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A B S T R A C T

Fatty acids are stored within the muscle as intramyocellular lipids (IMCL). Some, but not all, studies indicate that following a high-fat diet
(HFD), IMCL may accumulate and affect insulin sensitivity. This systematic review and meta-analysis aimed to quantify the effects of an HFD
on IMCL. It also explored the potential modifying effects of HFD fat content and duration, IMCL measurement technique, physical activity
status, and the associations of IMCL with insulin sensitivity. Five databases were systematically searched for studies that examined the effect
of �3 d of HFD (>35% daily energy intake from fat) on IMCL content in healthy individuals. Meta-regressions were used to investigate
associations of the HFD total fat content, duration, physical activity status, IMCL measurement technique, and insulin sensitivity with IMCL
responses. Changes in IMCL content and insulin sensitivity (assessed by hyperinsulinemic-euglycemic clamp) are presented as standardized
mean difference (SMD) using a random effects model with 95% confidence intervals (95% CIs). Nineteen studies were included in the
systematic review and 16 in the meta-analysis. IMCL content increased following HFD (SMD ¼ 0.63; 95% CI: 0.31, 0.94, P ¼ 0.001). IMCL
accumulation was not influenced by total fat content (P ¼ 0.832) or duration (P ¼ 0.844) of HFD, physical activity status (P ¼ 0.192), or by
the IMCL measurement technique (P > 0.05). Insulin sensitivity decreased following HFD (SMD ¼ –0.34; 95% CI: –0.52, –0.16; P ¼ 0.003),
but this was not related to the increase in IMCL content following HFD (P ¼ 0.233). Consumption of an HFD (>35% daily energy intake from
fat) for �3 d significantly increases IMCL content in healthy individuals regardless of HFD total fat content and duration of physical activity
status. All IMCL measurement techniques detected the increased IMCL content following HFD. The dissociation between changes in IMCL
and insulin sensitivity suggests that other factors may drive HFD-induced impairments in insulin sensitivity in healthy individuals.
This trial was registered at PROSPERO as CRD42021257984.

Keywords: intramuscular triglyceride, lipid droplet, overfeeding, insulin resistance
Introduction

Current dietary guidelines generally recommend that total
fat intake should not exceed 35% of total daily energy intake
[1]. However, fat intake associated with a modern Western diet
can exceed this recommendation [2], contributing to the rising
rates of obesity and type 2 diabetes [3]. The link between the
Abbreviations: 1H-MRS, H1 magnetic resonance spectroscopy; HFD, high-fat di
nonesterified fatty acids; RCT, randomized controlled trial; TAG, triacylglycerol.
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consumption of a high-fat diet (HFD) and the development of
metabolic disease is multifactorial, but ectopic storage of excess
lipids within skeletal muscle appears to be an important etio-
logic factor [4].

In resting human skeletal muscle, plasma-derived nonesterified
fatty acids (NEFA) enter the intramyocellular lipid (IMCL) pool
and are first incorporated into intramuscular triacylglycerols
et; IMCL, intramyocellular lipid; IMTG, intramuscular triacylglycerols; NEFA,
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(IMTGs) within lipid droplets before the IMTG-derived fatty acids
are released for oxidation [5]. Following HFD, IMTG synthesis can
exceed IMTG lipolysis, resulting in the expansion of the IMCL pool
[6,7]. However, not all studies observe IMCL accumulation
following HFD [8,9].

This discrepancy may be because of sampling errors associ-
ated with small sample sizes in individual studies and/or the
methodologic variability among studies, such as the following:
1) the difference in HFD total fat content, 2) HFD duration, and/
or 3) the measurement techniques used to quantify IMCL con-
tent. Transmission electron microscopy [10] and immunofluo-
rescence microscopy can determine fiber-type-specific IMCL
content in muscle biopsies [11]. Biochemical estimates of IMCL
from mixed muscle biopsy samples do not reveal
fiber-type-specific IMCL content and are potentially confounded
by extramyocellular lipid [12], contributing to a large variability
in the measurement of IMCL content across serial muscle bi-
opsies [13]. Finally, the noninvasive H1 magnetic resonance
spectroscopy (1H-MRS) technique also cannot determine fiber
type-specific IMCL content, but it can distinguish between intra-
and extramyocellular lipids [13]. Pooling the results of individ-
ual studies is needed to resolve discrepancies between studies
and to explore potential sources of heterogeneity [14].

