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Abstract

Orthogonal polynomials and their moments have significant role in image processing and

computer vision field. One of the polynomials is discrete Hahn polynomials (DHaPs), which

are used for compression, and feature extraction. However, when the moment order

becomes high, they suffer from numerical instability. This paper proposes a fast approach

for computing the high orders DHaPs. This work takes advantage of the multithread for the

calculation of Hahn polynomials coefficients. To take advantage of the available processing

capabilities, independent calculations are divided among threads. The research provides a

distribution method to achieve a more balanced processing burden among the threads. The

proposed methods are tested for various values of DHaPs parameters, sizes, and different

values of threads. In comparison to the unthreaded situation, the results demonstrate an

improvement in the processing time which increases as the polynomial size increases,

reaching its maximum of 5.8 in the case of polynomial size and order of 8000 × 8000 (matrix

size). Furthermore, the trend of continuously raising the number of threads to enhance per-

formance is inconsistent and becomes invalid at some point when the performance improve-

ment falls below the maximum. The number of threads that achieve the highest

improvement differs according to the size, being in the range of 8 to 16 threads in 1000 ×
1000 matrix size, whereas at 8000 × 8000 case it ranges from 32 to 160 threads.

Introduction

Moment theory is a powerful tool in the areas of image processing, pattern recognition, and

computer vision applications [1]. Signals are described using scalar values called moments

(one, two, or more dimensions). A set of polynomial basis functions is utilized to compute

moments. These basis functions are used to convert signals, voice or images, to the transform

domain [2, 3]. To deal with the problem of pattern identification, Hu [4] introduced geometric

moments and moments invariants. The proposed momemnts are not orthogonal, which result

in numerical difficulties [5].
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Continuous moments could be determined using continuous orthogonal polynomials like

Zernike [6] or by using Tchebichef with altered radius [7]. Continuous moment functions can

be incorrect due to two common types of errors: image coordinate transformation and contin-

uous integral approximation. [8]. Due to the utilization of discretization and approximation

throughout the process of image reconstruction, the obtained image will be imperfect [9].

In order to avoid the aforementioned constraints, Discrete Orthogonal Polynomials

(DOPs) have been concentrated on by the researchers. This is due to their remarkable image

reconstruction features [8–10]. In addition, 1D and 2D signals can be represented by discrete

orthogonal moments (DOMs) without redundancy. Also, they have great energy compaction,

and spectrum resolution characteristics [11–14]. Signal representation and feature extraction

have recently been used to discrete Tchebichef polynomials [15, 16], discrete Hahn moments

[17], and discrete Krawtchouk moments [18, 19]. It is note worthy that the DOPs are utilized

for solving linear functional differential equations [20].

DOPs’ are solid owing to their significant features, which involve localization, energy com-

pression, watermarking, signal extraction features, numerical stability, efficient data process-

ing, and resilient data analysis [3, 21–25]. At the same time, the vital characteristics of majority

of DOMs are not applied to large-sized images which is due to limitation in the computation

of polynomials [26].

The DOPs limitations such as overflow, the instability of the polynomial values, and the

high computational complexity have resulted in this constraints. Therefore, an improved

recurrence technique for generating higher orders are being improved, for example Tchebichef

[16] and Krawtchouk [18] polynomials. Recently, Researchers have considered other DOPS,

for example Charlier polynomials [27] and Hahn polynomials [26].

The computation of DOP coefficients and the propagation of errors have been simplified

by using the recursive algorithms [28, 29]. Regarding degree n either a single or double recur-

sive formula can be employed. It also considers the time or spatial coordinate. To overcome

the instability in the numerical values, the DOP coefficients should be calculated in the direc-

tion of the variable n. However, when the size of one or two dimensional signals turns large

these calculations become inefficient. Since small values are assumed for the squared norm of

the scaled Tchebichef polynomials, the coefficients of Tchebichef polynomials, for example,

suffer from instabilities in the numerical values. To solve the aforementioned problem, the

recurrence method in the x-direction was introduced by Mukundan [9]. After this study, this

issue has received significant attention in many studies, for example, [28].

