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Abstract

The field of exercise physiology has undergone significant technological advancements

since the pioneering works of exercise physiologists in the early to mid-20th century.

Historically, the ability to detect metabolites in biofluids from exercising participants

was limited to single-metabolite analyses. However, the rise of metabolomics, a

discipline focused on the comprehensive analysis of metabolites within a biological

system, has facilitated a more intricate understanding of metabolic pathways and

networks in exercise. This review explores some of the pivotal technological and

bioinformatic advancements that have propelled metabolomics to the forefront

of exercise physiology research. Metabolomics offers a unique ‘fingerprint’ of

cellular activity, offering a broader spectrum than traditional single-metabolite

assays. Techniques, including mass spectrometry and nuclear magnetic resonance

spectroscopy, have significantly improved the speed and sensitivity of metabolite

analysis. Nonetheless, challenges persist, including study design and data inter-

pretation issues. This review aims to serve as a guide for exercise physiologists to

facilitate better researchdesign, data analysis and interpretationwithinmetabolomics.

The potential of metabolomics in bridging the gap between genotype and phenotype

is emphasised, underscoring the critical importance of careful study design and the

selection of appropriate metabolomics techniques. Furthermore, the paper highlights

the need to deeply understand the broader scientific context to discern meaningful

metabolic changes. The emerging field of fluxomics, which seeks to quantify metabolic

reaction rates, is also introduced as a promising avenue for future research.
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1 INTRODUCTION

Exercise significantly challenges the body’s homeostatic balance,

necessitating a rapid and substantial increase in ATP resynthesis.

Consequently, the rate of various bioenergetic reactions undergoes

rapid alterations at the onset of exercise, and these changes in

reaction rates modify the concentrations of metabolites in biofluids

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2024 The Authors. Experimental Physiology published by JohnWiley & Sons Ltd on behalf of The Physiological Society.

(including blood) and tissues like skeletal muscle. Such alterations in

metabolite concentrations indicate the mobilisation, utilisation and

transformation of energy substrates, notably carbohydrates and lipids,

to fulfil the increased ATP requirements of working muscle. The array

of metabolites produced by bioenergetic pathways also serves as

signals transduced to molecular events (Febbraio et al., 2000), leading

to the transactivation of genes and the activation/suppression of both
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protein synthesis and degradation. Examples of somemetabolites that

have been established in response to muscle contractile activity and

act as crucial chemical signals that stimulate adaptation are AMP, the

ADP:ATP ratio, Ca2+, creatine phosphate, succinate, lactate, glycogen,

fatty acids, NAD and NADH, and amino acids (Baker & Rutter, 2023;

Hawley et al., 2006; Reddy et al., 2020; Sancak et al., 2008).

On a background of exercise, nutritional status adds further

complexity to metabolic regulation. Exercise performed in the fasted

state increases lipolysis and the utilisation of lipids as an energy source,

but after feeding carbohydrates, fatty acid entry to the mitochondria

is compromised, and carbohydrate oxidation predominates (Febbraio

et al., 2000; Horowitz et al., 1997). This is then reflected in the

metabolites produced as a consequence of fatty acid or carbohydrate

metabolism. Taken together, exercisemetabolism represents oneof the

most powerful examples of the dynamic nature of the metabolome in

response to a stimulus.

Since the seminal works of pioneering exercise physiologists

August Krogh, Archibald V. Hill and Per-Olof Åstrand, technology has

revolutionised how data are collected, analysed and interpreted. In

early exercise physiology research, biochemical analyses were pre-

dominantly targeted analyses of biofluids, such as blood, urine and

saliva, collected from exercising participants, typically limited to a

very small number of metabolites per assay. Indeed, August Krogh

had an exceptional ability to design and build equipment to assess

biochemical variables with great precision, albeit limited to a small

number of variables at a time (Larsen et al., 2021). Since exercise

induces organism-level stress, capturing the complexity and inter-

connectedness of metabolic pathways and networks is essential,

providing a systems-level understanding of biological processes. The

ability to detect metabolites in biofluids and tissues has benefitted

significantly from the advancements, accessibility and usability of

technology.

Metabolomics, a field of scientific study focusing on the

comprehensive analysis of metabolites within a biological system,

is a prime example of an area that has benefitted from technological

and bioinformatic advancements. Metabolomics is an increasingly

common analytical approach in many areas of biological research and

is gaining popularity in the exercise physiology domain. Metabolomic

studies involve identifying, quantifying and characterising metabolites

in biological samples, including blood, urine, tissues and cells. As

metabolites are both intermediates and end products of cellular

processes, they provide a biochemical ‘fingerprint’ of cellular activity,

revealing the metabolic pathways and processes occurring within

an organism and broadening the analytical lens beyond single-

metabolite assays. The development of high-throughput techniques

such as mass spectrometry (MS) and nuclear magnetic resonance

(NMR) spectroscopy has dramatically enhanced the speed and

sensitivity of metabolite analysis. These techniques allow for the

simultaneous detection and quantification of numerous metabolites

in a single biofluid or tissue extract. With increased accessibility

to these technologies and bioinformatics tools and expertise, the

field of exercise physiology has seen a sharp increase in research

Highlights

∙ What is the topic of this review?

The integration ofmetabolomics in exercise physio-

logy.

∙ What advances does it highlight?

Technolgical advances in the study of metabolites,

with particular relevance to exercise.

papers utilising omics approaches (Schranner et al., 2020). However,

in many cases, poor study design, lack of data quality control,

erroneous statistical approaches and incorrect data interpretation

pose significant challenges to advancing the field.

This review was written as a guide for exercise physiologists to

assess whether a metabolomics approach is appropriate for their

research design and to facilitate better study design, data analysis

and interpretation, manuscript preparation and peer review. As such,

the authors intend to provide a practical guide to readers, whilst

comprehensive reviews and meta-analyses on metabolomics can be

found elsewhere (Alseekh et al., 2021; Dunn et al., 2011; Sakaguchi

et al., 2019;Wishart et al., 2022).