IMCL content is negatively associated with insulin sensitivity
in healthy individuals [15–17], and following HFD, IMCL accu-
mulation and a reduction in insulin sensitivity have also been
reported [18]. Together, these findings may suggest a link be-
tween IMCL and insulin sensitivity. However, in
endurance-trained individuals, high IMCL content coexists with
high-insulin sensitivity [4], casting doubt on the causal re-
lationships between IMCL and insulin sensitivity. It is possible
that the storage capacity or turnover of the IMCL pool in
response to HFD is a means to reduce the effects of excess lipids
on insulin sensitivity [7].

Therefore, the main purpose of this study was to synthesize
evidence through a systematic review and meta-analysis of the
effect of an HFD on IMCL content in healthy individuals. A sec-
ondary aimwas to explore the potential modifying effects of HFD
total fat content, HFD duration, IMCL measurement technique,
and physical activity status on IMCL content. We also aimed to
delineate the relationship between HFD-associated changes in
IMCL content and insulin sensitivity.
Methods

This systematic review and meta-analysis was completed in
accordance with PRISMA guidelines [19] and was prospectively
registered with the PROSPERO database (reference:
CRD42021257984).
Search strategy
A systematic search was conducted by 2 independent re-

viewers (JA and KJ) on 4 electronic databases: PubMed,
Cochrane CENTRAL Register of Controlled Trials, as well as
CINAHL and SPORTDiscus via EBSCOhost. The final search was
conducted on 1 July 2023 using a combination of synonyms and
relevant medical subject headings (MeSH) terms for HFD and
IMCL, or triglyceride. Publication date and language restrictions
were not applied. The specific keywords and full search strategy
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for each database can be found in Supplemental Table 1. We also
manually screened the reference lists and forwarded citations of
included studies, as well as relevant review articles, to identify
potentially eligible studies, were also conducted.

Inclusion criteria
Studies were required to meet the following inclusion criteria:

1) they were original research studies involving healthy human
participants aged 18–64 y. Older adults were excluded because
they are more likely than their younger counterparts to be taking
multiple prescriptionmedications [20]; 2) the intervention should
involve �3 d of high-calorie HFD or normocaloric HFD; 3) IMCL
content was measured after the intervention; 4) full text was
available in English; and 5) the study was a randomized controlled
trial (RCT), within-subject crossover trial, or single-arm pretest--
posttest trial. Studies were required to describe the composition of
the dietary intervention in adequate detail, where total fat intake
was >35% of the total daily energy intake. Studies were excluded
if theymet the following criteria: 1) participants were recruited on
the basis of any medical condition; 2) the HFD intervention was
delivered in conjunction with exercise or immediately after ex-
ercise; 3) the HFD intervention followed a period of low-fat di-
etary intake; and 4) the article has been retracted.

Study selection
Eligible studies were collected into a single list in Microsoft

Excel (Microsoft Corporation). Two reviewers (JA and KJ)
independently removed duplicates and reviewed the titles and
abstracts to assess eligibility for inclusion. Reviewers were not
blinded to the articles, as studies have shown that the summary
outcome was not affected by blinding during study selection and
data extraction [21]. Articles were initially excluded based on
the content of the titles and abstracts, followed by a full-text
review by 2 independent reviewers (JA and KJ). Conflicts were
resolved through discussion or by a third reviewer (AH) if
required.

Data extraction
Data were extracted independently by 2 researchers (JA and

KJ) onto a project-specific data extraction form (Microsoft
Excel). The data items extracted were as follows: 1) study char-
acteristics (design, location, and diet duration), 2) participant
characteristics (sample size, sex, age, body mass, BMI (in
kg⋅m–2), participant health status, and participant training sta-
tus), 3) details of the intervention (composition of the diet,
control, duration, and number of participants per trial arm) and
control arm (if applicable), and 4) details of the IMCL measure-
ment techniques. Preintervention, postintervention, and change
score data for the primary outcome (IMCL content) were also
extracted [mean and (SD)]. For studies that reported fiber type-
specific responses in IMCL content, data for type I and type II
muscle fiber IMCL responses were extracted. For studies that
reported the IMCL content within multiple muscles, data for
IMCL responses in each muscle were extracted. Additionally, pre
and postintervention data were extracted for the following sec-
ondary outcome measures: insulin sensitivity, circulating con-
centrations of fasting glucose, insulin, triacylglycerol (TAG), and
NEFA. If SDs were not reported, we collected other relevant data
that can be converted to an SD, such as SEs, 95% confidence
intervals (CIs), or P values. When values were presented in figure
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form only, the figure was digitized using graph digitizer software
[22], and the means and SD/SEM were measured manually at
the pixel level to the scale provided. However, for missing and
unreported data or any further details, corresponding authors of
studies were contacted via email on 2 occasions within a 1-mo
period.

