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Summary  

Trauma analysis is an integral part of the forensic anthropologist’s role in the study of skeletonized 

human remains. An increasingly common type of injury, however, remains vastly unexplored in 

the anthropological literature: blast injury. This chapter aims to provide more information on how 

blast injury can present in the human skeleton, offering the beginning of a guide for anthropologists 

looking to identify this type of trauma. The study was done by reviewing publications that detail 

trauma observed in victims of explosive incidents and extracting data on skeletal trauma from a 

forensic anthropology perspective by calculating the prevalence of these injuries. Overall, the 

effects of blast were noted to affect nearly every part of the skeleton when the data was reviewed 

in combination.  
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1. INTRODUCTION 

When human remains are in an advanced state of decomposition, skeletonised, fragmented and/or 

burnt, forensic anthropologists working in a medico-legal or humanitarian context can play a 

valuable role in assisting with the identification of the deceased and understanding the 

circumstances surrounding death (e.g. see Baraybar and Gasior 2006; Kimmerle and Doying 2007; 

Tersigni-Tarrant and Shirley 2012; Christensen et al. 2013; Komar and Buikstra 2008). In 

particular, forensic anthropologists working on past conflicts may encounter remains that have 

incurred traumatic injury, including blast trauma (Willits et al. 2015).  Amongst the questions the 

forensic anthropologist must consider during the analysis of skeletal trauma (e.g. see Passalacqua 

and Rainwater, 2015) they should also deliberate whether the damage on the skeleton is ante-

mortem, peri-mortem or post-mortem; and if ante-mortem or peri-mortem, whether the injuries 

have been caused by blunt, sharp or ballistic force (although these terms can change). Blast trauma 

in forensic anthropology has not been explored much (Christensen and Smith 2015, Szleszkowski, 

et al. 2020), neither does it tend to be taught. This paper addresses skeletal injury resulting from 

human exposure to the detonation of an explosive device. Such exposure can occur in military and 

civilian environments as a result of war, terrorism, industrial and domestic accidents amongst 

others. Recently, blast injury appears to be occurring more frequently in civilian environments due 

to terrorist attacks (Maniscalco and Christen, 2010; Nelson, et al. 2006; Owens, et al. 2008); whilst 

in modern warfare, the lethality associated with explosive munitions has exceeded that associated 

with gunshot wounds (Belmont et al. 2010) and are the mechanisms responsible for most deaths 

(Kang et al. 2012, Zachar et al. 2013; Breeze et al. 2011; Schoenfeld et al. 2013). 

While the soft tissue characteristics of explosive injuries are well-documented in the literature, 

skeletal injuries have not been studied as extensively (Christensen and Smith 2015). However, 

there is much that can be learnt from clinical research and publications (e.g. Rozenfield et al., 

2019; Edwards et al. 2016; Gregory et al. 2016), and a better understanding of how blast injury 

can affect the human skeleton is crucial to the forensic anthropologist’s ability to hypothesize a 

mechanism responsible for a particular skeletal trauma. Of course, these interpretations of injury 

patterns would be part of a collaborative effort alongside forensic pathologists, experts in 

explosives and explosion investigation, and a number of other professionals and specialists (e.g. 

see Edwards et al. 2016). This is particularly helpful for understanding the position of the device 

in relation to the victim, the circumstances surrounding death, for providing evidence of crimes 

against humanity (Connor 2009), and generally informing any subsequent investigations, 

including the reconstruction of battle events and potentially helping with identification of the 

deceased in earlier 20th century conflicts. In terrorist incidents, differentiating trauma caused by 

the blast itself from secondary effects can provide intelligence about the device used (Delannoy, 

et al. 2020), how it affected surrounding structures, and the consequences for human injury. Today, 

understanding how the deaths occurred or the damage caused is important for a variety of purposes, 

from improving medical applications in theatre, assessing morbidity and mortality, to designing 

better combat armour or even to being able to provide the most accurate information possible for 

the family of a fallen soldier (Bieler et al. 2020; Breeze et al. 2014; Bull et al. 2016; Callaway and 

Burstein, 2020).  

Investigations that have differentiated blast injury from other types of trauma in skeletonised 

remains have done so by consulting descriptions in clinical literature (Loe et al. 2014; Willits et 

al. 2015), but they did not use any anthropological guidelines as no such standardisation exists.  
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The overall objective of this paper is to increase understanding and awareness of how blast 

injury affects the skeleton to provide guidelines for forensic anthropologists looking to identify 

such injuries. It aims to: 

1) Identify how blast trauma affects the skeleton to assist forensic anthropologists in searching 

for this evidence when examining human remains; 

2) Assist with the differential diagnosis of blast trauma and interpretation of skeletal injuries 

caused by blast 

3) Consider blast in contexts where human remains are commingled and incomplete, for 

example the presence of certain body parts in mass graves; 

4) Understand how blast trauma may be evidenced in the skeleton and distinguishing this 

from other types of trauma; 

5) Assist with the identification of mechanism of death.   

 

1.1. Explosions and Explosives 

An explosion can be described as the rapid release of a large amount of energy that results in a 

violent evolution of gases and heat (Brown et al. 2013), and are categorised as mechanical, 

chemical and nuclear (Akhavan 2011). The majority of cases where there have been explosive 

events resulting from the use of explosive devices, whether they be improvised or conventional 

ordnance, will be chemical explosions.   

Chemical explosives may be classed as either high-order or low-order depending on the speed in 

which they release energy. A low-order explosive, while still able to release large amounts of 

energy, does so in a slower process called “deflagration,” which is likened more to burning the 

material at subsonic speeds (Sattin et al. 2008). In contrast, a high-order explosive ´detonates´ with 

supersonic speed (0.001 second) as the reactive material rapidly transforms into pressurized gas 

and heat (Sattin et al 2008). However, if sufficiently confined, low explosives can also transition 

to detonation.  Upon detonation, these rapidly expanding gases will develop spherically from the 

epicentre of that reaction, creating what is referred to as a “blast wave” (Beveridge 2012). The 

high velocity and high pressure of the blast wave compresses the surrounding atmospheric air, 

producing a peak incident pressure before dropping to a negative pressure and then finally levelling 

off at the atmospheric level (Beveridge 2012; Institute of Medicine 2014). The peak overpressure 

of a blast wave varies between incidents but is considered potentially lethal once it exceeds 60-90 

PSI (pounds of force for square inch of area). After these expanding gases create the blast wave 

and peak incident pressure, the negative phase of the wave forms a strong vacuum, creating what 

is known as a “blast wind” (Beveridge 2012). This high velocity wind can move upward of 2,400 

km/h and exert an overpressure of greater than 100 PSI at its most lethal levels (Institute of 

Medicine 2014). The blast wave will propel fragmentation during an explosive event, as well as 

causing a variety of damage to surrounding structures (Boffard and McFarlane 1993).  

The behaviour of a blast varies between incidents due to the effects of the type and quantity of 

explosive used, the orientation of the explosive device, the environment in which detonation 

occurs, and even the geometry and medium of the surroundings which can have a significant effect 

in reflecting blast waves (Rose and Smith 2002; Remennikov and Rose 2005; Smith and Rose 

2006; Cullis 2001; Kosashvili et al. 2009; Wolf et al. 2008).   

2. Overview of Blast Injury 

2.1. History of research 
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Widespread manufacturing and use of high explosives did not commonly appear until the First 

World War (Brown 1998). The type of munitions used at this time was largely shaped by the 

prevalence of trench warfare, with notable weapons including hand grenades and small mortar-

launched explosives (Tucker 2014). With these came a number of medical studies focusing on 

both internal and external blast injuries (Hooker 1924; Mott 1916; Rusca 1915). During the Second 

World War, with the addition of aerial bombs and marine torpedoes, further studies were 

undertaken and continued well into the 1960s (Zuckerman 1940; Krohn et al. 1942; Cameron et 

al. 1943; Benzinger 1950; Chiffelle 1966; Richmond, et al. 1968, see also Wightman and Gladish 

2001); with a particular emphasis on pulmonary injury (“blast lung”) (Dean et al. 1940; BMJ 1941; 

Ross 1941). Many studies at the time were also based on animal experimentation (Roberts et al. 