2 SHOULD YOU USE METABOLOMICS IN YOUR
RESEARCH DESIGN?

Whether or not metabolomics is adopted as an experimental approach

depends on the research question and an understanding of what

metabolomics can offer the researcher when performed properly.

In later sections of this review, we present examples of insights

gleaned from metabolomics in exercise physiology research.

What these examples demonstrate is that better insights into the

connectedness and interplay between metabolic pathways can be

captured by metabolomics than by sampling individual metabolites.

When designing investigations in exercise physiology and nutrition,

metabolomics can be particularly potent, delivering a snapshot of

metabolic pathway alterations that result from these conditions.

However, the metabolome is highly sensitive and dynamic, so

researchers must be aware that external factors such as age, circadian

rhythm and gut microbiota composition can significantly influence

metabolomic profiles (Holmes et al., 2008). Proper experimental

design, including careful selection of controls and consideration of

confounding variables, is paramount. In essence, while metabolomics

can be a robust tool for dissecting functional implications in a biological

system, its utility hinges on the appropriateness of its application to the

research question at hand. Figure 1 outlines a macroscopic overview

of a typical metabolomics workflow. Key aspects of this workflow will

be discussed in detail in subsequent sections of this review.
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Owens AND Bennett 3

F IGURE 1 Overview of a typical metabolomics study. Following the generation of a hypothesis and subsequent research design, samples
require collection (step 1) before undergoing specific sample preparation, includingmetabolite extraction, depending on the analytical platform of
choice and themetabolites that the researcher intends to characterise (step 2). A specialist facility or technician usually performs chemical
analysis by 1H-NMR ormass spectrometry (step 3). Once complete, spectral processing, data normalisation and statistical analysis are conducted
ideally with the support of a bioinformatician, including pathway analysis to assist with biological interpretation (step 4).

3 SCIENTIFIC METHODOLOGY

3.1 The research question and the importance of
careful study design

The use of metabolomics should be carefully considered depending

on the research question. In general, omics approaches are excellent

for broad, exploratory research where systems-based insights are

required. However, if the research question is very specific, targeting

a particular metabolite or pathway, then a targeted approach may be

moreefficient and cost-effective.Omics studies generate vast amounts

of data, requiring complex tools for analysis and interpretation, as

discussed later in this guide. This complexity can be a barrier if

there is not sufficient expertise or computational resources available.

Additionally, the sheer volume of data can sometimes obscure rather

than clarify the understanding of physiological processes. It is also

important to consider that whilst metabolomics approaches are

useful for understanding the breadth of molecular changes, they

often don’t provide direct insight into the functional significance or

mechanistic pathways. Therefore, researchers should be aware that

complementary experimental approaches are usually needed to under-

stand how these changes impact physiological functions. Later in this

guide, we explore some published evidence where metabolomics has

been utilised and has provided useful insights in different contexts of

exercise physiology research.

If metabolomics is to be utilised, the study design is a critical

consideration when metabolomics is identified as a key outcome

measure at this stage, rather than ex post facto inclusion with surplus

sample. In this way, critical experimental variables that affect sample

quality and experimental bias can be factored into the study design.

In Figure 2a, sources of variation in metabolomics experiments are

outlined. Consequently, themore control over the controllable sources

of variation, the lower the sample size required for the study. As

depicted in Figure 2b, in vitro models offer the greatest degree of

control, and therefore only relatively small sample sizes are typically

required. Whilst exercise physiologists may opt for in vitro studies to

elucidate fundamental mechanisms and, in some cases, rely on animal

models to perform genetic manipulations or unfeasible experimental

methods for human research, ecologically valid human exercise studies

are the gold standard for translational potential (i.e., the capacity to

inform practice). As such, larger sample sizes are required for human

trials compared to simple model organisms and in vitro systems to

account for inherent individual variability.

Considering the sources of variability described in Figure 2, we

provide a checklist (Table 1) that could be implemented in the design

of exercise physiology experiments when a metabolomics approach
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4 Owens AND Bennett

F IGURE 2 Considerations for designingmetabolomics experiments. (a) Common sources of variation inmetabolomics data that can and
cannot be controlled by the researcher. (b) The trade-off between the complexity of the system and the translational potential of that system.

is used. Consistency is critical in metabolomics research. Every

stage of the experimental workflow, from sample collection to data

analysis, must be well planned and executed to minimise variation and

maximise the reliability of findings. This checklistmay help researchers

limit unwanted variation sources and maximise the experimental

condition’s metabolic phenotype. Of particular importance to exercise

physiologists is the issue of sample timing. In a systematic review of

exercise metabolomics studies, Schranner et al. (2020) demonstrates

the number of metabolites that are changed with the time point

of sampling. The authors categorised time points as early changes,

within 0.5 h after exercise; intermediate changes, between >0.5

and 3 h after exercise; and late changes, between >3 and 24 h

after exercise. In early and intermediate sampling instances, 38

metabolites, predominantly amino and fatty acids, showed changes not

observed in late sampling experiments. The changes exclusive to early

sampling were primarily characterised by 19 amino acids, followed

by 11 short- and medium-chain acylcarnitines, six carbohydrates,

and intermediates of the TCA cycle. Conversely, the intermediate

changes comprised diverse metabolite groups, including amino acids,

nucleotides, vitamins/cofactors and xenobiotics. As such, if performing

untargeted metabolomics then researchers should be aware of the

limitations of collecting a single time point following an intervention.

Conversely, time points should be chosen carefully if a targeted panel

of metabolites is to be profiled.

In all circumstances, the time taken between the collection of

the sample and processing and freezing the sample should be kept

consistent and to minimum. Others have reported on the response of

the human plasma metabolome to common preanalytical variations

including prolonged processing times at different temperatures

(Kamlage et al., 2014). Samples kept at room temperature for 1 h

resulted in a 22% change the metabolome, whilst storage on wet ice

for 2 h and 6 h resulted in a 16% and 17% change, respectively. From

the authors’ experience, sample collection and processing immediately

following the exercise stimulus can be challenging, so optimising the

laboratory set-up is critical to successful sample collection.