Assessment of risk of bias in included studies
Two authors (JA and AG) independently assessed the risk of

bias in included studies in accordance with the recommenda-
tions of the Cochrane Handbook for Systematic Reviews of In-
terventions [23]. Cochrane Risk of Bias tool (RoB 2) was used to
evaluate randomized trials [24], and the risk of bias in non--
randomised studies - of interventions (ROBINS-I) tool was used
to evaluate nonrandomized trials [25]. The risk of bias in studies
that employed a crossover design was evaluated using RoB 2 for
consistency. Disagreements between reviewers were resolved by
consensus with a third reviewer (AH).

The risk of bias because of missing results in a meta-analysis
was explored with Egger’s test of the intercept and by visually
inspecting a funnel plot of the treatment effects plotted against
their corresponding sampling variance.

Statistical analysis
If 2 or more studies reported the same outcome, a meta-

analysis of standardized mean differences (SMDs) was per-
formed [26]. For studies that used independent groups, SMDs
were calculated as the mean difference divided by the pooled
baseline SD, where the mean difference is calculated as the
mean pre–post change in the intervention group minus the
mean pre–post change in the control group [27]. For studies
that used matched groups (crossover trials and single-arm
pre–post trials), SMDs were standardized using the change
score SD. If the change score SD was not reported, it was esti-
mated using the standard formula [28] and assuming a
within-groups correlation of 0.7 [29–31]. From a statistical
perspective, the SMD has the same meaning regardless of study
design, and thus, we followed guidelines for including different
study designs in the same meta-analysis [32]. Hedges’ g
correction was applied to SMDs. Interpretation of effect size
was as follows: <0.20 as trivial, 0.20–0.49 as small, 0.50–0.79
as moderate, and >0.80 as large [33].

Meta-analyses were performed with a random effects model
using the restricted maximum likelihood method to estimate
between-study variance. CIs and test statistics were calculated
via a t-distribution using the Hartung-Knapp-Sidik-Jonkman
approach [34]. Studies were weighted according to the inverse
of the sampling variance. If a meta-analysis included >1
outcome measure from the same study, effect estimates were
nested within studies using a multi-level structure [35]. Statis-
tical heterogeneity between studies was evaluated with the χ2
test and the I2 statistic. Thresholds for the interpretation of I2

were in line with Cochrane recommendations: 0–40% (“might
not be important”), 30%–60% (“moderate heterogeneity”),
50%–90% (“substantial heterogeneity”), and 75%–100%
(“considerable heterogeneity”) [14]. The importance of the
observed I2 value was interpreted alongside its 95% CI and the P
value from the χ2 test [14]. Graphic Display of Heterogeneity
plots were used to investigate between-study heterogeneity and
identify potentially influential studies. Statistical analyses were
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conducted using package metafor in R version 4.2 (R Foundation
for Statistical Computing). If a meta-analysis model includes�10
effect estimates [14], sources of heterogeneity with
meta-regressions were explored. Covariates were included: IMCL
measurement technique, participant physical activity status,
study design, HFD duration, HFD total fat content, composition
of total fat intake, and participant body mass.

Results

Literature search
A total of 2383 articles were identified, which was reduced to

1955 after removing duplicates. Following the screening of titles
and abstracts, 1926 studies were excluded because they did not
meet the eligibility criteria, and we were unable to access the full
text of 2 studies. Following the appraisal of full texts, a total of 19
studies were suitable for inclusion in the systematic review.
Three studies [36–38] could not be synthesized by meta-analysis
because of insufficient data; thus, 16 studies were included in the
meta-analysis (Figure 1). Six studies were controlled trials, and
10 were single-arm trials. Of the 6 controlled trials, 3 were
parallel-groups, and 3 were crossover-designed trials.

Study characteristics
A total of 303 participants were included in the meta-analysis

with a mean age of 28 y (range 21–44 y). Individual study char-
acteristics and their main findings are summarized in Table 1. The
mean BMI at baseline was 24.5 (range 20.6–30.1); however, only
1 study included participants with a BMI >25 [9]. Regarding the
techniques used to measure IMCL, 6 studies used 1H-MRS [6,18,
39–42], 5 studies used biochemical extraction [43–47], and 5
used microscopy, of which 1 study used transmission electron
microscopy [48] and 4 studies used immunofluorescence micro-
scopy [7–9,49]. One study used both 1H-MRS andmicroscopy [8].

Diet composition
In all studies, the intervention group consumed the HFD, and

the comparator groups consumed either a low-fat diet or a
habitual normal-fat diet. Participants in 9 studies consumed
hypercaloric HFD, whereas in 7 studies normocaloric HFD.
Intervention groups consumed HFD with a proportion of fat be-
tween 35% and 78% of total daily energy expenditure. Across all
studies, the mean total fat intake in HFD was 243 g/d (range
123–496 g/d). The HFDs provided across studies were either
high in saturated fat (>10% of daily calories) [9,46], high in
polyunsaturated fat (�10% of daily calories) [40], and high in
unsaturated fat (�30% of daily calories) [47]. Intervention
duration ranged from 3 to 56 d.

