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Abstract 

Athletic performance is a heritable trait influenced by both environmental and genetic factors. Sports genomics is a relatively new 
scientific discipline focusing on the organization and functioning of the genome of elite athletes. With genotyping becoming widely 
available, a large number of genetic case-control studies evaluating candidate gene variants have been published with largely 
unconfirmed associations with elite athlete status. This review summarizes the evidence and mechanistic insights on the 
associations between DNA polymorphisms and athletic performance. A literature search (period: 1997-2012; number of articles: 133) 
revealed that at least 79 genetic markers are linked to elite athlete status (59 endurance-related genetic markers and 20 
power/strength-related genetic markers). Importantly, we have identified 20 genetic markers (25.3%) that have shown positive 
associations with athlete status in at least two studies (14 endurance-related genetic markers: ACE I, ACTN3 577X, ADRB2 16Arg, 
AMPD1 Gln12, BDKRB2 –9, COL5A1 rs12722 T, GABPB1 rs7181866 G and rs12594956 A, HFE 63Asp, KCNJ11 Glu23, PPARA 
rs4253778 G, PPARD rs2016520 C, PPARGC1A Gly482, UCP3 rs1800849 T; and 6 power/strength-related genetic markers: ACE 
D, ACTN3 Arg577, AMPD1 Gln12, HIF1A 582Ser, NOS3 rs2070744 T, PPARA rs4253778 C). However, sports genomics is still in 
the discovery phase and abundant replication studies are needed before these largely pioneering findings can be extended to 
practice in sport. Future research including genome-wide association studies, whole-genome sequencing, epigenetic, transcriptomic 
and proteomic profiling will allow a better understanding of genetic make-up and molecular physiology of elite athletes. 
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Introduction 

A wide variety of factors determines athletic success: genetics, 
epigenetics, training, nutrition, motivation, advances in 
equipment and other environmental factors. Genetics has a 
great influence over components of the athletic performance 
such as strength, power, endurance, muscle fibre size and 
composition, flexibility, neuromuscular coordination, 
temperament and other phenotypes. Accordingly, athlete status 
is a heritable trait: Around 66% of the variance in athlete status 
is explained by additive genetic factors. The remaining variance 
is due to non-shared environmental factors (De Moor et al., 
2007). Despite a relatively high heritability of athlete status, the 
search for genetic variants contributing to predisposition to 
success in certain types of sport has been a challenging task. 
Sports genomics is a relatively new scientific discipline focusing 
on the organization and functioning of the genome of elite 
athletes. The era of sports genomics began in the early 2000s 
after deciphering the human DNA structure and discovery of first 
genetic markers associated with athletic performance (e.g. ACE, 
ACTN3 and AMPD1 gene variations). With genotyping 

becoming widely available, a large number of genetic case-
control studies evaluating candidate gene variants have been 
published with largely unconfirmed associations with elite 
athlete status. Case-control studies remain the most common 
study design in sports genomics and generally involve 
determining whether one allele of a DNA sequence (gene or 

non-coding region of DNA) is more common in a group of elite 
athletes than it is in the general population, thus implying that 
the allele boosts performance. Cross-sectional association 
studies are another type of study design in sports genomics and 
examine whether individuals with one genotype (or allele) of a 
particular DNA sequence show different measures of a trait (e.g. 
VO2max, strength measures etc.) compared to the rest of the 
sample. A large body of evidence suggests that genetic markers 
may explain, in part, an inter-individual variability of physical 
performance characteristics in response to endurance or 
strength training (reviewed in Ahmetov and Rogozkin, 2009; 
Bray et al., 2009). DNA variations (with the frequency in the 
population of 1% or greater) and rare DNA mutations generally 
can be classified as genetic markers associated with endurance 
or power/strength athlete status, or both with endurance and 
strength/power athlete status. The significance of a particular 
sport-related genetic marker is based on several criteria, such 
as the type of the polymorphism (missense, nonsense, intronic 
etc.), its frequency in a given population, number of case-control 
and cross-sectional studies with positive or negative 
(controversial) results, total number of studied athletes, etc. 
Figure 1 presents the cumulative number of published articles 
containing genotyping data of athletes from 1997 to 2012. By 
the end of June 2012 the total number of articles in relation to 
sports genomics was 133. As the figure shows, most of these 
articles (73.7%) were published in the last six years (2007-2012), 
indicating a growing interest in the field of sports genomics. The  
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search for relevant publications was primarily based on the 
journals indexed in PubMed and Google Scholar using a 
combination of key words (e.g., athletes, sport, exercise, 
physical performance, endurance, power, strength, training, 
gene, genetics, genotype, polymorphism, mutation). However, 
not all articles were included in the current review due to 
language limitations, i.e., there were many more papers 
published in Chinese, German, Lithuanian, Russian, Spanish, 
Ukrainian and other languages. It should be noted that to date, 
the research in relation to sports genomics was done by 
laboratories located in at least 27 countries (Australia, Belarus, 
Brazil, China, Finland, Germany, Greece, India, Israel, Italy, 

Japan, Lithuania, Netherlands, Poland, Portugal, Republic of 
Korea, Russia, Singapore, Slovenia, South Africa, Spain, 
Sweden, Taiwan, Turkey, UK, Ukraine and USA). Furthermore, 
articles describing performance-associated polymorphisms 
investigated in the non-athletic cohorts were excluded from the 
current review. For example, variation in the candidate gene 
insulin-like growth factor-I (IGF1) has been associated with the 
quadriceps-muscle strength gains in a 10-wk unilateral strength-
training study (Kostek et al., 2005). Since this gene variant was 
analyzed in 67 older inactive Caucasian men and women, IGF1 
was not included in our review. 

 

 

Figure 1. Growth in the number of published articles in relation to sports genomics each year from 1997 to 2012 (June)

A literature search revealed that at least 79 genetic markers 
(located within 40 autosomal genes, mitochondrial DNA and Y-
chromosome) are linked to elite athlete status (listed below). 
These include 59 endurance-related genetic markers and 20 
power/strength-related genetic markers (Tables 1-2). 
Importantly, we have identified 20 genetic markers (25.3%) that 
have shown positive associations with athlete status in at least 
two studies (14 endurance-related genetic markers: ACE I, 
ACTN3 577X, ADRB2 16Arg, AMPD1 Gln12, BDKRB2 –9, 
COL5A1 rs12722 T, GABPB1 rs7181866 G and rs12594956 A, 
HFE 63Asp, KCNJ11 Glu23, PPARA rs4253778 G, PPARD 
rs2016520 C, PPARGC1A Gly482, UCP3 rs1800849 T; and 6 
power/strength-related genetic markers: ACE D, ACTN3 Arg577, 
AMPD1 Gln12, HIF1A 582Ser, NOS3 rs2070744 T, PPARA 

rs4253778 C). Interestingly, almost all chromosomes (except for 
13, 16, 18, 20 and X chromosomes) include sport-related 
genetic markers. 

Gene variants for endurance athlete status  

ACE I allele 

Circulating angiotensin I converting enzyme (ACE) exerts a 
tonic regulatory function in circulatory homeostasis, through the 
synthesis of vasoconstrictor angiotensin II, which also drives 

aldosterone synthesis, and the degradation of vasodilator kinins. 
A polymorphism in intron 16 of the human ACE gene (location: 

17q23.3) has been identified in which the presence (insertion, I 
allele) rather than the absence (deletion, D allele) of a 287 bp 
Alu-sequence insertion fragment is associated with lower serum 
and tissue ACE activity (reviewed in Puthucheary et al., 2011). 
An excess of the I allele has been associated with some 
aspects of endurance performance, being identified in 34 elite 
British ≥5,000 m distance runners (Myerson et al., 1999) and 25 
elite mountaineers (Montgomery et al., 1998). In addition, a 
greater frequency of the I allele was present in elite Australian 
(n = 64) (Gayagay et al., 1998), Croatian (n = 40) (Jelakovic et 
al., 2000) and Russian (n = 107) (Ahmetov et al., 2008e) rowers 
as well as Spanish elite athletes (25 cyclists, 20 long-distance 
runners, 15 handball players) (Alvarez et al., 2000). ACE I allele 
was also over-represented among 100 fastest Ironman 
triathletes (Collins et al., 2004), 27 elite Spanish runners (Lucia 
et al., 2005b), successful marathon runners (finishing in places 
between 1

st
 to 150

th
) (Hruskovicová et al., 2006), 35 outstanding 

Russian middle-distance athletes (24 swimmers, 7 track-and-
field endurance athletes, 4 cross-country skiers) (Nazarov et al., 
2001), 33 Italian Olympic endurance athletes (10 road cyclists, 7 
track-and-field runners, 16 cross-country skiers) (Scanavini et 
al., 2002), 80 Turkish endurance and power/endurance athletes 
(17 middle-distance runners, 10 basketball, 18 handball, 35 
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football players) (Turgut et al., 2004), 16 long-distance (25 km) 
swimmers from different nationalities (Tsianos et al., 2004), 55 
elite Polish rowers (Cieszczyk et al., 2009), 108 Japanese 
university long distance runners (Min et al., 2009) and 29 Indian 
Army triathletes (Shenoy et al., 2010). An excess frequency of 
the ACE I allele or II genotype in endurance-oriented athletes 
may be partly explained by a genotype-dependent improvement 
in skeletal muscle mechanical efficiency with training (Williams 
et al., 2000), association of the ACE II genotype with an 
increased percentage of slow-twitch type I fibres in human 
skeletal muscle (Zhang et al., 2003), higher VO2max in athletes 
and non-athletes (Goh et al., 2009; Hagberg et al., 1998), higher 
aerobic work efficiency (Zhang et al., 2008), improved fatigue 
resistance (Montgomery et al., 1998), higher peripheral tissue 
oxygenation during exercise (Kanazawa et al., 2002), greater 
aerobic power response to training (Defoor et al., 2006), 
improved hypoxic ventilatory response (Patel et al., 2003), 
adherence to exercise training (Thompson et al., 2006) and 
greater cardiac output and maximal power output in athletes 
(Ahmetov et al., 2008e, Hagberg et al., 2002). It should be 
noted that several studies have demonstrated no association 
between the ACE I/D polymorphism and endurance athlete 
status (Ash et al., 2011; Tobina et al., 2010; Ahmetov et al., 
2009b; Papadimitriou et al., 2009; Scott et al., 2005; Rankinen 
et al., 2000b; Taylor et al., 1999) or prevalence of the D allele 
(or low proportion of the II genotype) in endurance-oriented 
athletes in comparison with controls (Ginevičienė et al., 2010; 
Muniesa et al., 2010; Amir et al., 2007; Lucia et al., 2005b). 
Furthermore, Tobina et al. (2010) had shown that average 
running speed was significantly higher for those Japanese 
endurance runners with the combined DD/ID genotypes than for 
those with the II genotype.  

ADRA2A 6.7-kb allele 

The α-2A-adrenergic receptor (ADRA2A) plays a central role in 
the regulation of systemic sympathetic activity and hence 
cardiovascular responses such as heart rate and blood pressure. 
The restriction enzyme DraI identifies a restriction fragment 
length polymorphism in the 3’-untranslated region (3’-UTR) 
(6.7/6.3 kb polymorphism) of the ADRA2A gene (location: 
10q24-q26). Wolfarth et al. (2000) have observed a significant 

difference in genotype distributions between elite endurance 
athletes (148 Caucasian male subjects) and sedentary controls 
(149 unrelated sedentary male subjects). A higher frequency of 
the 6.7-kb allele was found in athletes compared with the 
sedentary controls group. It was concluded that genetic 
variation in the ADRA2A gene or a locus in close proximity may 
play a role in being able to sustain the endurance training 
regimen necessary to attain a high level of maximal aerobic 
power (Wolfarth et al., 2000). 

ADRB2 16Arg allele 

The β-2 adrenergic receptor (encoded by ADRB2; location: 

5q31-q32) is a member of the G protein-coupled receptor 
superfamily, expressed in many cell types throughout the body 
and plays a pivotal role in the regulation of the cardiac, 
pulmonary, vascular, endocrine and central nervous system. 
The Gly16Arg single nucleotide polymorphism (SNP) 
(rs1042713 G/A) of the ADRB2 gene and its association with 
several phenotypes has been described. Specifically, the 16Arg 
allele was associated with lower receptor density and resting 
cardiac output (Snyder et al., 2006). Wolfarth et al. (2007b) 
reported that the 16Arg allele was over-represented in 313 white 
male elite endurance athletes compared to 297 white male 
sedentary controls, suggesting a positive association between 
the tested Gly16Arg polymorphism and endurance performance. 
Furthermore, in a study of 316 Mount Olympus marathon 
runners Tsianos et al. (2010) had shown an association 
between the 16Arg allele and the fastest time of athletes. The 

results of these studies were in agreement with the previous 
work in which an association of the 16Arg allele with higher 
peak VO2 in heart failure patients was reported (Wagoner et al., 
2000).  

ADRB3 64Arg allele 

The β-3 adrenoreceptor (ADRB3) belongs to the family of 
adrenergic receptors, which are involved in adenylate cyclase 
activation through the action of G proteins. Molecular studies 
had shown that ADRB3 is mainly expressed in adipocytes, 
though in vitro studies with ADRB3 agonists have demonstrated 
the presence of its activity in skeletal muscle and myocardium 
(Chamberlain et al., 1999; Lipworth, 1996). The β-3 
adrenoreceptor was also found in the human heart (Skeberdis 
et al., 2008; Gauthier et al., 1996). ADRB3 is involved in the 
regulation of lipolysis and thermogenesis in adipose tissue 
(Lowell and Bachman, 2003) and cardiac contractility 
(Skeberdis et al., 2008; Gauthier et al., 1996). The human 
ADRB3 gene has been localized to chromosome 8 (8p12-
8p11.1). The Adrb3 gene knockout mice showed marked 

reductions in lipolysis stimulated by β-3 agonists (Susulic et al., 
1995). Trp64Arg (rs4994 T/C) variant in the ADRB3 gene was 
reported to influence the receptor's affinity to norepinephrine 
and its interaction with G protein in adipocytes (Walston et al., 
1995). Studies on isolated adipocytes showed that the ADRB3 

gene Trp64Arg polymorphism results in a lower lipolytic activity 
(Umekawa et al., 1999). This missense polymorphism was 
shown to be associated with hypertension (Ringel et al., 2000), 
early onset of type 2 diabetes mellitus, lower metabolic rate 
(Walson et al., 1995), obesity and BMI (Chou et al., 2012; Malik 
et al., 2011; Kurokawa et al., 2008; Kim et al., 2006; Hao et al., 
2004; Clement et al., 1995), pathogenesis of gout (Wang et al., 
2011) and hyperuricemia (Morcillo et al., 2010). In a study of 36 
Japanese middle-aged males, the ADRB3 gene Trp64Arg 
polymorphism was shown to influence metabolic syndrome 
improvement rate by exercise-based intervention program 
(Tahara et al., 2011). Recently, Kim et al. (2010b) have 
demonstrated a significant association between the ADRB3 
gene Trp64Arg polymorphism and some cardiovascular 
parameters (serum HDL-cholesterol and glucose levels) in a 
study of 81 Korean athletes from different sporting disciplines. 
However, there were no significant differences in allelic 
frequency between athletes and controls (n = 33). Santiago et al. 
(2011) compared genotype frequencies of the ADRB3 Trp64Arg 
variation in 153 elite Caucasian Spanish athletes (100 world-
class endurance athletes; runners and cyclists, and 53 power 
athletes; sprinters, jumpers and throwers) and 100 non-athletic 
controls. Endurance athletes had a higher 64Arg allele 
frequency comparing with controls (14.0% vs. 4.0%, P = 0.001). 