4 BIOANALYSIS

4.1 Preparing samples for analysis

Depending on the research question and the metabolites the exercise

physiology researcher is interested in detecting, sample processing

differences must be considered. Unlike the proteome or trans-

criptome, the metabolome is highly chemically diverse, and as such, no

single method can capture all metabolites. In some cases, metabolite

extraction may need to be performed before getting the samples to

the analytical facility, and as such, we detail some key points here.

In other cases, the facility may perform metabolite extraction for the

researcher.

The selection of an extraction method in metabolomics is largely

determined by the sample type, such as biological fluids, tissues, or

cells, and the metabolites of interest. In NMR metabolomics, various

standard methods are employed. These include solvent extraction,

which is suitable for polar metabolites like amino acids, sugars and

organic acids. For a broad spectrum of lipids such as fatty acids,

sterols and glycerolipids, methods like Folch or Bligh and Dyer

extraction are used. Solid-phase extraction is utilised for isolating

specific compounds like phenolic compounds and alkaloids, or lipid

types. Ultrafiltration allows for the separation of small molecules from

larger ones. Additionally, cold extraction techniques are essential for

heat-sensitive metabolites.

From the authors’ experience, using acetonitrile and doubly distilled

water for extracting metabolites from biofluids yields good coverage

of various metabolites. In contrast, MS metabolomics demands more

varied approachesdue to its sensitivity and specificity. Techniques such

as liquid–liquid extraction are applied to separate mixtures into polar

and non-polar fractions, which is crucial for analysing targeted lipids

and water-soluble metabolites. Protein precipitation is particularly

effective for biofluids like plasma or serum, as it helps remove proteins

and isolates target metabolites like small peptides, amino acids and

organic acids.Methanol–water extraction is versatile, extracting awide
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Owens AND Bennett 5

TABLE 1 Exercise metabolomics study design checklist to helpminimise sources of unwanted variation andmaximise the signal: use this
checklist to ensure that samples arrive at your chosenmetabolomics facility in an optimal condition tomaximisemetabolite detection.

Source of bias or variation Solutions

Experimental planning phase

Sample heterogeneity ○ Account for potential differences due to age, gender or developmental stage

○ Consider circadian rhythms – aim to collect samples at a consistent time of day

○ Collect the correct type of sample based on themetabolites youwish to detect

Experimental bias ○ Plan for blinding during sample collection, analysis and data interpretation to reduce bias.Where

possible, use a placebo-controlled, randomised controlled trial

Variability in lifestyle and dietary

factors

○ Record or control dietary intake prior to sample collection

○ Control or account for factors such as exercise (i.e., within 24–48 h prior to participation in the trial),

sleep and stress levels

○ Ensure exclusion criteria are specific enough to exclude those takingmedications and supplements

that would interfere with themetabolome or other study outcomes

Underpowered sample ○ Ensure that each experimental group includesmultiple biological replicates

○ Understand the inherent biological variability to determine appropriate sample size

Sample collection phase

Sample collection errors ○ Use standardisedmethods for sample collection across all participants, regardless of their group

assignment.

○ Minimise the time between sample collection and freezing tominimise changes in metabolites that

have occurred during exercise. If handlingmultiple types of samples and collecting other data, is there

another teammember that could specifically process samples to reduce time between collection and

freezing?

○ Ensure consistency between participants in sample collection time relative to the exercise stimulus.

○ Collect duplicate samples or split samples in case of errors or shocks to a sample.

○ Choose correct collection vessel for samples. For example, if collecting serum or plasma, blood

collection tubes without additives like EDTA should be used.

Sampling bias ○ Ensure blinding during sample collection, analysis, and data interpretation to reduce bias. Practically,

this can be achieved by having a separate team handle the allocation and labelling of samples, using

codes that are not decipherable by the collection team

Environmental variability ○ Control laboratory conditions during experiments tominimise environmental impact. This may not be

feasible for field-based sample collection. In which case see next bullet

○ Note any environmental changes (e.g., temperature, humidity) that might impact samples

Sample processing

Variability in samplematrix ○ If collecting different biofluids, confirm that all samples are of a similar biological matrix (e.g., plasma,

serum, urine) before proceeding to extraction

Pipetting errors ○ If considered during data collection, duplicate samples or split samples should be available

Incorrect extractionmethod for

metabolites of interest

○ Confirm the extractionmethod is correct.Workwith 1H-NMR orMS technician to determine the

best approach for your workflow

Errors during extraction ○ Ensure high-quality, clean solvents and laboratorymaterials are used

○ Ensure solvents are the correct temperature when added to the samples

○ Keep the extraction conditions consistent across all samples within a study

○ Conduct the extraction process as rapidly as possible tominimise degradation

○ Store samples properly before and after extraction to prevent degradation or changes inmetabolite

composition

range of metabolites from polar compounds tomoderately polar lipids.

Acetonitrile–water extraction is another method used for biofluids,

recovering a broad spectrum of metabolites including small organic

acids and lipids.

For further detailed information on metabolite extraction methods,

readers are referred to the comprehensive paper by Barnes et al.

(2016). Additionally, consulting with a technical specialist at an

analytical facility is recommended to determine the most appropriate

extraction procedure for specific research needs.

4.2 What type of measurement tool is right for
your metabolomics research?

The tools to perform metabolomics research have been available

since the 1950s (Williams, 1951) and publications reporting the

simultaneous quantification of urinary metabolites appeared in the

1970s (Horning & Horning, 1971; Pauling et al., 1971). The two

metabolite profiling methods (see Figure 1, Step 3) established during

this era were MS coupled with chromatography methods and proton
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6 Owens AND Bennett

TABLE 2 Critical features of targeted and untargetedmetabolomics approaches.

