of decision Trees).

However, the generalization ability of the trained model is evaluated using the testing
dataset, which includes 239 observations. Results of 96 observations present an upward
trend in the Bitcoin’s price, while 143 observations have a negative direction. As a perfor-
mance matric, we employ four different metrics, recall (sensitivity), accuracy, precision,
and F1-Score.

According to Table 3, the random forest and SVM with RBF kernel represent the same
accuracy performance of 58%. However, the Logit model achieves a significantly higher
predictive performance for all performance metrics. The performance of accuracy gives the
highest result of 0.66. This implies that 66% is expressed as true predictions (positive and
negative) in the total number for all the data. The precision is likewise the highest (53%)
through all metrics. This means that from the cases that the model forecasts an increase
in Bitcoin return (true positives + false positives), 53% are actual increased values (true
positives), so were correctly anticipated each time the model predicted this category.
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Table 3. Performance metrics of the three methodologies.

Recall Accuracy Precision F1-Score

Logistic Regression Model 0.411765 0.66667 0.538462 0.466667
SVM Linear Kernel 0.058824 0.583333 0.200000 0.090909

Random Forest 0.588235 0.583333 0.434783 0.500000

Notes: Three different performance metrics evaluated and analyzed using the Logistic Regression model, support
vector machine, and random forest technique.

5. Conclusions

Bitcoin has evolved rapidly over the past decades and is attracting strong attention
from investors, who see this as part of the alternative investment space. With this sig-
nificantly growing attention from the investment community, Bitcoin is an important
asset class for researchers and traders alike. The objective of our paper is to construct
a model which predicts Bitcoin movements and to investigate whether Bitcoin follows
an efficient market hypothesis or a random walk. To achieve this, we collect a large
dataset consisting of 24 variables that includes exchange rates, interest rates, macroeco-
nomic variables, another 13 cryptocurrencies, and four auxiliary variables, spanning the
period from 2 December 2014 to 8 July 2019. The dataset includes 239 observations (5-days
frequency), divided into two subsamples: in-sample and out-of-sample. Two different
machine-learning techniques and a traditional regression model are used, namely, logistic
regression, the support vector machine and the random forest algorithm, which demon-
strate the predictability of the upward or downward price moves. For the machine-learning
model, the optimal values of the respective hyperparameters were initially found using
five-fold cross-validation and out-of-bag methods to avoid overfitting.

Figure 3 summarizes the results of the three forecasting methodologies used. A tradi-
tional logit model achieved the best performance (66% accuracy) for Bitcoin movements.
However, all the other performance metrics have almost similar and lowest results.
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Figure 3. Aggregated results and comparison of proposed methodologies.

The empirical analysis confirms that the returns of Bitcoin are not affected by the
returns of other cryptocurrencies or macroeconomic variables. This implies that Bitcoin
is a unique asset that is not related to economic policy or other digital currencies. This
suggests that investors can use Bitcoin as a hedge against government policy on inflation
and interest rates. Given its hedging qualities and its robustness to quantitative easing
due to its fixed supply, Bitcoin has the ability to continue to grow and make an important
contribution to alternative investments for years to come.
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