There was higher percentage of 64Arg allele carriers (carriers of 
Trp/Arg and Arg/Arg genotypes) among endurance athletes in 
comparison with non-athletic controls (27.0% vs. 8.0%, P < 
0.001). It was concluded that heterozygosity for the ADRB3 

Trp64Arg polymorphism seems to be associated with elite 
endurance performance in Spanish athletes. 

AQP1 rs1049305 C allele 

Aquaporins are a family of small integral membrane proteins 
related to the major intrinsic protein (MIP or AQP0). The 
Aquaporin-1 (AQP1) is the best known and most studied of this 
family. AQP1 gene (location: 7p14) encodes for a protein 

responsible for transporting large amounts of water across cell 
membranes (Verkman, 2005). AQP1 has been identified in 
various tissues, including red blood cells, endothelial cells, as 
well as smooth, skeletal and cardiac muscle (Butler et al., 2006; 
Au et al., 2004). During osmotic stress, such as occurs during 
intense exercise, AQP1 facilitates the transfer of water from the 
blood into the muscle (Frigeri et al., 2004), provides osmotic 
protection, and promotes water reabsorption. Recently, 
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Martínez et al. (2009a) have examined the association between 
AQP1 gene rs1049305 C/G polymorphism (in the 3’ 
untranslated region) and athletic performance in 784 Hispanic 
international level marathon runners. Athletes were divided into 
two groups: 1) Cases (n = 396), finished in the top 3

rd
 tertile for 

their age and gender; 2) controls (n = 388), finished in the 
lowest 3

rd
 tertile. The frequency of the rare C allele was 

significantly higher in cases than in controls (36.0% vs. 30.0%; 
P = 0.005). In a following study of 91 international 10 km 
runners, the same group of authors have demonstrated that 
carriers of the AQP1 rs1049305 C allele had a significantly 
greater body fluid loss (3.7 ± 0.9 kg) than non-carriers (1.5±1.1 
kg) (P < 0.05) (Rivera et al., 2011).  

AMPD1 Gln12 allele 

Adenosine monophosphate deaminase 1 (AMPD1) catalyzes 
the deamination of adenosine monophosphate to inosine 
monophosphate in skeletal muscle. Deficiency of the AMPD1 is 
apparently a common cause of exercise-induced myopathy and 
probably the most common cause of metabolic myopathy in the 
human. In the overwhelming majority of cases, AMPD1 
deficiency is due to a 34C/T transition in exon 2 (rs1760272934 
C/T) of the AMPD1 gene (location: 1p13), which creates a 
nonsense codon (Gln12X) that prematurely terminates 
translation. AMPD1 deficiency individuals exhibit a low AMP 
deaminase activity and reduced submaximal aerobic capacity 
(VO2 at the ventilatory threshold) (Rubio et al., 2008). In a study 
of Rico-Sanz et al. (2003), subjects with the AMPD1 XX 
genotype had diminished exercise capacity and 
cardiorespiratory responses to exercise in the sedentary state. 
Furthermore, the training response of ventilatory phenotypes 
during maximal exercise was more limited in XX (Rico-Sanz et 
al., 2003). In a study of 935 coronary artery disease patients the 
carriers of the X allele had a significantly lower relative increase 
in peakVO2 after three months of aerobic training (Thomaes et 
al., 2011). Finally, two studies reported low frequency of the 
mutant X allele in a group of top-level Spanish male endurance 
athletes (cyclists and runners, n = 104) (Rubio et al., 2005) and 
127 Polish rowers (Cieszczyk et al., 2011c) compared with 

controls.  

BDKRB2 –9 and rs1799722 T alleles 

Bradykinin is a potent endothelium-dependent vasodilator and 
acts via the bradykinin B2 receptor (encoded by BDKRB2; 
location: 14q32.1-q32.2). The absence (–9), rather than the 
presence (+9), of a 9 bp repeat sequence in exon 1 has 
previously been shown to be associated with increased gene 
transcription and higher BDKRB2 mRNA expression. Williams et 
al. (2004) had shown that the –9 allele of the BDKRB2 gene 
was associated with higher efficiency of muscular contraction 
(i.e. the energy used per unit of power output during exercise or 
delta efficiency). In 81 elite British runners, analysis revealed a 
linear trend of increasing –9 allele frequency with distance 
running. The proportion of –9 alleles increased from 0.382 to 
0.412 to 0.569 for those athletes running ≤200 m, 400–3,000 m, 
and ≥5,000 m, respectively (Williams et al., 2004). The –9/–9 
genotype of the BDKRB2 gene was also over-represented in 
male Caucasian triathletes (n = 443) of the 2000 and 2001 
South African Ironman Triathlons compared to male controls (n 
= 203) (Saunders et al., 2006). Additionally, when divided into 
tertiles according to their finishing times, the –9/–9 genotype 
was only over-represented in the fastest tertile. However, Eynon 
et al. (2011a) found no significant differences in the frequencies 
of the –9 allele and –9/–9 genotype between 74 Israeli 
endurance athletes and 240 controls. Furthermore, Tsianos et al. 
(2010) have reported an excess of the TT genotype of the 
BDKRB2 gene rs1799722 C/T polymorphism in 316 male Mount 

Olympus marathon runners. 

Calcineurin/NFAT-related genetic markers (NFATC4 Gly160, 
PPP3CA rs3804358 C, PPP3CB rs3763679 C and PPP3R1 5I 
alleles) 

Calcineurin (also known as protein phosphatase 3) is a Ca
2+

- 
and calmodulin-dependent serine/threonine protein 
phosphatase. It is found in all tissues in mammals and even at 
relatively low levels participates in a variety of cellular processes, 
Ca

2+
-dependent signal transduction pathways and contributes to 

genetic programs in muscle (Rusnak and Mertz, 2000; 
Aramburu et al., 2001). Activated calcineurin dephosphorylates 
the NFATs, leading to their nuclear translocation and 
subsequent transcriptional activation of NFAT target genes 
(Hogan et al., 2003; Klee et al., 1998). Calcineurin-NFAT 
signaling pathway has been proposed to regulate skeletal 
muscle differentiation and hypertrophy, and fibre type 
composition, which leads to different cardiac and skeletal 
muscle phenotypes (Sakuma and Yamaguchi, 2010). 
Calcineurin is a heterodimer of a calmodulin-binding catalytic 
subunit, calcineurin A, tightly bound in the presence of elevated, 
but physiological concentrations of Ca

2+
 to a regulatory, Ca

2+
-

binding regulatory subunit, calcineurin B (Klee et al., 1998). In 
humans three isoforms of calcineurin A (Aα, Aβ, Aγ) and two 
isoforms of calcineurin B (B1, B2) are expressed from separate 
genes – PPP3CA (location: 4q24), PPP3CB (location: 10q22.2), 
PPP3CC (location: 8p21.3), PPP3R1 (location: 2p15) and 
PPP3R2 (location: 9q31.1), respectively (Hogan et al., 2005). 
He et al. (2010a,b) conducted two association studies of 55 
polymorphisms in 5 genes encoding the calcineurin protein 
subunits in a group of 102 healthy young Chinese men of Han 
origin with VO2max, running economy and echocardiographic 
variables measured before and after 18-week endurance 
training program. Results showed significant association 
between the PPP3CB gene rs3763679 C/T polymorphism with 
resting heart rate and PPP3CA gene rs2850965 G/T and 
rs3804423 A/G polymorphisms with baseline VO2max. As for 
genotype associations with endurance trainability, there were 
significant associations between a) PPP3CC gene rs1879793 
C/T, rs1075534 A/G, rs7430 C/G, rs2461483 C/T, and 
rs10108011 A/G polymorphisms and cardiac output/stroke 
volume after exercise, b) PPP3R2 gene rs1407877 A/G 

polymorphism and ejection fraction at 50 W, c) training 
responsiveness of VO2max and PPP3CA gene rs3804358 C/G 
polymorphism and PPP3R1 gene rs4671887 A/C polymorphism; 
d) training responsiveness of running economy and PPP3R2 

gene rs3739723 A/T polymorphism (He et al., 2010a). In 
another study of the same 55 calcineurin gene polymorphisms 
in 123 elite runners (62 men and 61 women) and 125 healthy 
Han Chinese non-athletes (69 men and 56 women) the 
PPP3CA gene rs3804358 C/G and rs3763679 C/T 
polymorphisms were shown to be associated with elite 
endurance athlete status. Athletes had higher PPP3CA 
rs3804358 C (17 vs. 8%; P = 0.003) and PPP3CB rs3763679 C 
(77.0 vs. 63.0%; P = 0.001) allele frequencies comparing with 
non-athletes (He et al., 2010b). However, these associations 
were not replicated in a study of Caucasian (Spanish) elite male 
endurance athletes (n = 100) and non-athletic male controls (n = 
175) (He et al., 2011). It should be noted that the luciferase 
reporter constructs containing C alleles of the rs3804358 and 
rs3763679 polymorphisms produced significantly greater 
luciferase activity than that of the G or T alleles, respectively 
(He et al., 2011). Tang et al. (2005) had shown that the 5-bp 
deletion (5D) allele of 5I/5D polymorphism within the PPP3R1 
promoter region may cause excessive left ventricular (LV) 
growth beyond the level appropriate for cardiac workload when 
exposed to severe hypertension. In a study of Russian rowers, 
5D allele of the PPP3R1 gene has been reported to be 
associated with greater LV mass index both in males and          
females, and with lower values of maximal power output and 
VO2max (Ahmetov et al., 2008c). In addition, the frequency of the  
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5I allele was found to be significantly higher in 694 Russian 
endurance-oriented athletes in comparison with 1,132 controls 
(Ahmetov et al., 2009b). Nuclear factor of activated T-cell, 
calcineurin-dependent 4 (NFATC4) is a transcription factor that

 

regulates cardiac hypertrophy, muscle fibre composition, 
glucose and lipid homeostasis, mitochondrial biogenesis and 
hippocampal neuronal signaling (Molkentin 2000; Xia et al., 
2000; Moore et al., 2001; Hogan et al., 2003; Benedito et al., 
2005; Yang et al., 2006; Ahmetov et al., 2012b). NFATC4 gene 
(also known as NFAT3; location: 14q11.2) Gly160Ala 
polymorphism (rs2229309 G/C) was shown to be associated 
with indexes of cardiac hypertrophy (Poirier et al., 2003). 
Specifically, a lower mean of left ventricular mass and wall 
thickness were observed in carriers of the NFATC4 160Ala 
allele. In a study of 1,423 Russian athletes, the frequency of the 
Gly160 allele of the NFATC4 gene was significantly higher in 
endurance-oriented athletes (n = 694) than in the control group 
(n = 1,132) (Ahmetov et al., 2009b). Furthermore, NFATC4 Gly 
allele was associated with high values of aerobic performance 
(VO2max and AT in % of VO2max values) both in male and female 
Russian rowers (Popov et al., 2008). 

CKM rs8111989 A allele 

The muscle isoform of creatine kinase (CKM) is a key enzyme 
of energy supply for muscle. In contracting muscles ADP 
formation triggers the creatine kinase mechanism of anaerobic 
ATP resynthesis which provides rephosphorylation between 
creatine phosphate and ADP. CKM is encoded by the CKM 
gene (also known as CKMM; location: 19q13.2–13.3). Ckm 

knockout mice have an enhanced aerobic performance and a 
lower fatigability after long term physical activity (Van Deursen 
et al., 1993). The rs8111989 A/G CKM gene polymorphism in 
the 3’UTR was shown to be associated with physical 
performance. In a study of 160 Caucasian parents and 80 adult 
offspring of the HERITAGE Family Study, the aerobic 
performance was associated with CKM genotype (Rivera et al., 
1997a). VO2max was measured during cycle ergometry tests 
before and after 20 wk of endurance training. CKM genotype in 
parents was significantly associated with VO2max. A significantly 
lower VO2max response to endurance training program was 
detected in parents and offspring with CKM GG genotype. In a 

following study, Rivera et al. (1999) have confirmed these 
results in 277 full sib pairs from 98 Caucasian families. The 
association study of 102 male volunteers from northern China 
revealed significant association between the A/G CKM gene 

polymorphism and running economy response to endurance 
training (Zhou et al., 2006). AG genotype carriers showed larger 
running economy response than those with AA and GG 
genotypes. Furthermore, Heled et al. (2007) have demonstrated 
association between the A/G CKM gene polymorphism and 
susceptibility to exertional rhabdomyolysis. However, VO2max at 
baseline and VO2max response to physical training were not 
different across the CKM genotypes among 927 biologically 

unrelated Caucasian patients with coronary artery disease 
(Defoor et al., 2005). The first case-control study of 124 
Caucasian male elite endurance athletes and 115 unrelated 
Caucasian sedentary male controls found no association of A/G 
CKM gene polymorphism with elite endurance athlete status 

(Rivera et al., 1997b). The study of 380 Hispanic marathon 
runners also revealed that the A/G CKM gene variation was not 
a determinant of endurance performance (Martínez et al., 
2009b). The same lack of association between the CKM 

genotype and athletic status was found in a study of 50 top-level 
professional cyclists, 27 elite runners and 119 sedentary 
controls from Spain (Lucia et al., 2005b). However results of 
case-control study of 384 Russian athletes and 1116 non-
athletic controls showed that CKM A allele and AA genotype 
carriers were more frequent among endurance athletes (n = 176) 
than in controls (P = 0.0003), while GG genotype was more 
prevalent in weightlifters (n = 74) compared to control subjects 

(31.1% vs. 13.4%; P = 0.0001). Furthermore, the CKM AA 
genotype was associated with higher values of VO2max (n = 85, 
P = 0.0097) in a group of rowers (Fedotovskaya et al., 2012b). It 
should be noted that Döring et al. (2011) by studying other CKM 

gene polymorphisms (rs344816, rs10410448, rs432979, 
rs1133190, rs7260359, rs7260463 and rs4884) in 316 male 
Caucasian elite endurance athletes and 304 sedentary controls 
found no association with athlete status.  