Targeted Untargeted

∙ Specificity: targeted approaches focus on a limited number of

metabolites or a specific metabolic pathway or class of metabolites

∙ Broad coverage: untargeted approaches aim to capture a wide

range of metabolites, including known and unknown compounds

∙ Quantitative analysis: targetedmetabolomics aims tomeasure

metabolite concentrations accurately

∙ Semi-quantitative analysis: while quantification is possible in

untargetedmetabolomics, the primary focus is on relative

abundance comparisons rather than absolute quantification

∙ Knownmetabolites: the selection of metabolites for analysis is

based on prior knowledge or specific research objectives

∙ Discovery-oriented: untargeted approaches allow for the

identification of novel metabolites and unexpectedmetabolic

pathways

∙ Lower coverage: targeted approaches provide detailed

information about specific metabolites butmay not capture the full

breadth of themetabolome

∙ Hypothesis-generating: untargeted approaches generate large

datasets, and the identification and interpretation of metabolites

require extensive data analysis and bioinformatics

(1H)-NMR spectroscopy. These approaches form the basis of the two

main metabolomics techniques used today, albeit having benefitted

from considerable technological advances.

Both MS and NMR applications can perform targeted and

untargeted metabolomics (see Table 2). Targeted metabolomics

involves the selective analysis of a predefined set of known

metabolites. In this approach, researchers specifically target and

measure a set of metabolites of interest based on prior knowledge

or specific hypotheses. The analytical methods used in targeted

metabolomics are designed to detect and quantify these predefined

metabolites accurately. Targeted metabolomics is commonly used

in hypothesis-driven research, where researchers have a specific

question or metabolic pathway of interest. It allows for precise

quantification of known metabolites and can provide insights into

targetedmetabolic processes.

Untargeted metabolomics involves a comprehensive and unbiased

analysis of all detectable metabolites within a biological sample

without prior knowledge of the specific metabolites present. It aims

to capture a global view of the metabolome and identify as many

metabolites as possible without bias. Untargeted metabolomics is

often used in exploratory research or when the metabolic landscape

of a sample is not well-known. It can reveal metabolic alterations,

identify potential biomarkers, and provide a more comprehensive

understanding of metabolic pathways and networks.

From a practical exercise physiology perspective, targeted

metabolomics may be more appropriate when researchers wish

to study a specific metabolic pathway of interest, validating under-

lying mechanisms by which a specific metabolite is changed during

hypothesis-generating experiments. For example, metabolomics

approaches could be used to interrogate the time-dependent impact

of exercise on metabolism (Bennett & Sato, 2023). Untargeted multi-

tissue metabolomics of mouse tissue harvested at 4-h intervals over

24 h identified 2-hydroxybutyrate (2-HB), a ketone body, as a circadian

oscillating metabolite (Dyar et al., 2018). Immediately following 1 h of

treadmill exercise, 2-HB was substantially increased in mouse skeletal

muscle during the early active phase but not following exercise in

the early rest phase (Sato et al., 2022). To validate the role of 2-HB

as an exerkine (exercise inducible compound with signalling roles

within and between tissues), a targeted metabolomics approach was

implemented using gas chromatography–mass spectrometry (GC-MS)

to quantify the impact of exogenous 2-HB (via injection) on whole

body metabolism and associated metabolites in mice (Sato et al.,

2022). Unlike the previous untargeted approach, biological samples

were analysed with known standards to improve the quantification

accuracy for several metabolites of interest. The authors reported

that circulating 2-HB transiently reduced energy expenditure and

altered substrate utilisation time-dependently, increasing glycaemia

and altering liver and muscle amino acid metabolism. Considered an

early biomarker of type-2 diabetes, 2-HB may be a crucial target for

treatingmetabolic disease.

Conversely, Pugh et al. (2021) employed untargeted 1H-NMR

metabolomics to explore the effects of probiotic supplementation

on the human serum and skeletal muscle metabolome following a

competitive marathon. This study identified a potential protective

effect of the major metabolic perturbations induced by marathon

running by consuming a multi-strain probiotic 4 weeks before the

marathon. As an example of good practice in exercise metabolomics

research design, we did the following to minimise unwanted bias:

randomly allocated participants to placebo or probiotics in a blinded

fashion. Following the supplementation protocol, we prescribed a 24-

h pre-race diet and remote food photography to verify participant

adherence, provided a pre-race meal in line with best practice fuelling

guidance, supplied and monitored carbohydrate intake during the

marathon, and collected samples before breakfast and immediately

after the marathon by situating blood collection and biopsy facilities

directly adjacent to the running track. Centrifuges and freezers were

also nearby to facilitate rapid sample processing and storage.

Since both NMR and MS can be used to perform targeted and

untargeted metabolomics, a common question the authors are asked

is, which of these techniques should be used? Both techniques

have merits and weaknesses; neither approach can obtain complete

metabolome coverage. It is noteworthy, however, that both 1H-

NMR and MS can be used simultaneously to overcome some of

the limitations of each method when used in isolation. In keeping

with the practical nature of this review, in Table 3 we provide a

simple comparative breakdown of 1H-NMR and MS metabolomics
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Owens AND Bennett 7

TABLE 3 Comparative breakdown of 1H-NMR andMSmetabolomics applications.