IMCL content
A meta-analysis comprising 22 effect estimates from 16

studies showed that IMCL content was significantly increased
following HFD (SMD ¼ 0.63; 95% CI: 0.31, 0.94, P < 0.001;
Figure 2). This effect size corresponds to a percentage increase of
31.4% � 29.2%. The magnitude of heterogeneity in IMCL re-
sponses to HFD was substantial between these studies (I2 ¼
81.57%; P < 0.001). Inspection of the funnel plot showed
asymmetry in the distribution of the studies included in the
meta-analysis, and Egger’s regression test indicated evidence of



FIGURE 1. Flow chart of study selection. HFD, high-fat diet; IMCL, intramyocellular lipid.
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small study effects (β ¼ 4.07; 95% CI: 1.91, 6.22; P < 0.001;
Figure 3), both of which may indicate a potential publication
bias or small-study effect. Following HFD, there was an increase
in IMCL content in studies using the microscopy technique
(37.9% � 37%), 1H-MRS (29.1% � 16.5%), or Biochemical
extraction (23.1%� 36.6%). However, meta-regression revealed
that the determination of IMCL responses to HFD was not
affected by the IMCL measurement technique (P > 0.05)
(Table 2).

Circulating triglyceride, and NEFA
Fasting circulating concentration of TAG (SMD ¼ –0.30; 95%

CI: –0.68, 0.09; P ¼ 0.12 Figure 4A) nor NEFA (SMD ¼ –0.26;
95% CI: –0.81, 0.28; P¼ 0.31; Figure 4B) changed in response to
HFD. There was considerable heterogeneity between studies for
both circulating TAG and NEFA concentrations (I2 ¼ 83.24%; P
< 0.001 and I2 ¼ 91.26%; P < 0.001, respectively). The
magnitude of heterogeneity was not affected by the study
1090
characteristics as covariates in the meta-analysis. However,
physical activity status contributed to changes in circulating TAG
concentration (P ¼ 0.03).

Insulin sensitivity
HFD did not affect fasting concentrations of circulating in-

sulin (SMD¼ 0.22; 95% CI: –0.09, 0.53; P¼ 0.15; Figure 5A) and
glucose (SMD ¼ 0.11; 95% CI: –0.18, 0.40; P ¼ 0.42; Figure 5B).
There was a substantial and considerable degree of heterogene-
ity across studies that reported fasting circulating insulin (I2 ¼
74.37%; P< 0.001) and glucose concentration (I2¼ 71.26%; P<

0.001), respectively.
Seven studies used the hyperinsulinemic-euglycemic clamp

technique to measure insulin sensitivity [6,8,18,41,42,46,47],
and 4 used the HOMA-IR [7,9,18,45]. Insulin sensitivity
decreased in response to a HFD, as determined by the
hyperinsulinemic-euglycemic clamp (SMD ¼ –0.35; 95% CI:
–0.52, –0.17; P¼ 0.003; Figure 6A), and HOMA-IR (SMD¼ 0.51;



TABLE 1
Summary of baseline data and effects of the high-fat diet on intramyocellular lipid content in the intervention group

Author N (sex) Participant
characteristics
(age; y)

HFD total fat
content

Intervention
diet

Comparator
diet total fat
content

Study design Duration
(day)

Measurement
techniques

Major
findings
(IMCL
content)

Adochioet al.
[36]

M ¼ 11
F ¼ 10

Healthy lean
(28)

50%, 156 g Hypercaloric
HFD (þ40%)

30%, 67 g Crossover (3
phases)

5 1H-MRS ↑

Cornford et al.
[45]

M ¼ 7
F ¼ 2

Healthy, non-
obese,
physically
inactive (24)

35%, 155 g Hypercaloric
HFD

NC Single-arm
trial

14 Biochemical
extraction

↔

Covington
et al. [8]

M ¼ 29 Healthy,
physically
active (27)

44% Hypercaloric
HFD (140%)

NC Single-arm
trial

56 Microscopy,
Oil red O stain

↔

Gemmink
et al. [46]

M ¼ 12 Healthy, lean
Caucasian,
and South
Asian (22)

94% Hypercaloric
HFD

NC Single-arm
trial

5 Biochemical
extraction

↑

Hoppeler et al.
[38]

M ¼ 7 Well-trained
runners (37)