Collagen-related genetic markers (COL5A1 rs12722 T and 
COL6A1 rs35796750 T alleles) 

Collagens are a group of extracellular matrix proteins, and are 
the most abundant proteins in mammals, making up about 25% 
to 35% of the whole-body protein content. Collagens, in the form 
of elongated fibrils, are mostly found in connective (fibrous) 
tissues such as tendon, ligament and skin, and are also 
abundant in cornea, cartilage, bone, blood vessels, the gut, and 
intervertebral disc. Collagens have a triple-helical domain as 
their common structural element. The COL5A1 gene (location: 
9q34.2-q34.3) encodes the pro-α1 chain of type V collagen, the 
rate-limiting component of the of type V collagen trimer 
assembly. Heterotypic collagen I/V interactions are believed to 
regulate the fibril diameter and fibril number in vitro (Wenstrup 
et al., 2004). The COL5A1 gene rs12722 C/T polymorphism has 
recently been shown to be associated with passive straight leg 
raise and/or a sit-and-reach measurement (the carriers of the 
rs12722 T allele were more inflexible) (Brown et al., 2011b; 
Collins et al., 2009). Since data suggest that inflexibility 
improves running performance, possibly through enhancing the 
storage and return of energy and minimizing the need for 
muscle-stabilizing activity (Craib et al., 1996), it was 
hypothesized that the rs12722 T allele would associate with 
improved running performance. Indeed, in a study of 313 

Caucasian Ironman triathletes Posthumus et al. (2011) haв 
shown that participants with a TT genotype completed the 
running component (42.2-km) of the race significantly faster 
than individuals with a CC genotype (TT: 294.2 ± 52.1 min, CC: 
307.4 ± 48.6 min; P = 0.019). These results were then replicated 
in a second association study with 72 ultra-marathon runners 
(56-km): Participants with a TT genotype completed the ultra-
marathon significantly faster than participants with TC and CC 
genotypes (TT: 341 ± 41 min, TC+CC: 365 ± 39 min; P = 0.014). 
Furthermore, when the cohort was divided into performance and 
flexibility quadrants, the rs12722 T allele was significantly over-
represented within the fast and inflexible quadrant (Brown et al., 
2011a). The function of type VI collagen remains largely 
unknown; however, it is believed to play a role at the basement 
membrane. Mutations within the gene which encodes the α1 
chain of type VI collagen (COL6A1; location: 21q22.3) have 
been shown to cause muscle diseases such as Bethlem 
myopathy and Ullrich congenital muscular dystrophy. In addition, 
Col6a1 knockout mice were shown to have impaired running 

performance and reduced muscle strength (Bonaldo et al., 
1998). In a study with 661 Caucasian Ironman triathletes, 
O'Connell et al. (2011) had shown that participants with the 
COL6A1 TT genotype of the rs35796750 T/C polymorphism 

were significantly faster during the bike and overall race. When 
participants were grouped into fast, middle and slow bike 
finishing time tertiles, there was a significant linear trend for the 
TT genotype (fast: 35.7%; middle: 29.0%; slow: 23.8%; P = 

0.008) (O'Connell et al., 2011). 

EPAS1 rs1867785 G and rs11689011 T alleles 

Endothelial PAS domain protein 1 (EPAS1) is a hypoxia-
inducible transcription factor and plays an important role in the 
catecholamine and mitochondrial homeostasis, in the control of 
cardiac output and erythropoietin regulation. Recently, 
Henderson et al. (2005) have investigated the frequencies of the 
EPAS1 (also known as HIF2A; hypoxia-inducible factor 2α; 
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location: 2p21-p16) gene variants in elite endurance athletes. 
The frequencies of the G (rs1867785 A/G) and T (rs11689011 
C/T) alleles located within the large intron 1 of the EPAS1 gene 
tended to be higher in short (event duration no less than 50 s), 
middle (from 50 s to 10 min) and long (from ~2 to 10 h) distance 
Australian endurance athletes in comparison with 444 controls. 
They have also identified three EPAS1 haplotypes to be 
significantly associated with elite endurance athletes classified 
according to the power-time model of endurance. The presence 
of one (haplotype G: A-T-G-G) and the absence of another 
(haplotype F: G-C-C-G) at the same locus was observed in 
athletes involved in high intensity maximal exercise of a duration 
between 50 s and 10 min. In addition, athletes involved in a 
sustained steady-state effort (from ~2 to 10 h) demonstrated the 
increased presence of a third (haplotype H: A-T-G-A) 
(Henderson et al., 2005).  

GABPB1 rs12594956 A, rs8031031 T and rs7181866 G 
alleles 

The GA binding protein transcription factor, β subunit 1 
(GABPB1; also known as NRF2; nuclear respiratory factor 2) 
protein is a transcriptional regulator of genes involved in 
activation of cytochrome oxidase expression and nuclear control 
of mitochondrial function. There was evidence that increase in 
NRF2 represented key regulatory component of the stimulation 

of mitochondrial biogenesis by exercise (Baar et al., 2002). 
Mitochondrial transcription factor A (TFAM), cytochrome c and 
heme biosynthesis proteins were shown to be regulated by 
NRF2 (Gleyzer et al., 2005). It was shown that polymorphisms 
of the GABPB1 gene (location: 15q21.2) may explain variance 
in endurance capacity and affect elite endurance performance. 
More specifically, He et al. (2007) examined the association 
between the GABPB1 genotypes and endurance capacity 

(running economy and VO2max) measured prior to and after 
endurance training program in young Chinese men. At baseline 
there was an association between the VO2max and GABPB1 
rs12594956 A/C polymorphism. Training response of VO2 at 
running economy was associated with GABPB1 rs12594956 
A/C, rs8031031 C/T and rs7181866 A/G polymorphisms, and 
individuals carrying the A-T-G haplotype had 57.5 % elevated 
running economy in response to 18-wk endurance training than 
non-carriers.  In two studies involving 155 Israeli athletes and 
240 non-athletes Eynon et al. (2009d; 2010b) have analyzed the 
distribution of three GABPB1 SNPs (rs12594956 A/C, 
rs8031031 C/T and rs7181866 A/G). The frequencies of the 
rs12594956 AA, rs8031031 CT and rs7181866 AG genotypes 
were significantly higher in endurance-oriented athletes (n = 74) 
than in sprinters (n = 81) or controls. In a following study, Eynon 
et al. (2012) had shown that the frequency of the AA genotype 
of the rs12594956 A/C polymorphism was significantly higher in 
89 Spanish world-class endurance athletes compared with 38 
power athletes (P < 0.01) and 110 controls (P < 0.01) (48% vs. 
13% and 21%, respectively). However, the frequencies of the 
rs8031031 and rs7181866 polymorphisms did not differ 
between endurance athletes and controls. Furthermore, 
Maciejewska-Karlowska et al. (2012) confirmed the association 
between the rs7181866 A/G polymorphism and endurance 
athlete status, that is the proportion of the AG genotype was 
significantly higher in 55 Polish male rowers in comparison with 
130 controls (10.9% vs. 2.3%; P = 0.012). 

GNB3 rs5443 T allele 

Heterotrimeric guanine nucleotide-binding proteins (G proteins) 
transduce binding of numerous ligands such as hormones, 
neurotransmitters, chemokines, local mediators, and sensory 
stimuli to G protein-coupled receptors into intracellular 
responses, which underlie physiological responses of tissues  

and organisms (Hamm, 1998). By integrating signals between 
receptors and effector proteins, G proteins play important roles 
in determining the specificity of the cellular responses to signals. 
G proteins consist of alpha, beta, and gamma subunits, which 
are encoded by families of related genes. The GNB3 gene 
(location: 2p13) encodes guanine nucleotide-binding protein 
subunit beta 3.The C825T polymorphism in exon 10 (rs5443 
C/T) of the GNB3 gene was shown to be associated with 

essential hypertension and body fatness (Bray, 2008; Danoviz 
et al., 2006; Zhu et al., 2006; Hegele et al., 1999; Siffert et al., 
1998). The T allele was associated with the occurrence of a 
biologically active GNB3 splice variant with deleted nucleotides 
498−620 of exon 9, which causes loss of 41 amino acids in beta 
subunit of G protein and enhances G protein activation (Siffert 
et al., 1998). In a study of 95 healthy African American 
university students significant association of the rs5443 T allele 
with peak oxygen consumption was observed (Faruque et al., 
2009). The GNB3 C825T polymorphism plays a role in the heart 
rate and body fatness regulation in African Americans and in 
responsiveness of resting blood pressure to endurance training 
in African Amercian women (Rankinen et al., 2002). Recently, 
Eynon et al. (2009c) have determined the frequencies of GNB3 
C825T genotypes among 155 elite Israeli athletes (119 men and 
36 women; 74 long-distance runners and 81 sprinters) and 234 
healthy non-athletic controls. There was a significant difference 
in GNB3 genotype frequencies between endurance athletes and 
sprinters (P = 0.045) as well as between endurance athletes 
and controls (P = 0.046). The proportion of the TT genotype was 
significantly higher in the group of endurance athletes (18.9%) 
than in sprinters (4.9%, P = 0.014) and controls (8.5%, P = 
0.026). These results were even more pronounced when the 
subgroups of 20 top-level endurance athletes (50.0%) and 24 
top-level sprinters (4.0%, P = 0.0009) were compared. However, 

when cohorts of athletes and controls from Israeli and Spanish 
populations were combined (155 Israeli and 153 Spanish 
athletes; 240 Israeli and 100 Spanish controls), no significant 
differences in genotypic and allelic frequencies between 
countries or groups were observed (Ruiz et al., 2011).  

HFE 63Asp allele 

Hereditary hemochromatosis is an autosomal recessive disease 
in which the body’s iron stores are increased (Bothwell and 
MacPhail, 1998.). The hemochromatosis (HFE) gene (location: 
6p21.3) plays a major role in hereditary hemochromatosis. The 
HFE protein functions to regulate iron absorption by regulating 
the interaction of the transferrin receptor with transferrin. Most 
patients with the manifest of hereditary hemochromatosis are 
homozygous for the Cys282Tyr mutation, and a small proportion 
are heterozygous for both the Cys282Tyr and His63Asp 
(rs1799945 C/G or H63D) mutation of the HFE gene. The HFE 
gene His63Asp polymorphism was shown to be associated with 
blood iron indices (subjects with one or more mutations show 
higher blood iron concentrations and transferrin saturation than 
subjects without mutations) (Burt et al., 1998). Furthermore, 
Valenti et al. (2008) have demonstrated that HFE mutations 
reduce the amount of recombinant human erythropoietin and 
iron necessary to support erythropoiesis in hemodialysis. 
Interestingly, Deugnier et al. (2002) had shown an increased 
frequency of the 63Asp allele in 83 elite French road male 
cyclists when compared to controls (P = 0.04). Consistently, in a 
second study of 65 elite endurance-oriented Spanish athletes 
(50 professional road cyclists and 15 Olympic class endurance 
runners) Chicharro et al. (2004) had found that the frequency of 
the His/Asp genotype was significantly higher in athletes in 
comparison with 134 controls (41.5% vs. 24.6%; P = 0.01), 
suggesting that 63Asp allele may confer some advantage in 
endurance performance. 
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HIF1A Pro582 allele 

Hypoxia-inducible factor-1α (HIF-1α; encoded by HIF1A; 
location: 14q23.2) is a transcription factor regulating several 
genes in response to hypoxic stimuli. HIF-1α mRNA and protein 
levels were found to be constitutively higher in the more 
glycolytic muscles compared with the more oxidative muscles 
(Pisani and Dechesne, 2005). A lower proportion of type IIA 
fibres in the soleus muscles of HIF-1α knockout mice was 
detected as well as a metabolic shift away from glycolysis 
toward oxidation, and as a consequence, improved endurance 
capacity (Mason et al., 2004). Lunde et al. (2011) had shown 
that when HIF-1α was overexpressed for 14 days after somatic 
gene transfer in adult rats, a slow-to-fast transformation was 
observed. In humans, a missense polymorphism in the HIF1A 
gene, Pro582Ser, is present in exon 12 (rs11549465 C/T). The 
rare T allele is predicted to result in a proline to serine change in 
the amino acid sequence of the protein. This substitution 
increases HIF-1α protein stability and transcriptional activity 
(Tanimoto et al., 2003), and therefore, may improve glucose 
metabolism and lower the risk of type 2 diabetes (Nagy et al., 
2009). Prior et al. (2003) had shown that HIF1A Pro/Pro 
homozygotes showed preservation of the ability to increase 
VO2max through aerobic exercise training at each age (55, 60 
and 65 yr) level evaluated. Contrary to this, subjects carrying 
the 582Ser allele were able to increase VO2max to a similar 
extent as Pro/Pro homozygotes at 55 yr of age, but showed 
significantly less increase in VO2max to aerobic exercise training 
than Pro/Pro homozygotes at 60 and 65 yr of age. However, 
McPhee et al. (2011) had shown that the HIF1A 582Ser allele 
was associated with greater gains in VO2max following endurance 
training in young women who completed a 6-week laboratory-
based endurance training programme. Döring et al. (2010a) by 
studying 316 Caucasian male elite endurance athletes from the 
Genathlete cohort and 304 Caucasian male sedentary controls 
have found that the Pro582 allele was associated with 
endurance athlete status. Homozygotes of the Pro582 allele 
were significantly more frequent in athletes than in controls 
(84.0% vs. 75.0%, P = 0.006). These results were not supported 
by more recent study of 265 Russian endurance athletes and 
696 controls (P > 0.05) (Ahmetov et al., 2009b). 

IL15RA rs2228059 A 

The IL-15 receptor α (IL-15Rα) is a part of the trimeric plasma 
membrane receptor for the pleiotropic cytokine IL-15 (Giri et al., 
1995) that affects parameters associated with skeletal muscle 
fibre hypertrophy (Quinn et al., 1995). There was evidence that 
IL-15 and IL-15Rα interactions in vivo were more complex than 
simple ligand-receptor binding. It was assumed that IL-15Rα is 
an integral binding partner that can control IL-15 signaling 
capacity (Bergamaschi et al., 2008; Bulanova et al., 2007; 
Budagian et al., 2006; Dubois et al., 2002). Skeletal muscle 
tissue contains an abundance of IL15 and IL15RA mRNAs that 

are responsive to atrophic stimuli (Pistilli et al., 2007), muscle 
contraction (Nielsen et al., 2007), age-associated muscle 
wasting (Marzetti et al., 2010; Pistilli et al., 2007; Quinn et al., 
2004) and muscle wasting during cancer cachexia (Figueras et 
al., 2004). IL15RA has a role in defining the phenotype of fast 
skeletal muscles in vivo. Il15ra knockout mice have an 
increased exercise capacity and altered muscle contractile 
properties (Pistilli et al., 2011). Several SNPs in the IL15RA 

gene (location: 10p15.1) and their association with predictors of 
metabolic syndrome, skeletal muscle and bone phenotypes 
have been described. The presence of the A allele in the exon 3 
of the IL15RA gene (Asn146Thr, rs2228059 A/C) was 

associated with greater whole muscle volume and greater 
baseline cortical bone volumes. The C allele in the 3’UTR of the 
IL15RA gene (rs2296135 C/A) was associated with greater 
improvements in post-training isometric strength, while A allele 
was associated with a greater baseline total bone volume 

(Pistilli et al., 2008). In a study of 76 men and 77 women who 
completed 10-week total body high activity resistance training, 
the carriage of the A allele (rs2296135 C/A) was strongly 
associated with muscle hypertrophy, although those with the 
greatest hypertrophy had lower muscle strength and muscle 
quality increases (Riechman et al., 2004). There was evidence 
that SNP rs2228059 A/C was associated with ossification of the 
posterior longitudinal ligament in Koreans (Kim et al., 2011). 
Recently, Pistilli et al. (2011) have assessed the genotype and 
allelic frequency of rs2228059 polymorphism of the IL15RA in 
308 athletes of European descent participating in 11 different 
sports and in 258 controls. Although there were no significant 
differences in genotype distributions between elite endurance 
athletes and sprint athletes, it was shown that this SNP was 
associated with endurance athlete status in specific sports, such 
as cycling(n = 73) had a greater percentage of the A allele, 
while triathletes (n = 13) and elite rowers (n = 26) had a greater 

percentage of the C allele compared to controls. 

