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ABSTRACT

To fully take advantage of the data provided by large-scale structure surveys, we need to quantify the potential impact of baryonic
effects, such as feedback from active galactic nuclei (AGN) and star formation, on cosmological observables. In simulations,
feedback processes originate on scales that remain unresolved. Therefore, they need to be sourced via subgrid models that contain
free parameters. We use machine learning to calibrate the AGN and stellar feedback models for the FLAMINGO (Fullhydro
Large-scale structure simulations with All-sky Mapping for the Interpretation of Next Generation Observations) cosmological
hydrodynamical simulations. Using Gaussian process emulators trained on Latin hypercubes of 32 smaller volume simulations,
we model how the galaxy stellar mass function (SMF) and cluster gas fractions change as a function of the subgrid parameters.
The emulators are then fit to observational data, allowing for the inclusion of potential observational biases. We apply our
method to the three different FLAMINGO resolutions, spanning a factor of 64 in particle mass, recovering the observed relations
within the respective resolved mass ranges. We also use the emulators, which link changes in subgrid parameters to changes
in observables, to find models that skirt or exceed the observationally allowed range for cluster gas fractions and the SMF.
Our method enables us to define model variations in terms of the data that they are calibrated to rather than the values of
specific subgrid parameters. This approach is useful, because subgrid parameters are typically not directly linked to particular
observables, and predictions for a specific observable are influenced by multiple subgrid parameters.

Key words: methods: numerical —methods: statistical — galaxies: clusters: general — galaxies: formation —large-scale structure
of Universe —cosmology: theory.

et al. 2022), baryon acoustic oscillations (e.g. Alam et al. 2021), and

1 INTRODUCTION more (for a review see Turner 2022). While all the probes broadly

The evolution of the large-scale distribution of matter in the Universe
is highly sensitive to the underlying cosmological model. Current
probes have given us our concordance cosmological model Lambda
cold dark matter (ACDM), which consists of a spatially flat universe,
where dark energy and cold dark matter dominate the current energy
density (for a review, see Frieman, Turner & Huterer 2008).

The concordance model has been independently validated by
a large array of probes. These include the cosmic microwave
background (CMB) (e.g. Planck Collaboration VI 2020), galaxy
clustering and gravitational lensing (e.g. Heymans et al. 2021; Abbott
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agree with the ACDM model, tensions remain between early universe
probes, like the CMB, and late-time probes, like the distance ladder
and weak lensing. For the Hy and o g parameters, the tension is at the
level of a few standard deviations (e.g. Heymans et al. 2021; Abbott
et al. 2022; Riess et al. 2022). Next-generation surveys like Euclid’
and LSST? will measure the matter power spectrum to per cent level
accuracy (Euclid Collaboration 2020). The results from these surveys
will provide us with a stringent test of the concordance model, and

Thttps://www.euclid-ec.org/
Zhttps://www.lsst.org/
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show us whether these tensions will force us to modify the ACDM
model.

Most of the modelling work for large-scale structures is done
with collisionless N-body simulations (e.g. Heitmann et al. 2016;
Euclid Collaboration 2019; DeRose et al. 2021). N-body simulations
model the evolution of cold dark matter and can accurately predict
the structure and clustering of dark matter haloes under the effect
of gravity only. The dark part of the matter component is dominant
in mass and hence, predictions from these simulations may provide
stringent cosmological constraints. However, baryons change the
distribution of dark matter through back reaction effects, but, with
the exception of gravitational lensing, we are limited to observing
the imprint of the distribution of dark matter on the baryonic matter.
Most of the baryonic matter is found in the tenuous intergalactic
medium (e.g. Nicastro et al. 2018; Macquart et al. 2020), which is
very challenging to observe directly. Large-scale structure surveys
use galaxies, which are located within dark matter haloes, to map the
distribution of matter.

Sophisticated semi-analytical and semi-empirical models can
make predictions for how galaxies evolve within their dark matter
haloes (e.g. Cole et al. 2015; Lacey et al. 2016; Moster, Naab &
White 2018; Behroozi et al. 2019; Ayromlou et al. 2021). Baryonic
effects can be simulated with halo models (e.g. Semboloni et al.
2011; Semboloni, Hoekstra & Schaye 2013; Mead et al. 2015;
Debackere, Schaye & Hoekstra 2020; Acuto et al. 2021), added to
N-body simulations by baryonification algorithms (e.g. Schneider &
Teyssier 2015; Arico et al. 2021; Giri & Schneider 2021) or
included as a parametric correction to the matter power spectrum
(Van Daalen, McCarthy & Schaye 2020; Salcido et al. 2023).
However, the most self-consistent way to model how the large-
scale structure is coupled with baryons, is via large cosmological
hydrodynamical simulations. Modern simulations like Magneticum
(Hirschmann et al. 2014), EAGLE (Crain et al. 2015; Schaye et al.
2015), Horizon-AGN (Kaviraj et al. 2017), IllustrisTNG (Pillepich
et al. 2018), BAHAMAS (McCarthy et al. 2017, 2018), SIMBA
(Davé et al. 2019), and MilleniumTNG (Pakmor et al. 2022) provide
predictions for the interplay between galaxy formation and the large-
scale structure. The results from hydrodynamical simulations can
also inform the simpler parametric and analytic models.

One of the main difficulties for hydrodynamical simulations is the
implementation and tuning of relevant astrophysical processes that
originate on unresolved scales through subgrid physics. Processes
like star formation and black hole (BH) growth occur on parsec
scales, and are not resolved. The resulting feedback from stars and
active galactic nuclei (AGN), do influence the distribution of matter
on cosmological scales (Van Daalen et al. 2011, 2020; Debackere
et al. 2020; Schneider et al. 2020). Therefore, we need to create
simulations that model their effect on the resolved scales.

Subgrid physics models are characterized by a set of free param-
eters, in the sense that there is both uncertainty in the processes
we try to model and uncertainty in how the models are affected
by numerical limitations. An example of the latter is the impact of
numerical overcooling on galactic wind models (see Dalla Vecchia &
Schaye 2012). The numerical effects combined with the general
non-linearity of galaxy formation makes it difficult to implement
subgrid physics based solely on first principles. Instead, we have to
calibrate the model by comparing it to a selection of observations, a
partial forfeit of their predictive power. As argued by Schaye et al.
(2015), this is a necessary sacrifice. By ensuring certain relations
are reproduced, the simulation retains predictive power for other
relations. Calibrating subgrid physics forces us to find a balance

MNRAS 526, 6103-6127 (2023)

between how many observables one tries to match and how many of
the results can be deemed predictions.

In this paper, we discuss the calibration strategy used for the low-,
intermediate- and high-resolution simulations of the FLAMINGO
project (Full-hydro Large-scale structure simulations with All-sky
Mapping for the Interpretation of Next Generation Observations;
Schaye et al. 2023). The intermediate-resolution FLAMINGO model
has the same resolution (mgs = 1.07 x 10° My) as used for the
BAHAMAS project (McCarthy et al. 2017, 2018), but in a volume of
(2.8 Gpc)®. This volume is over two orders of magnitude larger than
BAHAMAS. Additionally, FLAMINGO includes a suite of feedback
and cosmology variations in (1 Gpc)® volumes. This includes a
high (mg,s = 1.34 x 10 My) and a low (Mgqs = 8.56 x 10° M)
resolution variation. Our goal is to expand the large-scale structure
science of the BAHAMAS project to larger volumes, different
resolutions, and more cosmology and astrophysics variations with a
new code and an improved subgrid physics model. The FLAMINGO
simulation outputs also include on-the-fly full sky lightcones, both
as particles and as maps, for a variety of observables. Similarly to
BAHAMAS, we will calibrate to the observed present-day galaxy
stellar mass function (SMF) and the gas fractions in groups and
clusters of galaxies (fy,s). We opt for the SMF to ensure we can
reproduce galaxy clustering and lensing statistics if we use the
correct cosmology. The gas fraction is used to ensure we have a
realistic distribution of gas in and around clusters, which is not only
important for cluster cosmology, but also for baryonic effects on the
matter power spectrum (Semboloni et al. 2011; Schneider & Teyssier
2015; Debackere et al. 2020; Van Daalen et al. 2020; Arico et al.
2021; Salcido et al. 2023). While our fiducial models are calibrated
to reproduce the data, we also calibrate the subgrid physics to the gas
fraction and SMF data that has been shifted relative to the observed
values. These feedback variations will enable future FLAMINGO
projects to test the importance of astrophysical effects constrained
by the uncertainties in the data.

For BAHAMAS, and also for simulations like EAGLE and
MlustrisTNG, calibration was done by hand by varying the subgrid
parameters within some reasonable range until the simulation lined
up with the calibration targets. This approach works reasonably well
in the context of galaxy formation, but it introduces biases into the
parameter selection. For cosmology applications, we require a more
systematic and controlled approach. We want to be able to sample
the parameter space with a Markov chain Monte Carlo (MCMC)
method and to find the posterior probabilities of each of the subgrid
parameter values. This approach also allows us to take into account
potential systematic effects in the data and/or simulations.

Because N-body simulations are too computationally expensive to
be used directly in MCMC-like methods, we make use of machine
learning, specifically emulation using Gaussian processes. While it
is too expensive to run a new simulation for each MCMC step,
we can train an emulator on a carefully sampled selection of input
simulations. The emulator then gives us the predicted observable
as a continuous function of the input parameters, which can be
fed into any likelihood calculation code. Emulator-based methods
have been used in combination with semi-analytic models of galaxy
formation (Bower et al. 2010; Vernon, Goldstein & Bower 2014,
Rodrigues, Vernon & Bower 2017; Elliott, Baugh & Lacey 2021)
and have become particularly popular for cosmology. By training
emulators on dark-matter-only simulations, their full non-linear
matter power spectrum can be predicted with per cent level precision
(e.g. Heitmann et al. 2009, 2016; Euclid Collaboration 2019; Angulo
et al. 2021; Moran et al. 2023).
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Table 1. Priors and best-fitting values for the subgrid parameters for each of the three simulation resolutions.