1953; Celander et al. 1955; Richmond et al. 1961; Chiffelle 1966). A number of other 

physiological studies, based on nuclear weapons, also emerged after the Second World War 

(LeRoy 1947; Folley 1952; Oughterson 1956; Preston 2003). This research expanded with the 

Korean and Vietnam wars, and in particular with the advancements in mortar technology, hand 

grenades, land mines and napalm as a chemical (Boose 2013; Kumar 2010; Tucker 2011). The 

literature examining blast trauma and injuries at this time were aimed at discussing treatment and 

survivability (Belmont et al. 2010; Reister 1973; Ziperman 1954), with a particular focus on brain 

trauma as a result of blast, repair of vascular damage, and treatment of traumatic amputations 

(Levitsky et al. 1968; Rich, Baugh and Hughes 1970; Hammon 1971).  

Clinical literature has differentiated blast injury into four basic categories: primary, secondary, 

tertiary, and quaternary. It should be noted that a fifth category, quinary, has also been used by a 

number of experts (Champion et al. 2009, Wolf et al. 2009). The primary category refers to injuries 

that result from the blast wave itself and mainly affects gas-filled organs (bowel, lungs, and 

tympanic membrane) due to the stress caused by dynamic pressure changes (DePalma et al. 2005). 

Victims of primary blast injury are usually in close proximity to the explosion (Institute of 

Medicine 2014). This is true in both military and civilian settings, even though victims in the 

former are usually equipped with body armour (Stuhmiller et al. 1991). It has also been observed 

that there are significantly more (p=0.024) tympanic membrane injuries in closed space incidents 

than there are in open spaced incidents (Edwards et al 2016).  

 

Secondary and tertiary injury results from the actions of the blast wave. Secondary injuries are 

caused by the debris and fragmentation displaced and carried by the blast wave acting as projectiles 

(DePalma et al. 2005) and results in the majority of deaths (Christensen et al. 2012) and injuries 

(e.g. see Yazgan and Aksu, 2016). Fragmentation caused by the actual explosive device 

components is referred to as ‘primary’ fragmentation, whilst that resulting from additional 

fragmentation added to the device or other local material is ‘secondary’ fragmentation (Champion 

et al. 2009; Mathews and Koyfman, 2015. This typically results in penetrating and blunt injuries. 

In contrast, tertiary injuries are caused by an individual being displaced by the blast wind and 

impacting on an immovable object (Singh et al. 2016). These events typically result in fractures 

and traumatic amputations. Both secondary and tertiary mechanisms have been associated with 

high incidents of brain trauma (Taber, et al. 2006). Quaternary trauma comprises miscellaneous 

injuries—essentially anything that cannot be described in association with the first three 

mechanisms. These injuries include carbon monoxide poisoning, dust and smoke inhalation, burns 

from secondary fires, and crushing injuries from building collapse (Wightman and Gladish 2001). 

Complications of previous injuries are also included under quaternary injury in some literature. In 

addition to these four commonly discussed mechanisms, a quinary category of injury was 

suggested by Kluger and colleagues (2007). This relates to the development of a 

hyperinflammatory state and hemodynamic instability thought to relate to toxic by-products 

produced by an explosion (Kluger et al. 2007); although regarding forensic anthropology, Sanabria 
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and Rodriguez (2016) indicate that although this is not really affecting bone, there are exceptions 

where bone is incrusted from one individual to another (ie contamination) and this may be 

considered quinary.   

 

More recently, with military action in Iraq and Afghanistan, a number of clinical publications and 

research has been undertaken, although focused mainly on mortality, survivability, long-term 

outcomes, and the development of better medical treatments as opposed to blast injury 

classification and description (Dougherty 1999; Harrisson et al. 2007; Kelly et al. 2008; Penn-

Barwell et al. 2015; Russell et al. 2014; Walker et al. 2014). An increase in the use of explosive 

devices in terrorist attacks, whether delivered through letter bombs, pre-placed devices, suicide 

bombings, cars, etc. has deemed this type of trauma relevant within the civilian sector as well 

(Wightman and Gladish 2001, INTERPOL 2015, Morley and Leslie 2007). Experimental research 

for the military has also seen an increase in recent years to improve protection (e.g. Nguyen et al. 

2019), as is the value of imaging in blast trauma analysis (e.g. see Singh et al. 2016). Finally, it 

should be noted that blast injury can be entirely unrelated to conflict. The potential risk for an 

accidental explosion is present in industrial settings like mines, refineries, chemical stores, and oil 

processing plants such as the accidental explosion of 1917 the Halifax Disaster (Scanlon 1998); 

Armstrong 2002). Some of this work derives from investigating industrial disasters (e.g. Zio and 

Aven 2013; Groves 2006; Eckhoff 2003). 

2.2. Blast injury and forensic anthropology  

 

Potential cause of traumatic lesions in the skeleton are usually presented as a trinity in 

anthropological literature: blunt-force trauma, sharp-force trauma, and ballistic or projectile 

trauma (Kimmerle and Baraybar 2008; Passalacqua and Fenton 2012; Christensen et al. 2013; 

İşcan and Steyn 2013; see also Davidson et al. 2011).  

 

Whilst the clinical literature extensively discusses soft tissue injury (Mayorga 1997; Wightman 

and Gladish 2001; Morley and Leslie 2007; Ritenour and Baskin 2008), skeletal injuries are rarely 

the focus and are usually not mentioned until tertiary injury. Recent literature by forensic 

anthropologists, however, has recorded skeletal injuries resulting from primary and secondary 

mechanisms as well (Kimmerle 2008; Christensen et al. 2012; Christensen & Smith 2013; 

Dussault et al. 2014; Christensen and Smith 2015; Dussault et al. 2016; Dussault et al. 2017), with 

some using a biomechanical approach to understand specific patterns of injury (Ramasamay et al. 

2011).  

Forensic anthropologists, Kimmerle and Baraybar (2008) began discussing the differences 

between gunshot and blast wound patterns in the skeleton, based on their examination of 

fragmentation wounds and fractures in gunfire, mortar and grenade victims from the Kraviča, 

Bosnia and Herzegovina warehouse massacre. The latter authors also included a number of case 

studies in their volume (Seneviratre, 2008; Pachón, 2008; Samarasekera, 2008). Christensen and 

colleagues (2012; Christensen and Smith 2013) took an experimental approach, studying the 

primary and secondary mechanisms of blast injury in porcine proxies of the human skeleton (two 

in boats, three on suspended rigs), finding a unique rib butterfly fracture pattern (Christensen and 

Smith 2013).  

Dussault et al. (2014) investigated past military and terrorist incidents involving explosives and 

the effect on the skeleton, presenting prevalence patterns for injuries rather than specific 

characteristics of use in anthropology, emphasizing the need for further work. Subsequent work 

(Dussault et al. 2016; Dussault et al. 2017) employed statistical analysis to quantify patterns and 
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differentiate types of contexts such as combat-related injuries versus war crimes, rather than 

individual trauma identification. 

More recently, a number of skeletal trauma books in forensic anthropology have included chapters 

and case studies on blast trauma. These include further research by Christensen and Smith (2015) 

and a number of cases from past conflicts, such as the Korean War (Willits et al. 2015). In recent 

years, blast injury has been identified in a number of WWI and WWII casualties and some of these 

reports have been published (Loe et al. 2014; Barker et al. 2014; Dussault et al. 2017, Dewilde et 

al. 2018). Certainly, one of the most comprehensive papers is a chapter by Sanabria and Rodríguez 

(2016). Nevertheless, co-authored journal papers seem to include forensic anthropologists such as 

in the analysis of remains from terrorist attacks in France, co-authored by forensic anthropologist 

Tania Delabarde (Delannoy et al. 2019) or case studies from Israel, co-authored by forensic 

anthropologist Tzipi Kahana, although mainly focusing on identification in bombing victims (e.g. 

Kahana et al. 1997; Hiss and Kahana, 1998)  

3. Materials and methods 

This paper utilises clinical literature on blast trauma as well as anthropological publications, 

compiled and updated from the second author´s dissertation (Webster 2014). It also draws on the 

practical forensic experience of some of the authors. 