KCNJ11 Glu23 allele 

Potassium channels are present in most mammalian cells, 
where they participate in a wide range of physiologic responses. 
The potassium inwardly-rectifying channel, subfamily J, member 
11 (encoded by KCNJ11; location: 11p15.1) is an integral 
membrane protein and inward-rectifier type potassium channel. 
The encoded protein, which has a greater tendency to allow 
potassium to flow into a cell rather than out of a cell, is 
controlled by G-proteins (Smith et al., 2007). The KCNJ11 gene 
is expressed in several tissues, including cardiac and skeletal 
muscle, where it is involved in the coupling of cell metabolism to 
cell electrical activity. Among several potentially functional 
genetic variants identified in the KCNJ11 gene, the Glu23Lys 
(E23K or rs5219 C/T) variant has been the most extensively 
studied and has been found to be associated with various 
glucose, insulin and cardiovascular phenotypes and type 2 
diabetes risk (Laukkanen et al., 2004). Yi et al. (2008) had 
shown that the Glu/Glu genotype was associated with the 
highest values of VO2max and maximal minute ventilation in 
women in untrained state than in Glu/Lys heterozygotes. 
Furthermore, two independent case-control studies have 
demonstrated that the KCNJ11 Glu23 was significantly over-

represented in endurance-oriented athletes compared to 
controls in mixed Caucasian (184 male endurance-oriented 
athletes with VO2max ≥ 75 ml/kg/min; 61.0% vs. 50.0%, P = 0.01) 
(González et al., 2003) and Spanish (98 marathon runners; 68.0% 
vs. 53.0%, P = 0.04) (Ortiz et al., 2005) cohorts. 

MtDNA markers  

Mitochondria are essential to all higher organisms for sustaining 
life, and are extremely important in energy metabolism, 
providing 36 molecules of ATP per glucose molecule in contrast 
to the two ATP molecules produced by glycolysis. Although 
most DNA is packaged in chromosomes within the nucleus, 
mitochondria also possess their own circular DNA: 
mitochondrial DNA (mtDNA). The 16569-bp human mtDNA 
contains 13 genes for mitochondrial oxidative phosphorylation 
(OXPHOS), as well as two ribosomal RNA and 22 transfer RNA 
genes that are necessary for protein synthesis within 
mitochondria. Unlike nuclear DNA, mtDNA is inherited 
maternally. Patients with mutations in mitochondrial DNA 
(mtDNA) commonly present with exercise intolerance, muscle 
weakness and increased production of lactic acid (Niemi and 
Majamaa, 2005). An association has been found between 
several mtDNA control region polymorphisms and endurance 
capacity in sedentary men (Murakami et al., 2002), and between 
morph variants of MTND5 and the level of maximum oxygen 
uptake (Dionne et al., 2001), suggesting that certain mtDNA 
lineages may contribute to good aerobic performance. At least 9 
studies reported association between the mtDNA polymorphism 
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and athlete status (Deason et al., 2012; Kim et al., 2012; Mikami 
et al., 2012; Mikami et al., 2011; Nogales-Gadea et al., 2011; 
Tamura et al., 2010; Scott et al., 2009; Castro et al., 2007; 
Niemi and Majamaa, 2005). In a study of Finnish elite 
endurance athletes (n = 52), an excess of mtDNA haplogroup H 
and the absence of haplogroup K and subhaplogroup J2 
compared to 1,060 controls and 89 sprinters was reported 
(Niemi and Majamaa, 2005). Haplogroup T was significantly 
less frequent among 95 Spanish elite endurance athletes in 
comparison with 250 healthy male population controls (Castro et 
al., 2007). Recently, Scott et al. (2009) had shown a greater 
proportion of L0 haplogroups and lower proportion of L3* 
haplogroups in 70 Kenyan elite endurance athletes compared to 
controls (Kenyan population, n = 85). In addition, Tamura et al. 
(2010) have demonstrated a significantly higher frequency of 
the m.5178C genotype (71.2%) of the m.5178CA polymorphism 
in male elite Japanese endurance runners (n=66) than in control 
subjects (52.7%). Mikami et al. (2011) analysed mtDNA 
polymorphism in 139 Olympic athletes (79 endurance/middle-
power athletes, 60 sprint/power athletes) and 672 controls. 
Endurance/middle-power athletes showed an excess of 
haplogroup G1 (8.9% vs. 3.7%; P = 0.032), whereas 
sprint/power athletes displayed a greater proportion of 
haplogroup F (15.0% vs. 6.0%; P = 0.007). In a following study 
of 185 elite Japanese athletes and 672 controls, 
endurance/middle-power athletes (n = 100) displayed excess of 
three polymorphisms (m.152T>C, m.514(CA)(n) repeat (n≥5), 
and poly-C stretch at m.568-573 (C≥7)) compared with controls. 
On the other hand, 85 sprint/power athletes showed greater 
frequency of the m.204T>C polymorphism compared with 
controls (Mikami et al., 2012). Moreover, Nogales-Gadea et al. 
(2011) have observed that the V haplogroup was 
overrepresented in 102 Spanish elite endurance athletes 
(professional road cyclists, endurance runners) compared with 
478 controls (15.7% vs. 7.5%). Deason et al. (2012) revealed a 
high level of overrepresentation of the non-African component of 
MtDNA (non-L/U6 paragroup) in elite African-American sprinters 
(n = 119) compared to African-American controls (n = 1148). 
Finally, Kim et al. (2012) have found that 75 Korean 
endurance/middle-power athletes had an excess of haplogroups 
M* and N9, but a dearth of haplogroup B compared with 265 
non-athletic controls. 

NOS3 Glu298, 164-bp, 4B and rs2070744 T alleles 

Endothelial nitric oxide synthase (NOS3) generates nitric oxide 
(NO) in blood vessels and is involved with regulating vascular 
function. In mammals, NO is an important cellular signaling 
molecule involved in many physiological and pathological 
processes. It is a powerful vasodilator with a short half-life of a 
few seconds in the blood. Nitric oxide was also shown to 
regulate activity-induced MHC-based faster-to-slower fibre type 
transformations at the transcriptional level via inhibitory 
glycogen synthase kinase-3β-induced facilitation of calcineurin–
NFATc1 nuclear accumulation in vivo (Martins et al., 2012). The 
NOS3 gene (location: 7q36) contains a number of frequently 
studied polymorphisms, such as Glu298Asp (E298D or G894T 
or rs1799983) in exon 7, microsatellite (CA)n repeats in intron 13, 
27 bp repeats in intron 4 (4B/4A) and promoter -786 T/C 
(rs2070744) variations. Evidence suggests that the NOS3 
298Asp allele was associated with reduced ecNOS activity, 
reduced basal NO production and vascular disease in several 
populations. Saunders et al. (2006) investigated NOS3 
Glu298Asp polymorphism (in combination with the BDKRB2 
polymorphism) in 443 male Caucasian Ironman triathletes and 
203 healthy Caucasian male control subjects. There was a 
tendency of the NOS3 Glu298 allele combined with a BDKRB2 

–9/–9 genotype to be over-represented in the fastest finishing 
triathletes (n = 40, 28.6%) compared with the control subjects (n 
= 28, 17.3%; P = 0.028) (Saunders et al., 2006). In the 
Genathlete study, Wolfarth et al. (2008) have examined the 

contribution of three above-mentioned polymorphisms to 
discriminate 316 elite endurance athletes from 299 sedentary 
controls. The frequency of the most common 164-bp allele of 
the (CA)n repeat was significantly higher in endurance athletes 
in comparison with controls (P = 0.007). In a study of 168 
Russian rowers (Ahmetov et al., 2008e), no difference was 
found between the athletes and controls for the 27 bp repeat 
polymorphism, although none of the highly elite rowers had the 
NOS3 4A/4A genotype which has been reported to be 
unfavourable for high-altitude adaptation (as well as NOS3 
Glu/Glu genotype) (Ahsan et al., 2005). In addition, cross-
sectional study in 27 Russian rowers revealed the association of 
NOS3 4B/4B genotype with higher aerobic capacity (Ahmetov et 

al., 2008e). Recently, Drozdovska et al. (2009) have found 
significant differences in the frequency of the NOS3 rs2070744 
T (-786 T/C polymorphism) allele (75.4% vs. 65.0%; P = 0.029) 
between 71 endurance-oriented Ukrainian athletes (30 
underwater finswimmers, 41 rowers) and 147 controls. However, 
Gómez-Gallego et al. (2009a) did not find any differences in the 
frequency of the NOS3 rs2070744 T allele between 100 
Spanish world-class endurance athletes and 100 controls. 

PPARA rs4253778 G allele 

Peroxisome proliferator-activated receptor α (PPARα) is a 
transcription factor that regulates lipid, glucose, and energy 
homeostasis and controls body weight and vascular 
inflammation. PPARα is expressed at high levels in tissues that 
catabolize fatty acids, notably the liver, skeletal and cardiac 
muscle, and at lower levels in other tissues, including the 
pancreas (Braissant et al., 1996). The level of expression of 
PPARα is higher in type I (slow-twitch) than in type II (fast-twitch) 
muscle fibres (Russel et al., 2003). Endurance training 
increases the use of non-plasma fatty acids and may enhance 
skeletal muscle oxidative capacity by PPARα regulation of gene 
expression (Russel et al., 2003; Horowitz et al., 2000). PPARα 
regulates the expression of genes encoding several key muscle 
enzymes involved in fatty acid oxidation (Aoyama et al., 1998; 
Gulick et al., 1994; Schmitt et al., 2003). Chronic electrical 
stimulation of latissimus dorsi muscle in dogs increased muscle 
PPARα content and medium-chain acyl-CoA dehydrogenase 
gene expression (Cresci et al., 1996). These data suggest that 
PPARα may be an important component of the adaptive 
response to endurance training by transducing physiological 
signals related to exercise training to the expression of nuclear 
genes encoding for skeletal muscle mitochondrial fatty acid 
oxidation enzymes. Catabolism of carbohydrates and fatty acids 
provides the primary means for energy production in working 
skeletal muscle, whereby selection of these substrates depends 
primarily on exercise intensity (Brooks and Mercier, 1994) and 
gene variants involved in regulation of muscle metabolism 
(Lucia et al., 2005a; Ahmetov et al., 2009b, Bray et al., 2009). 
Exercise-induced LV growth in healthy young men was strongly 
associated with the intron 7 G/C (rs4253778) polymorphism of 
the PPARA gene (location: 22q13.31) (Jamshidi et al., 2002). 
Individuals homozygous

 
for the C allele had a 3-fold greater and 

heterozygotes had
 
a 2-fold greater increase in LV mass than G 

allele homozygotes, leading to the hypothesis that the 
hypertrophic effect of the rare intron 7 C allele was due to 
influences on cardiac substrate utilization. Recently, it was 
demonstrated that the frequency of the PPARA rs4253778 GG 
genotype and G allele was higher in 491 Russian endurance-
oriented athletes (P = 0.0001) (Ahmetov et al., 2006), 74 elite 
Israeli endurance athletes (P = 0.051) (Eynon et al., 2010c), 55 
elite Polish rowers (P = 0.009) (Maciejewska et al., 2011) and 
Polish combat athletes (P = 0.01) (Cieszczyk et al., 2011d) 

compared to controls and/or sprinters. In accordance with the 
hypothesis, mean percentage of type I muscle fibre was higher 
in GG homozygotes than in CC genotype subjects (in a study of 
40 physically active healthy men) (Ahmetov et al., 2006). 
Furthermore, GG genotype was shown to be correlated with 
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high values of oxygen pulse (i.e. VO2max//heart rate) both in 
male and female Russian rowers (Ahmetov et al., 2007b). 

PPARD rs2016520 C allele  

Peroxisome proliferator-activated receptor δ (PPARδ) is a 
transcription factor involved in regulation of genes implicated in 
fatty acid oxidation, cholesterol metabolism and thermogenesis. 
Overexpression of a constitutively active PPARδ (VP16-PPARδ) 
in skeletal muscles of transgenic mice preprograms an increase 
in oxidative muscle fibres, enhancing running endurance by 
nearly 100% in untrained adult mice (Wang et al., 2004). The 
SNP located at the 5’-UTR region of the exon 4 (rs2016520, 
referred as +294 T/C or +15 C/T or c.-87T/C) variant in PPARD 
gene (location: 6p21.2) has been intensively studied. Skogsberg 
et al. (2003) had shown that the rare C allele had higher 
transcriptional activity than the common T allele. Furthermore, 
the PPARD C allele has been reported to be significantly 
associated with an increased muscle glucose uptake (Vänttinen 
et al., 2005a), and a lower body mass index both in athletes and 
non-athletes (Ahmetov et al., 2007b, Aberle et al., 2006). In 
addition, a significantly higher frequency of the PPARD C allele 
was observed in long endurance (n = 308, 19%), middle 
endurance (n = 220, 17.5%) and short endurance (n = 81, 
20.4%) Russian athletes compared to controls (n = 610, 12.1%) 
(Ahmetov et al., 2007a). Furthermore, in a study of 155 Israeli 
athletes Eynon et al. (2009b) have found that the frequency of 
the combination PPARD CC + PPARGC1A Gly/Gly was 
significantly higher in elite endurance-oriented athletes 
compared with non-elite athletes. However, contrary to the 
hypothesis that PPARD C allele may be advantageous for the 
endurance performance, Hautala et al. (2007) in considering 
only black (n = 264) subjects, have demonstrated in PPARD CC 
homozygotes a smaller endurance training-induced increase in 
maximal oxygen consumption and maximal power output 
compared to T allele carriers. 

PPARGC1A Gly482 allele 

Peroxisome proliferator-activated receptor γ (PPARγ) 
coactivator 1α (PGC1α, encoded by PPARGC1A), a 
transcriptional coactivator of PPAR family, is involved in 
mitochondrial biogenesis, fatty acid oxidation, glucose utilization, 
thermogenesis, angiogenesis and muscle fibre-type conversion 
toward slow-twitch type I fibres. The minor serine-encoding 
allele of the common Gly482Ser polymorphism (rs8192678 G/A) 
in PPARGC1A gene (location: 4p15.1) was associated with 
reduced expression of PPARGC1A (Ling et al., 2004) and 
obesity (Ridderstråle et al., 2006). Furthermore, the 482Ser 
allele has been reported to be associated with a smaller 
increase in individual anaerobic threshold after 9 months of 
aerobic training (Stefan et al., 2007), lower aerobic capacity in 
Russian rowers (Ahmetov et al., 2007b) and mixed group of 
Spanish endurance athletes, fit, and unfit Caucasian controls 
(Lucia et al., 2005a). In addition, in four case-control studies, 
significantly lower frequency of 482Ser allele in Spanish (n = 
104), Russian (n = 579), Israeli (n = 74) and Polish (n = 92) elite 
endurance-oriented athletes has been reported (Maciejewska et 
al., 2012; Ahmetov et al., 2009b; Eynon et al., 2009b; Lucia et 
al., 2005a). 