Resolution Parameter fsN Avsn logioATacn [K] BeH
Prior [0.2,0.9] [80, 400] [7.7,8.9] [0.0, 0.9]
High resolution [m8] Median + CL 0.56%1, 16975 8.031513 0.23020
best-fitting 0.524 259 8.07 0.038
Prior [0, 0.5] [200, 800] [7.5, 8.5] [0.1,0.9]
Intermediate resolution [m9] Median + CL 0.20%0:0 4797157 7.8455,18 0.551012
best-fitting 0.238 562 7.95 0514
Prior - - [7,9.5] [0, 3]
Low resolution [m10] Median + CL - - 8.26t8:}g O.SOfgjig
best-fitting - - 8.29 0.373
Log No Yes Yes No

Notes. Low-resolution simulations do not include stellar feedback. The rows titled ‘Median + CL’ give the median and the 16th and 84th
percentile confidence level (CL) obtained from the posterior of the fits. The rows titled ‘best-fitting” list the maximum-likelihood value
from the fitting, which is our fiducial value. The last row ‘Log’ indicates whether the parameter is sampled logarithmically. The best-fitting
values for the jet model are listed in Table 8 and the priors for the jet model are listed in Table C1.

We directly emulate our calibration targets: the SMF and the
gas fractions in groups and clusters. This allows us to create a
continuous simulation-based model that can be compared with
observations. With the emulator, we can use MCMC to directly
fit the subgrid physics parameters to the observational data, while
modelling statistical and systematic errors in both the simulations and
the data. This procedure not only gives us a well-calibrated model,
but also lets us determine the maximum variations allowed by the
model. In this way, our resulting simulations can provide upper and
lower limits on the expected baryonic effects. More general machine-
learning techniques have been used to calibrate hydrodynamical
simulations. Jo et al. (2023) calibrate to baryonic observables in the
(25 Mpc)® volumes of the CAMELS project (Villaescusa-Navarro
et al. 2021) and Oh et al. (2022) apply a similar methodology to
zooms of Milky Way haloes. However, these methods have not been
applied to simulations of large cosmological volumes and they have
not accounted for possible observational biases.

This paper is structured as follows. In Section 2, we describe
the most relevant aspects of our simulation method and galaxy
formation models. In Section 3, the reasoning for our calibration
targets is explained, and we describe our compilation of data and
how we include potential observational and simulation-originated
biases in our analysis. In Section 4, we describe how we obtain the
training data for the emulators. We also discuss how the emulators
are trained and how we estimate the uncertainty in the predictions
of the emulators. We describe our likelihoods and our fitting method
in Section 5. In Section 6 , we show the results of fitting the
emulators at the three FLAMINGO resolutions. We also discuss
how the emulators can be used to better understand subgrid physics
using parameter sweeps and we use the emulator to find models that
skirt or exceed the observational allowed range for the cluster gas
fractions and the SMF. Finally, we summarize our method, strategy
and results in Section 7. In this work, Rso. is defined as the radius
within which the mean internal density is 500 times the critical
density. The radius Rsgo. also defines Msgo., which is the mass inside
Rs00c-

2 SIMULATIONS

The simulation methods and galaxy formation model are described
in detail in Schaye et al. (2023). Here, we will provide a summary
of the most relevant aspects. We describe in more detail the subgrid

prescriptions that we calibrate in this work, namely those for stellar
feedback (Section 2.1), the growth of supermassive BHs (Section
2.2), and AGN feedback (Section 2.3), and we will motivate the
choice of priors for the subgrid parameters that are varied (these are
listed in Table 1).

All simulations in this work use the open-source code SWIFT
(Schaller et al. 2023). SWIFT is an N-body gravity and smooth particle
hydrodynamics (SPH) solver that makes use of a fine-grained tasking
framework and runs across multiple compute nodes using MPI.
Gravity is solved using the Fast Multiple Method (Greengard &
Rokhlin 1987). We use the SPHENIX SPH scheme (Borrow et al.
2022b) with a Wendland (1995) C? kernel. Massive neutrinos are
implemented into SWIFT via the §f method of Elbers et al. (2021).

Initial conditions are generated using a modified version of
MONOFONIC (Hahn, Rampf & Uhlemann 2021) that includes massive
neutrinos. We use unperturbed initial conditions for the neutrino
particles. We do not include large-scale neutrino perturbations in the
initial conditions, as these have a negligible effect in the small box
sizes used for this work. We adopt the ‘3 x 2pt + all’ cosmology from
Abbott et al. (2022) (2 = 0.306, Qp, = 0.0486, o3 =0.807, Hy =
68.1, and ny = 0.967) with a minimal neutrino mass of 0.06 eV. The
particle masses and gravitational softening lengths corresponding
to the three different resolutions that we will consider are listed in
Table 2.

For simulations with volumes as large as FLAMINGO, it is
currently impossible to resolve all the processes that are important
for galaxy formation. Therefore, we make use of subgrid models.
FLAMINGO builds upon the models of OWLS (Schaye et al.
2010), used for Cosmo-OWLS (Le Brun et al. 2014), BAHAMAS
(McCarthy et al. 2017), and EAGLE (Schaye et al. 2015), ported
from the code GADGET (Springel 2005) to SWIFT.

We use the radiative cooling tables from Ploeckinger & Schaye
(2020), which are based on photoionization models run with CLOUDY
(Ferland et al. 2017) that include both the metagalactic and interstel-
lar radiation fields, and that account for self-shielding, dust, and
cosmic rays.

As we are unable to resolve the multiphase interstellar medium,
we follow Schaye & Dalla Vecchia (2008) and impose a temperature
floor. The pressure of gas with hydrogen number densities ny >
10*cm™ and an overdensity greater than 100 is limited from
below to P/kg = 800 K (ny/10~* cm™3)*3, where kg is the Boltzmann
constant.

MNRAS 526, 6103-6127 (2023)
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Table 2. Numerical characteristics of the final Latin hypercubes of simulations.

Resolution L N mpm €com €prop

(cMpc) Mop) Mo) (ckpc) (pkpc)
Low [m10] 400 2 x 360° 8.56 x 10° 4.52 x 1010 44.6 11.40
Intermediate [m9] 200 2 x 360° 1.07 x 10° 5.65 x 10° 223 5.70
High [m8] 100 2 x 360° 1.34 x 108 7.06 x 108 1.2 2.85

Notes. The columns list the resolution qualifier, comoving box size, number of particles (there are initially equal numbers of dark
matter and baryonic particles), initial baryonic particle mass, dark matter particle mass, comoving gravitational softening length, and

maximum physical gravitational softening length.

During the simulation gas particles can be stochastically converted
into star particles following the description of Schaye & Dalla
Vecchia (2008). Particles with total hydrogen number density® ny
> 10~'ecm™3, an overdensity >10, and within 0.3 dex of the
temperature floor are stochastically allowed to convert into stars
with a probability given by the particle’s star formation rate,

) e (Y (n—1)/2
. = mA( Mope ™™ (L P )" M

where m, is the gas particle mass, y = 5/3 is the adiabatic index,
and G is the gravitational constant. The star formation rate is derived
such that self-gravitating discs reproduce the observed Kennicutt—
Schmidt relation (Kennicutt Jr 1998; Kennicutt Jr et al. 2007). We
assume the gas fraction, f,, is unity, A = 1.515 x 107 Mg yr~' pc~2,
andn = 1.4.

For the low-resolution simulation, we were forced to relax the star
formation parameters, as the default prescription was unable to form
enough stars, even in large haloes and without stellar feedback. For
low resolution, all particles with density ny > 1073 cm 3, overdensity
>10 and temperature T < 10° K are star forming.

Each stellar particle is treated as a simple stellar population with
a Chabrier (2003) initial mass function (IMF). Following Wiersma
et al. (2009), we model stellar mass loss and track the abundances of
the individual elements H, He, C, N, O, Ne, Mg, Si, and Fe. We also
include type la supernova with rates taken from Schaye et al. (2015).

2.1 Stellar feedback

Although we will often refer to stellar feedback as supernova
feedback, it may also represent other sources of energy released by
massive stars that are unresolved by our simulations such as stellar
winds, radiation pressure or cosmic rays.

Stellar feedback is implemented kinetically. The energy budget
is normalized to the expected kinetic energy from core-collapse
supernovae, assuming that each star with a mass between 8 and
100M,, injects 10°'erg of kinetic energy into its surrounding
medium. A fraction fsn of this energy is assumed to be coupled
to the ISM on scales resolved by the simulation and is used to kick
neighbouring gas particles with a target velocity Avsy. We use the
method of Chaikin et al. (2022a)* to inject the kinetic energy in a

3Due to a bug, in the intermediate-resolution simulations gas particles with a
metallicity equal to exactly zero were only allowed to form stars at densities
higher than 10cm™3. This had little to no effect on any results at resolved
stellar masses, but it did reduce the number of stars formed in the lowest mass
galaxies. Fixing this bug would potentially have allowed us to match the SMF
to stellar masses corresponding to fewer than 10 particles.

4There is one difference with respect to the method described by the authors.
In the case, where a particle would be kicked twice in a single time-step,
which we do not allow, we put the unused kick energy in a thermal dump,
instead of adding it back to the star’s feedback energy reservoir.