3.1. Literature based data 

In order to reconstruct how the skeleton may be affected by blast trauma, information was 

extrapolated primarily from the clinical literature on the soft tissue, noting the affected anatomical 

regions and the presence of any fractures, amputations, and even soft tissue injuries such as 

subdural hematoma. Injury prevalence was calculated if this had not been provided, and 

comparisons between incidents and military and civilian context trauma were included. The trauma 

type, pattern and prevalence were also analysed bearing in mind environment (open, semi-open 

closed space etc; see Rozenfeld et al. 2016), type and amount of explosive, subsequent building 

collapse, among the extensive different variables that can alter presentation of trauma (see a review 

in Sanabria Medina and Rodríguez 2015). Incident specific journal publications were separated 

according to terrorism and military-related incidents rather than type of explosion or particular 

settings. Data on non-conflict-related incidents involving human injury by explosives (e.g. mining 

accidents) were excluded as information focused on mortality rather than description of injuries, 

or blast injury was not differentiated from other types within the trauma data. 

For each incident, the following information was collected: name of incident, characteristics, 

device information, relevant trauma, and source(s) of data. Data was compiled from thirteen pre-

2005 civilian incidents (Table 12.1) using the Global Terrorism Database 

(https://www.start.umd.edu/gtd/), with information from post-1970 events including the type of 

device used (NCSTRT 2015). In addition to those civilian incidents, four conflicts were selected 

(WWI, WWII, Korean War, Iraq War). 

 

Table 12.1: Contexts included in this study, the year they occurred, and the sources providing the injury data. 

Incident Year   Source(s) 

7/7 London 

Bombings 

2005 Suicide bombings on 3 

underground trains and 1 bus 

56 killed including the 4 bombers c. 

700 injured 

(Aylwin, et al. 2006) 

https://www.start.umd.edu/gtd/
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Madrid Train 

Bombings 

2004 10 explosive devices on 

commuter train system 

191 killed and c. 2000 injured (Turegano-Fuentes et 

al. 2008) 

Israel Bus 

Bombings 

Pre-

1989 

6 kg of TNT in the middle of a 

bus, under seat 

3 dead and c 29 injured (Katz et al. 1989) 

Bologna, Italy 

Bombings 

1980 TNT-based time-bomb left in 

an unattended suitcase 

detonated at the central train 

station in Bologna 

85 killed and c 200 injured (Brismar and 

Bergenwald 1982) 

Oklahoma City 

Bombings 

1995 car bomb detonated outside 

building 

168 killed and c 680 injured (Mallonee, et al. 1996; 

Quintana, et al. 1997; 

Hogan, et al. 1999) 

Beirut Airport 

Bombings 

1983 truck loaded with the 

equivalent of 12 tons of TNT 

crashed into a terminal and 

detonated 

234 killed and c.112 injured (Scott, et al. 1986; 

Frykberg, et al. 1989) 

Paris Bombings 1985-

86 

11 terrorist bombings in a 

variety of locations 

13 killed and 255 injured (Rignault and Deligny 

1989) 

Istanbul Turkey 

Bombings 

1976-

2000 

Various locations throughout 

the years 

120 killed but injured not estimated (Yavuz, et al. 2004) 

Northern Ireland 

Bombings 

1969-

1992 

Against military and civilian, 

intended to make a statement 

9 killed and 1532 people admitted 

into emergency services 

(Hadden, et al. 1978; 

Hull, et al. 1994) 

Argentine Israelite 

Mutual Association 

Bombing 

1994 a car bomb outside building. 

300kg ammonal-based device 

86 killed and over 200 injured (Biancolini, 1999) 

Birmingham Pub 

Bombings 

1974 Two explosions in two pubs 21 killed and 182 injured (Waterworth and Carr 

1975a; Waterworth 

and Carr 1975b) 

USS Cole Terrorist 

Bombing1 

2000 Suicide bomber 200-300kg 

explosives 

19 killed includeing 2 attackers and 

39 injured  

(Langworthy et al. 

2004) 

Nairobi US 

Embassy Bombing 

1998 TNT-based truck bomb 211 killed and over 4000 injured (Kalebi and Olumbe 

2006) 

World War I 

(Veneto, Italy 

battle) 

1915-

1918 

The battle of Vitorio Vennetto Excavated mass grave with 7 

Italian soldiers 

(Gaudio, et al. 2013) 

World War I (Battle 

of Fromelles) 

1916 Battle of Fromelles, France C 250 Australian casualties found 

in mass graves 

(Loe, et al. 2014) 

World War II (Malta 

Bombings) 

1939-

1945 

Italian and German forces 

fighting against British forces in 

1941-1942 

8 patients (3 fatalities and 5 injured) (Turnbridge and 

Wilson 1943)  

Korean War 1950-

1953 

Explosive projectiles, 

grenades, mines, etc. 

Data from two case studies of 

unidentified soldiers from the 

Korean War (Willits et al. 2015) and 

various figures (Reister, 1973) 

(Willits et al. 2015; 

Reister 1973) 

Iraq War 2004 18 close-proximity blast injury 

US patients 

9 non-survivors  (Nelson et al. 2006, 

2008) 

 
1 Please note that while the attack on the USS Cole did occur on a military vessel, it is considered a terrorist 
attack. It occurred while the crew was in port and refuelling, not in a combat environment and is therefore 
included in this part of the study. 



9 
 

 

Events were selected for inclusion when the literature contained detailed information on skeletal 

injuries, as well as how many victims sustained these injuries. Articles containing only soft tissue 

information or descriptive data without any indication of distribution across the population were 

omitted. Data was tabulated for each incident and prevalence for all anthropologically-relevant 

injuries (fractures) was calculated, dividing number of people with the injury of interest (from a 

particular incident) by the number of people reported as being injured in that incident. After 

tabulation of the injuries, categories of injury that could be applied to all incidents were created to 

allow for comprehensive analysis. These were fractures divided according to the following 

anatomical regions or skeletal elements: skull (neurocranium), face (including orbital fractures), 

sternum, ribs, spine (vertebrae), scapula, clavicle, pelvis, upper limb, lower limb, non-specific limb 

fracture, metacarpal (hand), metatarsal (foot), upper limb amputation, lower limb amputation, non-

specific amputation.   

3.1.1. Injury Reporting and Population Mortality 

Injury reporting was suspected to differ between studies reporting only on surviving victims and 

studies reporting only on deceased victims. To investigate this, the occurrence of skull fractures 

was compared between these two types of studies. Three incidents had data on both survivors and 

fatalities, allowing for direct comparison to gain better insight into this trend. These incidents were: 

the Birmingham Pub Bombings; USS Cole Bombing; and the Beirut Airport Bombings. Odds 

ratios (including confidence interval) were calculated to ascertain support for the hypothesis of 

association with increased risk of fatality. Due to the lack of resources publicly available on 

skeletal trauma caused by explosive devices during military action (e.g. WWII, Korean War, Iraq 

War), it was decided that the military data here would be presented in a descriptive manner only. 

Moreover, often when detailed information on fractures was provided, the injury causes (vehicle 

accident, ballistic injury, blunt injury, blast injury, etc.) were combined, preventing any analysis 

of what was caused specifically by a blast. This was frequently seen in the US Surgeon General’s 

reports (Willit, et al. 2015). In the civilian environment, the level of detail available is usually 

higher as there is an effort by the medical community to improve care and create guidelines for 

future incidents (Covey 2002; Kluger et al. 2004). 

3.2. Limitations 

There were a number of limitations regarding data access, including the use of secondary sources, 

such as potential bias in data acquisition and interpretation. One of the main issues is that many of 

the studies are clinical cases where there is no focus on skeletal trauma. Indeed, the use of 

secondary sources as opposed to primary data such as hospital records, radiographs and any other 

documentation has been a limiting factor; especially bearing in mind that skeletal lesions or injury 

are not the primary focus in data reporting. Moreover, data on military incidents has been limited. 