PPARGC1B 203Pro and 292Ser alleles 

PPARγ coactivator 1 β (PGC1β, encoded by PPARGC1B; 

location: 5q32) is expressed predominantly in heart, skeletal 
muscle, brown adipose tissue and the brain. Recently, Arany et 
al. (2007) had shown that transgenic expression of PGC1β 
caused a marked induction of mice IIX fibres, which are fast-
twitch oxidative. PGC1β transgenic muscle fibres are rich in 
mitochondria and are highly oxidative. Consequently, these 
transgenic animals can run for longer and at higher workloads 

than wild-type animals (Arany et al., 2007). Interestingly, Olsson 
et al. (2011) had shown that the expression of the PPARGC1B 
was related positively with the MHCIIa (refers to fast-twitch 
oxidative fibres in humans) expression and negatively with 
MHCIIx/d expression in human skeletal muscle. Two missense 
SNPs of the PPARGC1B gene in relation to human physical 
performance have been described. The rare 203Pro allele of the 
Ala203Pro (rs7732671 G/C) polymorphism has been reported to 
be associated with reduced risk of obesity (Andersen et al., 
2005), enhanced insulin-stimulated glucose metabolism and 
protection against an age-related decline in PGC1β expression 
in muscle (Ling et al., 2007). In a study of Russian elite 
endurance athletes (n = 578), the frequency of the 203Pro allele 
has been shown higher than in controls (n = 1,132) (Ahmetov et 
al., 2009b). The second polymorphism, Arg292Ser (rs11959820 
C/A) seems to be functional as well. The frequency of the minor 
292Ser allele was lower among type 2 diabetes mellitus patients 
and higher in elite male endurance athletes from the Genathlete 
study (n = 316) (Wolfarth et al., 2007a) compared to controls. 

TFAM 12Thr allele 

Mitochondria in skeletal muscle tissue can undergo rapid and 
characteristic changes as a consequence of manipulations of 
muscle use and environmental conditions. Endurance exercise 
training leads to increases of mitochondrial volume of up to 50% 
in training interventions of a few weeks in previously untrained 
subjects (reviewed in Hoppeler and Fluck, 2003). The present 
data indicate that transcriptional events largely contribute to 
increases in mitochondrial density in human skeletal muscle 
with endurance training. Expression of mitochondrial proteins 
from the nuclear and mitochondrial genomes are coordinated 
and involves the nuclear-encoded mitochondrial transcription 
factor A (TFAM). TFAM (encoded by TFAM; location: 10q21) is 

a protein critical for mtDNA transcription, replication and 
maintenance (Kang et al., 2007). Different types of exercise 
increase TFAM mRNA levels to enhance mtDNA replication 
(Little et al., 2010; Psilander et al., 2010; Chow et al., 2007). 
Furthermore, Norrbom et al. (2010) had shown that TFAM 
protein expression was significantly higher in the elite athletes 
than in the moderately active individuals. The rare 12Thr allele 
of the TFAM Ser12Thr polymorphism (rs1937 G/C) was found to 

be over-represented in 588 Russian elite endurance athletes 
compared to 1,113 controls (Ahmetov et al., 2009b; 2010b).  

UCP2 55Val allele 

The uncoupling proteins 1, 2 and 3 (UCP1, UCP2, and UCP3) 
are members of the super family of anion carrier proteins 
located in the inner membrane of mitochondria. The UCP2 
protein (encoded by UCP2) is involved in uncoupling oxidative 

phosphorylation from ATP synthesis in certain tissues and 
regulation of lipid metabolism and energy expenditure. 
Endurance training leads to an increase in UCP2 mRNA and 
protein content in skeletal muscles, pancreatic islets and heart 
(Calegari et al., 2011; Bo et al., 2008; Ookawara et al., 2002). A 
common Ala55Val polymorphism (rs660339 C/T) has been 
described in the UCP2 gene (location: 11q13) and has been 
variably associated with altered body mass index, physical 
activity and changes in energy expenditure (Buemann et al., 
2001; Dalgaard et al., 2001; Astrup et al., 1999). More 
specifically, the Val/Val genotype has been reported to be 
associated with higher exercise efficiency (Buemann et al., 
2001), enhanced metabolic efficiency and physical activity 
(Astrup et al., 1999) and higher VO2max in 27 male Russian 
rowers (Ahmetov et al., 2008e). Recently, it has been shown 
that the frequency of the 55Val allele was over-represented in 
694 Russian elite endurance athletes (Ahmetov et al., 2009b) 
compared to 1,132 controls. On the other hand, Sessa et al. 
(2011) found an increased frequency of the Ala55 allele in 29 
Italian power-oriented athletes. 
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UCP3 rs1800849 T allele  

The expression of UCP3 mainly in skeletal muscle mitochondria 
made UCP3 an attractive target for studies toward manipulation 
of energy expenditure to fight disorders such as obesity and 
type 2 diabetes. Overexpressing human UCP3 in mice resulted 
in lean, hyperphagic mice (Clapham et al., 2000). In humans, 
acute exercise induces up-regulation of UCP3, most likely 
because of elevated plasma free fatty acid levels (Schrauwen et 
al., 2002; Pilegaard et al., 2000). Several polymorphisms in the 
UCP3 gene (location: 11q13.4) have been identified and related 
to markers of energy metabolism, aerobic capacity and obesity 
(Ahmetov et al., 2008e; Schrauwen and Hesselink, 2002; 
Halsall et al., 2001). One of the early detected observations was 
5’UTR -55 C/T polymorphism (rs1800849), of which the T allele 
was reported to be associated with increased skeletal muscle 
UCP3 mRNA expression (Schrauwen et al., 1999), reduced BMI 
(Halsall et al., 2001) and increased aerobic capacity in Russian 
female rowers (Ahmetov et al., 2008e). The frequency of the 
UCP3 T allele was significantly higher in 694 Russian elite 

endurance athletes compared to 1,132 controls (Ahmetov et al., 
2009b). In a Genathlete study the difference in UCP3 TT 
genotype frequency between 183 endurance athletes and 121 
controls almost reached significance level (12.0% vs. 6.0%; P = 
0.076) (Echegaray et al., 2003). However, Hudson et al. (2004) 
have found no association between the -55 C/T polymorphism 
within the UCP3 gene and the ultra-endurance performance of 
triathletes who completed either the 2000 or 2001 South African 
Ironman triathlons. 

VEGFA rs2010963 C allele 

Angiogenesis is a critical phenomenon in the adaptation to 
aerobic exercise training and mediated by a number of 
angiogenic factors including vascular endothelial growth factor 
(VEGF). VEGF mRNA was upregulated in human vastus 
lateralis following 30-45 min of one-legged knee extension 
exercise (Gustafsson et al., 2009; Richardson et al., 1999). The 
G-634C SNP (rs2010963) in the promoter region of the VEGFA 
gene (location: 6p12) has been associated with VEGF protein 
expression in peripheral blood mononuclear cells (Watson et al., 
2000). Two studies revealed associations of VEGFA gene 

polymorphisms with aerobic capacity in humans and endurance 
athlete status. Prior et al. (2006) reported a promoter region 
haplotype (which includes rs2010963 C allele) to be associated 
with higher VEGFA expression in human myoblasts and the 

maximal rate of oxygen uptake in non-athletes before and after 
aerobic exercise training, whilst Ahmetov et al. (2009b; 2008b) 
reported a positive association between a VEGFA rs2010963 C 
allele and both elite endurance athlete status in Russians and 
the maximal rate of oxygen uptake in rowers. 

VEGFR2 472Gln allele 

Vascular endothelial growth factor (VEGF) is a major growth 
factor for endothelial cells and VEGF receptor 2 (VEGFR2; also 
known as kinase insert domain receptor, KDR) is essential to 
induce the full spectrum of VEGF angiogenic responses to 
aerobic training. VEGFR2 mRNA expression was increased by 

acute systemic exercise (Gavin et al., 2007; Gustafsson et al., 
2007; Gavin et al., 2004). One of the potential functional 
polymorphisms of the VEGFR2 gene (location: 4q11-q12) is the 
rs1870377 T/A variant, which determines a histidine (His) to 
glutamine (Gln) substitution. Studies have reported that the 
His472Gln polymorphism influences the efficiency of VEGF 
binding to VEGFR2 (Wang et al., 2007; Zhang et al., 2007) and  

 

 

was associated with clinical phenotypes such as coronary heart 
disease, stroke, cancer and exceptional longevity (Sebastiani et 
al., 2008; Ellis et al., 2007; Försti et al., 2007; Wang et al., 2007; 
Zhang et al., 2007). In a study of 182 endurance-oriented 
Russian athletes the significantly higher frequency of the 
VEGFR2 472Gln allele compared to controls was reported 
(Ahmetov et al., 2009a). Furthermore, the 472Gln allele was 
also shown to be significantly associated with a higher 
proportion of type I fibres of m. vastus lateralis (determined by 
immunohistochemistry) in both athletes (all-round speed skaters, 
n = 23; age 20.4 ± 0.5 years) and physically-active men (n = 45; 
age 23.5 ± 0.4 years), and with a greater VO2max in female 
rowers (Ahmetov et al., 2009a).  

Y-chromosomal haplogroups  

Several positive associations have been reported between 
specific haplogroups of the Y chromosome and a number of 
phenotypes, including infertility, low sperm count, prostate 
cancer, blood pressure and stature (Jobling and Tyler-Smith, 
2003). In respect to sports performance, Moran et al. (2004) 
reported that the Y chromosome haplogroups E*, E3* and K*(xP) 
were significantly more frequent in the Ethiopian endurance 
running groups (n = 44) than in controls (95 members of the 
general Ethiopian population and 85 Arsi controls), whereas 
haplogroup E3b1 was less frequent.  
 

Gene variants for power athlete status 

ACE D allele  

The I/D polymorphism of the ACE gene (location: 17q23.3) 
denotes a substantial individual variation in renin-angiotensin 
system activity with the D allele being associated with higher 
ACE activity. Circulating ACE activity was significantly 
correlated with isometric and isokinetic quadriceps muscle 
strength (Williams et al., 2005). Such effect may depend upon 
increased ACE-mediated activation of the growth factor 
angiotensin II, and increased degradation of growth-inhibitory 
bradykinin. Accordingly, greater training-related increases in 
quadriceps muscle strength (Giaccaglia et al., 2008; Folland et 
al., 2000), peak elbow flexor muscle strength and biceps muscle 
cross-sectional area (Pescatello et al., 2006), and changes in 
left ventricular growth (Montgomery et al., 1997) have been 
associated with the D allele. Similarly, several studies had 
shown the D allele to be associated with greater strength and 
muscle volumes at baseline (Charbonneau et al., 2008; Wagner 
et al., 2006; Hopkinson et al., 2004) and an increased 
percentage of fast-twitch muscle fibres (Zhang et al., 2003). In 
addition, the D allele and/or DD genotype was shown to be 
over-represented in 20 British (Myerson et al., 1999), 65 
Russian (Nazarov et al., 2001), 56 European and 
Commonwealth Caucasian swimmers (<400 m) (Woods et al., 
2001), 43 Greek sprinters (Papadimitriou et al., 2009), 25 
Portuguese (Costa et al., 2009) and 46 Spanish (Boraita et al., 
2010) strength/power athletes. Contrary to the main hypothesis, 
Kim et al. (2010a) had shown that top level power-oriented 
athletes (n = 55) had a markedly diminished frequency of the 
DD genotype and the D allele than national level power-oriented 
athletes (n = 100) or controls (n = 693). The same finding was 
reported by Ginevičienė et al. (2011) by studying 51 power-
oriented athletes and 250 controls. Furthermore, several studies 
of power/sprint athletes have demonstrated no association 
between the ACE I/D polymorphism and power athlete status 

(Sessa et al., 2011; Scott et al., 2010; Amir et al., 2007). 
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Table 1. Gene variants (genetic markers) for endurance athlete status. 

Gene Location Polymorphism 
Endurance-related 

marker 

Studies with positive results 
Studies with negative or 

controversial results 

Number of 
studies 

Total number 
of studied 
athletes 

Number of 
studies 

Total number 
of studied 
athletes 

ACE 17q23.3 Alu I/D (rs4646994) I 16 1310 11 1263 

ACTN3 11q13.1 R577X (rs1815739 C/T) 577X 3 518 11 2382 

ADRA2A 10q24-q26 6.7/6.3 kb 6.7-kb 1 148 - - 

ADRB2 5q31-q32 Gly16Arg (rs1042713 G/A) 16Arg 2 629 - - 

ADRB3  8p12-8p11.1 Trp64Arg (rs4994 T/C) 64Arg 1 100 1 81 

AQP1  7p14 rs1049305 C/G rs1049305 C 1 784 - - 

AMPD1 1p13 Gln12X (rs17602729 C/T) Gln12 2 231 - - 

BDKRB2 14q32.1-q32.2 
+9/–9 (exon 1) –9 2 524 1 74 

rs1799722 C/T rs1799722 T 1 316 - - 

CKM 19q13.32 A/G NcoI (rs8111989 T/C)  rs1803285 A 1 176 3 581 

COL5A1  9q34.2-q34.3 rs12722 C/T (BstUI) rs12722 T 2 385 - - 

COL6A1  21q22.3 rs35796750 T/C rs35796750 T 1 661 - - 

EPAS1 
(HIF2A) 

2p21-p16 
rs1867785 A/G  rs1867785 G  1 451 - - 

rs11689011 C/T rs11689011 T 1 451 - - 

GABPB1 
(NRF2) 

15q21.2 

rs12594956 A/C  rs12594956 A 2 163 - - 

rs8031031 C/T rs8031031 T 1 74 1 89 

rs7181866 A/G rs7181866 G 2 129 1 89 

GNB3  2p13 rs5443 C/T (C825T) rs5443 T 1 74 1 100 

HFE  6p21.3 His63Asp (rs1799945 C/G 63Asp 2 148 - - 

HIF1A  14q23.2 Pro582Ser (rs11549465 C/T) Pro582 1 316 1 265 

IL15RA 10p15.1 Asn146Thr (rs2228059 A/C) rs2228059 A 1 73 - - 

KCNJ11  11p15.1 Glu23Lys (rs5219 C/T) Glu23 2 282 - - 

MtDNA loci MtDNA 

Haplogroups constructed 
from several MtDNA 
polymorphisms or single 
polymorphisms 
 