MNRAS 526, 6103-6127 (2023)

statistically isotropic manner while ensuring that both momentum
and energy are conserved. Note that if the relative velocities between
the star and gas particles are non-zero, energy conservation results
in differences between the actual and target kick velocities.

Following Dalla Vecchia & Schaye (2008) and Richings & Schaye
(2016), we inject the kinetic energy probabilistically during each
time-step after the star particle has formed. The probability that a
star particle kicks a given SPH neighbour is

SsNAEsnu(t, At)
mugbAvéN

Prick(fsN, AUsN, Mgy, £, At) =2 )

where AFEgn denotes the amount of energy released by the star
particle of age ¢ during a time-step At and m,gy, is the total gas mass
in the star particle’s SPH kernel. The feedback efficiency, fsn, and
the target kick velocity Avgy are the two stellar feedback parameters
that are varied during the calibration.

The effect of stellar feedback generally scales with fgn, which sets
the amount of energy that is injected. Based on the calibration of
BAHAMAS (McCarthy et al. 2017) and after some experimentation
with runs in which we varied only one parameter, we settled on prior
ranges of 0.2—0.9 and 0—0.5 for high and intermediate resolution, re-
spectively. The low-resolution simulations do not require any stellar
feedback at all because of the strong suppression of star formation
due to the limited resolution and because galaxies in the regime
where stellar feedback dominates (stellar mass M, < 10'! M) are
only sampled by < 10 stellar particles.

If the kick velocity is too small, then stellar feedback ceases to
be effective because of excessive radiative losses caused by the too-
low post-shock temperatures (the well-known numerical overcooling
problem, see Dalla Vecchia & Schaye 2012) and/or because the
velocities are small compared to the escape velocities. The lower
limits for Avgy are 80 and 200 km s~ for the high- and intermediate-
resolution simulations, respectively. Our additional tests showed that
for lower velocities the kicks stopped having a significant effect.

If the kick velocity is too large, then the feedback becomes poorly
sampled, thus limiting its effectiveness. Our aim is to calibrate the
SMF down to masses corresponding to just a few stellar particles.
The expectation value for the number of kicks imparted by a single
stellar particle is given by Chaikin et al. (2022a)

Ssn Avsn -
Nricks =185 — _— s 3
{Nkicks, SN) (0.25 200km o (3)

where we assumed the stellar and gas particles to have the same mass.
Based on the above considerations and some small test runs, we limit
the maximum kick velocity to 400 and 800 km s~' for the high-
and intermediate-resolution simulations, respectively. This implies
(Nkicks,sN) ~ 2 and (Niicks,sn) =~ 0.4 for high- and intermediate
resolution, respectively. There should be at least four kicks for objects
with 10 stellar particles at each resolution.
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2.2 BH growth

Following Di Matteo et al. (2008) and Booth & Schaye (2009), we
seed haloes with BHs during the simulation. Starting at z = 19, we
run a friends of friends group finder every time the expansion factor
increases by a factor of 1.00751. We seed a BH in every group that
is above a certain mass threshold and that does not already have
a BH. We seed BHs in haloes above a mass of 2.757 x 10'' Mg
(mg/1.07 x 10°My), corresponding to roughly fifty dark matter
particles at each resolution. Because the Bondi & Hoyle (1944)
accretion rate is proportional to the square of the BH mass, an increase
in initial mass can cause BHs to grow much earlier. We use a BH
seed mass of 10° My, for intermediate and high resolution, and of
107 M, for low resolution. The seed mass had to be increased for
low resolution, since the rapid growth phase of the BHs corresponds
to unresolved galaxy masses (see e.g. Bower et al. 2017; McAlpine
et al. 2018).

As we do not properly resolve dynamical friction at our resolution,
BHs are repositioned by hand to the minimum of the gravitational
potential following the method of Bahé et al. (2022).> For BH
mergers, we also follow the prescription by Bahé et al. (2022).

Besides merging with other BHs, BHs grow via accretion of gas,
which is assumed to occur at a modified Bondi—Hoyle rate,

An GePmyp

Macer = O 3/2° 4)
(2 +viy)

where mpy is the BH mass, ¢ is the sound speed of the gas, p is the
gas density, c is the speed of light, and vgy is the velocity of the BH
with respect to its environment. The factor « is a boost factor that is
added because we do not resolve the Bondi radius and because we
lack the resolution to model the phase structure of the ISM. We use
the parametrization of Booth & Schaye (2009),

PeH
@ = max [( nH) ,1:|, ®)
nY, x

where ny_, = 0.1 cm™3, which corresponds to the density threshold
for star formation in the intermediate- and high-resolution simula-
tions (we use the same value for all resolutions). The logarithmic
density slope Bpy is a free parameter that we vary during the
calibration. After some experimentation using simulations where
only a single parameter is varied between runs, we settled on priors of
0—-0.9,0.1-0.9, and 0—3 for high, intermediate, and low resolutions,
respectively.

The gas accretion rate is capped at the Eddington (1913) rate.
Following Bahé et al. (2022), the BH is allowed to ‘nibble’ on
neighbouring gas particles until the gas particles only have half of
their original mass remaining.

2.3 AGN feedback

In all but two of the simulations, AGN feedback energy is injected
into the medium surrounding the BH in thermal form using the
prescription from Booth & Schaye (2009). The model used in the
remaining simulations is based on jet feedback and is described in
Section 2.3.1.

3The exclusion of the BH from the calculation of the gravitational potential
used for repositioning was only done for high and low resolutions, as we
only became aware of its importance later. This significantly strengthened
the quenching of star formation in galaxies with large stellar masses for our
high-resolution simulations.
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While accreting gas, the BH adds a fraction €,e; = 0.015 of the
accreted rest-mass energy to an internal feedback energy reservoir,
where €, = 0.1 is the assumed radiative efficiency and €; = 0.15 is the
assumed AGN feedback efficiency, i.e. the fraction of the radiated
energy that is coupled to the gas surrounding the BH. Once enough
energy is available to increase the temperature of nye, gas particles
by ATacn, this energy is injected into the neighbouring gas particles.
The energy injected in a single event is proportional to 7pey AT AGN,
where ATagn is the increase in temperature that is applied to 7pey
neighbours. We find that it is the product npe, ATagn that is most
important for regulating how much gas is expelled from clusters, and
that ATagn and npeye are largely degenerate. We therefore fix npey to
one and use ATagn as a free parameter that is varied in the calibration.
Following the findings by Chaikin et al. (2022b), we inject the thermal
energy into the nearest neighbour of the BH, which gives results that
are nearly indistinguishable from a statistically isotropic approach.

To choose the prior for ATagn We take a similar approach as
for the stellar feedback kick velocity. However, instead of avoiding
velocities that are too low to have an effect, we now have to make sure
that feedback raises the temperature to a value sufficiently high to
avoid catastrophic numerical overcooling. The sampling issue is also
slightly different than for stellar feedback. While stellar feedback is
limited to young stars, BHs can inject energy throughout their lives
and hence the time sampling of these events becomes important. If
the time between AGN feedback events becomes too long, then the
BHs will be unable to self-regulate. If BHs cannot regulate their
growth, then this can lead to an unrealistic mass distribution of both
the BHs and their host galaxies. To summarize, we have two main
considerations:

(i) What is the ATagn below which radiative losses are already
severe at injection for the densities at which stars form?

(i1) What is the AT sgn above which the time between AGN events
becomes longer than the BH growth time?

Dalla Vecchia & Schaye (2012) demonstrated that the density
above which thermal feedback becomes ineffective can be predicted
based on the ratio of the radiative cooling time, which depends on
the density and temperature, and the sound crossing time across
a resolution element, which depends on the numerical resolution.
According to their equation (18), feedback becomes inefficient for
densities exceeding

AT 3/2 i —172
ny,, = 0.25 cm™? éGN Mg 5 . 6)
1075 K 1.09 x 10° Mg

Comparing this to our threshold for star formation (ny = 10~' cm™3

for intermediate/high resolution and 10~ cm~ for low resolution),
yields minimum values of logioATagn/K = 6.9, 7.2, and 6.2 for
the high, intermediate, and low resolution, respectively. However,
the above equation assumes radiative losses to be dominated by
Bremsstrahlung and Dalla Vecchia & Schaye (2012) showed that
it underestimates the radiative losses for ATxgn < 107 K. For this
reason, we do not consider values below 107 K. On the other hand,
since we inject the energy at the end of the time step, the feedback
can do work during a single time step even if the temperature is too
low to avoid overcooling, which means that somewhat lower values
than implied by the above equation (but still higher than 107 K) may
still be of interest.

If we define Amgpy to be the gas mass that must be accreted for
the BH to have sufficient energy to heat a single gas particle, then
the ratio of the time between AGN feedback events and the time of
BH growth is given by (Booth & Schaye 2009),
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where y = 5/3 is the ratio of specific heats and = 0.6 is the mean
particle mass in units of the proton mass my. Given that we expect
to need AGN feedback to quench star formation in galaxies with
stellar mass M, > 10'' M and that in this mass range, BHs are
observed to have masses Mgy ~ 107> M, (Héring & Rix 2004), we
need the BHs to become self-regulating when Mpy < 108 M. The
condition fagn < fpy then implies that for our npe, = 1 we require
ATxcn < 1085 K for intermediate resolution, and values eight times
higher (lower) for high (low) resolution.