41%, Hypercaloric
HFD

18% Crossover (2
phases)

28–31 Transmission
electron
microscopy

↑

Johannsen
et al. [18]

M ¼ 29 Healthy (27) 44%, 207 g Hypercaloric
HFD (þ40%)

NC Single-arm
trial

56 1H-MRS ↔

Kadowaki
et al. [42]

M ¼ 21 Healthy, non-
obese (25)

48%, 320 g Hypercaloric
HFD (þ45%)

NC Single-arm
trial

6 1H-MRS ↑

Kakehi et al.
[41]

M ¼ 50 Healthy,
physically
active (23)

60% Normocaloric
HFD

NC Single-arm
trial

3 1H-MRS ↑

Kien et al. [37] M ¼ 12
F ¼ 12

Healthy, non-
obese (29)

42% Normocaloric
high-palmitic
acid diet and
high-oleic acid
diet

34% Randomized
parallel-arm
trial (2 arms)

7 Biochemical
extraction

↔

Kiens et al.
[43]

M ¼ 10 Healthy,
nonobese,
physically
active (36)

54% Normocaloric
HFD

43% Randomized
parallel-arm
trial (3 arms)

28 Biochemical
extraction

↑

Lundsgaard
et al. [47]

M ¼ 9 Healthy,
moderately
trained (23)

78%, 496 g Hypercaloric
HFD,
hypercaloric
LFD, and
Normocaloric
NFD

24%, 87 g Randomized
crossover (3
phases)

3 Biochemical
extraction

↑

Schrauwen-
Hinderling
et al. [39]

M ¼ 7 Healthy (25) 60%, 218 g Normocaloric
NFD followed
by
Normocaloric
HFD

NC Single-arm
trial

7 1H-MRS ↑

Skovbro et al.
[44]

M ¼ 21 (I ¼
10, CON ¼ 11)

Healthy,
untrained (24)

58%, 177 g Normocaloric
HFD and

30%, 76 g Randomized
parallel-arm
trial (2 arms)

17.5 Biochemical
extraction

↔

(continued on next page)

J.A
lqallaf

et
al.

The
Journalof

N
utrition

154
(2024)

1087
–1100

1091



TABLE 1 (continued )

Author N (sex) Participant
characteristics
(age; y)

HFD total fat
content

Intervention
diet

Comparator
diet total fat
content

Study design Duration
(day)

Measurement
techniques

Major
findings
(IMCL
content)

Normocaloric
NFD

St-Onge et al.
[40]

M and F ¼ 24 Healthy
overweight
(44)

37% Normocaloric
HFD,
Normocaloric
HPUFA, and
Normocaloric
NFD

31% Randomized
crossover (3
phases)

25 1H-MRS ↑

Suzuki et al.
[6]

M ¼ 42 Healthy, non-
obese, and
physically
active (23)

60% Normocaloric
HFD

NC Single-arm
trial

3 1H-MRS ↑

Tsintzas et al.
[9]

M ¼ 9 Healthy
overweight/
obese,
physically
inactive (44)

49%, Hypercaloric
HFD (þ25%)

NC Single-arm
trial

14 Microscopy,
LD540 stain

↔

Van Proeyen
et al. [49]

M ¼ 7 Healthy,
physically
active (21)

50%, 123 g Hypercaloric
HFD (þ30%)

34%, 113 g Randomized
parallel-arm
trial (3 arms)

42 Microscopy,
Oil red O stain

↑

Vogt et al.
[48]

M ¼ 11 Healthy,
duathletes
(32)

53%, 192 g Normocaloric
HFD (þ12%)
and
Normocaloric
LFD

17%, 53 g Randomized
crossover (2
phases)

35 Transmission
electron
microscopy

↑

Whytock et al.
[7]

M ¼ 11
F ¼ 2

Healthy, lean,
physically
active (23)

64%, 325 g Hypercaloric
HFD (þ47%)

NC Single-arm
trial

7 Microscopy,
BODIPY stain

↑

1H-MRS, H1 magnetic resonance spectroscopy; BODIPY, boron dipyrromethene; CON, control; F, female; HFD, high-fat diet; HPUFA, high-polyunsaturated fat; I, intervention; IMCL, intra-
myocellular lipids; LD540, Lipophilic fluorescent dye; LDL, low density lipoprotein; LFD, low-fat diet; M, male; NC, no comparator; NFD, normal-fat diet; BODIPY; LD540.
↑: increased; ↔: unchanged. Because of missing data in some studies, values were not included.
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FIGURE 2. Forest plot of the effect of an HFD on IMCL content in healthy individuals. CI, confidence interval; HFD, high-fat diet; IMCL, intra-
myocellular lipid; SMD, standardized mean difference; 1HMRS, H1 magnetic resonance spectroscopy.
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95% CI: 0.07, 0.95; P ¼ 0.03; Figure 6B). The degree of het-
erogeneity might not be important between studies for
hyperinsulinemic-euglycemic clamp (I2 ¼ 0.00%; P ¼ 0.57) and
HOMA-IR (I2 ¼ 0.00%; P ¼ 0.64).
Meta-regressions
Meta-regressions for the effect of IMCL measurement tech-