H  1 52 - - 

L0 1 70 - - 

M* 1 75 - - 

m.5178C 1 66 - - 

G1 1 79 - - 

m.152C 1 100 - - 

m.514(CA)5 1 100 - - 

N9 1 75 - - 

poly(C≥7) stretch 
at m.568-573 

1 100 - - 

V 1 102 - - 

Unfavourable: B 1 75 - - 

Unfavourable: K, 
J2 

1 52 - - 

Unfavourable: T 1 95 - - 

Unfavourable: L3* 1 70 - - 

NFATC4 14q11.2 Gly160Ala (rs2229309 G/C) Gly160  1 694 - - 

NOS3 7q36 

Glu298Asp (rs1799983 G/T) Glu298  1 443 - - 

(CA)n repeats  164-bp  1 316 - - 

27 bp repeats (4B/4A) 4B 1 168 - - 

rs2070744 T/C (-786 T/C) rs2070744 T 1 71 1 100 

PPARA 22q13.31 rs4253778 G/C rs4253778 G 4 680 - - 

PPARD 6p21.2-p21.1 rs2016520 T/C rs2016520 C 2 683 - - 

PPARGC1A 4p15.1 Gly482Ser (rs8192678 G/A) Gly482 4 849 - - 

PPARGC1B 5q33.1 
Ala203Pro (rs7732671 G/C) 203Pro  1 578 - - 

Arg292Ser (rs11959820 C/A) 292Ser 1 316 - - 

PPP3CA  4q24 rs3804358 C/G rs3804358 C 1 123 1 100 

PPP3CB  10q22.2 rs3763679 C/T rs3763679 C 1 123 1 100 

PPP3R1 2p15 Promoter 5I/5D 5I 1 694 - - 

TFAM 10q21 Ser12Thr (rs1937 G/C) 12Thr 1 588 - - 

UCP2 11q13 Ala55Val (rs660339 C/T) 55Val 1 694 - - 

UCP3 11q13 rs1800849 C/T rs1800849 T 2 877 1 178 

VEGFA 6p12 rs2010963 G/C rs2010963 C 1 942 - - 

VEGFR2  4q11-q12 His472Gln (rs1870377 T/A) 472Gln 1 182 - - 

Y-
chromosome 
haplogroups 

Y-
chromosome 

Haplogroups constructed 
from several Y-chr. 
polymorphisms 

E*, E3* and K*(xP) 1 44 - - 

Unfavourable: 
E3b1 

1 44 - - 
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ACTN3 Arg577 allele  

The α-actinins constitute the predominant protein component of 
the sarcomeric Z line in skeletal muscle fibres, where they form 
a lattice structure that anchors together actin containing thin 
filaments and stabilizes the muscle contractile apparatus 
(reviewed in Yang et al., 2009). Expression of the α-actininin-3 
(ACTN3) is limited to fast muscle fibres responsible for 
generating force at high velocity. A common R577X (rs1815739 
C/T) genetic variation in the ACTN3 gene (location: 11q13.1) 
had been identified. This SNP results in the replacement of an 
arginine (Arg or R) with a stop codon at amino acid 577. The 
577X allele contains a sequence change that completely 
prevents the production of functional α-actinin-3 protein. Several 
case-control studies reported that ACTN3 RR genotype (or 
Arg577 allele) was over-represented or ACTN3 XX genotype 

was under-represented in strength/sprint athletes in comparison 
with controls. More specifically, Yang et al. (2003) for the first 
time had shown that the frequency of the ACTN3 XX genotype 
was reduced in Australian power athletes (n = 107; 6.0% vs. 

20/0%) compared to controls, whereas none of the Olympians 
or female power athletes had an XX genotype. These findings 
have been supported by the independent replications in case-
control studies of elite Finnish sprint athletes (n = 68; frequency 
of the XX genotype: 0% vs. 9.2%) (Niemi and Majamaa, 2005), 
elite Greek track and field athletes (n = 73; frequency of the RR 
genotype: 47.94% vs. 25.97%) (Papadimitriou et al., 2008), top-
level professional soccer players, participating in the Spanish 
Championships (n = 60; frequency of the RR genotype: 48.3% 

vs. 28.5%) (Santiago et al., 2008), elite-level strength athletes 
from across the United States (n = 75; frequency of the XX 
genotype: 6.7% vs. 16.3%) (Roth et al., 2008), Russian power-
oriented athletes (n = 486; frequency of the XX genotype: 6.4% 

vs. 14.2%) (Druzhevskaya et al., 2008) and Italian artistic 
gymnasts (n = 35; frequency of the XX genotype: 2.8% vs. 
18.8%) (Massidda et al., 2009). These results were confirmed 
by more recent studies of Taiwanese sprint swimmers (n = 168; 

frequency of the R allele in female international sprint swimmers: 
67.6% vs. 53.7%) (Chiu et al., 2011), Israeli sprinters (n = 81; 
frequency of the RR genotype: 52% vs. 27.3%) (Eynon et al., 
2009a), Russian short-distance speed skaters (n = 39; 

frequency of the XX genotype: 2.6% vs. 14.5%) (Ahmetov et al., 
2011), and Polish power-oriented athletes (n = 158; frequency 
of the R allele: 69.3% vs. 59.6%) (Cieszczyk et al., 2011b). It 
should be noted that four studies reported no association 
between the ACTN3 R577X polymorphism and power athlete 
status (Sessa et al., 2011, Ginevičienė et al., 2010; Scott et al., 
2010; Yang et al., 2007). The hypothesis that ACTN3 Arg577 
allele may confer some advantage in power performance events 
was supported by several cross-sectional studies in non-
athletes including mouse models of the ACTN3 deficiency 
(Ahmetov et al., 2011; Ginevičienė et al., 2010; Chan et al., 
2008; Delmonico et al., 2008; MacArthur et al., 2008; Walsh et 
al., 2008; Delmonico et al., 2007; Moran et al., 2007; Vincent et 
al., 2007; Clarkson et al., 2005). Additionally, Vincent et al. 
(2007) had shown that the percentage of the cross-sectional 
area and the number of type IIx (fast-twitch glycolytic) fibres was 
greater in the RR than the XX genotype group of young healthy 
men. This association was replicated in a second study, where 
the ACTN3 R577X polymorphism was shown to be associated 
with muscle fibre composition in a group (n = 94) of physically 
active men and sub-elite speed skaters (slow-twitch muscle 
fibres, RR genotype: 51.7 (12.8)%, RX: 57.4 (13.2)%, XX: 61.5 
(16.3)%; P = 0.049), indicating that ACTN3 XX genotype 
carriers exhibit a higher proportion of slow-twitch muscle fibres 
(Ahmetov et al., 2011). Furthermore, it was supposed that the α-
actinin-3 deficiency may also negatively influence the power 
component of competition performance in endurance athletes at 
least in Russian rowers and Japanese endurance runners (Saito 
et al., 2011; Ahmetov et al., 2010a). There is currently no 
univocal evidence that the X allele is advantageous to 

endurance athleticism (Alfred et al., 2011). Although three 
studies had shown that proportion of the XX genotype and/or X 
allele was higher in endurance-oriented athletes compared with 
controls (Shang et al., 2010; Eynon et al., 2009a; Yang et al., 
2003), the majority of authors reported no association between 
the ACTN3 R577X polymorphism and endurance athlete status 
(Döring et al., 2010b; Ginevičienė et al., 2010; Tsianos et al., 
2010; Niemi and Majamaa, 2007; Papadimitriou et al., 2008; 
Paparini et al., 2007; Saunders et al., 2007; Yang et al., 2007; 
Lucia et al., 2006). 

AGT 235Thr allele  

The angiotensinogen (AGT) (serpin peptidase inhibitor, clade A, 
member 8), serum α-globulin formed by the liver, is an essential 
component of the renin-angiotensin system. The AGT is cleaved 
by the renin to form biologically inactive angiotensin I, the 
precursor of active angiotensin II that regulates vascular 
resistance and sodium homeostasis, and thus determining 
blood pressure. High plasma AGT levels can lead to a parallel 
increase in the formation of angiotensin II that may ultimately 
result in hypertension. The injection of AGT caused a dose-
dependent increase in mean arterial blood pressure in the rats 
(Klett and Granger, 2001). The AGT is encoded by AGT gene 
(location: 1q42.2). Agt knockout mice do not produce AGT in 
liver, resulting in the complete loss of plasma immunoreactive 
angiotensin I. Their systolic blood pressure was significantly 
lower than that of the wild-type mice (Tanimoto et al., 1994). 
Met235Thr polymorphism of the AGT gene leads to the 
substitution of threonine to methionine at position 235 (rs699 
T/C). There was a significant relationship between the AGT 
Met235Thr polymorphism and hypertension (Fang et al., 2010; 
McCole et al., 2002; Jeunemaitre et al., 1997; Caulfield et al., 
1994). Results from the HERITAGE family study suggested that 

in middle-aged sedentary normotensive women relationship 
between diastolic blood pressure and AGT Met235Thr 
polymorphism was dependent on the fat mass (Rankinen et al., 
1999). The AGT Met235Thr variation modifies the 
responsiveness of exercise diastolic blood pressure to 
endurance training (Rankinen et al., 2000a; Krizanova et al., 
1998). It was demonstrated that regular moderate intensity 
exercise attenuates aging-related increase in the systolic blood 
pressure and decreases diastolic blood pressure in individuals 
with the AGT Met/Met genotype (Rauramaa et al., 2002). The 
AGT Met235Thr polymorphism was shown to be associated 

with left-ventricular mass index increase in a study of 83 young 
healthy individuals after 17 weeks of exercise training (50-80% 
VO2max) (Alves et al., 2009). Individuals with the AGT Thr/Thr 
genotype had significantly greater left-ventricular mass index 
than those with the Met/Met or Met/Thr genotype (P = 0.04), 
which suggests that left-ventricular hypertrophy caused by 
exercise training was exacerbated in homozygous AGT Thr/Thr 
individuals. Results of the study by Karjalainen and colleagues 
(1999) suggested that AGT gene Met235Thr polymorphism was 
associated with the variability in left ventricular hypertrophy 
induced by endurance training. Results of the echocardiography 
in 50 male and 30 female elite endurance athletes showed that 
Thr/Thr homozygotes had greater left ventricular mass 
compared with the Met/Met homozygotes in both men (P = 
0.032) and women (P = 0.019). In a study of 60 Spanish elite 
athletes (25 cyclists, 20 long-distance runners, and 15 handball 
players) and 400 controls there were no significant differences 
in the AGT Met235Thr genotype frequencies (Alvares et al., 
2000). Recently, Gómez-Gallego et al. (2009c) compared the 
genotype and allele frequencies for the AGT Met235Thr 

variation of Caucasian athletes (100 world-class endurance 
athletes (professional cyclists, Olympic-class runners), and 63 
power athletes (top-level jumpers, throwers, sprinters)) and 119 
nonathletic controls. Results revealed a higher percentage of 
Thr/Thr genotype carriers among power athletes (34.9%) than 
either in controls (16%, P = 0.008) or an endurance group (16%, 
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P = 0.005). Therefore, it was assumed that 235Thr allele of the 
AGT Met235Thr polymorphism might favour power sports 
performance and this could be attributed to the higher activity of 
angiotensin II that acts as a growth factor in skeletal muscle. 

AMPD1 Gln12 allele 

Adenosine monophosphate deaminase (AMPD) is an important 
regulator of muscle energy metabolism: By converting AMP into 
inosine monophosphate (IMP) with liberation of ammonia, this 
enzyme displaces the equilibrium of the myokinase reaction 
towards ATP production. The human AMPD1 gene (location: 
1p13) produces isoform M, myoadenylate deaminase, and is 
expressed at a high level predominantly in adult skeletal muscle. 
Homozygotes for the 34C>T mutation (Gln12X) of the AMPD1 
have extremely low skeletal muscle AMPD activity, individuals 
with one normal and one mutant allele have intermediate activity, 
and those with two AMPD1 normal alleles have high activity 
(Fischer et al., 2007; Norman et al., 2001). With AMPD1 
deficiency individuals exhibit a low AMP deaminase activity, a 
faster accumulation of blood lactate during the early recovery 
from a 30-s sprint exercise (Norman et al., 2008; Norman et al., 
2001). Fischer et al. (2007) revealed a faster power decrease in 
the AMPD-deficient group during the 30-s Wingate cycling test. 
These data indicate that AMPD1 deficiency could have a 
detrimental effect on sprint/strength performance. Indeed, 
Cieszczyk et al. (2012) had shown that Polish power-oriented 
athletes (n = 158; short-distance runners, short-distance 
swimmers and weightlifters) had a significantly lower (5.4% vs. 
13.1%, P = 0.0007) frequency of the AMPD1 12X allele than 
controls (n = 160). These results were replicated in a cohort of 
Russian power-oriented athletes (n = 305; boxing, wrestling, 
speed skating (500-1500 m), powerlifting, swimming (50-100 m), 
weightlifting; frequency of the 12X allele: 8.4% vs. 15.0%; P < 

0.0001, in comparison with 499 controls)) (Fedotovskaya et al., 
2012a). 

Folate-pathway genetic markers (MTHFR rs1801131 C, MTR 
rs1805087 G and MTRR rs1801394 G alleles) 

DNA methylation is a major epigenetic modification that 
suppresses gene expression by modulating the access of the 
transcription machinery to the chromatin or by recruiting methyl 
binding proteins (Cedar and Bergman, 2009). Barrès et al. 
(2012) had shown that exercise-induced acute gene activation 
was associated with a dynamic change in DNA methylation in 
skeletal muscle and have suggested that DNA hypomethylation 
is an early event in contraction-induced gene activation. More 
specifically, whole genome methylation was decreased in 
skeletal muscle biopsies obtained from healthy sedentary men 
and women after acute exercise. Exercise also induced a dose-
dependent expression of PGC-1α, PDK4, and PPAR-δ, together 
with a marked hypomethylation on each respective promoter. 
Similarly, promoter methylation of PGC-1α, PDK4, and PPAR-δ 
was markedly decreased in mouse soleus muscles 45 min after 
ex vivo contraction (Barrès et al., 2012). Furthermore, recent 
findings suggest that DNA hypomethylation induces the 
activation of myogenic factors determining proliferation and 
differentiation of myoblasts promoting muscle growth and 
increase of muscle mass (Terruzzi et al., 2011). Since 
components of the folate-pathway (homocysteine cycle) are 
involved in DNA methylation/demethylation processes (and 
synthesis of nucleotides), Terruzzi et al. (2011) have also 
investigated whether polymorphisms of the folate-pathway 
genes affecting gene expression and protein stability, probably 
responsible of DNA methylation deficiency, are associated with 
athlete status. The polymorphic variants A1298C (rs1801131 
A/C) of 5,10-methylenetetrahydrofolate reductase (MTHFR; 
location: 1p36.3), A2756G (rs1805087 A/G) of methionine 
synthase (MTR; location: 1q43), A66G (rs1801394 A/G) of 
methionine synthase reductase (MTRR; location: 5p15.31) 

genes were determined in 77 athletes and 54 control subjects. 
The frequencies of MTHFR rs1801131 C (37.0% vs. 19.8%), 
MTR rs1805087 G (20.7% vs. 10.8%) and MTRR rs1801394 G 
(42.7% vs. 17.0%) alleles (probably associated with a reduced 
DNA methylating capacity) were significantly higher in athletes 
compared with controls (Terruzzi et al., 2011). Taken together, 
these data indicate that elite athletes have a genetic 
predisposition to DNA hypomethylation and synthesis (factors 
leading to myogenic differentiation stimulation, muscle mass 
increase and induction of genes involved in energy metabolism). 