Generally, there has been a lot of focus on computation cost [30, 31]. It is considered as a

key element which assist in ill-conditioning. For this reason, large number have considered it

[32, 33]. This drawback is addressed in [34] by using a rapid and efficient computation method

for Meixner moment coefficients. Another research introduced a fast and stable approach of

Tchebichef moments for higher polynomial order, this is performed by combining the recur-

rence algorithms in the n and x directions [16]. Daoui et al. [26] utilized Gram-Schmidt

orthogonalization procedure to reduce numerical error propagation. However, this technique

is relatively slow.

This paper proposes a novel technique inspired by discrete orthogonal Hahn moments.

Based on the literature, the three-term recurrence algorithms have been utilized in several

existing works to tackle the problem of computational cost and propagation error due to

gamma and binomial functions [35]. In [28], the n-direction recurrence algorithm was

employed with an initial value starting at n, x = 0. The drawback of the algorithm presented

in [28] (the recurrence algorithm in the n-direction) comes from starting the sets of initial

values which are based on the initial value at n, x = 0. The initial sets are computable for a

very restricted DHaP polynomials size and parameters. This results in a maximum
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computable polynomial size of 135. In other words, the limitation is due to the employed

formula. In addition to the issue of high computational cost, algorithm used has numerical

instability. To resolve the issue of the recurrence algorithm in the n-direction, the x-direc-

tion recurrence relation is adopted with a symmetry relation for equal values of the polyno-

mials parameters [28]. Using the symmetry relation allows a reduction of 50% in the

computed coefficients, which reduces the computation cost. Yet the recurrence relation in

the x-directions has two limitations. The first limitation is that, according to the nature of

the formula being utilized, the initial set becomes 0 when samples size or parameter values

tends to be large. The second limitation is that when the degree of the polynomial increases,

the coefficient values underflow because the initial value are less than 10−324, which equals

zero for various values of the polynomials’ parameters. The highest possible order that can

be calculated occurs at n = 1423. To overcome the limitation of previous recurrence algo-

rithms, Daoui et al. [26] presented a technique based on the n-direction recurrence relation

and the Gram-Schmidt orthonormalization process (GSOP). The utilization of the GSOP

minimizes the numerical errors due to the use of the n-direction recurrence algorithm.

However, the GSOP-based recurrence resolves the orthogonality of the DHaPs, but it has

several limitations. First, the algorithm is unable to accurately calculate the coefficients of

the DHaP when the parameters are not equal. Second, due to the technique used to calculate

the initial values, the algorithm is still unable to generate DHaP for a wide range of DHaP

parameters. Third, the nested loops of the GSOP algorithm result in a high computational

cost, which in turn raises the number of processes required to compute the coefficients of

the DHaP. Recently, a new mathematical model has been presented by [36], which can com-

pute the DHaP’s initial value for a wide range of DHaP parameters values. In order to stabi-

lize the computation of the DHaP coefficients, the algorithm also consists of two recurrence

algorithms with adaptive thresholds. Although the algorithm in [36] can compute the coeffi-

cients of the polynomials more accurately than other algorithms, it still suffers from compu-

tation overhead.

In this paper, a fast approach for computing the DHaPs is proposed and applied to high

orders. This work takes advantage of the multithread for the computation of Hahn polynomi-

als coefficients. To take advantage of the available processing capabilities, independent calcula-

tions are divided among threads. The research provides a distribution method to achieve a

more balanced processing burden among the threads.

This paper is organised as follows: in Section “Mathematical definition of DHaP and its

moments” Preliminaries and current three-term recurrence algorithms are discussed. The pro-

posed recurrence algorithm is presented in Section “Proposed Recurrence Algorithm”. In Sec-

tion “Experimental Results”, the proposed recurrence method is evaluated by an experimental

investigation. Finally, the paper is concluded in Section “Conclusion”.