Based on the above considerations and some small test runs,
we adopted the flat priors log;0ATacn/K = 7.7—8.9, 7.5-8.5, and
7.0—9.5 for high, intermediate, and low resolutions, respectively. For
both intermediate and high resolution, the prior ranges are smaller
than what is possible based on our considerations. From our test
runs, we found that these ranges bracket a sufficiently large range in
the observables we are interested in and the smaller ranges lead to
slightly better sampling of the parameter space around the best-fitting
model. For low resolution, the prior extends to (unnecessarily) high
values, but we will see that the best-fitting value is actually similar
to those for the other resolutions. We can afford a larger prior range
for the low resolution simulations as we are only sampling two
parameters.

@)

2.3.1 Jet feedback

In addition to the fully thermal AGN feedback scheme described
above, we also calibrate a kinetic AGN feedback variation. The
model used for kinetic AGN feedback is based on the spin-driven jet
feedback model described by Husko et al. (2022), and implemented
into SWIFT. In this model, energy is injected by kicking two particles
on opposite sides of the BH, according to its angular momentum
vector. The angular momentum of the BH is calculated in a subgrid
model for an accretion disc that is based on general relativistic mag-
netohydrodynamics simulations of single BHs in the low accretion
regime (< 0.01 Eddington). For more details, see Husko et al. (2022).
The spin from BHs that remains after mergers is computed according
to the description by Rezzolla et al. (2008).

Due to the relatively low resolutions used for FLAMINGO, we
make some simplifications to the complete model. As we intend for
the jet model to be maximally different from the thermal feedback
mode, we do not switch from kinetic to thermal feedback at high
Eddington rates, and instead use the kinetic feedback at all accretion
rates. Instead of using the efficiencies based on the subgrid accretion
model, we fix the jet efficiency to € = 0.015. This efficiency is
equal to the combined coupling and radiative efficiency, €¢e,, for
the thermal mode feedback. This implies that for each unit of mass
accreted by the BH, the same amount of energy becomes available
in the jet model as for the fiducial thermal model. While we do not
use a spin-dependent feedback efficiency, we do still use the subgrid
model to track the angular momentum vector of the BH and use it
to select the direction in which gas particles are kicked. The BH
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accretion model is identical to that described in Section 2.2, and for
calibration of the jet model we vary the boost factor Bgy.

When the BH has accreted enough mass, two neighbouring gas
particles are kicked with a total kinetic energy equal to

1 2

E=2x Emgvjew (10)
where vj; is the target jet velocity (we use the term target because
it is the energy that is fixed, similarly to the supernova kicks, see
Section 2.1), which is a free parameter that we calibrate. The jet
velocity plays a role similar to ATxgn for the case of thermal
feedback. As the energy is injected in kinetic form, the model is
less affected by thermal losses, but picking velocities that are too
low will make the gas unable to escape to large distances (see Husko
et al. 2022). For very high values, we again run into sampling issues.
Based on these considerations and some initial tests, we use flat
priors over the range of vj/(kms™!) = 10*7—10*>, corresponding
in energy to ATxgn/K & 107! —10%7. We only calibrate this model
at intermediate resolution.

3 OBSERVATIONAL DATA AND BIASES

Before we can start to calibrate our simulations, we need to have
observational data to compare with our simulations. We calibrate
to the galaxy SMF and the gas fractions in groups and clusters
(feas, 500c(M'500¢))-

One of the goals of the FLAMINGO simulations is to predict
galaxy clustering and cross-correlations between galaxies and other
tracers of the matter distribution. The SMF allows us to constrain the
stellar content of haloes as a function of their mass. This is not only
crucial for the prediction of observations using galaxies, the stellar
mass also directly affects the distribution of dark matter in haloes,
and the orbits of subhaloes. Although matching the SMF does not
ensure that each halo contains the correct stellar mass, it suggests the
relation is at least statistically plausible provided the model assumes
the correct cosmology.

Besides galaxy clustering, we also wish to use FLAMINGO to
investigate other cosmological observables tracing the distribution of
matter, such as X-ray emission, the Sunyaev—Zeldovich (SZ) effect
and lensing maps. From studies by Semboloni et al. (2013), Van
Daalen et al. (2020), and Salcido et al. (2023), we know that the gas
fractions in clusters have a large impact on the matter power spectra
on scales relevant for, for example, cosmic shear. By calibrating to
the observed gas fractions, we can also make robust predictions for
the distribution of gas expelled from group/cluster cores.

We calibrate to the same observables as were used for the BA-
HAMAS simulation (McCarthy et al. 2017, 2018). In this section, we
will discuss the data that we considered and the observational biases
that we account for.

3.1 The galaxy SMF

Constraining the SMF has been the goal of a large number of studies,
many of which are based on the SDSS (Li & White 2009; Bernardi
et al. 2013; D’Souza, Vegetti & Kauffmann 2015; Bernardi et al.
2017) or the more recent GAMA survey (Baldry et al. 2012; Wright
et al. 2017; Driver et al. 2022). A compilation of these data sets
is shown in the left-hand panel of Fig. 1. It is clear that there are
substantial systematic differences between some of the different
groups that have tried to measure the SMF, particularly at the low-
and high-mass ends. However, some of the most significant outliers
are older results. While there are still discrepancies at the high-
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Figure 1. Compilation of observational data used for calibration. On the left-hand panel, we plot the SMF. On the right-hand panel, we plot the cluster gas
fraction versus total mass, both measured at Rsoo.. Where available we display the 10 measurement errors, which do not include intrinsic scatter. The X-ray
data are binned from a compilation of available data, see Section 3.2.1, except the lowest mass point, which is obtained from a fit by Lovisari, Reiprich &
Schellenberger (2015). We show the individual clusters as black dots. Note that the X-ray data are plotted without any correction for the hydrostatic mass bias.

For this work, we use the Driver et al. (2022) data for the SMF, and the X-ray and Akino et al. (2022) data for the gas fractions.

Table 3. The mass ranges that are used for each observable when fitting the emulator to data.

SMF M, lower limit (Mp) SMF M, upper limit (Mg)  fgas, s00c Ms00c lower limit (Mg)  fgas, s00c Ms00c upper limit (M)

Observable

High resolution [m8] 10867 101150
Intermediate resolution [m9] 10992 101150
Low resolution [m10] 101117 101150

1013.50 1013.73
101350 101436
101350 101453

Notes. The values are rounded because the exact ranges vary with the values of the observational bias factors

mass end, the results from the three most recent studies, D’Souza
et al. (2015), Bernardi et al. (2017) and Driver et al. (2022), are in
reasonable agreement over a large part of the mass range. Instead
of trying to combine different data sets, we limit the fitted mass
range to M, < 10''3 Mg and we choose to use the most recent
GAMA result from Driver et al. (2022) at z = 0. Not only is this
the most recent study, it also provides a useful prior for possible
biasing due to cosmic variance. The upper mass limit also decreases
the possible bias we get due to our choice of simulation aperture
(see Section 4.2 and Appendix A for more details). We always
set a simulation-resolution-dependent lower mass limit on the mass
range we use for fitting. The mass ranges we use can be found in
Table 3.

Fitting the SMFs from simulations to observations requires special
care. There are some important differences/sources of uncertainty
that need to be taken into account:

(i) Observations suffer from random errors in measuring the
mass. While simulations have no mass measurement errors (at
least for a fixed definition of a galaxy, i.e. for a given subhalo
finder). Simulations do suffer from randomness errors (see Borrow
et al. 2022a), as discussed by these authors, this issue is negli-
gible for our analysis because we consider large ensembles of
galaxies.

(ii) Observations possibly suffer from systematic errors, which
may originate from spectral energy distribution fitting, corrections
for dust extinction, surface brightness profile fitting, and/or selection
effects.

(iii) Observations may suffer from cosmic variance.

Before discussing how we take each of these effects into account,
we note that the uncertainty in the stellar IMF is not directly relevant
because the observational analysis and the simulations use the same
IMF. The observed SMF also depends on the assumed cosmology,
but this is close enough to the one used in the simulations to have a
negligible effect on the comparison.

3.1.1 Random errors on the observed stellar mass

Symmetric observational scatter in the measured stellar mass will
cause a systematic shift in the inferred SMF. Because there are more
galaxies in lower mass bins, it is more likely for galaxies to scatter to a
higher mass bin than to a lower mass bin. This is especially important
at the high-mass end, where the SMF is steep. This effect is known
as Eddington (1913) bias. We account for it by adding scatter to the
simulation masses. We adopt the log-normal scatter from Behroozi
et al. (2019), which has a redshift-dependent standard deviation of

o(log,y M) = min (0.070 4+ 0.071z, 0.3) dex, (11)
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Table 4. Overview of the cluster gas mass fraction data used for this work.

Reference N Type Selection
Vikhlinin et al. (2006) 10 HSE Nearby, relaxed, ambiguous X-ray limit
Maughan et al. (2008) 114 HSE NED cross-match, z > 0.1

Rasmussen & Ponman (2009) 15 HSE Bright groups

Sun et al. (2009) 23 HSE 0.015 < z < 0.13, resolved temperature profiles
Pratt et al. (2010) 31 HSE X-ray flux limited, z < 0.2

Lin et al. (2012) 94 HSE Infrared magnitude limited

Lagand et al. (2013) 126 HSE Crossmatch between Maughan et al. (2008) and SDSS; X-ray flux limit
Sanderson et al. (2013) 5 HSE Optical magnitude limit, o < 500c km g1
Gonzalez et al. (2013) 15 HSE Optical magnitude limit, 0.03 < z < 0.13
Lovisari et al. (2015) 20 HSE X-ray flux limited

Hoekstra et al. (2015) 50 WL X-ray flux limited

Pearson et al. (2017) 8 HSE GAMA r-band selection, N > 12,z < 0.12
Mulroy et al. (2019) Fit WL X-ray luminosity limit

Lovisari et al. (2020) 120 HSE tSZ-selected from Planck data

Akino et al. (2022) Fit WL C1 — X-ray selected, C2 no clear selection

Notes. The first column lists the reference from which the data were obtained, the second column lists the number of objects, where ‘fit’ indicates that the main
result is a fitted relation between Msoo. and fgas, 500c, the third column shows how the total mass was measured (HSE: X-ray data assuming HSE; WL: weak
gravitational lensing), and the final column contains comments on the selection method.

where we sample the log-normal distribution for each galaxy. This
then adds an Eddington-like bias to the simulation results, consistent
with observations.