Criteria Mass spectrometry 1H-NMR

Sample preparation Requires extensive preparation, which can be

time-consuming andmay introduce bias

Minimal preparation needed since NMR provides an

overall profile of all proton-containingmetabolites,

including lipids, in a sample without the need for

prior separation or specific ionisation techniques

Analysis destructiveness Destructive, samples cannot be reused Non-destructive, allowing for further analysis of the

same sample

Sensitivity and specificity High sensitivity and specificity, able to detect low

abundancemetabolites

Less sensitive compared toMS, may not detect very

low abundancemetabolites

Structural elucidation Very effective for determiningmolecular weight and

formula

Provides detailed structural information, including

stereochemistry

Quantitative analysis Absolute quantification usually requires extensive

calibrationwith standards

Easier to perform absolute quantificationwithout the

need for multiple standards

Throughput for

comparative studies

High-throughput capability, suitable for large-scale

studies

High-throughput capability and superior

reproducibility, suitable for large-scale studies

Reproducibility Can be highly reproducible but requires careful

method standardisation

Highly reproducible, given that the sample handling

and preparation are less complex

Coverage Can cover a broad range of metabolites with good

sensitivity, including those that are semi-polar

and non-polar

More uniform coverage for metabolites that are

present in concentrations above its detection limit

but maymiss low abundancemetabolites thatMS

can detect

Data complexity Generates complex data that require extensive

processing and analysis

Generates relatively simpler spectra, which are easier

to interpret but spectral processing can be

challenging whenmetabolites overlap

Sample volume Often requires small volumes, which can be

advantageous when sample availability is limited

Requires more substantial sample volumes, which

might be a limitationwith scarce samples

Cost Can be costly due to consumables, maintenance and

operation requirements

Generally lower operational costs and less

maintenance intensive

applications. For an extensive overview of these two analytical

approaches, readers are referred elsewhere (Wishart et al., 2022).

5 DATA ANALYSIS

5.1 Data pre-processing, quality control and
quality assurance

There are differences in data pre-processing dependent on whether

targeted or untargeted metabolomics is performed. In targeted

metabolomics, during the assay development, lower and upper limits of

quantification are determined for each metabolite (LLOQ and ULOQ,

respectively) using reference samples such as the National Institute

of Standards and Technology (NIST) standards. These quality control

(QC) samples determine the coefficient of variation of measured

samples from the researcher’s experiment. Since batch effects are

common in metabolomics raw data sets, reference samples can also

be used to normalise batch effects. For more details on the targeted

metabolomics QC process, readers are referred to Dyar et al. (2019).

In the case of untargetedmetabolomics, the QC process is different

since it is not feasible to have reference samples for all themetabolites

that might be detected in an experimental sample. In this case, QC

samples derived from pooled aliquots of all biological samples in

a study serve as a consistent analytical reference when processed

alongside actual samples (Figure 3). Their primary role is to gauge

the platform’s analytical stability and variability over time, with

consistent metabolite profiles in these QC samples underpinning

the dependability of the entire analysis. Additional quality control

practices are employed to ensure data accuracy and reliability in

targeted and untargeted metabolomics. Blank samples, consisting of

all components except the actual biological sample, such as solvents

or extraction buffers, detect potential contaminants or artefacts in the

analytical procedure. To sidestep issues related to time or batch effects

during analysis, especially in extended runs, samples are not processed

in their collection sequence; instead, a randomisation approach is

adopted. Additionally, analysing the same sample multiple times (i.e.,

technical replicates) is crucial for determining data reproducibility and

identifying any inconsistencies in the data.

After data acquisition, quality assurance (QA) comes from metrics

like retention time shifts, peak width and signal-to-noise ratios. These

metrics ensure that the acquired data meets the desired quality

standards and track any potential drifts or anomalies in the dataset

before progressing to data analysis. Data QC and QA are critical

examples of where a trained collaborator is highly recommended to

help exercise physiologists ensure their data pass QA checks.
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8 Owens AND Bennett

F IGURE 3 Sub-optimal, grouped sample run order (top) and
optimal sample run order within randomised sample order across each
run and balanced between days, including quality control matrix
(QCM). Comprising a small aliquot of each sample, the QCM is
periodically sampled throughout data acquisition and allows the
calculation of within and between runs variability based on
consistently measured biochemicals across each run. Blank samples
could contain either ultra-pure water or solvents used during
metabolite extraction, allowing the quantification of baseline signals
and identifying potential sources of contamination, respectively.

5.2 Metabolite annotation

Those new tometabolomics maywonder how to get from an analytical

platform to data that can be used for statistical analysis and biological

interpretation. The authors preface the following advice with a strong

recommendation to having a team member or collaborator assist with

data analysis. Undoubtedly, one of the most challenging aspects of

performing a successful metabolomics experiment is data processing.

Although easy-to-use analytical packages are available, it is crucial to

understand what those packages are doing and verify all steps have

been performed correctly.

A significant challenge for both 1H-NMR and MS metabolomics

is metabolite annotation. As described previously in extensive detail

(Viant et al., 2017), interpreting metabolomics data with confidence

and making substantive biological conclusions is contingent upon

the ability to assign specific structures to detected peaks (whether

they be 1H-NMR or MS peaks), effectively labelling them as known

metabolites. Discussing exercise metabolomes depends on the

metabolites determined in study samples. Inmany cases,metabolomics

analyses will report numerous ‘unknown’ peaks, which may reflect the

database used to annotate the spectra or that the peak has not yet

been characterised as a metabolite. Exercise physiology researchers

must be aware of the current limitations in metabolite annotation

and scrutinise the approach they are taking in their research or when

reviewingmanuscripts from other researchers.

First, it is essential to understand that whether the researcher

employsNMRorMS-basedmetabolomics, a successful experimentwill

produce raw data as spectral peaks. While MS and NMR spectroscopy

produce spectral peaks, these peaks are fundamentally different. MS

characterises metabolites based on their mass-to-charge ratio (m/z),

yielding spectra that reflect molecular weight and, when using tandem

MS, infer structural elements from fragmentation patterns. On the

other hand, NMR offers insights based on resonance frequencies of

atomic nuclei within a magnetic field, revealing detailed structural

information about the molecule. In each case, metabolite identities

must be assigned to these peaks. Whilst NMR or MS may be powerful

enough to detectmany ‘features’ in the researchers’ samples, assigning

metabolites depends on a good reference database to which those

features can be given an identity. Several efforts are being made to

improve metabolite annotation; for example, in NMR metabolomics,

the Collaborative Computational Project for NMR (CCPN; https://

ccpn.ac.uk) aims to improve and integrate software tools for scientists

involved in NMR spectroscopy of biological molecules. It is beyond

the scope of this review to discuss the different methods for

assigning metabolite identities to spectral peaks, and readers are

directed elsewhere to learn more (Rosato et al., 2018). Additionally,

standardised quality control procedures and reporting standards have

been recommended by the Metabolomics Standards Initiative (MSI)

(Salek et al., 2013; Sumner et al., 2007) to help researchers ensure

consistent and accurate reporting of all metabolomics data to facilitate

comparisons between studies.