Mathematical definition of DHaP and its moments

This section presents the mathematical principles of the DHaP and their moments.

The definition of DHaPs

The nth order of the DHaP is defined as [28]:

Ha;b
n x;Nð Þ ¼

ð� 1Þ
n
ðbþ 1Þn ðN � nÞn

n! 3F2

� n; � x; nþ 1þ aþ b

bþ 1; 1 � N

�
�
�
�
�

1

 !

; ð1Þ
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where 3F2(�) is the generalised hypergeometric series denoted by:

3F2

a1; a2; a3

b1; b2

�
�
�
�
�
c

 !

¼
X1

k¼0

ða1Þk ða2Þk ða3Þk
ðb1Þk ðb2Þk k!

ðcÞk ð2Þ

and (�)k is the Pochhammer symbol [37].

The orthogonality of the DHaPs is satisfied as follows:

XN� 1

x¼0

Ha;b

n ðx;NÞHa;b

m ðx;NÞoðxÞ ¼ rðnÞdnm ; ð3Þ

where ρ demotes the norm function of DHaP, ω represents the weight function of the DHaP,

and δnm is the Kronecker delta. The norm and weight functions of the DHaP are defined as fol-

lows:

oðxÞ ¼
Gðbþ xþ 1ÞGðN � xþ aÞ

Gðxþ 1ÞGðN � xÞ
ð4Þ

rðxÞ ¼
ðaþ bþ nþ 1ÞNGðaþ nþ 1ÞGðbþ nþ 1Þ

ð2nþ aþ bþ 1ÞGðN � nÞGðnþ 1Þ
: ð5Þ

The nth degree of the weighted and normalized DHaP is given by

Ĥ a;b
n x;Nð Þ ¼ Ha;b

n x;Nð Þ

ffiffiffiffi
o

r

r

: ð6Þ

The definition of DHaM

DHaMs are the projection of the signals on the basis of the DHaP. Suppose a 2D signal f(x, y)

of size N1 × N2. Then, the DHaMs, Cnm, can be calculated:

Cnm ¼
XN1 � 1

x¼0

XN2 � 1

y¼0

Ĥ a;b

n ðx;N1ÞĤ
a;b

m ðy;N2Þ f ðx; yÞ ð7Þ

n ¼ 0; 1; . . . ;N1 � 1; and

m ¼ 0; 1; . . . ;N2 � 1;
ð8Þ

To reconstruct back the 2D signal, image, to the spatial domain, the reconstructed signal

f̂ ðx; yÞ can be computed as follows:

f̂ ðx; yÞ ¼
XN1 � 1

n¼0

XN2 � 1

m¼0

Ĥ a;b

n ðx;N1ÞĤ
a;b

n ðy;N2ÞCnm

x ¼ 0; 1; . . . ;N1 � 1; and y ¼ 0; 1; . . . ;N2 � 1:

ð9Þ

Related work

It is well known that hypergeometric series defined in Eq (1) is computationally cost and

shows imprecise precision of the polynomials coefficients; thus, the three term recurrence rela-

tions are used. The available recurrence relations with their analysis are discussed in this

section.
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The recurrence relation in the n-direction (RRnd). The nth degree of the DHaP at the

xth index is defined as follows [28]

Ĥa;b
n x;Nð Þ ¼

AB
E

Ĥ a;b

n� 1
x;Nð Þ þ

CD
E

Ĥ a;b

n� 2
x;Nð Þ ð10Þ

n ¼ 2; 3; . . . ;N � 1; and

x ¼ 0; 1; . . . ;N � 1;
ð11Þ

the recurrence relation parameters are defined by:

A ¼ x �
2N þ g2 � 2

4
�
ð� a2 þ b

2
Þð2N þ g1Þ

4ð2nþ g1 � 2Þð2nþ g1Þ

B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ g1Þð2nþ g1 þ 1Þ

ðN � nÞðnþ aÞðnþ bÞð2nþ g1 � 1ÞðN þ nþ g1Þ

s

C ¼ �
ðnþ a � 1Þðnþ b � 1ÞðN þ nþ g1 � 1ÞðN � nþ 1Þ

ð2nþ g1 � 2Þð2nþ g1 � 1Þ

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn � 1Þðnþ g1Þðnþ g1 � 1Þð2nþ g1 þ 1Þ