3.1.2 Systematic errors in the observed stellar mass

There are systematic discrepancies between the different obser-
vations. The reason for this is mostly found in the stellar pop-
ulation synthesis and dust correction models used, as the ob-
served luminosity functions agree better between different stud-
ies than the mass functions. However, at the FLAMINGO res-
olution, the stellar masses can be predicted much more accu-
rately than the star formation histories, current-day star forma-
tion rates and dust extinction rates. Therefore, calibration to the
SMF is preferable over a direct comparison with the luminosity
function.

To account for potential systematic shifts in the observed stellar
masses, we include a stellar mass bias parameter

loglo(M*,obs) g loglo(M*,obs) + 1Oglo b*v (12)

where the bias b, is assumed to be independent of mass. Note that
the sign is defined such that a positive stellar mass bias implies
the observations underestimate the true stellar mass. We use a log-
normal prior to constrain the bias parameter. The prior is taken from
Behroozi et al. (2019) (their equation 25) and is based on the existing
tensions between observed time-integrated star formation rates and
observed SMFs,

log,o bx = N(0,0.14), (13)

where N (i, o) is a normal distribution with mean p and standard
deviation 0.

We adopt a mass-independent bias. While a mass-dependent
bias might have improved the agreement between the data and the
simulations, the mass dependence is unknown and therefore there
is no obvious parametrization of the mass dependence. This implies
the new free parameters would have no clear priors. Additionally,
we note that our decision not to fit above a stellar mass of 10'> M,
has a similar effect as switching to a much higher stellar mass bias
above this mass.
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3.1.3 Cosmic variance

Driver & Robotham (2010) showed that the error on the SMF due to
cosmic variance can be 5—10 per cent for surveys like GAMA and
the SDSS, depending on the volume considered. Cosmic variance
can bias the number density measurements, because the survey may
consist of slightly overdense or underdense regions. For our mass
range, we assume that this effect is independent of mass (S. P. Driver,
private communication). To account for cosmic variance, we allow
the observed number densities to shift up and down slightly,

fobs - fobs + loglo(bcv)~ (14)

Note that the sign is defined such that a positive cosmic variance
bias implies the observations underestimate the number density of
galaxies. We constrain this bias parameter with a Gaussian prior
taken from Driver et al. (2022). They estimate the error due to cosmic
variance to be about 6 per cent, so our prior is given by

bey = N(1, 0.06). 15)

3.2 The cluster gas mass fractions

Data for the cluster gas mass fractions, fg,, 500c, COme in two varieties.
They are either obtained purely from X-ray observations or from a
combination of X-ray and weak gravitational lensing observations
where the latter are used to measure the total cluster mass. For the
X-ray only data, the density, and temperature profiles fitted to the
observations are used to measure the total mass assuming the gas
is in hydrostatic equilibrium (HSE). In both cases, the gas mass
is obtained by integrating the density profile measured from X-ray
observations out to the measured value of Rs.. Table 4 summarizes
all the different sets of data that we use.

As was the case for the SMF, there are biases that we need to
account for when we compare observations with simulations. There
are four distinct issues that we take into account:

(1) At the low-mass end, selection effects become important,
because at fixed halo mass objects with a higher gas content will
tend to emit more X-ray radiation. Any X-ray selected sample may
therefore have gas fractions that are biased high, particularly at low
masses.
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(i) The measurement of total mass from X-ray data under the
assumption of HSE is well documented to be biased low (e.g.
Hoekstra et al. 2015; Eckert et al. 2016; Smith et al. 2016).

(iii) For the weak-lensing data, we make use of the fits of the
relation between gas fraction and mass provided by the authors. The
fits are preferred to individual measurements as the fits account for
the selection function of the sample. However, for our purposes, the
fits need to be sampled at particular masses. This needs to be done
in a way that limits the covariance between the samples and that is
representative of the data used (i.e. no extrapolation).

(iv) As clusters are rare objects they are usually observed over
a large redshift range. Furthermore, because weak lensing is most
efficient when the lens is halfway between the observer and the
background galaxies, weak-lensing observations tend to probe higher
redshifts than X-ray data. Clusters evolve over time, so we need
to make sure the simulation samples are representative for the
observational samples we compare them with.

For the cluster gas fractions the largest mass, we can fit for is
limited by the box size of each simulation. The upper mass limit used
for fitting therefore changes with resolution (as we use a different box
size for each resolution). The upper limits can be found in Table 3.

3.2.1 X-ray data

The first set of gas fraction data we describe is the X-ray (or HSE)
data. For each data set, we store Moo, and fgas, s00c, With asymmetric
errors where available, and correct the data to the FLAMINGO
cosmology (Mspe o< h~!, Seas, 500 X h~13). The combined data
set has 581 objects but contains duplicates. For each object that
appears more than once, we calculate a new data point by taking an
unweighted mean of the different measurements. The mean is taken
in both Mspo. and fgqs, s00c- Because the duplicates are often based
on (in part) the same data, the errors will not be independent and we
combine them via

1 N
2 2
oF = v E[_ o7, (16)

where N is the number of times a single object appears in the set.
This leaves us with 533 objects. Note that we do not use the errors
for the re-binning, as we make use of bootstrap re-sampling to
compute the errors.

We need to consider redshift evolution. The emulators will be
trained on simulation snapshots corresponding to a single redshift.
Imposing a redshift cut of z < 0.25 causes, the median redshift of
the X-ray sample to become 0.1, thus allowing us to compare with
simulation snapshots at z = 0.1. The redshift cut reduces the sample
to 310 objects. The individual masses and gas fractions are shown as
black dots in Fig. 1.

We combine the X-ray measurements by computing the median
gas fraction in eight logarithmically spaced hydrostatic mass bins
between 10'3% and 10"°Mg. For each bin, the error on the
median is obtained by taking the difference between the median
and the 16th—84th percentiles obtained from bootstrap resampling
the objects. This gives us asymmetric errors around the median. As
our likelihood uses symmetric errors, we use only the greater of the
positive and negative errors. The tabulated data points can be found
in Table 5.

Furthermore, selection effects are expected to be most prevalent at
lower halo masses. The median observed gas fraction as a function
of mass shows a clear trend-break at Mso. ysg ~ 10'*% M. Below
this mass the gas fractions no longer decrease, but instead plateau,
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Table 5. Compilation of cluster X-ray gas fraction data used for calibration.

Ms00c fgas, 500¢
(logio Mo)

13.89 0.083 £ 0.002
14.06 0.094 £ 0.003
14.23 0.105 £ 0.005
14.40 0.115 £ 0.008
14.57 0.130 £ 0.002
14.74 0.130 £ 0.002
14.91 0.139 £ 0.003

Notes. These values are for the DESYR3 cosmology (& = 0.681 and Qp,
= 0.298). The values are obtained by taking the median of the X-ray data
described in Table 4 in eight logarithmically spaced bins between 10'38
and 10> Mg, The errors are the absolute difference between the 16th or
84th percentile and the median (whichever is largest), obtained by bootstrap
resampling the median.

a behaviour that deviates from what is expected for an unbiased
sample (e.g. McCarthy et al. 2017). To deal with this, we impose a
mass cut at a hydrostatic mass of Msg. ysg > 10'*% Mg, but add the
fit from Lovisari et al. (2015) at their median mass (4 x 10'3 M) as
a separate data point.

We account for hydrostatic mass bias by adding a constant bias
term to the HSE masses,

log,q Mspoc = log,q Ms00c,use — 10g,(busg). (17)

Note that values bysg < 1 imply that the hydrostatic mass estimate
underestimates the true mass. We neglect the effect of hydrostatic bias
on the gas fraction because it is comparatively small (McCarthy et al.
2017). This is because both the total and gas mass increase with in-
creasing Rsoo.. The measured gas fraction will differ only at the level
of the change in cumulative gas fraction between the true and biased
Rsooc. This is expected to cause only mild changes in the gas fraction
(seee.g. fig. 6 of Velliscig et al. 2014). Before calculating the median
that we compare with the simulation, we thus adjust all the observed
HSE masses. By combining both X-ray and weak-lensing observa-
tions, we can constrain the hydrostatic bias. However, we found that
our compilation of data on its own is not constraining enough without
the use of a prior. To define our prior, we take the values 0.72 £ 0.08
from Eckert et al. (2016) and 0.76 % 0.06 from Hoekstra et al. (2015)
and combine the two to obtain the Gaussian prior

buse = N(0.74,0.10). (18)

Eckert et al. (2016) and Hoekstra et al. (2015) estimate the
hydrostatic mass bias by directly comparing the masses they obtain
from weak lensing and from X-rays.