Added to this, is a potential issue of bias as to what is published. The data has come from hospital 

records of admitted patients, rather than including that of those treated by emergency services or 

emergency departments. In fact, some of the sources provide information on the survivors, others 

on both the living and the dead, and others mainly on the deceased. 
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Another challenge was the level of detail employed in the reporting of injuries, which varied 

between sources. On the one hand, sources where the trauma listed indicates “fracture and/or 

dislocation of the back, chest, or pelvis” (Mallonee et al. 1996); on the other hand, other 

publications provided much greater detail, for example describing a “compound fracture of the 

medial malleolus” (Waterworth and Carr 1975b) or “medial epicondyle humeral fracture” 

(Delannoy et al. 2019). Some of this data may be limited for fatalities too as there may not have 

been a complete autopsy. For example, in the 7/7 London Bombings the decision was made that 

invasive post-mortem examinations would not be performed in the temporary mortuary (HM 

Coroner 2011). Though radiography and fluoroscopy were performed, this was not focused on 

trauma analysis (Silver 2015).  

4. Results 

Table 12.2 summarises the anthropologically-relevant data extracted from each incident, as well 

as the prevalence values calculated. As stated earlier, this data will be based on survivor data, 

others on fatalities or a combination of both. For more detailed information please refer to Webster 

(2014). 
 

Table 12.2: Data collection from terrorism and military-related incidents. 
Incident Characteristics of Incident, type 

of device and delivery method 

Trauma Relevant to Forensic Anthropology Source(s) 

London 

Bombings, 

UK 

July 2005 

Terrorist attack against civilians by 

suicide bombers. 4 urban scenes: 

explosions in 3 underground trains 

(ultra-closed environment, 1 station 

narrower and deeper than the rest 

with greater number of fatalities) and 

on 1 bus (closed environment). The 

suicide bombs (Command –human- 

initiated devices) were homemade 

peroxide-based devices carried in 

backpacks (<10 lbs per device) 

Skull vault fracture (7.4%) 

Base of skull fracture (3.7%) 

Facial fractures (22.2%) 

Rib fractures (7.4%) 

Unspecified spinal injury (7.4%) 

Upper limb amputation (3.7%) 

Lower limb amputation (7.4%) 

Long bone fractures (14.8%) 

Metacarpal fractures (11.1% 

Metatarsal fracture (3.7%) 

Extra-axial hematoma (18.5%)  

(Aylwin, et al. 2006) 

Data from Royal London 

Hospital and ONLY the 

“seriously injured” 

patients (n=27) were 

considered 

Israel Bus 

Bombings 

Civilian bus terrorist attack, urban 

explosion caused by c.6 kg TNT 

detonated under a bus seat 

Head trauma (13.8%) 

Rib fractures (10.3%) 

Amputation (3.4%) 

Limb fractures (24.1) 

Comminuted fractures (10.3%) 

(Katz, et al. 1989) 

Hospital data on 

admitted surviving 

patients (n=29) 

Madrid Train 
Bombings, 
Spain 
March 2014 

Civilian terrorist attack, urban 

explosion on train (closed 

environment). These were remote-

triggered devices (cellular phone 

activated) with a cumulative amount 

Base of skull fracture (1.8%) 

Maxillofacial fractures (9.4%) 

(Turegano-Fuentes et 

al. 2008a, 2008b). 

Hospital and EMS data 

(n= 512 patients) 
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Incident Characteristics of Incident, type 

of device and delivery method 

Trauma Relevant to Forensic Anthropology Source(s) 

of explosives of 22lbs distributed in 

several backpacks 

 

Vertebral fracture (4.5%):  C1 (0.19%), C7 

(1.0%), T1-T6 (3.0%), Lumbar (0.8%) 

Sternal fractures (0.19%) 

Fractures not including head, chest, and spine 

(15.8%) 

Rib fractures (8.4%) 

Clavicle facture (1.0%) 

Scapula fracture (0.39%) 

Humeral fractures (1.9%) 

Ulna-radius (1.0%) 

Metacarpal fracture (1.37%) 

Pelvis fracture (0.19%)  

Femur fractures (1.76%) 

Tibia-fibula fractures (3.9%) 

Traumatic amputations (3.7%) 

Ankle fractures (1.37%) 

Metatarsal fractures (0.39%) 

Subdural hematoma (1.6%)  

Bomb in 

Bologna, 

Italy, 1980 

Civilian terrorist attack, urban 

explosion at Bologna central railway 

station (closed environment). Plastic 

explosive, TNT 

Skull fracture (9.3%) 

Orbital fracture (1.9%) 

Brain contusion (5.6%) 

Spine (6.5%) 

Arm fractures (18.7%) [scapula=4, 

humerus=6, radius/ulna=8, hand=6] 

Traumatic forearm amputation (0.9%) 

Legs (16.8%) 

[Femur=4, tibia/fibula=8, ankle=5, foot=7] 

Finger/toe amputation (1.9%) 

(Brismar and 

Bergenwald 1982) 

Patients admitted to 

hospital, survivor and 

deceased (n=107) 

Oklahoma 

City 

Bombing, 

USA, 1995 

Civilian terrorist attack. Urban 

explosion in front of Alfred P. Murrah 

Federal Building. Open environment 

with subsequent building collapse. 

4,000 lbs of ammonium nitrate 

delivered by vehicle, detonated in 

front of building 

Face and neck fracture/dislocation (37.0%) 

Back, chest, or pelvis fracture/dislocation 

(25.0%) 

Leg fracture/dislocation (40.0%) 

Arm fracture/dislocation (38.0%) 

Multiple fractures (37.0%) 

(Mallonee, et al. 1996) 

Hospital data from 759 

injured, from Medical 

examiner records 

(deceased n=13),further  

hospital records (injured 

n=223), physician 

surveys (minor injuries 

n=972), building 
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Incident Characteristics of Incident, type 

of device and delivery method 

Trauma Relevant to Forensic Anthropology Source(s) 

 

  

occupant and survivor 

survey (n=595) 

Fractures (8.3%) (Hogan, et al. 1999) 

Data from all 13 

emergency departments 

(n=388) 

Skull fracture (89.5%) 

Amputations (31.0%) 

(Quintana, et al. 1997) 

Paediatric fatalities 

(n=19) 

Beirut Airport 

Bombing, 

Lebanon,1983 

Terrorist attack at US Marine Corps 

facility in Beirut. Truck containing 

equivalent of ~12,000 pounds of 

TNT drove into facility and exploded 

(closed environment) 

Facial fractures (7.0%) 

Vertebral fractures (2.3%) 

Scapular fractures (3.5%) 

Upper extremity fractures (11.8%) 

Hand fractures (3.5%) 

Pelvis fractures (4.7%) 

Femoral fractures (7.1%) 

Tibia-Fibula fractures (10.6%) 

(Frykberg et al. 1989). 

Survivor data (n=85) 

Skull Fracture (28.3%): Survivors (11.6%),      

Fatalities (36.3%) 

Facial Fracture (8.7%): Survivors (5.4%),      

Fatalities (10.6%) 

(Scott, et al. 1986) 

Deceased and living 

data (n=346) 

Paris 

Terrorist 

Bombing,  

France, 1986 

Civilian terrorist attack, 11 urban 

incidents in Paris, 2 open air 

environment, 9 closed environment 

inside buildings. Homemade devices 

containing TNT or TNT equivalent 

Head/neck (total: 5.4%; closed: 3.9%; open: 

1.5%) 

Trunk (total/closed: 1.0%) 

Arm (total: 2.9%; closed: 2.4%; open: 0.5%) 

Forearm (total: 1.0%; closed: 0.5%; open: 

0.5%) 

Hand (total: 4.9%; closed: 3.9%; open: 1.0%) 

Thigh (total/closed: 0.5%) 

Leg (total: 6.8%; closed: 0.5%; open: 6.3%) 

Foot (total: 3.9%; closed: 3.4%; open: 0.5%) 

(Rignault and Deligny 

1989)  

Data from the 11 

terrorist bomb 

explosions, hospitalized 

victims, survivors and 

fatalities (n=205) 

Bombings in 

Istanbul, 

Turkey, 1976-

2000 

Terrorist bombings from variety of 

locations; mixed of closed and open 

environments. 