5.3 Statistical analyses

While a specialist team member or collaborator may perform sample

analysis, data pre-processing and QC, with metabolites identified, the

exercise physiologist will often take the reins when it comes to data

analysis and interpretation. Below, we highlight some basics of data

analysis and critical considerations.

Given the high dimensionality and complexity ofmetabolomics data,

multivariate statistical approaches like principal component analysis

(PCA) and partial least squares discriminant analysis (PLS-DA) are

frequently used for data analysis. PCA and PLS-DA are typically

performed before univariate statistical tests for several reasons. Inter-

preting a PCA plot involves understanding what the PCA plot is

showing and then relating this to the context of the data. PCA plots

can come in two main types, score plots and loadings plots, and both

are used together to interpret the PCA results comprehensively (see

Figure 4). Each axis represents a principal component, a combination

of features that captures the maximum variance. The first principal

component (PC1) captures the most variance, and each subsequent

principal component (like PC2) captures less. The spread of the

samples along the PC axes shows how they differ from one another.

If samples are spread out widely along the first principal component,

PC1 explains significant diversity within the data. If there are clusters
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Owens AND Bennett 9

F IGURE 4 Interpreting a PCA plot and loadings plot. In the PCA scores plot (a), look for patterns, clusters and outliers. In this example of
fasted vs fed exercise, PC1 explains 72% of the variance, PC2 explains 29%, and fasted and fed exercise samples cluster separately into two groups.
This means PC1might be capturing changes associated with fasted exercise. In the PCA loadings plot (b), look for variables far from the origin and
those that group together. In the loadings plot example, if specific metabolites are far along PC1, those are likely themetabolites whose levels
explain variance associated with fasted exercise.

of samples, it suggests that they are similar to each other in their

data profile, that is, there are metabolic similarities within that

group. Samples that are far away from all others may be outliers.

This could suggest exceptional cases, experimental errors, or novel

features warranting further investigation. PCA can also observe major

sources of variation in the data, which helps identify outliers or

samples that do not behave as expected or in line with other samples

within the dataset. These outliers might be due to technical errors,

contamination or interesting biological variations. If the samples are

from different experimental groups (like fasted- vs fed-exercise, for

example), seeing the groups separated along a principal component can

suggest that the intervention affects the variables that heavily load

on that component. In other words, it suggests the samples from each

group are metabolically distinct. A PCA loadings plot, on the other

hand, displays how much each variable (metabolite) contributes to

each principal component. Variables further from the origin contribute

more to the variance captured by the principal components. This can

indicate which metabolites are most important in differentiating the

samples. Variables close to each other may be positively correlated,

while those on opposite sides of the origin are negatively correlated.

By comparing the loadings plot with the score plot, you can infer which

variables are important for the separation observed in the score plot.

For example, if a group of samples is separated along PC1 in the score

plot, the variables farthest along PC1 in the loadings plot are those

most relevant to that separation. It is important to remember that

while PCA is a good tool for exploratory data analysis, the results are

descriptive and not inferential, meaning that while PCA can show you

patterns, it cannot prove that those patterns are statistically significant

or causally relevant without further analysis.

Performing a PLS-DA is an additional multivariate approach

for understanding the underlying structure of the dataset. Unlike

PCA, however, PLS-DA is a supervised method and uses class-

label information to identify specific metabolites that contribute to

maximising the separation between predefined classes. These classes

could be treatment groups or any other categorical variable in

metabolomics. The PLS-DA can help identifymetabolites that aremost

important for discriminating between classes. The variable importance

in the projection (VIP) score is commonly used in PLS-DA to rank

metabolites based on their contribution to the model. For example,

when comparing pre- to post-exercise serum samples, lactate is likely

to have a far greater abundance post-exercise than pre. It would be an

essentialmetabolite fordifferentiatingbetween timepoints andhaving

a high-ranking VIP score in the PLS-DAmodel. This type of analysis has

limitations, andoverfitting is often a concernwithPLS-DA, significantly

when the number of metabolites far exceeds the number of samples. It

is crucial to validate the model using cross-validation and permutation

testing to ensure its robustness and reliability. In simple terms, cross-

validation involves systematically splitting the data into training and

testing sets insteadof using the entire dataset to train amodel and then

testing on those same data (which can lead to overfitting). The model’s

performance is then averaged over these different splits to estimate its

accuracy better. Permutation testing involves randomly shuffling the

class labels (categories or groups to which data points belong) of the

samples and then running the PLS-DA model on this permuted data.

This process is repeated many times. If the model gives good results

on the actual data but poor results on the permuted data, it suggests

that the model is genuinely capturing some structure in the data and

not just fitting to random noise.

6 INTERPRETING YOUR METABOLOMICS DATA
IN AN EXERCISE METABOLISM CONTEXT

Our current understanding of exercise metabolism is primarily based

on data collected by whole-body indirect calorimetry and targeted

metabolite analyses, focusing on key substrates such as glucose,
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10 Owens AND Bennett

lactate, glycogen and non-esterified fatty acids, for example. While

this approach allows us to characterise the overall metabolic demands

of exercise, insight into the contribution of specific energy systems

and mitochondrial function is impossible (San-Millan & Brooks, 2018).

Metabolomics represents a powerful approach to comprehensively

study metabolites in an exercise context, including amino acids, lipids,

sugars, organic acids and other small compounds that serve as sub-

strates, intermediates or end products of cellular metabolism (Dunn

et al., 2011). Biological interpretation of metabolomics data relies

on two basic steps, metabolite identification and functional analysis,

which bridges the gap between raw data and meaningful biological

knowledge, enabling researchers to understand cellular metabolism

and its implications for exercise, nutrition and disease.