3.2.2 Weak-lensing data

We complement the X-ray data with the latest HSC-XXL weak
gravitational lensing data from Akino et al. (2022). Higher mass data
from Mulroy et al. (2019) and Hoekstra et al. (2015) are available and
plotted in Fig. 1, but the box size used for our calibration runs is too
small to make use of them. To compare with the weak-lensing data,
we make use of the power-law fits to the relation between the gas frac-
tion and mass given by the authors. These fits take selection effects
into account. Because the power-law fits have two free parameters,
sampling them at more than two masses would result in strong covari-
ance between the sampled points. We therefore use the fit to create
two data points that are spaced equally far from the pivot used by the
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authors. This gives us fus, s00c (Ms00. = 10132 M) = 0.054 £ 0.010
and foas, s00c(Ms00c = 10> Mg) = 0.106 = 0.023. Due to the limited
box size, we use only the lower, Mso. = 10'*> Mg, point for fitting
high- and intermediate-resolution simulations. For low resolution,
we are able to include the second M5y, = 10'*> M, point.

The median redshift of the HSC-XXL sample is z = 0.3. We
therefore construct a separate emulator for fya s00c at z = 0.3, which
we use to fit the weak-lensing data. The fits make use of self-similar
scaling to move the different clusters to the same redshift, so we
could have corrected them to the redshift z = 0.1 used for the X-ray
data. However, we prefer to use a redshift close to that of the actual
sample, to minimize the size of the correction. Akino et al. (2022)
give both the weak lensing inferred and the true M5, as they correct
for the expected bias on the weak lensing inferred Msyo.. We make
use of their calibrated true Msg,. masses.

4 EMULATOR CONSTRUCTION

Cosmological hydrodynamical simulations are too expensive to be
run for each step in an MCMC chain used to evaluate likelihoods.
In order to use simulation outputs in MCMC methods, we therefore
make use of emulators trained on a set of simulations. Emulators are
used to interpolate results in the parameter space between training
simulations. They are able to predict the output of the simulations
as a continuous function of the input parameters, in a fraction of the
original computation time. This method has previously been applied
to the matter power spectrum (e.g. Heitmann et al. 2009, 2016; Euclid
Collaboration 2019; Angulo et al. 2021) and to baryonic observables
(e.g. Oh et al. 2022; Jo et al. 2023). By using emulators, we can
interpolate between the results of a set of training simulations and
obtain a fully continuous prediction of how the simulation responds
to changes in subgrid parameters.

4.1 Training sets

The first step in setting up the emulator is to create a training set. In
our training set, we want to vary those subgrid parameters that we
know are important for the calibration. As discussed in Section 2,
for the intermediate- and high-resolution simulations, we vary the
following four parameters: the stellar feedback efficiency, fsn, the
target kick velocity for stellar feedback, Avgy, the power-law slope of
the density dependence of the BH accretion boost factor, gy, and the
AGN heating temperature, ATagn (vje, the target kick velocity for
AGN feedback in the jet model). For the low-resolution simulations,
we do not require stellar feedback and therefore vary only the last
two parameters. The ranges over which the parameters are varied are
motivated in Section 2 and listed in Table 1 (Table C1 for the jet
model).

To optimize the parameter space, we make use of a Latin
hypercube, first proposed by McKay, Beckman & Conover (1979).
To set up a Latin hypercube with N, nodes, we start with an
ordered list of Ny independent samples along every dimension
of the hypercube, where the number of dimensions equals the
number of subgrid parameters that are varied. These samples are
then combined and shuffled to create a set of Ny points 6 that
are distributed uniformly within the hypercube, where in our case
0 = (fsn, log,o Avsn, BeH, log;; ATagn) for intermediate and high
resolution, and 6 = (Bgn, log,y ATagn) for low resolution. Our
criterion for optimizing the sampling is the ‘maximin’ approach,
which maximizes the minimum distance that sampled points are
away from each other. An in-depth explanation of how the method
works is provided by Heitmann et al. (2009). We apply to each sample
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Figure 2. The sampling of parameters in the 32-node Latin hypercube used
to train the emulator for the intermediate-resolution simulations.

arandom shift of at most half the average spacing between samples.
‘We then run the Ny, simulations corresponding to the nodes of the
Latin hypercube.

We use the public package SWIFTEMULATOR® (Kugel & Borrow
2022), built on the package GEORGE (Ambikasaran et al. 2015),
to set up the Latin hypercube as well as to train and test the
emulators. SWIFTEMULATOR streamlines the emulation process for
results obtained from SWIFTruns. Within SWIFTEMULATOR we use
the Latin hypercube generator from PYDOE (Baudin et al. 2012).

We use Ngms = 32. The sampling of parameter space provided
by the Latin hypercube used for intermediate resolution is shown
in Fig. 2. The box sizes used for the training are (100 Mpc)?,
(200 Mpc)?, and (400 Mpc)® for high, intermediate, and low
resolution, respectively. The volume is a compromise between
computational cost and the maximum mass for which we train the
emulator. Each run costs ~800, ~1300, and ~1600 cpu hours for
low, intermediate, and high resolution, respectively. Using single
simulations with an eight times larger volume at each resolution and
with the results of Schaye et al. (2023), we have verified that these
box sizes are sufficiently large for box size effects to be negligible
with respect to the production runs.

4.2 Obtaining the required simulation output

From our simulation, we take three snapshots at z = 0, 0.1,
and 0.3. For each snapshot, we find haloes and subhaloes using
VELOCIRAPTOR (Caiias et al. 2019; Elahi et al. 2019). After an
initial friends of friends group search, it uses the full 6D phase-space
information to disentangle the central and satellite subhaloes.

One of the difficulties of comparing with data is that we have to
choose how to define the edge of simulated galaxies. Observed cluster
gas mass fractions are measured within Rs.. For the stellar masses
needed to compute the SMF, the situation is less clear. Ideally, we

Ohttps://swiftemulator.readthedocs.io/en/latest/
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would create mock observations, fit them with Sérsic profiles and in-
tegrate these to obtain stellar masses, which is the procedure adopted
by observational studies. This was recently done for the EAGLE
simulation by De Graaff et al. (2022). However, the resolution of the
FLAMINGO simulations is too limited to mimic the observational
strategy. As shown by Schaye et al. (2023), FLAMINGO significantly
overestimates the sizes of low-intermediate-mass galaxies, which
means we cannot create realistic virtual galaxy observations. Based
on the findings of De Graaff et al. (2022), we choose to calibrate the
SMF using a 3D aperture with a radius of 50 kpc for the simulations.
A comparison between different choices of aperture can be found
in Appendix A, where we show that the aperture becomes only
important above a stellar mass of ~10"' M.

Before computing the galaxy SMF, we first add random errors
to the simulation stellar masses as described in Section 3.1.1.
The SMF is then sampled in 25 logarithmically spaced mass bins
between 10° and 2 x 10'> Mg, for intermediate- and low-resolution
simulations, and 40 bins between 10% and 2 x 10'* Mg, for high-
resolution simulations. We choose to use a finer binning than is
available for the observational data to allow the emulator to capture
the finer features of the predicted SMF. Tests with different binning
strategies show this had no effect on the results. We have enough
galaxies across the fitted mass range for the Poisson errors to still be
very small even with finer binning. The uncertainty we provide to
the emulator is the Poisson error for each bin.

For the gas fraction, we instead opt for an adaptive binning strategy.
While the simulation volumes used for the calibration are large
enough to constrain the SMF over the adopted mass range, at the
high cluster mass end, we always run out of clusters before we run
out of data to compare with. For all resolutions, we use 20 bins
between Msq. of 10" and 10'> My, although we never manage to
make use of this entire range. As the higher mass bins start to run
out of objects, we allow the highest mass bin to stretch to include a
sufficient number of objects. We require each bin to contain at least
10 objects. We also limit the stretching of the bin to half the original
bin width. The uncertainties we provide to the emulator are based on
the 16th—84th percentiles. As the emulator only takes symmetrical
errors, we take mean of the absolute difference between the median
and 16th percentile and the difference between the median and 84th
percentile. For both the SMF and the cluster gas fraction, we discard
any empty bins.

4.3 Training using Gaussian processes

After measuring the SMF and cluster gas fraction for each node
of the hypercube, we can train an emulator for each observable.
Because each individual node of the Latin hypercube requires a
cosmological hydro simulation, we are operating in a regime where
we have a limited number of samples. We also know a priori that
the observables we want to emulate (i.e. the galaxy number density
and group and cluster gas fractions) vary smoothly with mass and
with the values of the subgrid parameters. Both these properties are
in the regime in which Gaussian processes give excellent predictive
power with respect to the input data (see e.g. Rasmussen et al. 2004;
Rasmussen & Williams 20006).

We set up a different Gaussian process for each relation we
emulate. We combine the mass (either stellar or Msgo.) and subgrid
parameters into a single input data vector x = (log,, M, #), from
which the emulator then predicts the dependent quantity, which is
either the number density of galaxies, fiM,), or the gas fraction,
JSeas, s00c. Each emulator thus has N + 1 parameters, where N is the
number of subgrid parameters that are varied. In order to limit the

6113

dynamic range, we transformed many of the inputs to log-space. This
includes the masses (aperture stellar mass or Msq.), the values of the
SMF and the two subgrid parameters that are sampled in log-space
(Avgn and ATagn). This is an important step as it greatly increases
the smoothness of the emulated relations, making it much easier for
the emulator to give accurate predictions. As the input relations are
smooth over the range we are interested in, we do not require any
other transformations of the input. We feed the data directly into the
Gaussian process. We use a squared exponential kernel

@x—x)TO (x—x)
_ ) )

where © represents a diagonal matrix containing the hyperparame-
ters that set the scale for each input parameter, and x and x’ are two
positions in parameter space. The hyperparameters are optimized
based on maximizing the marginal likelihood (see Rasmussen &
Williams 2006). As we train a separate Gaussian process for each
relation, we also have a separate set of hyperparameters for each
relation. We have verified the posteriors of the hyperparameters to
ensure that the values we use are well converged.

k(x,x') = exp ( (19)

4.4 Error estimation

It is important to verify that the emulator is able to give accu-
rate results before we use it to find best-fitting subgrid and bias
parameters. Moreover, we need to quantify the accuracy of the
emulator because we will account for emulation errors when fitting
to data. The best way to measure the uncertainty in the emulator
predictions is to perform test simulations that span the emulated
parameter space. However, this implies that we would need to run
many additional simulations. To save time, we choose instead to
measure the uncertainty by making use of k-fold cross-validation,
which we will refer to as cross-checks.