HIF1A 582Ser allele 

Glycolysis is the central source of anaerobic energy in humans, 
and this metabolic pathway is regulated under low-oxygen 
conditions by the transcription factor hypoxia-inducible factor 1α 
(HIF1α; encoded by HIF1A; location: 14q23.2). HIF1α controls 

the expression of several genes implicated in various cellular 
functions including glucose metabolism (glucose transporters 
and glycolytic enzymes). A missense polymorphism, Pro582Ser, 
is present in exon 12 (C/T at bp 85; rs11549465). The rare T 
allele is predicted to result in a proline to serine change in the 
amino acid sequence of the protein. This substitution increases 
HIF1α protein stability and transcriptional activity, and therefore, 
may improve glucose metabolism. Recently, Ahmetov et al. 
(2008a) investigated a hypothesis that HIF1A Pro582Ser 

genotype distribution may differ for controls and Russian 
sprint/strength athletes, for which anaerobic glycolysis is one of 
the most important sources of energy for power performance. 
The frequency of the HIF1A 582Ser allele was significantly 
higher in weightlifters (n = 53) than in 920 controls (17.9% vs. 
8.5%; P = 0.001) and increased with their levels of achievement 
(sub-elite (14.7%) → elite (18.8%) → highly elite (25.0%)). 
These results were replicated in a cohort of Polish power-
orientated athletes (n = 158; the frequency of the HIF1A 582Ser 
allele: 17.1% vs. 9.1%; P = 0.01; in comparison with 254 
sedentary controls) (Cieszczyk et al., 2011a), but not in 81 
Israeli sprinters (Eynon et al., 2010a). Furthermore, the 582Ser 
allele was significantly associated with an increased proportion 
of fast-twitch muscle fibres in m. vastus lateralis of all-round 
speed skaters (Ahmetov et al., 2008a). 

IL1RN*2 allele 

Inflammation may serve as a mechanism promoting skeletal 
muscle repair and hypertrophy (Tidball, 2005). Interleukin-1 
receptor antagonist (IL-1RA) is a member of the interleukin 1 
(IL-1) cytokine family and modulates a variety of IL-1 related 
immune and inflammatory responses. IL-1RA competes with 
major inducers of proinflammatory immune responses – IL-1α 
and IL1-β for binding to IL-1 receptor on the surface of a variety 
of cells. But in contrast to IL-1α and IL-1β, IL-1RA does not 
initiate signal transduction. IL-1RA exerts anti-inflammatory 
activity by blocking IL-1 receptors and thereby preventing signal 
transduction of the pro-inflammatory IL-1 (Pedersen 2000). A 
balance between IL-1 and IL-1RA is of importance for regulation 
of immune function (Arend, 2002; McIntyre et al., 1991). The IL-
1RA is involved in the inflammatory and repair reactions in 
skeletal muscle during and after exercise (Pedersen 2000). IL-
1RA plasma concentration of marathon runners peaked 1.5 h 
after the run and there was a positive correlation between the 
peak plasma concentrations of IL-6 and IL-1RA (Ostrowski et al., 
2000). The IL-1RA is encoded by the IL1RN gene (location: 

2q14.2) in close proximity to the genes coding for IL-1α and L-
1β. The VNTR polymorphism in intron 2 of the IL1RN gene is 
caused by the 86-bp variable copy number tandem repeat (two 
to six repeats), that contains three potential protein-binding sites 
and therefore may have functional significance (Tarlow et al., 
1993). The allele 1 (IL1RN*1) with 4 repeats is more common 
than allele 2 (IL1RN*2), containing 2 repeats. Alleles with 3, 5 
and 6 repeats are considered to be rare (<1%). The IL1RN gene 
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VNTR polymorphism was shown to be associated with the risk 
for a number of autoimmune diseases, disorders associated 
with chronic inflammation, infection, cancer, osteoporosis, 
coronary artery disease, idiopathic inflammatory myopathy, 
multiple sclerosis (Witkin et al., 2002; El-Omar et al., 2000; 
Rider et al., 2000; Ferri et al., 1999). Young men with the 
IL1RN*2 genotype had an increased total fat, serum leptin and 
fat of trunk and arm as well as serum levels of IL-1RA and IL-
1RA production ex vivo (Strandberg et al., 2006). In a recent 
study of 205 Italian athletes (53 professional and 152 
competitive non-professional; sport activities: volleyball, soccer, 
rugby, triathlon, basketball, martial arts, track-and field sports, 
running, handball, swimming) and 458 non-athletic controls 
Cauci et al. (2010) have found that IL1RN gene VNTR 
polymorphism was associated with athletic status. The 
frequencies of the IL1RN*1/IL1RN*2 genotype (41.0% vs. 
26.4%, P < 0.001) and IL1RN*2 allele (32.2% vs. 22.9%, P < 

0.001) were significantly higher in athletes compared to non-
athlete controls. Furthermore, the IL1RN*1/IL1RN*2 genotype 
was more frequent (52.8% vs. 36.8%) in professional 
(participants of Olympic Games, medalists in International 
Games, Third Division soccer players) than in non-professional 
(training and competitions >10 h/week) athletes. One might 
assume that carriers of the IL1RN*2 allele may have an 
advantage in adaptation to high intensity exercise.  

IL6 rs1800795 G allele 

The interleukin-6 (IL-6) (also known as B-cell stimulatory factor-
2 (BSF-2) and interferon beta-2) is a pleiotropic cytokine 
involved in a wide variety of biological functions, including 
regulation of differentiation, proliferation and survival of target 
cells, and control for the immune acute-phase response (Horn 
et al., 2000; Hirano et al., 1986). It is mainly produced by the 
immune cells, but also is expressed in muscle cells (acts as a 
"myokine"), and is elevated in the response to muscle 
contraction (Febbrario and Pedersen, 2005). During physical 
exercise the concentration of plasma IL-6 increases because of 
its release from muscles, which mediates metabolic processes. 
The IL-6 is relevant to many diseases such as diabetes 
(Kristiansen and Mandrup-Poulsen, 2005), atherosclerosis 
(Schuett et al., 2009; Huber et al., 1999), depression (Dowlati et 
al., 2010) and rheumatoid arthritis (Nishimoto, 2006).

 
The IL-6 

was linked to the regulation of glucose homeostasis during 
exercise. There was a relationship between the IL-6 release at 
the end of exercise and muscle glycogen concentration after 
exercise, which suggested that IL-6 acts as a carbohydrate 
sensor (Helge et al., 2003). The IL-6 plays an important role in 
the regulating fat metabolism in the muscle, increasing rates of 
fatty acid oxidation, and attenuating insulin’s lipogenic effects 
(Bruce and Dyck, 2004). The IL-6 also plays a role in the 
hypertrophic muscle growth with a contribution of satellite cells 
to this process (Serrano et al., 2008). Changes in the IL-6 
system may represent systemic responses in the muscle 
inflammation and repair processes (Philippou et al., 2009). The 
interleukin-6 was produced in larger amounts than any other 
cytokine in the relation to strenuous exercise. Strenuous 
exercise leads to a significant elevation of IL-6 in the serum, 
thereby eliciting an acute phase response (Northoff and Berg, 
1991). In resting muscle the IL6 gene was silent, but it was 
rapidly activated by the muscle contractions (Pedersen et al., 
2003). The -174 C/G (rs1800795) polymorphism in the promoter 
of the IL6 gene (location: 7p21) alters transcriptional response 

(Fishman et al., 1998). There was a genetically determined 
difference in the degree of the IL-6 response to stressful stimuli 
between individuals, with C allele found to be associated with 
significantly lower levels of plasma IL-6. In a study by 
Huuskonen et al. (2009), the IL6 gene -174G/C polymorphism 
was shown to be associated with the VO2max and BMI responses 
to physical training. Individuals with CG genotype had more 
pronounced increase in the VO2max and decrease in the BMI 

after 8-week of military training. Individuals with the C allele had 
significantly reduced IL-6 levels in serum after long-term 
exercise training program (Oberbach et al., 2008). The IL6 -
174G/C genotype was shown to be associated with high-density 
lipoprotein cholesterol response to exercise training (Nishimoto 
et al., 2006).

 
Ruiz et al. (2010b) studied the IL6 -174 G/C 

polymorphism in 153 elite Caucasian Spanish male athletes 
(100 endurance athletes and 53 power athletes) and 100 non-
athletic controls. The frequencies of the GG genotype and G 
allele were significantly higher in power-oriented athletes 
compared with the endurance-oriented athletes and non-athletic 
controls. It was suggested that G allele of the IL6 -174 G/C 
polymorphism might favour sprint/power sports performance. 
Not consistent with results of the Spanish study, Eynon et al. 
(2011c) reported that there were no differences in allelic and 
genotypic frequencies of the IL6 -174 C/G polymorphism among 
74 elite endurance athletes, 81 power athletes and 205 non-
athletic controls (Israeli population). 

 

NOS3 rs2070744 T allele 

Nitric oxide (NO) is involved in human skeletal muscle uptake 
during exercise (McConell and Kingwell, 2006) and modulation 
of oxygen consumption in skeletal muscles (Wilkerson et al., 
2004). Dietary nitrate supplementation enhances muscle 
contractile efficiency during knee-extensor exercise and 
tolerance to high-intensity exercise in humans (Bailey et al., 
2010; Bailey et al., 2009). Therefore, one might anticipate that 
genetic variation in the endothelial nitric oxide synthase gene 
(NOS3; location: 7q36; NOS3 generates NO in blood vessels) 

could be associated with power/sprint performance. Indeed, 
Drozdovska et al. (2009) have found that the frequency of the 
NOS3 rs2070744 T (-786 T/C polymorphism) allele was 
significantly higher in 56 Ukrainian power-oriented athletes 
(jumpers, throwers, sprinters) compared to 147 controls (77.7% 
vs. 65.0%; P = 0.024). These results were confirmed in two 
independent studies of 53 Spanish elite power-oriented athletes 
(jumpers, throwers, sprinters) and 100 non-athletic controls 
(frequency of the rs2070744 T allele: 71.0% vs. 56.0%; P = 
0.015) (Gómez-Gallego et al., 2009a) and 29 Italian power-
oriented athletes (Sessa et al., 2011). Furthermore, Sessa et al. 
(2011) have demonstrated that the frequency of the Glu298 
allele (Glu298Asp polymorphism) was significantly higher in 29 
Italian power-oriented athletes in comparison with controls. 

PPARA rs4253778 C allele  

PPARα is a ligand-activated transcription factor that regulates 
the expression of genes involved in fatty acid uptake and 
oxidation, glucose and lipid metabolism, left ventricular growth 
and control of body weight. Jamshidi et al. (2002) had shown 
that British army recruits homozygous for the rare PPARA gene 
(location: 22q13.31) C allele of the rs4253778 (intron 7 G/C) 
polymorphism had a 3-fold greater increase in LV mass in 
response to training than G allele homozygotes. The hypothesis 
that intron 7 C allele is associated with the hypertrophic effect 
due to influences on cardiac and skeletal muscle substrate 
utilization was supported by the findings that PPARA C allele 
was over-represented in 180 Russian power-oriented athletes 
(27.2% vs. 16.4%, P = 0.0001; in comparison with 1,242 
controls) and associated with an increased proportion of fast-
twitch muscle fibres in m. vastus lateralis of 40 male controls 
(Ahmetov et al., 2006) and with the best results of handgrip 
strength testing in middle school-age boys (Ahmetov et al. 
2012a). Furthermore, in a study of 193 Lithuanian athletes 
Ginevičienė et al. (2010) had shown that male athletes with 
PPARA CC and PPARA GC genotypes had significantly higher 

muscle mass and single muscular contraction power (measured 
by vertical jump test) than GG homozygotes. The frequency of 
the PPARA C allele (26.3% vs. 17.2%; P = 0.012) was also 
significantly higher in Lithuanian power-oriented athletes and 
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athletes with mixed aerobic/anaerobic activity (n = 80) in 
comparison with 250 controls (Ginevičienė et al., 2010). 
However, Broos et al. (2011) did not find any association 
between the PPARA rs4253778 G/C polymorphism and muscle 

strength characteristics in non-athletic young men. There were 
no differences in allelic frequencies between 81 Israeli sprinters 
and 240 controls (Eynon et al., 2010c). 

PPARG 12Ala allele  

Peroxisome proliferator-activated receptor γ (PPARγ; encoded 
by PPARG; location: 3p25) plays a critical physiological role as 
a central transcriptional regulator of adipogenic and lipogenic 
programs, insulin sensitivity and glucose homeostasis. The 

12Ala variant of the PPARG gene Pro12Ala polymorphism 
(rs1801282 C/G) was associated with decreased receptor 
activity (Deeb et al., 1998), improved insulin sensitivity (Deeb et 
al., 1998) and increased body mass index in humans (Ahmetov 
et al., 2007b; Masud and Ye, 2003). The carriers of the 12Ala 
allele show better glycaemic response to exercise training 
(Adamo et al., 2005), higher rates of skeletal muscle glucose 
uptake (Vänttinen et al., 2005b) and greater cross-sectional 
area of muscle fibres (Ahmetov et al., 2008d). In a study of 
Russian power-oriented athletes (n = 260), the higher frequency 
(23.8% vs. 15.1%, P < 0.0001) of the PPARG 12Ala 
allelecompared to 1,073 controls has been reported (Ahmetov 
et al., 2008d). 