ðaþ nÞðaþ n � 1Þðbþ nÞðbþ n � 1ÞðN � nþ 1ÞðN � nÞ

s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðg1 þ 2n � 3Þðg1 þ N þ nÞðg1 þ N þ n � 1Þ

r

E ¼
nðg1 þ nÞ

ðg1 þ 2n � 1Þðg1 þ 2nÞ
g1 ¼ aþ b

g2 ¼ a � b

ð12Þ

with initial values

Ĥa;b

0
ðx;NÞ ¼

ffiffiffiffiffiffiffiffiffiffi
oðxÞ
rð0Þ

s

ð13Þ

Ĥ a;b

1
ðx;NÞ ¼ � bþ 1ð Þ N � 1ð Þ þ x aþ bþ 2ð Þ½ �

ffiffiffiffiffiffiffiffiffiffi
oðxÞ
rð1Þ

s

: ð14Þ

The problem of the recurrence relation in the n-direction recurrence algorithm is due to

the utilized initial values Ĥa;b
0 ðx;NÞ and Ĥ a;b

1 ðx;NÞ. These initial values bound the polynomial

to low values of polynomial size N, where the largest size can be obtained is 135 samples which

occurs at limited range of DHaP parameters, α = 20 and β = 20. This limitation occurs because

of the utilized formulas. To resolve this problem, the complexity of the utilized formulas can

be reduced; however, the recurrence relation in the n-direction still shows numerical propaga-

tion error [36].
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The recurrence relation in the x-direction (RRxd). To compute the DHaPs at the xth

index with nth degree, the following recurrence is used [28]:

Ĥ a;b
n ðx;NÞ ¼ Z1

h
Z2Ĥ a;b

n ðx � 1;NÞ þ Z3Ĥ a;b
n ðx � 2;NÞ

i
ð15Þ

x ¼ 2; 3; . . . ;N � 1; and

n ¼ 0; 1; . . . ;N � 1;
ð16Þ

The recurrence relation coefficients η1, η2, and η3 are computed as follows:

Z1 ¼

ffiffiffiffiffiffiffiffiffiffi
oðxÞ

p

tðx � 1Þ þ sðx � 1Þ
sðxÞ ¼ xðaþ N � xÞ

Z2 ¼
tðx � 1Þ þ 2sðx � 1Þ � lðnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oðx � 1Þ

p tðxÞ ¼ ðbþ 1ÞðN � 1Þ � xðaþ bþ 2Þ

Z3 ¼ �
sðx � 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oðx � 2Þ

p lðnÞ ¼ nðnþ aþ bþ 1Þ

ð17Þ

with initials

Ĥa;b

n ð0;NÞ ¼ ð1 � NÞn
nþ b
n

� � ffiffiffiffiffiffiffiffiffiffi
oð0Þ

rðnÞ

s

ð18Þ

Ĥ a;b
n ð1;NÞ ¼

ðnþ bþ 1ÞðN � n � 1Þ � nðN þ a � 1Þ

ðbþ 1ÞðN � 1Þ
�

�

ffiffiffiffiffiffiffiffiffiffiffiffi
oð1Þ

oð0Þ

s

Ĥ a;b
n 0;Nð Þ:

ð19Þ

It is noteworthy that for the recurrence relation in the x-direction, symmetry relation [26]

is employed to recude the computation cost:

Ĥ a;b
n ðx;NÞ ¼ ð� 1Þ

nĤ a;b
n ðN � 1 � x;NÞ for a ¼ b: ð20Þ

The utilization of the symmetry relation Eq (20) will reduce the computed coefficients to 50%.