niques, study design, HFD duration, HFD total fat content,
change in body mass, physical activity status, calorie intake, and
change in IMCL content on outcomes are presented in Table 2
and Supplemental Table 2. Physical inactivity and higher energy
intake had a modifying effect on circulating insulin (P ¼ 0.02;
0.01, respectively). Furthermore, higher energy intake was
associated with a greater reduction in insulin sensitivity
measured by HOMA-IR (P ¼ 0.03). Additionally, physical
FIGURE 3. Funnel plot for the inclu

1093
activity was associated with the change in circulating TAG con-
centration (P ¼ 0.03). All other meta-regressions showed no
significant modifying effects on outcomes.
Risk of bias
Six randomized studies were assessed by the RoB 2 tool, and

13 nonrandomized studies were assessed by the ROBINS-I tool.
Of the 6 randomized studies, 5 studies were judged to raise some
concerns about the overall risk of bias [37,40,44,47,49], and 1
was considered to have a high overall risk of bias because of not
including a washout period [48]. Five randomized studies did
not provide information on sources of recruitment [37,40,
47–49]. Of the 13 nonrandomized studies, 2 studies were judged
to have an overall low risk of bias [36,43], and 11 studies were
considered to have a high overall risk of bias [6–9,18,38,39,41,
ded studies in the meta-analysis.



TABLE 2
Summary of meta-regression results

Outcome Covariate Coefficient (95% CI) P value I2 (χ2 P value)

IMCL content Measurement technique
1H-MRS and Biochemical extraction1

Microscopy (n ¼ 5)

0.41 (–0.33, 1.15) 0.26 83.92% (<0.0001)

Microscopy and Biochemical extraction1
1H-MRS technique (n ¼ 6)

–0.16 (–0.83, 0.51) 0.61 83.76% (<0.0001)

1H-MRS and microscopy1

Biochemical extraction technique (n ¼ 5)
–0.21 (–0.95, 0.53) 0.55 83.81% (<0.0001)

Study design (n ¼ 16)
RCT and crossover trials1

Pre-post trials

–0.33 (–1.16, 0.49) 0.41 83.12% (<0.0001)

HFD duration (n ¼ 16) –0.001 (–0.01, 0.016) 0.84 83.5% (<0.0001)
Fat content (n ¼ 10) 0.001 (–0.005, 0.006) 0.83 84.68% (0.0001)
Body mass (n ¼ 13) –0.07 (–0.22, 0.07) 0.29 84.15% (0.0001)
Physical activity status (n ¼ 12)
Inactive1

Active

0.42 (–0.23, 1.09) 0.19 83.44% (<0.0001)

Energy intake (n ¼ 16)
Normocaloric diet1

Hypercaloric diet

–0.02 (–0.70, 0.65) 0.94 83.82% (<0.0001)

Hyperinsulinemic-euglycemic clamp IMCL (n ¼ 7) –0.38 (–1.09, 0.34) 0.23 0% (0.71)
HOMA-IR IMCL (n ¼ 4) 0.43 (–1.03, 1.88) 0.33 0% (0.96)

HFD, high-fat diet; HOMA-IR, homeostatic model assessment for insulin resistance; IMCL, intramyocellular lipids; n, number of effect estimates;
RCT, randomised controlled trial; 1H-MRS, H1 magnetic resonance spectroscopy; 95% CI, 95% confidence interval; χ2,chi-squared test.
1 Reference category in the model.
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42,45,46] because of not controlling for confounding variables
in the analysis. Detailed judgments for each domain in each
included study are presented in Figure 7A, B, and C.
Discussion

The purpose of this systematic review and meta-analysis was
to provide novel evidence on the effect of �3-d HFD on IMCL
content and the association between changes in IMCL content
and insulin sensitivity in healthy individuals. Evidence suggests
that 1) IMCL is accumulated in healthy individuals following an
HFD with a duration of between 3 and 56 d; 2) IMCL accumu-
lation was not associated with HFD total fat content, duration,
physical activity status, or measurement technique; 3) insulin
sensitivity is reduced following HFD, but this was not related to
IMCL accumulation.