Functional analysis of a biological system requires a

knowledge/database defining functionally related molecules and

a statistical algorithm to perform enrichment testing (Xia, 2017).

Over-representation analysis (ORA) is one approach to developing

a functional understanding of the metabolome; this approach tests

whether metabolite groups appear more often than expected at

random. ORA requires prior statistical comparison (such as Student’s

t-test or ANOVA), with metabolite significance used as a criterion

for inclusion in ORA. A relatively simple approach, it is criticised for

its arbitrary selection of a threshold for metabolite inclusion within

the analysis, as adjusting any threshold could lead to different inter-

pretations of a dataset. Furthermore, a significance threshold requires

significantly different metabolites between groups or conditions, and

without this, ORA cannot be implemented.

To address the shortcomings of ORA, metabolite set enrichment

analysis (MSEA) (Xia & Wishart, 2010) directly tests the enrichment

of functional metabolite groups using the complete concentration data

without preselection of metabolites. This allows MSEA to conduct

quantitative enrichment analysis based on individual metabolite

concentrations. MSEA groups molecules labelled with biologically

meaningful names, making it a popular approach for omics data

interpretation. However, simply grouping metabolites followed by

enrichment tests ignores the interconnected and interdependent

nature and the inherent overlaps/hierarchies among different groups

of metabolites. For instance, changes in a primary metabolite within a

pathway tend to have a larger impact on its overall functions than those

downstream. Integrating functional analysis with pathway/network

topology analysis will improve the accuracy of ranking the resulting

biological process list.

In a notable study, San-Millan et al. (2020) utilised MS-based

metabolomics to explore the exercise metabolome of world tour

professional cyclists following an exhaustive exercise bout. They

identified 355 metabolites and analysed the data using PCA and

hierarchical clustering. The results highlighted metabolites central to

energy metabolism, such as glycolysis and the TCA cycle, positively

correlated with exercise capacity. Furthermore, the authors describe

several amino acids that, when elevated before exercise, were

associated with improved performance. Additionally, isoleucine,

leucine and asparagine were decreased post-exercise, suggesting

preferential catabolism for ATP production, supported by increased

acyl-carnitines in the same subjects. Whilst several metabolites

were identified as necessary for distinguishing performance levels

in these cyclists, several further steps are required before they

can be considered accurate ‘biomarkers’. Validation studies with

larger cohorts across a diverse range of populations are needed to

confirm the reliability and accuracy of any identified metabolites

as biomarkers; given the homogeneous, highly trained nature of

the study participants, the metabolomic data may not generalise to

lesser-trained individuals. Furthermore, longitudinal studies would

allow researchers to monitor changes in specific metabolite level

differences over time and whether their changes reflect differences in

performance.

The impact of commencing exercise with low muscle glycogen

availability is relatively well understood, with decreased carbohydrate

utilisation with a concomitant increase in lipid oxidation relative

to exercise with moderate or high glycogen availability (Hearris

et al., 2019). Metabolomic analysis of serum collected before

and immediately after exercise with high or low muscle glycogen

availability revealed increased branch chain amino acid (BCAA),

acyl-carnitine, urea and 3-methylhistidine, indicative of increased

protein catabolism during exercise (Margolis et al., 2021). Following

exercise with low muscle glycogen availability, BCAA metabolites

such as 3-methyl-2-oxovalerate, 4-methyl-2-oxopentanoate and

3-hydroxyisobutyrate were increased compared to exercise with

high glycogen availability, suggesting increased reliance on BCAA

carbon skeletons for energy production in the absence of end-

ogenous carbohydrate stores. Data generated from this study reveal

potentially increased protein requirements when endurance exercise

is completed with low carbohydrate availability, taken with molecular

evidence reporting increased skeletal muscle protein oxidation and

breakdown (Howarth et al., 2010; Lemon &Mullin, 1980).

It is imperative to underscore that while high-throughput

metabolomics data can provide many potential insights, these

findings are only as valuable as the researcher’s capability to interpret

them in the context of existing knowledge. A deep understanding of

the literature pertinent to the research question is paramount. The

researchermust possess the skill and knowledge to discern biologically

relevant signals from noise. In other words, understanding the broader

scientific narrative aids in identifying which metabolic changes are

truly meaningful andwhy.

7 FLUXOMICS: MOVING TOWARDS A
COMPLETE PICTURE OF METABOLIC REGULATION
DURING EXERCISE?

The relatively few exercise metabolomics studies have deepened

our understanding of exercise metabolism, uncovering pathways

associated with exercise performance and training adaptation.

An improved understanding of the global biomolecular response

to exercise may also allow tailored exercise and nutrition

recommendations based on underlying metabolic profiles on any

given day. Despite the potential of metabolomics, due to the rapid,
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Owens AND Bennett 11

F IGURE 5 Overview of how stable isotope tracer techniques can be implemented to investigate specific pathwaymetabolic flux (fluxomics).
Stable isotope tracers typically require intravenous administration, are highly substrate-specific and are typically applied for short-term
metabolomics investigations. Deuterium oxide (2H2O) represents a non-specific isotope label and is useful for longer-duration interventions due
to ease of administration (in drinking water) and themore extended labelling period required.When a stable isotope label is present, downstream
metabolites are subsequently labelled with the isotopic label (enrichment), which appears in successive downstreammetabolites as time series
samples are collected (dependent on overall metabolic rate).

dynamic nature of metabolism, resolving the origin and fate of specific

metabolites represents a considerable pitfall of current approaches.

For instance, metabolomics provides only a static metabolic snapshot

of tissue or biofluid, and given the balance of production and utilisation

determines metabolite concentrations, understanding the rate at

which metabolites move through a metabolic pathway (i.e., metabolic

flux) is essential contextual information for the interpretation of

metabolomics data (Winter & Kromer, 2013). The dynamics of

metabolic pathways can be understood by introducing a stable isotope

tracer and subsequentmeasurement of labelled downstream products

with a higher rate of tracer labelling, indicating higher metabolic

flux.