However, the recurrence relation in the x-direction still has two limitations. These limitations

are:

1. The values of the Ĥa;b
n ð0;NÞ tend to zero as the number of samples (N) increases and the

values of the DHaP parameters becomes big. This is due to the formula used in Eq (18), and

2. The coefficient values of the DHaPs become underflowed as the polynomial degree (n)

becomes large. This is due to the values of the initial becomes less than 10−324, which in

turn goes to zero in different environments [36].

It is noteworthy that the DHaPCs become zero as the polynomial degree increases. For

instance, the maximum non-zero coefficients occurred at n = 1423 when N = 1600 and

α = β = 10 [36].

Recurrence relation based on Gram-Schmidt orthonormalization process (RRGSOP).

Daoui et al. [26] introduced their algorithm which is based on Gram-Schmidt orthonormaliza-

tion process (GSOP), as well as n-direction recurrence relation to determine DHaP. In this

case, GSOP is introduced to solve the issue instability in the DHaPCs. The proposed computes
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the initial sets Ĥ a;b
0 ðx;NÞ and Ĥa;b

1 ðx;NÞ. Recurrence relation in the n-direction is utilised to

find the coefficients for n> 1 is then applied in order to reduce computational errors pro-

duced through the n-direction recurrence algorithm. Despite the fact that GSOP-based recur-

rence algorithm fulfil orthogonality condition, it has the following problems:

1. When α 6¼ β, the algorithm fails to correctly identify the DHaP coefficients [26].

2. This algorithm is incapable to provide DHaP for a large range of values for α and β.

3. GSOP-based recurrence algorithm suffers from computational complexity as a result of the

nested loops utilized to reduce the error for each polynomial degree. This can increase the

number of operations required to calculate DHaP coefficients.

Hybrid recurrence algorithm. The authors in [36] provided a new algorithm for the pur-

pose of solving the issues and limitations from previous algorithm. In this case the authors

looked at two recurrence algorithms (which are the n- and x-recurrence relations) as well as

adaptive threshold in order to be able to stabilize the generation of the DHaP coefficients. It

should be noted that computational cost is considered important factor which is increased in

this algorithm.

Proposed recurrence algorithm

In this section, the proposed multi-thread recurrence algorithm for DHaPs is presented in

details.

The matrix of the DHaPs is divided into four parts (Part H1, Part H2, Part H3, and Part

H4) similar to the partitions made in [36] (see Fig 1). First, computation of the first two col-

umns at x = 0 and 1 are performed before the computation of the coefficients at part H1 (see

Fig 2). Then, the proposed algorithm distributes the rows among a set of threads rather than

the sequential processing of the H1 rows, which permits parallel processing of the coefficients.

As every row is computed independently of the other rows. Part H2 is similarly divided among

the same number of threads as part H1. Following the calculation of the last two columns, the

threads start calculating the coefficient.

Furthermore, parts 3 and 4 (H3 and H4), begin respectively after parts H1 and H2 have

been completed. The coefficients of the last two rows in part H1 are required to calculate part

H3, however each column is independent of the others. Consequently, to perform parallel

computation of the coefficients, the columns in part H3 are distributed among a set of threads.

In the same way, after calculating part H2 coefficient, part H4 columns are processed using a

set of threads.

For the case where α = β, there is a mirroring property that can be used to reduce the pro-

cessing load. In the proposed algorithm, parts H2 and H4 coefficients are calculated inline

with the part H1 and H3 calculations respectively. Using the available parallel resources, which

are represented by multicores. The number of threads assigned to each scenario guarantees

that parts H1 and H2 have the same processing burden. In parts H1 and H2 for 2N/5 rows, the

number of rows for each thread will be bunch1 = 2N/5/Th; Th is the number of threads. The

number of columns assigned for each thread in parts H3 and H4 will be bunch2 = (N/2)/Th.