The increase in IMCL content showed amoderate effect size in
response to HFD. This agrees with the findings of a 7-study meta-
analysis, where IMCL content increased following HFD [50].
This confirms that IMCL accumulation is a means by which
excess dietary lipids can be accommodated [51]. Our findings
are potentially explained by acute adjustments within the skel-
etal muscle to an HFD, which include a rapid upregulation of
IMCL synthesis rates in response to elevated fatty acid avail-
ability [52] and chronic adaptations that favor enhanced fatty
acid transport [53,54] and IMCL storage [7].

A novel finding of the present meta-analysis was that HFD
total fat content was not associated with the increase in IMCL in
response to HFD. This suggests that consuming a diet >35% of
total energy intake elicits an increase in IMCL content, but
greater fat intake may not further increase IMCL accumulation.
Meta-regression analysis also revealed that the duration of HFD
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was not associated with the increase in IMCL content. This means
that a longer duration of HFD, beyond a minimum of 3 d, does
not further increase IMCL accumulation. Together, these novel
findings suggest that after as little as 3-d of a modest over-supply
of lipids, IMCL stores may reach capacity in healthy individuals
and that there must be an alternative fate for the continued over-
supply of lipids other than storage as IMCL. However, meta-
regression analysis may lack sensitivity because of the small
number of studies that examined the effect of total fat content
and duration on IMCL responses to HFD. In addition, bias within
individual studies, visual inspection of the funnel plot, and
Egger’s test of the intercept were suggestive of small-study ef-
fects, which may correspond to issues with publication and/or
reporting bias, among other issues. To validate these findings,
more experimental research is required to examine the time
course of IMCL responses to HFD with varying fat content and/or
duration.

The present study found no change in fasting circulating
concentrations of TAG and NEFA following HFD. This indicates
that an over-supply of lipids through high-fat feeding is
countered by increased clearance of circulating TAG and
NEFA. In support, an unchanged serum TAG concentration
following a 4-wk HFD in healthy individuals coincided with
increased skeletal muscle lipoprotein lipase activity and IMCL
content [43]. The maintenance of circulating TAG and NEFA at
baseline concentrations, despite continued HFD, occurred
without further expansion of the IMCL pool. This may be
explained by an increased rate of IMCL turnover [5,55,56], fat
oxidation [57,58], and/or lipid storage within other tissues,
such as hepatic [59], and subcutaneous, visceral and/or inter-
muscular adipose tissues [60].

To our knowledge, the present meta-analysis is the first to
assess the modifying effect of study characteristics on IMCL



FIGURE 4. Forest plots of the effects of an HFD on circulating TAG (A) and NEFA (B). CI, confidence interval; HFD, high-fat diet; NEFA,
nonesterified fatty acid; SMD, standardized mean difference; TAG, triacylglycerol.
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responses to HFD. Endurance-trained individuals with a high
IMCL content have a higher resting IMCL synthesis rate [61],
IMCL turnover rate[62], and a greater oxidation rate of
IMCL-derived fatty acids [63–65] compared with others.
Therefore, we hypothesized that physically active individuals
would have a greater capacity for lipid uptake, IMCL turnover,
and fatty acid oxidation when challenged with HFD. This would
enable lipid clearance despite a limited capacity for IMCL stor-
age. Contrary to this hypothesis, meta-regression analysis
showed nomodifying effect of physical activity level on the IMCL
response to HFD. However, the inclusion criteria employed by
the present study may have resulted in a rather homogeneous
sample in relation to physical activity. Further, physical activity
was inconsistently measured and reported in some of the studies
included, evidenced by the considerable between-study hetero-
geneity. As such, further research is required to elucidate the
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effect of physical activity on the ability of skeletal muscle to
tolerate and accommodate HFD.

Biochemical extraction, 1H-MRS, and microscopy were the 3
measurement techniques used by studies to quantify IMCL con-
tent, and this may have contributed to the substantial hetero-
geneity we observed between studies in IMCL responses to HFD.
For the first time using meta-regression analysis, we demonstrate
no effect of the IMCL measurement technique on the assessment
of change in IMCL content following HFD. This suggests that
each of the 3 IMCL measurement techniques can be used to
determine IMCL responses to HFD. This is surprising, as the IMCL
measurement technique can affect the measurement of IMCL
content at rest [66] and in the change in IMCL content following
acute exercise [67]. Our finding may be explained by the sig-
nificant increase in IMCL content following HFD being of a suf-
ficient magnitude to minimize the effect of measurement



FIGURE 5. Forest plots of the effects of an HFD on circulating insulin (A) and glucose (B). CI, confidence interval; HFD, high-fat diet; SMD,
standardized mean difference.
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technique on assessing the change in IMCL content. However,
caution is needed because of the relatively low number of
included studies in this meta-regression.