We create Ny, new data sets, where N, is the number of nodes
in our Latin hypercube (32 in our case). For each of these data sets,
we take out one simulation and retrain the emulator on the reduced
set of Ngims — 1 samples. We then test how accurately the emulator is
able to predict the simulation that was left out. We do this by taking
the ratio between the result from the run that was left out, and the
prediction of the emulator for the parameter values of the left-out
run. This gives us a value for each mass bin in the training data. We
combine the ratios for all mass bins and Ny, emulators into a single
list and compute the standard deviation, o crosscheck- The error on the
emulator prediction, o emy, is then given by

Oemu = |Ucrosscheckf(M» ol, (20)

where fiM, @) is the value predicted by the emulator for mass M
and at parameter values . The result of the cross-checks for the
Latin hypercube of intermediate-resolution simulations can be seen
in Fig. 3. It is important to note that cross-checks are a conservative
method to estimate the uncertainty. The input for cross-checks is
uniformly sampled, implying that a significant fraction of the test
points is located near the boundaries of the parameter space, where
a Gaussian process is naturally less accurate.

From Fig. 3, it is clear that our emulators do not suffer from
significant systematic errors for our three calibration targets, the z =
0 SMF, z = 0.1 X-ray cluster gas fractions, and z = 0.3 weak-lensing
cluster gas fractions. There are no significant trends with mass, and
the medians ratio is centred close to one, which corresponds to an
error of zero.

It is clear that the emulator for the SMF is more accurate than the
emulators for the gas fractions. This is a reflection of the way we
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Figure 3. Performance of the emulator on cross-checks (see Section 4.4) for the redshift z = 0 SMF (left-hand panel), the z = 0.1 X-ray cluster gas fractions
(middle panel), and the z = 0.3 weak-lensing cluster gas fractions (right-hand panel) at intermediate [m9] resolution. Each of the 32 red lines corresponds to the
case where a single simulation from the 32-node Latin hypercube has been omitted from the training set. The curves show the ratio of the emulator prediction
for the parameter values of the omitted simulation to the actual simulation values. The solid black line shows the median as a function of mass. The horizontal
dash—dotted and dashed lines indicate the 1o and 20 mean errors on the emulator, respectively. The horizontal dotted lines indicate the one-to-one lines, i.e.
zero errors. The grey bands indicate the regions that are not used for fitting in Section 5. In each panel, we also indicate the observational errors. For the SMF,
we show the error due to cosmic variance and the errors on the data by Driver et al. (2022), for the z = 0.1 gas fractions, we combine the error from the X-ray
data with the error due to hydrostatic bias and for the z = 0.3 gas fraction we show the error on the weak-lensing data by Akino et al. (2022). The emulator
predictions are accurate enough to predict the simulation output within the observed constraints.

Table 6. Accuracy of the emulators, o crosscheck, fOr the three different
simulation resolutions and the jet model AGN variation, in percentages.

Calibration target High Intermediate Low Jet
logio SMF 2.7 22 1.5 1.9
Jeas. =011 8.9 7.5 4.8 7.1
Soas,z=03 7.9 6.7 4.2 6.1

Notes. The values are obtained by taking the standard deviation of the ratio
between the result from the simulation omitted from the Latin hypercube and
the prediction from the emulator trained on all but that simulation.

constrain the input simulations. In the case of the SMF, the errors on
the input are Poisson errors, which are quite small for our simulation
volumes in the mass range we are interested in. The fy,s errors are
based on the 16th—84th percentiles of the simulated gas fractions in
each mass bin, which can be larger than the 5 per cent accuracy that
the emulator attains.

The emulator accuracy for all resolutions can be found in Table 6.
The emulators become more accurate going to lower resolution.
There are several possible reasons for this trend. First, we used larger
box sizes for the lower resolution simulations, so the uncertainty
intrinsic to the simulation is smaller at fixed mass. Secondly, we
used a slightly larger parameter range for high resolution than for
intermediate resolution, while for low resolution we only used two
parameters, greatly reducing the sampled space.

The obtained accuracy is sufficient, as it is higher than the
observational scatter/uncertainty. Any deviations between the model
and the data at the level of the emulator error would still be
consistent with the observational constraints, especially as we allow
for observational biases in our analysis.

MNRAS 526, 6103-6127 (2023)

5 USING THE EMULATOR FOR PARAMETER
ESTIMATION

To use the emulator as the model that we compare with observational
data, we need a way to optimize the subgrid parameters 6 (see
Section 2) and, optionally, the observational bias factors logob,,
bcv, and bysg (see Section 3).

For parameter optimization, we use the MCMC package EMCEE
(Foreman-Mackey et al. 2013). We use the ensemble sampler, which
we give our posterior likelihood. For every fit we have done using
MCMC, we have varied the number of walkers and steps to ensure
the resulting values are converged. We discard the first 500 steps of
each chain to avoid systematic errors due to the burn-in phase.

To evaluate the goodness of fit of an emulator prediction to the
observations, we first define the log likelihood for a single observed
mass bin. For the SMEF, this is given by

In pSMF(M*,obsa bcv: b*s 0)
[fobs(M*,obs) + 10glo bCV - femu(b*M*A,obs’ 0)]2

= - s 21
U(,zbs(M*,obs) + Uezmu(b*M*.obsy 0) ( )
Here fiM,) is the SMF,
dn
M,)=1o (7) . (22)
! 210 d log,o(M,)

the subscripts indicate whether the quantity is observed (‘obs’) or
emulated (‘emu’), € is a vector containing the values of the varied
subgrid parameters, and ¢ is the error on f. For op,, this refers
to the error on the emulator from cross-checks, equation (20). The
expression also accounts for observational bias factors due to cosmic
variance, bcy, and the conversion of direct observables into stellar
mass, b, that were discussed in Section 3.1. For cluster gas fractions
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measured from X-ray observations, the log likelihood is defined as

In Pgas (Ms00c,0bs» bHsE» )

—1 2
[fgas,SOOc,obs (MSOOL-,obs) - fgas,SOOc,emu (bHSE MSOOc,obs s 0 )}

2 -
g5 (M500¢,0bs) + 024 (Pryse Ms00c,0bs» 0)

)

(23)

where bygg is an observational bias factor due to the assumption of
HSE that was discussed in Section3.2. For gas fractions measured
from weak-lensing plus X-ray observations, the log likelihood
definition is identical except that we assume the masses are unbiased,
implying bysg = 1 (see e.g. Becker & Kravtsov 2011; Bahé,
McCarthy & King 2012). Note that for the likelihood of both the
SMF and the cluster gas fraction, we include a variance term to
account for the error on the emulator prediction. This is added to
avoid situations where we overfit with respect to the uncertainty
from the emulator alone.

The likelihood for the observational data is a combination of the
likelihoods of the individual mass bins of the three data sets

In Piiketinood (bev, s, busk, 0)
Nsmr

= > InPsyp(M. ovs > bev, b, 0)
Nsmr 4

NHsE
1

Z In Pgas X-ray (M's00c,0bs, j » PrsE, 0)
J

+
2 | Nusg

Nwr

+ TMZk:lnPgas,WL(Msooc,obs.k,0) , (24)

where Nsvr, Nusg, and Ny, are the number of (re-binned) obser-
vational data points (i.e. mass bins) for the SMF, the X-ray cluster
gas fraction and the weak-lensing cluster gas fraction, respectively.
The values of N depend on the fitted mass ranges (Table 3) and
vary with resolution. We normalize each likelihood by the number
of data points to ensure each separate likelihood is not directly
dependent on the number of bins used. Furthermore, we average
the likelihoods from the two types of cluster gas fraction data to
ensure that the cluster gas fraction and SMF data carry equal weight.
In an unweighted fit, the SMF would drive the results, because it is
much better constrained. As the baryon fractions are the main driver
of the baryonic suppression of the matter power spectrum (see e.g.
Van Daalen et al. 2011; Debackere et al. 2020; Schneider et al. 2020;
Van Daalen et al. 2020; Salcido et al. 2023), we choose to give the
gas fractions equal weight in our analysis.

We then combine the different likelihoods into a single posterior,

10g Pposlerior = 10g Plikelihood + 10g ,Pprior’ (25)
where the total prior is

10g Pprior = 10g Pbias(b*) + 10g Pbias (bcv) + 10g Pbias (bHSE)
+ 10g Psubgrid (0)a (26)

Phias are our priors for the observational bias factors, and Pyypgria is
our combined prior for the subgrid parameters in @ that we wish to
calibrate. For the subgrid parameters, we use flat priors that do not
extend beyond the ranges used for the Latin hypercube (see Table 1)
in order to avoid extrapolations. The priors on the bias factors were
discussed in Section 3.
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We also calculate the reduced x? for some of our models. We
define the reduced x? as

NsmF

X, = ZlogPSMF(M*,obs,isbc\/,b*,a)

NHSE
+ Z 10g /Pgas,X—ray(MSOOC,obs,jﬁ bHSEs 0)
J

Nwi
+ Z 10g pgas,WL(MSOOc.obs.k 5 0):| /

X
(Nsmr + Nusg + NwL — Np), (27)

where Ny is the number of sub-grid and bias parameters used for
the fit.