Experimental results

In order to evaluate the proposed threaded algorithm different matrix sizes are considered,

namely 1000 × 1000, 2000 × 2000, 4000 × 4000, and 8000 × 8000. The unthreaded case in [36]

is compared to some works in literature TRx [28], TRn [28], and TRGSOP [26] for the cases
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where α = β and a 6¼ b to evaluate their performance. Tables 1 and 2 show the normalized per-

formance of the different algorithms as compared to the unthreaded case [36]. For the case of

α = β, the unthreaded case outperforms the other algorithms in all cases, except the TRn at

1000 matrix size. On the other hand, TRx outperforms the unthreaded case when α 6¼ β for all

matrix sizes, whereas TRn falls behind the unthreaded case at Large matrix sizes (4000 and

8000). TRGSOP show the worst performance at both α = β and α 6¼ β in all matrix sizes. It

should be noted that TRn, TRx, and TRGSOP are unstable in all the tested cases while the

unthreaded algorithm is stable.

Fig 1. Partitions of the DHaPs.

https://doi.org/10.1371/journal.pone.0286878.g001
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Fig 2. Steps of the proposed algorithm with threads.

https://doi.org/10.1371/journal.pone.0286878.g002

Table 1. Normalized performance of the different algorithms for α = β.

Size TRn TRx TRGSOP Unthreaded Case

1000 1.152 0.824 0.001540 1

2000 0.977 0.845 0.000444 1

4000 0.726 0.830 0.000281 1

8000 0.539 0.982 0.000159 1

https://doi.org/10.1371/journal.pone.0286878.t001
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The proposed threaded algorithm is evaluated and compared with the unthreaded case at

the same cases of matrix sizes considered previously with different combinations of parameters

α and β. In addition, different combinations of parameters α and β are considered as well. The

proposed algorithm is based on the distribution of the computation load among independent

threads to provide parallelism, thus enhancing performance. The effect of number of threads

on the performance is evaluated by considering 2 threads up to 250 threads.

Starting with the cases where α = β = 10, 50, 100, 150, 200, and 250, Fig 3 shows the perfor-

mance improvement achieved by the proposed algorithm with respect to the unthreaded case.

It can be noticed that the improvement has been slightly affected by the changes in the parame-

ter values α = β, this is applicable at different number of threads and different matrix sizes. The

highest difference can be observed at size = 1000 for α = β = 10 where it achieves up to 23%

lower improvement as compared to the other parameter cases.

As can be noticed in Fig 3, all cases achieve about 100% improvement when the process is

divided among two threads. This improvement linearly increases with the increase in the num-

ber of threads up to 8 threads. The threading technique has higher improvement as compared

to the unthreaded case at higher matrix size, as it achieves up to 4.7, 5.5, 5.6, and 5.8 improve-

ment at 1000, 2000, 4000, and 8000 matrix sizes, respectively. At the size of 1000, the improve-

ment reaches its maximum value at number of threads ranging from 8 to 16. As the number of

threads increases over the aforementioned range the improvement gradually declines and the

performance worsens as compared to the unthreaded case when the number of threads

exceeds 128. This can be linked to the exceeding overhead imposed by the high number of

threads as compared to the useful processing carried out by each thread. This drop in improve-

ment can also be noticed in the case of size = 2000, but at a slower slope and at worst case the

improvement does not fall below 1.4. For the size of 4000 and 8000, as the number of threads

is increased above 8 the improvement is maintained above 4.5 and 5 respectively.

Higher CPU utilization may imply an improved performance as more processing power is

allocated to the algorithm which leads to reduced execution time. To some extent this relation

is valid as can be seen in Fig 4. In the unthreaded case, the CPU utilization is limited to 13%

which results in high delay. This CPU utilization increases as the number of threads increases

and results in lower delays. This relation does not persist for matrix sizes 1000 and 2000, where

the delay increases again when the number of threads exceed 16 and 32, respectively. This

results in increased processing power with no performance gain which should be avoided.

For the case where α 6¼ β, the following values were considered (α/β) 100/50, 200/100, 400/

200, 400/300, 500/250 and 500/400. Fig 5 shows the performance improvement achieved by

the proposed algorithm with respect to the unthreaded case.