 
Table 2. Gene variants (genetic markers) for power/strength athlete status 

Gene Location Polymorphism 
Power/strength-
related marker 

Studies with positive results  
Studies with negative or 

controversial results 

Number of 
studies 

Total number 
of studied 
athletes 

Number of 
studies 

Total 
number of 

studied 
athletes 

ACE 17q23.3 Alu I/D (rs4646994) D 6 255 5 365 

ACTN3 11q13.1 R577X (rs1815739 C/T) Arg577 11 1350 4 368 

AGT 1q42.2 Met235Thr (rs699 T/C) 235Thr  1 63 - - 

CKM 
19q13.32 A/G NcoI (rs8111989 T/C)  rs1803285 G 

1 74 - - 

AMPD1 1p13 Gln12X (rs17602729 C/T) Gln12 
2 463 - - 

HIF1A 14q21-q24 
Pro582Ser (rs11549465 
C/T) 

582Ser 2 211 1 81 

IL1RN 2q14.2 VNTR 86-bp (intron 2) IL1RN*2 1 205 - - 

IL6  7p21 -174 C/G (rs1800795 C/G) rs1800795 G 1 53 1 81 

MtDNA 
loci 

MtDNA 

Haplogroups constructed 
from several MtDNA 
polymorphisms or single 
polymorphisms 

F 1 60 - - 

m.204C 1 85 - - 

Non-L/U6 1 119 - - 

MTHFR  1p36.3 A1298C (rs1801131 A/C) rs1801131 C 1 77 - - 

MTR  1q43 A2756G (rs1805087 A/G) rs1805087 G 1 77 - - 

MTRR  5p15.31 A66G (rs1801394 A/G) rs1801394 G 1 77 - - 

NOS3 7q36 

rs2070744 T/C (-786 T/C) rs2070744 T 3 138 - - 

Glu298Asp (rs1799983 
G/T) 

Glu298 1 29 - - 

PPARA 22q13.31 rs4253778 G/C rs4253778 C 2 260 1 81 

PPARG 3p25 Pro12Ala (rs1801282 C/G) 12Ala 1 260 - - 

UCP2 11q13 Ala55Val (rs660339 C/T) Ala55 1 29 - - 

VDR  12q13.11 FokI f/F (rs10735810 T/C) rs10735810 T 1 125 - - 

 

VDR rs10735810 T allele 

Vitamin D receptor (VDR) has been found in human skeletal 
muscle cells, where it affects muscle cell metabolism by binding 
to vitamin D metabolites (Pfeifer et al., 2002). The VDR is 
involved in sustaining normocalcemia by inhibiting the 
production of parathyroid hormone and has effects on bone and 
skeletal muscle biology (Haussler et al., 2011; Garfia et al., 
2002). Vdr knockout mice develop a low bone mass phenotype 
with hypocalcemia, hypophosphatemia and elevated calcitriol 
levels (Yoshizawa et al., 1997). Almost 200 polymorphisms are 
known to exist in the VDR gene (location: 12q13.11). 
Polymorphisms in VDR gene are associated with bone mineral 
density (Gong et al., 1999), osteoporotic and stress fractures 
(Korvala et al., 2010; Moffett et al., 2007), insulin resistance 
(Jain et al., 2011), muscle strength (Bahat et al., 2010; Barr et 
al., 2010; Murakami et al., 2009; Hopkinson et al., 2008; 
Windelinckx et al., 2007; Wang et al., 2006; Grundberg et al., 
2004; Vandevyver et al., 1999; Geusens et al., 1997) and 
susceptibility to a range of diseases such as cardiovascular 
disease (Chen et al., 2011), osteoporosis (Kiel et al., 2007) and 

sarcopenia (Roth et al., 2004). The T/C transition (rs10735810 
T/C) in exon 2 of the VDR gene changes the translation start 
site. The C allele (also called F allele – absence of the 
endonuclease FokI restriction site) carriers have a 3-amino acid 
shorter VDR than do individuals with the T allele (or f allele – 
presence of the FokI restriction site). The shorter VDR has 
enhanced transactivation capacity as a transcription factor 
(Whitfield et al., 2001). Rabon-Stith et al. (2005) studied VDR 

genotypes of 206 healthy men and women (50-81 years old) 
before and after either aerobic exercise training or strength 
training. VDR FokI genotype was significantly related to the 
femoral neck bone mineral density in response to strength 
training, but not aerobic training. More specifically, the 
heterozygotes (TC) in the strength training group approached a 
significantly greater increase in femoral neck bone mineral 
density compared to TT homozygotes. The study investigating 
the contribution of the VDR rs10735810 T/C genotype on total 
body bone mineral density among Japanese athletes (weight-
bearing (n = 84) and swimming (n = 48)) and 80 non-athletic 
controls suggested that the CC genotype was more responsive 
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to impact loading in regulating total bone mineral density. 
Enhanced bone mineral density in weight-bearing athletes was 
found in C allele carriers (Nakamura et al., 2002). Furthermore, 
Hopkinson et al. (2008) have found that both patients with 
chronic obstructive pulmonary disease (n = 107) and control 
subjects (n = 104) who were homozygous for the C allele of the 
FokI polymorphism had less quadriceps strength than did those 
with TC or TT genotype. Micheli et al. (2011) have observed 
significant differences in VDR FokI genotype frequencies 
between medium-high-level male soccer players (n = 125) and 
sedentary controls. Homozygous TT genotype of the VDR gene 
was significantly more represented in young soccer players than 
in a matched sedentary population. There was evidence that 
VDR FokI polymorphism affected bone mass in 46 Brazilian 
adolescent soccer players (Diogenes et al., 2010). Boys with the 
TC genotype had higher total body bone mineral content and 
density compared to those with CC genotype. It was suggested 
that effect of the FokI polymorphism on bone mineralization 
occurs during bone maturation, possibly at the initial pubertal 
stages. 

Combined impact of gene variants on elite athlete 
status 

Despite the obvious role of genetics in human athletic 
performance, there is little unequivocal evidence in support of a 
specific genetic variant with a major gene effect on a relevant 
performance phenotype, at least across the normal range of 
human trait distributions. This may be because complex traits 
are fundamentally polygenic (numerous genes with small 
effects), or because researchers failed to take into consideration 
the full range of environmental effects, or both (Brutsaert and 
Parra, 2006). It is very important to note that each DNA locus 
can probably explain a very small proportion of the phenotypic 
variance (e.g. ~0.1% to ~1%). Therefore, very large sample 
sizes are needed to detect associations and various 
combinatorial approaches should be used. To date, few studies 
have sought to define or quantify the impact of multiple 
genotype combinations that influence human physical 
performance (Buxens et al., 2011; Eynon et al., 2011b; Hughes 
et al., 2011; Muniesa et al., 2010; Ruiz et al., 2010a; Santiago et 
al., 2010; Ahmetov et al., 2009b; Gómez-Gallego et., 2009b; 
Ruiz et al., 2009; Ahmetov et al., 2008e; Williams and Folland, 
2008; Saunders et al., 2006; Williams et al., 2004). Williams et 
al. (2004) had shown evidence for an interaction between the 
BDKRB2–9/+9 and ACE I/D polymorphisms in 115 British 
subjects, with individuals who were carriers of the ACE II + 
BDRRB2 –9/–9 genotype combination having the highest 
efficiency of muscular contraction. Furthermore, the 
ACE(I)/BDRRB2(–9) (“high kinin receptor activity”) haplotype 

was significantly associated with the distance of the preferred 
endurance event among elite British athletes (P = 0.003). 
Similarly, Saunders et al. (2006) found that the NOS3 Glu298 
allele combined with a BDKRB2 –9/–9 genotype was over-

represented in the fastest-finishing Ironman triathletes (28.6%) 
compared with controls (17.3%; P = 0.028). Gómez-Gallego et 
al. (2009b) had shown that professional road cyclists with the 
most strength/power oriented genotype combination, namely 
ACE DD + ACTN3 RR/RX, had higher respiratory compensation 
threshold values than those with the intermediate combinations 
(II + RX/RR, P = 0.036; and DD + XX, P = 0.0004) but similar to 
those with the II + XX genotype combination. In a study of 173 
Russian rowers, the prevalent combination of ACE I/D, ACTN3 
R577X and PPARA intron 7 G/C genotypes in all groups was 
ID-RX-GG, and its frequency in elite rowers was different 
compared to controls (28.6% vs. 17.3%) (Ahmetov et al., 2008e). 
Furthermore, the total frequency of the ACE I, ACTN3 R577, 
UCP2 55Val and UCP3 rs1800849 T alleles in highly elite 
Russian rowers was 57.1% (P = 0.027 in comparison with 
controls (41.2%)). An increasing linear trend of the total 

favourable allele frequency with increasing level of rowing 
achievement has also been reported (41.9% (non-elite) → 43% 
(sub-elite) → 45.8% (elite) → 57.1% (highly elite)) (Ahmetov et 
al., 2008e). Recently, Ahmetov et al. (2009b) assessed the 
combined impact of 10 gene polymorphisms on endurance 
athlete status in a study of 1,432 Russian athletes and 1,132 
controls. Firstly, athletes and controls were classified according 
to the number of ‘endurance’ polymorphic alleles (NFATC4 
Gly160, PPARA rs4253778 G, PPARD rs2016520 C, 
PPARGC1A Gly482, PPARGC1B 203Pro, PPP3R1 promoter 5I, 
TFAM 12Thr, UCP2 55Val, UCP3 rs1800849 T and VEGFA 
rs2010963 C) they possessed. The ‘endurance’ score ranged 
from 3 to 13 for controls, and from 5 to 14 for the predominantly 
endurance-oriented athletes (athletes of long endurance and 
middle endurance groups; n = 578). The most frequently 
observed number of ‘endurance’ alleles in controls and 
endurance-oriented athletes was 8 (21.7%) and 9 (24.6%) 
respectively. On this basis, all subjects were classified into two 
groups as having a low (≤ 8) or high (≥ 9) number of ‘endurance’ 
alleles. The proportion of subjects with a high number of 
‘endurance’ alleles was significantly larger in the mixed 
(aerobic/anaerobic) group (non-elite: 45.6%, P = 0.038; sub-elite: 
62.9%, P = 0.0026; elite: 60.0%, P = 0.042), in the short-
endurance group (non-elite: 46.2%, P = 0.28; sub-elite: 60.0%, 
P = 5.6 x 10

-4
; elite: 70.5%, P = 0.0060), in the middle-

endurance group (non-elite: 44.1%, P = 0.18; sub-elite: 62.4%, 
P = 4.0 x 10

-8
; elite: 71.7%, P = 1.8 x 10

-5
) and in the long-

endurance group (non-elite: 56.6%, P = 2.3 x 10
-6

; sub-elite: 
75.0%, P = 8.7 x 10

-9
; elite: 76.4%, P = 1.0 x 10

-8
) compared to 

controls (37.8%). On the contrary, the proportion of athletes with 
high number of ‘endurance’ alleles from the power group was 
not significantly different from controls (non-elite: 40.6% (n = 
261); sub-elite: 41.4% (n = 116); elite: 40.4% (n = 104)). 

Furthermore, the largest difference was seen when the top elite 
predominantly endurance-oriented athletes only (n = 21) were 
compared to controls (85.7% vs. 37.8%, P = 7.6 x 10

-6
). The 

combined impact of the 10 gene polymorphisms on the two 
intermediate endurance phenotypes, namely the proportion of 
slow-twitch muscle fibres in m. vastus lateralis of physically 
active healthy men (n = 45) and maximal oxygen consumption 
in rowers of the national competitive standard (VO2max 55.7 ± 
0.9 ml/min/kg; n = 50) was also examined. The number of 
‘endurance’ alleles positively correlated with the proportion of 
slow-twitch fibers (r = 0.50; P = 4.0 x 10

-4
) and with the maximal 

oxygen consumption of rowers (r = 0.46; P = 7.0 x 10
-4

) 
(Ahmetov et al., 2009b). Ruiz et al. (2009) analysed seven 
genetic polymorphisms (ACE, ACTN3, AMPD1, CKMM, HFE, 
GDF8 and PPARGC1A) in 46 world-class endurance athletes 
and 123 controls. Using the model developed by Williams and 
Folland (2008), they determined that the mean ‘total genotype 
score’ (TGS, from the accumulated combination of the seven 
polymorphisms, with a maximum value of ‘100’ for the 
theoretically optimal polygenic score) was higher in athletes 
(70.2 ± 15.6) than in controls (62.4 ± 11.5) and also higher than 
predicted for the total Spanish population (60.8 ± 12.1), 
suggesting an overall more ‘favorable’ polygenic profile in the 
athlete group (Ruiz et al., 2009). In a following study, Ruiz et al. 
(2010a) determined the TGS in 53 elite power athletes (jumpers, 
sprinters), 100 endurance athletes (distance runners and road 
cyclists) and 100 non-athletic controls using six polymorphisms 
(ACE I/D, ACTN3 R577X, AGT Met235Thr, GDF8 K153R, IL6 -
174 G/C, and NOS3 -786T>C). The mean TGS was significantly 

higher in power athletes (70.8 ± 17.3) compared with endurance 
athletes (60.4 ± 15.9; P < 0.001) and controls (63.3 ± 13.2; P = 
0.012), whereas it did not differ between the latter two groups. 
Additionally, Eynon et al. (2011b) analysed the endurance 
polygenic profile of 74 Israeli endurance athletes, 81 power 
athletes and 240 non-athletes using six gene polymorphisms in 
the PPARGC1A-NRF-TFAM pathway (GABPB1 (NRF2) 
rs12594956 A/C, GABPB1 rs7181866 A/G, GABPB1 rs8031031 
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C/T, PPARA rs4253778 G/C, PPARD rs2016520 T/C, 
PPARGC1A Gly482Ser). The TGS was significantly higher (P < 
0.001) in endurance athletes (38.9 ± 17.1) compared with 
controls (30.6 ± 12.4) or power athletes (29.0 ± 11.2). Finally, 
Buxens et al. (2011) compared genetic profiles in two Spanish 
cohorts of world-class endurance (n = 100) and power male 
athletes (n = 53) using DNA-microarray technology (36 genetic 
variants (within 20 different genes). Stepwise multivariate 
logistic regression showed that the rs1800795 (IL6 -174 G/C), 
rs1208 (NAT2 K268R) and rs2070744 (NOS3 -786 T/C) 
polymorphisms significantly predicted sport performance. The 
contribution of the studied genetic factors to sports performance 
was 21.4%. 

Summary 

It has long been recognized that the interindividual variability of 
physical performance traits and the ability to become an elite 
athlete have a strong genetic basis. The question is no longer 
whether or not there is a genetic component to athletic potential 
and endurance or strength trainability, but exactly which genes 
(out of ~23000 human genes) and DNA 
polymorphisms/mutations (out of >50 million SNPs, indels, 
CNVs. and mutations) are involved and by which mechanisms 
and pathways they exert their effect. Our current progress 
towards answering these questions still represents only the first 
steps towards a complete understanding of the genetic factors 
that influence human physical performance. The next decade 
will be an exciting period for sports genomics, as we apply the 
new DNA technologies (like whole genome sequencing, 
genome-wide association studies (GWAS) etc.) and 
bioinformatics to further dissect and analyze the genetic effects 
on human physical ability. Efforts to perform GWAS in the 
cohorts of athletes are presently underway (at least athletes 
from Ethiopia, Jamaica, Kenya, Russia and USA) (Fuku et al., 
2010).  

The current review provides evidence that at least 79 genetic 
markers (located within 40 autosomal genes, mitochondrial DNA 
and Y-chromosome) are linked to elite athlete status (59 
endurance-related and 20 power/strength-related genetic 
markers). However, it should be emphasized that most (74.7%) 
of the case-control and association studies have not yet been 
replicated in independent samples. Further, each contributing 
gene can explain only a small portion of the observed 
interindividual differences in training-induced effects, and there 
is still no evidence that the identified variants have substantial 
predictive value for prospectively identifying potential elite 
athletes. Since DNA polymorphisms for athletic performance do 
not fully explain the heritability of athlete status, other forms of 
variation, such as rare mutations and epigenetics marks (i.e. 
stable and heritable changes in gene expression), must be 
considered (Tennessen et al., 2012; Baar 2010). The issues 
with respect to appropriate study designs, sample size, 
population stratification and quality of the genotype/phenotype 
measurement are also of great importance. Future research 
should be also focused on identifying genetic markers 
associated with other sport-related phenotypes, such as 
flexibility, coordination and temperament of elite athletes. The 
impact of genetics in sports and exercise appears to have 
multiple influences. Its positive effect on exercise performance 
must be combined with effective training programs and 
favourable lifestyle habits for success in sports and health 
benefits. Accordingly, one of the applications of sports genetics 
could be the development of predictive genetic performance 
tests. Furthermore, the application of genetic testing in sports 
could provide new opportunities for sports clubs to understand 
athletes’ susceptibility for certain pathological states (injuries, 
cardiomyopathies, sudden death etc.), map genetic suitability 

for specific team positions and roles, and to gain insights into 
athletes’ development in various sports or physical activities. 

Conclusion 

To conclude, sports genomics is still in the discovery phase and 
abundant replication studies are needed before these largely 
pioneering findings can be extended to practice in sport. Future 
research including genome-wide association studies, whole-
genome sequencing, epigenetic, transcriptomic and proteomic 
profiling will allow a better understanding of genetic make-up 
and molecular physiology of elite athletes. 
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