 

 

Skull fractures (37.5%) 

Facial bone fractures (14.2%) 

Rib fractures (30.0%) 

Sternum fractures (4.2%) 

(Yavuz, et al. 2004) 

Data from mortuary 

(deceased), includes 

victims and attackers 

(n=120) 
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Incident Characteristics of Incident, type 

of device and delivery method 

Trauma Relevant to Forensic Anthropology Source(s) 

Thoracic vertebrae dislocations and/or 

fractures (6.7%) 

Abdominal vertebrae dislocations and/or 

fractures (5.0%) 

Scapula fractures (1.7%) 

Upper limb amputation (11.7%) 

Pelvic fractures (5.8%) 

Lower limb amputation (4.3%) 

Limb bone fractures (42.5%) 

Upper and lower limb amputation (10.0%) 

Northern 

Ireland 

Bombings 

Civilian terrorist bombings, urban 

variety of settings (open, closed, 

unspecified). Multiple bomb types 

(command, time, victim operated),  

including vehicle  bombs, open  

charges and culvert bombs 

 

 

Skull fracture (0.7%) 

Nasal fractures (0.3%) 

Other facial fractures (0.4%) 

Ribs (simple: 0.13%; compound: (0.19%) 

Vertebrae (simple (0.065%) 

Pectoral girdle (compound: 0.13%) 

Humerus (simple: 0.065%; compound: 0.13%) 

Radius/ulna (simple: 0.59%; compound: 

0.13%) 

Hand (simple: 0.13%; compound: 0.52%) 

Femur (simple: 0.13%; compound: 0.46%) 

Tibia/fibula (simple: 0.13%; compound: 

0.65%) 

Ankle (simple: 0.39%; compound: 0.33%) 

Foot: (simple: 0.26%; compound: 0.39%) 

(Hadden et al. 1978)  

A&E records of 

surviving patients from 

1969-72 (n=1532)  

 

 

Amputation (34.0%) 

Comminuted fractures on amputations 

(17.6%) 

Spiral fracture (8.8%) 

Open joint (5.6%) 

Segmental fracture (3.0%) 

(Hull, et al. 1994) 

Deaths (n=100) 

between 1987-1992 

Study focuses on 

amputations and 

fractures at amputation 

site 

Argentine 

Israeli Mutual 

Association 

(AMIA) 

Building 

Civilian terrorist bombing, urban 

bombing of the 7 story AMIA 

building via car bomb containing 660 

lb (300 kg) of ammona and placed 

at entrance 

Skull fractures (16.7%) 

Facial fractures (5.5%) 

Amputations (11.1%) 

(Biancolini et al. 1999) 

Patients from Clínicas 

University Hospital, 

survivors and fatalities 

(n=18) 
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Incident Characteristics of Incident, type 

of device and delivery method 

Trauma Relevant to Forensic Anthropology Source(s) 

Bombing, 

1994 

Compound open fractures (16.7%) 

Multiple open fractures (5.5%) 

Comminuted fractures of tibia- and fibula 

(5.5%) 

Birmingham 

Pub 

Bombings, 

UK,1974 

Civilian terrorist attack, urban  

bombing of two pubs, one at 

basement level. Homemade device 

with shards of metal. 

 

 

Skull fractures (47.6%) 

Orbit fractures (14.3%) 

Jaw fractures (19.0%) 

Amputations (43.0%) 

Open femur fracture (14.3%) 

Open tibia/fibula fracture (19.0%) 

Other fractures (33.3%) 

(Waterworth and Carr 

1975a)  

Deceased patients at 

the Birmingham General 

Hospital (n=21) 

Skull fractures (1.6%) 

Open tibia fractures (4.9%) 

Compound medial malleolus fracture (1.6%) 

Open fibula fractures (3.3%) 

 

(Waterworth and Carr 

1975b) 

Surviving patients from 

Birmingham General 

Hospital (n=61) 

USS Cole 

Terrorist 

Bombing, 

Yemen, 2000 

Terrorist bombing of the USS Cole 

while refuelling in Aden Harbour. 

Explosions amid ships and adjacent 

to port side (closed environment).  

Ship badly damaged, but no 

structural collapse 

 

Dynamite. Fiberglass boat with C4 

explosives and 2 suicide bombers. 

 

Long bone fractures (92.9%) 

Pelvic fracture (50.0%) 

Spine fracture (71.4%) 

Skull fracture (85.7%) 

Rib fractures (100.0%) 

(Langworthy, Sabra and 

Gould 2004) 

Fatality data (n=14) 

Open long bone fractures (10.3%) 

Spine fractures (2.7%) 

Skull fractures (2.7%) 

Rib fractures (7.7%) 

Clavicle fractures (2.7%) 

(Langworthy, Sabra and 

Gould 2004) 

Survivor data (n=39) 

 

 

Nairobi US 

Embassy 

Bombing, 

Kenya, 1998 

Terrorist attack. Blast resulted in 

massive building collapse, adjacent 

buildings badly damaged. 

Occurred simultaneously with 

another attack in Tanzania 

TNT-based truck bomb 

Skull fractures (28.4%) 

Rib fractures (22.9%) 

Extremity fractures (18.9%) 

(Kalebi and Olumbe 

2006) 

Fatality data (n=201) 

World War I: 

Veneto 

Primary WWI mass grave excavated 

from mountain area in the Veneto 

Comminuted fractures to Vertebrae, Ribs,      

Clavicle, Scapula, Humerus, Femur, Os 

Coxae, Tibia and Fibula 

(Gaudio, et al. 2013) 

Data from 7 individuals. 

Descriptive data only 
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Incident Characteristics of Incident, type 

of device and delivery method 

Trauma Relevant to Forensic Anthropology Source(s) 

Region of 

Italy 

region. Grenades and fragmentation 

grenades 

Traumatic amputation of lower limbs from those suspected of 

being affected by blast  

World War I: 

Battle of 

Fromelles, 

France, 1916 

Breastwork and trench warfare over 

two days in northern France 

between Australian and British vs 

German troops. Explosive munitions 

including artillery, grenades, 

mortars, and bombs 

 

Head fractures (79.5%) 

Neck fractures (61.5%) 

Thorax fractures (85.9%) 

Left upper limb fractures (16.7%) 

Right upper limb fractures (15.4%) 

Left lower limb fractures (14.1%) 

Right lower limb fractures (15.4%) 

(Loe et al. 2014)  

250 sets of human 

remains recovered from 

6 graves; n=78 affected 

by blast injury 

Malta 

Bombings in 

WWII 

World War II, period of heavy 

bombing in Malta (Dec 1941-Apr 

1942) primarily through air raids 

Rib fractures (12.5%) (Turnbridge and Wilson 

1942) 

Case studies (n=8 

patients). Survivors and 

fatalities (rib fractures 

seen in survivor) 

Korean War, 

1950-1953 

Circumstances surrounding each 

event mostly unknown, except for 

witness account that Case 2 (Willits 

et al. 2015) had been kneeling in a 

foxhole when hit with mortar fire. 

Explosive projectile shells, 

grenades, and land mines 

Skull fracture, Scapula fracture, Rib fractures, 

tarsal fractures and embedded metal 

fragments in foot. Cluster of projectile injuries 

consistent with lower extremities and feet 

Comminuted fracture of tibia, Right fibula and  

Tarsal fractures 

 (Willits et al. 2015) 

Data from two case 

studies of unidentified 

soldiers from the 

Korean War 

Fractures (12.2%) 

Amputations (64.8%) 

(Reister 1973) 

IED 

Explosions in 

Iraq between 

Aug-Sept 

2004 

Improvised explosive device (IED) 

explosions affecting military 

personnel wearing Kevlar helmets, 

ballistic eye protection, and full-body 

armour including small arms 

protective insert plates, neck 

protectors, and groin protectors  

 

 

 

Skull fractures (33.3% total, 55.5% of 

fatalities, 12.5% survivors) 

Mandible fracture (5.5%) 

Lumbar vertebrae fracture (11.1%) 

Sacrum fracture (5.5%) 

Humerus fracture (16.7%) 

Femur fracture (16.7%) 

Tibia fracture (11.1%) 

Fibula fracture (5.5%) 

Ankle/foot fracture (5.5%) 

Metatarsal fracture (5.5%) 

Near amputation, upper limb (5.5%) 

Near amputation, lower limb (5.5%)  

(Nelson et al. 2008) 

Case studies (n=18) of 

military personnel, 

including 5 that were 

specifically in vehicles 

or Humvees 
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4.1.2. Combined Data- anatomical regions and skeletal elements 

Amongst the civilian terrorist data sets, 12 incidents2 (12/13) reported the presence of skull 

fractures amongst the injured (Figure 12.1). At 89.5%, the paediatric population from the 

Oklahoma City Bombing has the highest percentage of skull fractures, followed by the USS Cole 

Bombing deceased victims with 85.7%. The lowest percentages of skull fractures were seen in the 

Northern Ireland bombings (0.7%) and the surviving victims of the Birmingham Pub Bombings 

(1.6%). Eight incidents (8/13) reported facial fractures3 with the highest number reported in the 

7/7 London Bombings (22.2%), followed by the Birmingham Pub Bombing fatalities (14.3%). The 

lowest prevalence of facial fractures were observed in the Northern Ireland (0.7%) and Bologna 

(1.9%) bombings. 