We found a reduction in insulin sensitivity following HFD.
However, meta-regression analysis revealed that the reduction in
insulin sensitivity was not associated with the increase in IMCL
content following HFD. This is unsurprising because it is well-
accepted that a high-IMCL storage per se does not necessarily
lead to insulin resistance [16]. A lower turnover of IMCL in
physically inactive individuals [61] and those with excess
adiposity [55] compared with more physically active individuals
can result in the accumulation of fatty acid metabolites within
skeletal muscle, such as diacylglycerol [68] and ceramide [69]
and it is thesewhich appear to exert the lipotoxic effect on skeletal
muscle insulin signaling [70,71]. However, meta-regression
analysis revealed that insulin sensitivity following HFD was not
modified by physical activity status. In addition, of the included
studies, evidence is mixed for an effect of HFD on diacylglycerol
[7,9,47,49] and ceramide content [7–9,47,49] in healthy
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individuals, suggesting further research is required. It is likely
that excess lipid was taken up by subcutaneous, visceral, and/or
intermuscular adipose tissues [60]. HFD-induced adipocyte hy-
pertrophy has been shown to elicit tissue-specific [72,73] and
whole-body [74] insulin resistance. In addition, intermuscular
adipose tissue is negatively associated with insulin sensitivity
[75] and may have contributed to the reduction in insulin sensi-
tivity in the present study [76]. To what extent HFD affects
intermuscular adipose tissuemetabolismand insulin sensitivity in
healthy individuals warrants further investigation.

This meta-analysis provides the most comprehensive and
contemporary review to date, comprising 22 effect estimates
from 16 studies assessing IMCL responses to HFD. It also
included meta-regression analysis to investigate the potential
sources of heterogeneity. Although this meta-analysis yields
new, important evidence, some limitations to the current body
of literature warrant consideration. Approximately 70% of the
studies included were single-arm, pre-post studies, for which
the risk of bias is inherently greater than the stronger study



FIGURE 6. Forest plots of the effects of an HFD on hyperinsulinemic-euglycemic clamp (A) and HOMA-IR (B). CI, confidence interval; HFD, high-
fat diet; SMD, standardized mean difference.
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design of an RCT. Only ~6% of studies recruited female par-
ticipants, and they did not report sex-specific effects of HFD on
IMCL content. As it has been shown that females have higher
IMCL accumulation in response to lipid infusion [77,78], it is
possible that skeletal muscle lipid storage in response to HFD
may differ between males and females. Because females are
under-represented in this research, more studies are required to
determine the sex-specific effects of an HFD on IMCL content. In
RCT and crossover designs studies, the difference in fat content
between the intervention and comparator diets was small. This
could mean that the effect size of HFD on IMCL content was
underestimated compared with normal-fat and low-fat diets.
The effect of monounsaturated, polyunsaturated, and saturated
fats on IMCL responses to HFD was not explored in the present
meta-analysis. This is because only 1 study in the current
meta-analysis investigated the effect of a high-polyunsaturated
fat diet on IMCL content [40]. It is possible that IMCL content
responds differently to a diet high in polyunsaturated, mono-
unsaturated, or saturated fat [37,40]. The present study did not
investigate the effect of ethnicity on the IMCL response to HFD
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in different ethnic groups because of the lack of racial and
ethnic diversity in the included studies. Future experimental
studies should investigate the effect of HFD on IMCL content in
different ethnic groups [79,80]. The present study explored
IMCL responses to HFD in healthy adults aged <65 y, so our
findings cannot be generalized to older adults and other in-
dividuals who possess insulin resistance, type 2 diabetes, and
other chronic diseases.

In conclusion, this meta-analysis confirms that IMCL content
is increased following an HFD in healthy individuals. Although
an HFD does increase IMCL content, our data would suggest that
the duration – beyond 3 d – and the fat content – beyond an
intake exceeding 35% of daily energy from fat – do not influence
IMCL accumulation. No effect of measurement techniques on the
change in IMCL content was shown in response to HFD.
Furthermore, a significant reduction in insulin sensitivity in
response to HFD was observed, yet this reduction was not asso-
ciated with the increase in IMCL content. Future well-designed
trials are needed to improve the overall quality of evidence
and the precision of the effect estimates.



FIGURE 7. Assessment of risk of bias for randomized studies using the Cochrane RoB 2 tool (Traffic-light plot) (A), nonrandomized studies using
the Cochrane ROBINS-I tool (Traffic-light plot) (B), and nonrandomized studies using the Cochrane ROBINS-I tool (Summary plot) (C). RoB, risk
of bias.
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