A significant progression from metabolomics, fluxomics relies on

the administration of stable isotope tracers to ‘trace’ the fate of iso-

topically labelled downstream metabolites within specific metabolic

pathways (Figure 5). Stable isotopes represent variants of an element

with the same number of protons and chemical properties, making

them functionally identical but with a variable number of neutrons

and, therefore, mass. For example, carbon has two stable isotopes:
12C with a natural abundance of 98.9% and 13C with one additional

neutron and a natural abundance of 1.1%. When introduced to a

biological system via a labelled isotope tracer, the stable isotope

will be incorporated into newly synthesised metabolites, which can

be identified via MS. Additionally, stable isotopes are primarily sub-

strate specific, with labelled amino acids (1,2-13C2 leucine or ring-
13C6 phenylalanine), fatty acids (U-

13C palmitate) and glucose (U-13C

glucose), each labelling downstream metabolites in their respective

metabolic pathways. While measuring specific pathway flux has been

achieved in complex organisms, few studies have successfully applied

multiple stable isotope tracers to measure fluxomics (Winter &

Kromer, 2013). Furthermore, the application of isotopically labelled

tracers in humans requires intravenous infusion, with multiple blood

samples and tissue biopsies all requiring a clinical setting, restricting

measures to relatively short timeframes (<24 h). Overcoming many

of these limitations, non-substrate-specific tracers, such as deuterium

dioxide (D2O or 2H2O), which can be administered in drinking water,

permit simultaneousmeasurement ofmultiple substrates in free-living

individuals, allowing an unbiased interrogation of energy substrate flux

in response to exercise.

Despite considerable advances in the application of stable isotope

tracers in metabolism research, the introduction of isotope tracing

techniques will greatly increase the complexity of any study from

both a logistical and analytical perspective, likely requiring further

technical expertise. For example, rather than measuring metabolite

abundance as is the case with metabolomics, isotopic enrichment

must be determined to quantify metabolic flux i.e. mass isotopomer

distribution (incorporation of the isotope into a molecule) over a given

time frame, by extension requiring multiple sampling time points,
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12 Owens AND Bennett

greater analytical resolution and mathematical modelling. For further

reading on the use of isotope tracers inmetabolism research, we direct

readers to two reviews (Jang et al., 2018; Kim et al., 2016).

8 FUTURE DIRECTIONS FOR EXERCISE
METABOLOMICS

Appreciating that metabolites can trigger broad downstream effects

that stimulate exercise adaptation is critical. For example, the

connection between muscle signalling responses and substrate

utilisation during and after a single session of steady-state cycling

in well-trained individuals who commenced exercise with either

low or high muscle glycogen levels has been known for some time

(Wojtaszewski et al., 2003). This study and subsequent studies on the

effect of low glycogen availability, signalling and adaptive responses

have primarily relied upon targeted, single-analyte approaches.

However, omics technologies can expand our understanding in such

domains to capture a broader, interconnected picture of the response

to nutrition and exercise metabolism. In this sense, an integrated

approach that captures high throughput changes in metabolome,

epigenome, transcriptome and proteome can help to connect the dots

between signal and response. Indeed, the emergence of ‘multi-omic

approaches’ represents a shift in biological research towards studying

biological systems holistically by integrating data from multiple omics

disciplines. For example, advances have already been made in exercise

immunometabolism,wherebywhole-system,metabolomics, lipidomics

and proteomics have given insight into the efficacy of post-exercise

dietary interventions to support immunity (Nieman et al., 2019).

Collective efforts to understand the multi-omics response to exercise

have also recently emerged. The Molecular Transducers of Physical

Activity Consortium (MoTrPAC) is a large-scale initiative funded by

the National Institutes of Health (NIH) to study the molecular changes

that occur during and after exercise. Several pre-print articles have

recently emerged that characterise various responses to exercise, such

as the mitochondrial multi-omic response to exercise training across

tissues (Amar et al., 2022, 2023). The plasticity of the metabolome to

chronic training and dietary intervention remains to be explored in

detail. Long-term training appears to affect themetabolomeof athletes

across different sports (Schranner et al., 2021), but the adaptability

during training and detraining remains unknown. Moreover, how this

regulates and is regulated by the transcriptome and proteome remains

elusive.

From a technological perspective, exercise metabolomics will also

benefit from improved validatedmetabolite databases, which increase

the number of metabolites that can be confidently identified with 1H-

NMR and MS approaches. In the next decade, we will likely see an

increase from hundreds to thousands of such validated metabolites,

giving more profound insight into the metabolic pathways central

to integrative exercise metabolism. Furthermore, researchers are

encouraged to deposit metabolomics data (and other omics data),

including metabolite structures, spectra, concentrations and raw data

from metabolomics experiments, in publicly accessible repositories

such as the European Bioinformatics Institute’s platformMetabolights

(http://www.ebi.ac.uk/metabolights) (Haug et al., 2013). The curation

of metabolomics data allows researchers to more readily compare,

contrast, and make inferences from their results based on the findings

of others (Goodacre et al., 2004). Without considerable engagement

of the metabolomics community, the advancement of the field would

undoubtedly have been delayed.

9 CONCLUSION

Exercise metabolomics has contributed to an improved understanding

of exercise metabolism and regulation of exercise adaptation, but the

picture likely remains incomplete. Our current understanding of how

different pathways are integrated, particularly at a multicellular level,

and how they are coordinated is poorly understood (Lavin et al., 2022)

and presents new opportunities for exercise physiologists to exploit

approaches like metabolomics to answer these pertinent questions. It

is crucial that researchers pay attention to experimental design and

do not perform metabolomics as an afterthought. Similarly, planning

statistical approaches during experimental design is also critical.

Ultimately, exercise physiology researchers must appreciate that even

a well-performed exercise metabolomics experiment requires a deep

understanding of the broader scientific narrative to discernmeaningful

metabolic changes.
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