 

Figure 12.1: Skull and facial fracture percentages across all terrorism incidents. 

Seven incidents4 (7/13) reported rib fractures. The highest— with 100.0% of victims sustaining 

rib fractures—was the fatality population in the USS Cole terrorist bombing, followed by 30.0% 

in the Istanbul data (Figure 12.2). The lowest incidence of rib fractures was observed in the 

Northern Ireland bombings at 0.32% and the London Bombings at 7.4%.  

 
2 These 12 incidents are represented on the graph by 14 data sets due to repeats when a population study is 
split by mortality.  
3 Here, this included orbital fractures which were seen in the Bologna, Italy bombings and Birmingham Pub 
Bombings, as well as nasal fractures, which were reported in the Northern Ireland bombings.  
4 These 7 incidents are represented by 8 data sets due to repeats when a study is split by mortality of the 
population.  
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Figure 12.2: Percentage of rib fractures for each terrorist incident. 

Continuing with the spine, vertebral fractures were reported in six incidents (6/13). The fatalities 

from the USS Cole bombing reported the highest incidence of vertebral fractures (71.4%), 

followed by Istanbul (11.7%). The Northern Ireland bombings reported the lowest (0.065%) 

(Figure 12.3).  

 

Figure 12.3: Percentage of vertebral fractures for each terrorist incident reporting the injury. 

Twelve incidents (12/13) reported long bone injuries. The fatality population from the USS Cole 

bombing reported the highest prevalence (92.0%), followed by the bombings in Istanbul (42.5%) 

and Bologna (35.5%) (Figure 12.4). The lowest prevalence was reported in the Northern Ireland 

(0.92%) and the AMIA (5.5%) bombings.  
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Figure 12.4: Percentage of long bone fractures in all incidents reporting the injury. 

 

Eight incidents (8/13) reported the occurrence of amputations. The highest of these was the fatality 

data from the Birmingham Pub Bombings (43.0%), followed by the paediatric fatality population 

in the Oklahoma City Bombing (Figure 12.5). The lowest incidence was seen in Bologna, Israel, 

and Madrid with 2.8%, 3.4%, and 3.7% prevalence, respectively.  
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Figure 12.5: Amputations (including upper extremity, lower extremity, hands, and feet) across all incidents reporting the 
injury.  

Figure 12.6 shows the average percentage of each injury type for the combined terrorism data, as 

well as 95% confidence interval (CI). The lowest average at 0.56% is metatarsal fractures, while 

the highest at 28.6% is non-specific limb fractures. The latter, however, also has a very wide CI. 

Amputations are the second highest at 10.5% with a moderately large CI, followed by skull 

fractures at 9.15 with a slightly smaller CI.   

 

Figure 12.6: Injury types and average percentage of victims for all terrorism incidents.  

Figure 12.7 represents data from combined terrorism events. The largest range and standard 

deviation between studies was seen in rib fractures (0.32% to 100.0%, SD 32.4). Non-specific limb 

fractures had the next largest range at 0.91% to 92.9% with a standard deviation of 22.9%. Skull 

fractures also had a large range, at 0.7% to 89.5%, but a slightly larger standard deviation than 

limb fractures at 26.3%. The lowest of these values was represented by metatarsal fractures with a 

range of 0.4% to 3.9% and a standard deviation of 1.9%.  
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Figure 12.7: Data from combined terrorism incidents. Below each injury type is the range, average (Avg) and standard 
deviation (st. Dev).  

4.1.3. Survivor Data versus Fatality Data 

There were four sources that contained survivor-only data and five sources that contained fatality-

only data. Skull fractures were reported in all of these. The presence of these fractures in the 

survivor data ranged between 1.64-11.6% of victims, the lowest being seen in the Birmingham 

Pub Bombings and the highest in the Beirut Airport Bombing (Figure 12.8). The presence of skull 

fractures in the fatality-only studies ranged from 28.4-89.5% of victims, with the lowest seen in 

the Nairobi US Embassy bombing and the highest in the paediatric group from the Oklahoma City 

Bombing (Figure 12.9).  
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Figure 12.8: Percentage of skull fractures incidents containing survivor data only. 

 

Figure 12.9: Percentage of skull fractures in incidents containing fatality data only. 

For the three incidents that contained both survivor and fatality data (Birmingham Pubs, USS Cole, 

and Beirut Airport), odds ratios and confidence intervals were calculated. The odds ratio for the 

Birmingham Pub bombings was found to be 54.5 (CI95%= [6.32, 470]), suggesting that the ratio of 

skull-fracture to no-skull-fracture is approximately 54.5 times higher in the fatalities than the 

surviving victims. This trend continued with the USS Cole bombings, with an odds ratio of 228 

(CI95%= [9.72, 5364.8]), and in the Beirut Airport bombings with 4.34 (CI95%= [2.30, 8.21]). The 

confidence intervals for all three incidents suggests significance.  
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5. Discussion 

It is evident from these data that a representative picture of blast injury is not simple. The patterns 

are dynamic and will vary between and within incidents. This is because blast incidents are 

influenced by a large number of intrinsic and extrinsic variables, leading to significant variation in 

the expression of trauma (Palmiotto et al 2020). In addition, different modes of recording injuries 

and varying levels of detail also make analysis and interpretation difficult. There may even exist 

differences in the living versus the dead, as demonstrated by the comparison of skull fractures and 

survivability. While an understanding of the soft tissue trauma is quickly moving forward, 

investigation of the skeletal component of blast injury is slower particularly for anthropological 

purposes (Covey 2002; Kluger 2003; DePalma 2005; Institute of Medicine 2014; Christensen and 

Smith 2015). By examining descriptions of injuries observed in each incident, however, 

information about distribution becomes clearer, not only in what type of trauma is present but also 

in how it is reported.  

The environment in which the explosive event occurs has been observed to influence injury and 

survival, specifically open versus closed environments (Kluger 2003). If there is an associated 

building collapse, this will also likely affect the distribution of trauma as crushing injuries will 

become more common (DePalma 2005). Distance from the blast, body position, explosive type, 

explosive amount, device design and orientation are also hypothesized to have an impact on injury 

profiles (Phillips and Richmond 1991; Wightman and Gladish 2001; Taber et al. 2006). The 

openness of the space will allow a large portion of the blast wave’s energy to dissipate before 

reflecting off surrounding surfaces (Beveridge 2012). The amount of energy dissipation is more 

pronounced in an entirely open outdoor environment, though this is still subject to the geometry 

of the surroundings, especially in an urban environment (Smith and Rose 2006), while the ultra-

enclosed environment such as an underground train has the potential to amplify the effects via 

reflection of the blast wave compared to other closed environments (Chaloner 2005; Cullis 2001). 

These changes in the physics of the blast wave are believed to directly affect injury, with many 

researchers reporting higher fatalities being observed in closed environments (Leibovici et al. 

1996; Kluger 2003; Chaloner 2005). However, in a more recent study which reviewed 40 years of 

terrorist bombings, Edwards et al (2016), found there to be very little difference between death 

rates in closed and open environments, with there being slightly fewer deaths in the former. 

Similarly, there was little difference between numbers of injuries sustained in closed and open 

environments, although the frequencies of different types of injuries did vary. However, one of the 

author’s (JR) experience seems to suggest that a higher number of fatalities can take place in ultra-

closed environments.  