The threading technique achieves improvement with respect to the unthreaded case, and

this improvement increases as the matrix size increases. It achieves up to 3.1 times improve-

ment as compared to the unthreaded case at the size of 8000. At the size of 1000, the improve-

ment reaches its maximum value at number of threads ranging from 8 to 16 which is similar to

the cases where α = β. As the number of threads increases over the aforementioned range the

Table 2. Normalized performance of the different algorithms for α 6¼ β.

Size TRn TRx TRGSOP Unthreaded Case

1000 1.187 1.146 0.002090 1

2000 1.202 1.217 0.000570 1

4000 0.997 1.122 0.000360 1

8000 0.586 1.074 0.000170 1

https://doi.org/10.1371/journal.pone.0286878.t002
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Fig 3. The improvement achieved by the proposed algorithm with respect to the unthreaded case for different size values with α = β.

https://doi.org/10.1371/journal.pone.0286878.g003
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improvement gradually declines and the performance worsens as compared to the unthreaded

case when the number of threads exceeds 96. It reaches up to 5 times higher delay as compared

to the unthreaded case, while the CPU usage is higher as shown in Fig 6. Any processing over-

head with no performance gain should be avoided as it results in wasted power consumption.

Fig 4. CPU utilization and the execution time for different values of polynomial size with α = β. Note that 0 in the x axis means unthreaded case.

https://doi.org/10.1371/journal.pone.0286878.g004
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Fig 5. The improvement achieved by the proposed algorithm with respect to the unthreaded case for different size values with α 6¼ β.

https://doi.org/10.1371/journal.pone.0286878.g005
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It can be noticed that threading has higher improvement for the cases where α = β as com-

pared to those cases where α 6¼ β. In the former case, the coefficients in P2 and P4 are a mirror of

those in P1 and P3 respectively. Thus, as soon as a coefficient in P1 and P3 is calculated, its mirror

is immediately written and to avoid accessing the data again, mitigating memory reads penalties.

Fig 6. CPU utilization and the execution time for different values of polynomial size with α 6¼ β. Note that 0 in the x axis means unthreaded case.

https://doi.org/10.1371/journal.pone.0286878.g006
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The number of cores affects the performance improvement of the threading technique. To

evaluate this, the instead of enabling all of the eight logical cores as in the previous tests, only

four logical cores were enabled. The tests were repeated with the new configuration and Fig 7

shows the effect of number of cores on the maximum improvement. The improvement in the

four cores case is lower than that of the eight cores case by up to 48% when α 6¼ β (α = 100 and

β = 50). For the case where α = β = 10, the four cores show up to 40% lower performance

improvement as compared to the eight cores. It should be noted that at the unthreaded case

both, the four cores and eight cores, perform similarly. The unthreaded case uses one core

only which represents 25% and 12.5% of CPU usage in the 4 cores and 8 cores, respectively.

Conclusion

The paper proposed to exploit the parallelism in coefficient calculations allowing independent

threads to process coefficients in parallel to enhance performance. The considered algorithm

was analyzed at different matrix sizes, parameters’ values, and number of threads. The maxi-

mum performance improvement as compared to the unthreaded case was found at the case of

α = β ranging from 4.7 at 1000 × 1000 matrix size to 5.8 at 8000 × 8000 matrix size. On the

other hand, when α 6¼ β, the maximum improvement was at the matrix size of 8000, achieving

a maximum improvement of 3.1. The results show that the number of threads should be care-

fully selected to achieve the optimal improvement, since increasing this number over certain

limits may lead to performance degradation due to the threading overheads. Small matrix size

(1000 × 1000) reaches its maximum improvement when the number of threads ranges from 8

to 16 whereas the optimum range was from 32 to 160 at large matrix size (8000 × 8000).

Reducing the number of cores from 8 to 4 reduces the performance by 48% and 40% for α = β
and α 6¼ β, respectively Other candidate algorithms exist that it is encouraged to be analyzed

when the threading technique is introduced into them which requires identifying the indepen-

dence within each algorithm in order to be parallelized.
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