When structural damage occurs after a detonation, victims not only exhibit primary injuries caused 

directly by the blast, but also an increase in secondary and tertiary injuries, specifically crush 

injuries—resulting from falling rubble (Mayo and Kluger 2006). In fact, the increasing use of 

vehicle borne IEDs (VBIEDs), suicide delivered IEDs and the deliberate addition of secondary 

fragmentation has also been recognised as a cause of an increase in secondary injuries (Kluger, 

2003; Elsayed and Atkins, 2008; Mathews and Koyfman, 2015; Magnus et al., 2018). With regards 

to suicide devices, it is not just the added fragmentation (enhancements) that may result in this 

increase but also body parts from the suicide bomber themselves (Beaven and Parker, 2018; 

Delannoy et al. 2019). The terrorist bombings at the Bologna train station, the Alfred P. Murrah 

building in Oklahoma City, the Beirut Airport, the AMIA building, the Birmingham Pubs, and the 

Nairobi US Embassy Bombing were all associated with subsequent structural collapse. Though 

these injuries resulted from differing mechanisms, they were reported as all being from the same 

type of incident, associated with the explosion. While the clinical diagnosis of crushing injuries 

has clear signs differentiating mechanisms of injury, in skeletonized remains this is further limited 
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(Rajagpalan 2010). The Oklahoma City and AMIA bombings are particularly extreme examples 

of the scale of damage that can occur. These incidents reported skull fractures and 4 out of the 5 

observed amputations, injuries that have been previously associated with high mortality in terrorist 

attacks (Okie 2005; Patel et al. 2012).  

5.1. Injury Patterns by Anatomical Location 

In this paper, we provide the following reports from the data gathered from more affected to least affected, 

with regard to skeletal remains. Thus, the list starts with the most frequently occurring skeletal injuries and 

perhaps providing higher diagnostic criteria for blast trauma. 

Limb Fractures and Amputations 

In the terrorist incidents, the most prevalent injury reported across all incidents was non-specific 

limb fractures, but this was associated with a large CI, suggesting wide variation in the presentation 

of prevalence of this type of injury. In contrast, the categories of upper limb fracture and lower 

limb fracture have much smaller associated CI, even though the type of injury is similar between 

these categories. Still, overall, the majority of these incidents of terrorism reported the occurrence 

of limb fractures. The only one not included—the Oklahoma City Bombing—mentions “limb 

fracture or dislocation” as a category of injury. This suggests the possibility that limb fractures 

were, in fact, observed in all incidents included in this study. A common occurrence was also noted 

in the military data included in this study, where 4 out of the 5 incidents reported limb fractures, 

supporting previous literature associating fracture of the extremities due to explosive munitions 

(Owens et al. 2007). Fracture type is reported predominantly as comminuted and may relate to the 

proximity from the explosion and therefore different types of blast injury (e.g. primary vs 

secondary) (Ramasamy et al. 2011). According to Christensen et al. (2012), comparing with 

gunshot and blunt force injury, fractures tended to be widespread and not have an identifiable point 

of impact.  

Amputations and associated high mortality have been previously reported in both civilian and 

military blast incidents (Ramasamy et al. 2009; Patel et al. 2012), but the level of detail varies 

amongst publications. While some specified between upper limb and lower limb amputation, the 

majority only report “amputations”, without specifying. Reporting also includes hands, feet, and 

even digits—the level/severity of which differs greatly among these. Other publications mention 

head amputation near the focus of the explosion (Sanabria and Rodriguez, 2016). Regardless of 

these issues, amputations were still reported in eight of the of the thirteen terrorism incidents and 

in 3 out of the 5 military incidents. Blast injury should therefore be considered as a mechanism 

when examining evidence of amputation or even missing bone elements, though further 

investigation is needed. One study from the Northern Ireland bombings that focused specifically 

on amputations described the fracture patterns at the amputation sites themselves, observing 

comminuted, spiral, segmental, and open joint fractures (Hull et al. 1994). However, device design 

and placement will have a significant impact. For instance, there may be more lower limb 

amputations in landmine explosions, but more cranial fractures in suicide bombers wearing 

backpacks. Gates et al (2014) theorised, for instance, that the lower mortality in the Boston 

Bombing was due to ground level, open air placement although the majority of injuries were 

secondary blast due to primary and secondary fragmentation.   

Skull (neurocranium or cranial vault) Fractures 

While skull fracture did not have the highest percentage overall in the terrorism incidents, it was 

reported in 12 out of the 13 events. While there is the possibility for bias here as head injuries 

usually require hospitalisation and could potentially be reported more often, its notable presence 

warrants further investigation of the relationship of skull fractures to blast and variables that could 

confound this (e.g. environment, structural collapse, mortality data). Skull fractures are mentioned 
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in the military data in Fromelles, Korea, and Iraq. However, the occurrence of these fractures 

decreased from 79.5% at the Battle of Fromelles to 33.3% in the Iraq War. This could be due to 

the advancement of armour, particularly helmets, as well as changes in how the explosives were 

deployed (Tham et al. 2008; Moss et al. 2009).  Basilar fractures were mentioned in the Madrid 

and London bombings and may indicate blast injury in closed environments; however this has only 

been discussed in two events in this data. Nevertheless, Sanabria and Rodriguez (2016) indicate 

that in the skull the most fragile bones are the most vulnerable such as the zygomatics, temporal 

squama; but also fracturing on ear ossicles (especially the incus) and transverse dental fracture 

may be present. 

 

Rib fractures 

Rib fractures were observed in over half (8/13) of the terrorism incidents, not including reports of 

“trunk fracture,” or “thoracic fracture”. Rib fractures have previously been suggested as a potential 

indicator of blast injury in the skeleton, particularly by a unique pattern of butterfly fracturing 

observed in the mid-shaft of the rib during experimental studies (Christensen and Smith 2013). 

The terrorism publications unfortunately did not report on the type of observed fractures.  

 

The highest prevalence—100.0% seen in the USS Cole fatality data—appears to be an outlier. 

This could be due to the fact that the data set in question comes from deceased victims only, 

representing possible increased severity in the trauma seen. It is also the smallest sample size 

(n=14) out of all the incidents reporting rib fractures.  The First World War, Second World War, 

and Korean War data all reported rib fractures, but the particularly detailed data on the modern 

Iraq War made no mention of the injury. This can potentially represent the impact of the use of 

body armour and armoured vehicles in modern warfare compared to previous conflicts (Gofrit et 

al. 1996; Gondusky and Reiter 2005; Lakstein and Blumenfeld (2005).  

Facial Fractures 

Facial fractures were reported in 8 out of the 13 incidents and some provided more detail as to the 

location of the fractures. The Bologna bombings and the Birmingham Pub bombings, for instance, 

both reported orbital fractures. The Northern Ireland bombings reported nasal fractures. Fractures 

to the face may be dependent on location of the explosive in relation to the victim and how they 

are standing as the force of the detonation would need to directly interact with the face (Wightman 

and Gladish 2001; Bhadani, et al. 2005). There may also be an interaction with varying 

atmospheric pressure affecting sinus filled areas (Agir et al. 2006; Thach et al. 2000). No facial 

fractures were specifically reported in the military data included in this project. Maxillofacial 

fractures have been reported in the military with IEDs as the mechanism before, but incident-

specific data was unable to be recovered (Breeze et al. 2010). 

Vertebral Fractures 

Vertebral fractures were reported in 6 out of the 13 incidents, ranging from 0.06% to 71.4%. The 

higher end of this range (from the USS Cole fatalities) appears to be somewhat of an outlier for 

this data set, as the next highest prevalence is 11.7 from the bombings in Istanbul. This could be 

attributed to a variety of factors from sample size, to incident nature.  

Pectoral, Pelvic Girdle and Sternal Fractures 

Fractures to the scapula, clavicle, innominates, sacrum, and sternum have the lowest prevalence 

rates in and across all incidents. This is likely because they are very rarely reported, as our 

experience indicates that this can be prevalent, especially when blast comes from the floor; or 

alternatively when the remains are those of bomb carriers or suicide bombers (e.g. see Delannoy 

et al. 2019). In our study, only 2 incidents reported sternum and clavicle fractures, 3 for scapula 

and pelvic fractures. The presence of pelvic fractures specifically could be an indication that 
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injuries sustained involved a particularly high amount of force, as it takes a great deal to disrupt 

the pelvic ring, for example in road traffic collisions (Falzarano et al. 2014).  

Metatarsal Fractures 

Metatarsal fractures were seen with the lowest average across all incidents at 0.56%. This is likely 

due to the fact that they were only specifically documented in two incidents. It is very possible, 

however, that these fractures are included in other incidents that discuss foot fractures or non-

specific limb fractures. Military data, in particular the case studies from the Korean War, discussed 

the presence of shrapnel or fragmentation in the foot bones, hypothesized to have been imbedded 

at the time of the blast (Willits et al. 2015). Thus, apart from metatarsals, tarsal bones must be 

observed too, as these could have injury from blast (e.g. Commandeur et al. 2012). 

The presence of metal fragments in the lower extremities should therefore be considered as a 

potential indicator for blast injury, in addition to possible device type and location (i.e. ground 

based or anti-personal landmine).  

Overall, this pattern of skeletal fractures has similarly been described and summarised by Sanabria 

and Rodríguez (2016) who see the following evidence for blast trauma: long bone fractures, 

comminuted and oblique, scapula and pelvis affected, butterfly fractures on the rib, amputations 

whether of the fingers, hands or limb, metallic fragments of bone, especially in primary and 

secondary injury; with crush (blunt) fractures in tertiary, for example on vertebrae and ribs.  

As highlighted earlier, there were a number of limitations and in particular for this discussion, a 

few to address. Bias is an important consideration in that the difference in fracture presentation 

between the living (injured/survivor) and the deceased (non-survivor) could be significant. For 

example, the amount of skull fractures in the survival data ranges from 1.65-11.6%, while the 

fatality data ranges from 28.4-89.5%, suggesting a much higher amount of skull fractures reported 

in the fatality data. Data from the Birmingham Pub Bombings, the USS Cole terrorist bombing, 

and the Beirut Airport Bombing report differences. In the Birmingham Pub Bombings, the odds 

ratio was calculated to be 54.5, suggesting that the ratio of skull-fracture to no-skull-fracture is 

that 54.5 times higher in fatalities than in survivors. The confidence interval, at 6.3-470.0 suggests 

the odds of finding a skull fracture in a fatality are significantly higher than in a survivor. This 

trend is the same across all three incidents, with USS Cole having an odds ratio of 228 and a 

confidence interval of 9.7-5364.8, and the Beirut Airport having an odds ratio of 4.3 and a 

confidence interval of 2.3-8.2. Thus, skull fractures are seen more often in the fatality population 

because they are associated with a higher mortality (Okie 2005). This is further supported in the 

military data with the incidence of skull fracture in Fromelles being relatively high at 79.5% from 

those who died in battle. The Iraq data also supports this, where skull fractures were seen in 55.5% 

of fatalities, but only 12.5% of survivors, though this was not statistically evaluated. As the 

anthropological population tends to examine fatalities, skull fracture prevalence could be an 

important indicator of blast injury when combined with other contextual factors.  

Differentiating blast trauma from other types of trauma is possible, but it requires thorough 

analysis of the individual skeletal injuries and careful interpretation of the injury distribution over 

the entire skeleton in combination with contextual evidence. If blast injury is suspected, 

consideration should be given to bone type, injury location, and all available contextual and 

investigative information including the number of explosives utilized, the presence of potential 

projectiles, and the placement of the explosives in relation to the victim. High-velocity projectile 

trauma from gunshot wounds can often be distinguished from fragmentation trauma based on 

differences in size, shape, number, association, and distribution of wounds, with fragmentation 

wounds being more variable and irregular in size and shape and also more numerous (Kimmerle 
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and Baraybar, 2008). The lower impact force of fragmentation compared with ballistically 

optimised projectiles also generally means that fragments will seldom exit the victim and are often 

recovered. Blast and high-velocity projectile injuries tend to differ on body region affected, 

distribution, and severity (Peleg et al., 2004), and blast traumas involve a higher energy 

mechanism, leading to increased injury severity and more fractures compared with gunshot 

wounds (Weil et al., 2007).  

6. Conclusion 

Trauma analysis in anthropology tends to focus on three main categories: sharp, blunt, and 

ballistic. It is the combination of these injuries—whether viewed in one individual or in a set of 

several individuals—that are beginning to introduce a fourth category for differential diagnosis: 

blast injury. As Ramasamy and colleagues (2009) noted, fractures are the second most common 

type of injury reported in studies on recent conflict-related trauma.  This emphasizes the need for 

forensic anthropologists to develop a better understanding of the skeletal component of blast 

injury. This is true whether it is at the excavation of a mass grave, when examining bone fragments 

after a major disaster, or when trying to discern what took the life of a recovered serviceman so 

that their family can better obtain a better understanding of the circumstances of their death   

The forces associated with an explosion can cause damage to the skeleton, either directly from the 

forces of the blast wave and blast wind, or by -fragmentation, flying debris, and body displacement 

(Kluger et al. 2007). The variety of ways this could present in the skeleton include fractures, 

penetrating wounds, projectile wounds, amputations, and blunt force trauma. The pattern of how 

these appear is important in differentiating trauma caused by blast as opposed to other mechanisms. 

Based on the information ascertained, and especially the context in which the remains were found, 

forensic anthropologists should consider the following as potential signs of blast injury in the 

human skeleton, especially in combination: 

● Skull fractures, including basilar fractures in closed contexts 
● Facial fractures, with special attention to orbit fractures 
● Limb fractures, particularly comminuted fractures, widespread and with no defined point 

of impact 
● Evidence of amputation and/or missing bone elements 
● Rib fractures, with special attention to butterfly fractures on the visceral surface 

(Christensen and Smith, 2013) 
● Vertebral fractures 
● Disruption of the pelvic ring 
● Metal fragments imbedded in bone, particularly metatarsals and lower limbs 

Due to the challenging distinction between gunshot wounds and blunt force trauma to blast trauma, 

and the differential diagnosis on these, it is important (Sanabria and Rodríguez, 2016: 671, 675) 

to examine the trauma traits with detail, examine the distribution of the injuries or patterns and an 

examination of any metal fragments, alongside the scene information and hypothesis to be tested.  

Beyond retrospective analysis, experimental studies simulating these wounds must also increase, 

as that is the only way to have full control over recreating different types of “incident” and 

accounting for any confounding variables. The types of fractures and microscopic fracture patterns 

(e.g. see Pechníkova et al. 2015) would benefit from further investigation as they are rarely 

described in the current literature. Use of low and high-power microscopy, and Scanning Electron 

Microscopy (SEM), would enable the characteristics of fractures to be analysed in greater detail 

and the latter may also assist in the detection of small fragments of metal which are not visible to 
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the naked eye. For forensic anthropology practices to remain current and as helpful as possible, 

blast injury must join the repertoire of anthropological trauma analysis. 

Cases that may require the ability to discern blast trauma from other mechanisms include mass 

grave excavations (Baraybar and Gasior 2006), the recovery of remains of service personnel, and 

complex blast incidents involving civilians. The use of explosives in mass killings and genocide 

is not unheard of and should therefore not be omitted from consideration as a potential mechanism 

when examining trauma (Strippolo 2009). If there are bone elements missing from a grave, for 

example, it should not be assumed to be the result of taphonomy, poor preservation, or even 

commingling—it could be possible that the missing bone is a result of amputation by blast; or 

alternatively if there is an extra limb this could be from an amputation in a surviving casualty.  

An anthropologist’s ability to recognise blast trauma could aid in determination of cause of death, 

especially in Human Rights´ cases. Furthermore, where a forensic pathologist is required to 

provide as much information as possible and in order to help those investigating the incident 

(Mundorff et al. 2009), forensic anthropologists can assist too with physically reconstructing the 

fragmented remains to enable the former to interpret defects more easily. A deeper understanding 

of the injuries caused by the explosive event could lead to more information about the design and 

materials used and in turn, the perpetrator and their intent as well as potential counter-measures.  

Further investigation should be carried out on the effect of structural collapse on injury 

interpretation, perhaps by directly comparing these injuries with other mass fatality events not 

involving an explosion. This once again highlights the need for more detailed recording of injuries. 

Overall, the study of blast injury by forensic anthropologists is still largely in its infancy. As it 

becomes more widespread, however, it is vital to the future of the discipline that the skeletal 

component of such injuries becomes better understood as to aid in identification and interpretation. 
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