6 RESULTS

In this section, we will describe the main results from our calibration
approach. We use the emulators to perform parameter sweeps in
Section 6.1, then we discuss the fitting results, first at intermediate
resolution in Section 6.2 and then at the other resolutions in Section
6.3, and finally we discuss how we use the emulator to set up two
AGN feedback variations in Section 6.4.

6.1 Parameter sweeps

Emulators can be used to investigate the effect of individual param-
eters via parameter sweeps, where the emulator predicts the effect
of varying a single parameter over the range used for the Latin
hypercube, while keeping all other parameters fixed to their best-
fitting values. Parameter sweeps can give valuable insight into the
importance of particular physical processes and prevent calibration
through emulation from becoming a black box. The result of the
subgrid parameter sweeps for our intermediate resolution runs are
shown in Fig. 4. Looking at the response of the calibration targets, it
is clear that the different parameters have distinct effects, indicating
that the fits will not have any strong degeneracies between the varied
subgrid parameters.

Increasing the slope of the BH accretion rate boost factor sup-
presses the high-mass end of the SMF, but has almost no effect on
the low-mass end and the cluster gas fractions. Increasing the AGN
temperature jump leads to a mild reduction of the high-mass SMF, but
astrong decrease of the cluster gas fractions. The effects of increasing
the stellar feedback energy and kick velocity are more similar. In both
cases the stellar masses are decreased, leading to a mass-dependent
stretching of the SMF towards lower masses. Depending on the
galaxy mass, the SMF can either increase or decrease, though the
effect is small for the high-mass end. Cluster gas fractions decrease
when either of the stellar feedback parameters increases, presumably
because the stronger stellar feedback suppresses BH growth and
hence AGN feedback (Bower et al. 2017).

6.2 The best-fitting intermediate-resolution model

The best-fitting (i.e. maximum likelihood) values of the subgrid
and observational bias parameters can be found in Tables 1 and 7,
respectively. These tables also list the medians and 16—84 per cent
CLs of the posterior distributions.

The posteriors for the subgrid and bias parameters resulting from
fitting the emulator predictions for intermediate-resolution simula-
tions to the data are shown in Fig. 5. The first thing to note is that
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Figure 4. Subgrid parameter sweeps using the emulator trained on our 32-node Latin hypercube of (200 Mpc)® intermediate-resolution simulations. The
parameter sweeps are centred on the best-fitting parameters (see Section 6.2). The left- and right-hand columns show the galaxy SMF and cluster gas fractions,
respectively. In each row, a single subgrid parameter is varied across the allowed range. From the top to bottom panels, we vary the slope of the BH accretion
rate boost factor slope, the AGN-heating temperature, the stellar feedback energy, and the stellar feedback kick velocity. The grey regions indicate the mass
ranges that are excluded for fitting (see also Table 3). Parameter sweeps help gain insight into how changes in subgrid model parameters map onto observables.

Table 7. Results from the fitting for the observational bias factors.

Bias Median + CL Best fitting
Stellar mass logjo b 0.06°11 0.026
Cosmic variance bcy 0.98+006 0.995
HSE bysg 0.7410% 0.743

Note. The second column shows the median and 16th and 84th percentiles,
the third column lists the maximum-likelihood value which we denote as the
best fitting.

MNRAS 526, 6103-6127 (2023)

the maximum-likelihood model (solid, red circle) lies comfortably
within the 68 per cent confidence intervals (inner contour) for each
parameter and that it does not lie close to an edge of the parameter
space. The chosen parameter ranges, i.e. the imposed priors, are thus
sufficiently large for the models to bracket the target data and they
do not drive the results.

It is also clear that there are no strong degeneracies between any
of the subgrid parameters or between any of the bias parameters.
The absence of strongly degenerate subgrid parameters is partially
by construction, because we chose to fix some of the parameters
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Figure 5. The posterior distributions of the model parameters resulting from fitting the emulator to the observed SMF and cluster gas fractions for intermediate-
resolution simulations. The parameters shown are the stellar feedback energy, fsn, the stellar feedback kick velocity, Avsn, the AGN feedback temperature
jump, ATagn, the logarithmic slope of the density dependence of the BH accretion rate boost factor, Spp, the stellar mass bias, by, , the hydrostatic mass
bias, bysg, and the cosmic variance bias, bcy. The four subgrid parameters are described in Section 2 and the three observational bias factors are discussed in
Section 3. The black contours show the 68 and 95 per cent CLs. The panels along the diagonal show the one dimensional probability density for each parameter.
In these plots, the three vertical lines indicate the 16th, 50th, and 84th percentiles. The solid, red circles indicate the maximum-likelihood values, which were
used for the fiducial model. Each panel is centred on the centres of the priors given in Table 1. The posteriors show that we can find a single solution that fits

the simulations to the observational data.

that would otherwise have caused the results to become degenerate
(e.2. nhear and AT agn, see Section 2.3). There is, however, significant
degeneracy between the slope of the density dependence of the BH
accretion boost factor (8gy) and the stellar mass bias (b,). These two
parameters are anticorrelated. Increasing the bias shifts the observed
SMF towards higher masses, which means the BH boost factor needs

to decrease to allow more stars to form in high-mass galaxies, whose
growth is controlled by AGN feedback.

The best-fitting values for the galaxy mass and cosmic variance
biases are logipb. = 0.026 and bcy = 0.995, respectively. The
fitted hydrostatic bias, bysg = 0.743, enables the model cluster gas
fractions to agree simultaneously with the Akino et al. (2022) weak-

MNRAS 526, 6103-6127 (2023)
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lensing data and the compilation of X-ray data. For all the bias
values, we find posteriors that are in agreement with the priors, so
we conclude that our fitting does not put any significant additional
constraints on the bias parameters.

The best-fitting emulator predictions for intermediate resolution
are compared with the data in the middle row of Fig. 6, which also
shows the result of a (200 Mpc)? simulation run with the best-fitting
subgrid parameter values (i.e. our fiducial model). The left- and right-
hand panels show the SMF and cluster gas fractions, respectively. The
gas fractions are shown for both the redshift of the X-ray data, z =
0.1 (light blue line and dark blue data points), and the redshift of the
weak-lensing data, z = 0.3 (purple line and dark purple data points).
Grey regions and dotted line styles indicate mass ranges that were
excluded from the fit. The ranges can be found in Table 3. Note that
the fitted bias factors have been used to shift the data. We obtain good
agreement with the fitted observations with a reduced x2 = 1.23 for
the combined fit to the SMF and the cluster gas fractions. The good
agreement between the blue and the red lines demonstrates that the
emulator was able to predict accurately what the fiducial simulation
would look like in the fitted mass range.

Remarkably, the simulations fit the SMF down to galaxy masses
corresponding to slightly fewer than 10 stellar particles. Comparing
the predicted gas fractions at z = 0.1 and 0.3, we see there is very
little evolution. The model overshoots the gas fractions for cluster
masses between Msgo. =~ 1038 My and ~ 10'*3 Mg, by about 1o.
We emphasize, however, that our observational error bars are about
a factor of five smaller than the observed object-to-object scatter.
Unfortunately, a box size of (200 Mpc)® (or even (400 Mpc)?) is not
large enough to constrain the gas fractions in haloes with Msyy. >
10'5 M. Performing the same analysis in a larger volume would
potentially allow the emulator to train up to the range where the
Ms00c—fgas relation starts to flatten.

6.3 The best-fitting subgrid high- and low-resolution models

Although we use the simulation-based emulator to fit for the observa-
tional biases, the biases refer to observational effects and should thus
be the same for all models. We therefore do not vary them between the
different simulation resolutions. We use the intermediate-resolution
simulations to fit the biases, because their resolution and box size
enable us to fit a substantial mass range for both the SMF and the
cluster gas fractions (see Fig. 6). For the other resolutions, we keep
the observational biases fixed to the values listed in Table 7. In this
way, we ensure that a direct comparison can be made between the
three different resolutions.’

Fixing the observational biases to the values found for intermediate
resolution leaves only four parameters to fit for high resolution. For
low resolution, we only have two parameters to vary because we

TThe Driver et al. (2022) data points at My ops < 1010 Mg were updated after
we had already finished the (2.8 Gpc)?® intermediate-resolution FLAMINGO
simulation. To be able to use the updated data for the calibration of the high-
resolution simulations, which resolve the SMF down to masses for which the
data were updated, we re-fit the observational biases at intermediate resolution
while keeping the subgrid parameters constant. The stellar mass bias changed
fromlogo b, = 0.031 to 0.026, the cosmic variance bias changed from bcy =
1.014 to 0.995 and the HSE bias from bysg = 0.745 to 0.743. The bias values
changed by a negligible amount with respect to the 16th—84th percentile
CLs, for both b, and bysg the change is less than 3 per cent of the 16th—84th
percentile range. For bcy, the change is ~15 percent of the 16th—84th
percentile range. The values we report in Table 7 use the most up-to-date
(Driver et al. 2022) data.
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turn off stellar feedback as these simulations do not resolve the
masses below which stellar feedback dominates (see Section 2.1).
The best-fitting parameter values for each resolution can be found
in Table 1. Corner plots of the posterior distributions for the subgrid
parameters are shown in Appendix B. A comparison of the best-
fitting emulator prediction, the data and runs using the predicted
best-fitting subgrid parameter values is shown in the top and bottom
rows of Fig. 6 for (100 Mpc)? high- and (400 Mpc)? low-resolution
volumes, respectively.

At high resolution, there is again excellent agreement between the
emulator prediction and the observed data, with reduced Xf =1.15.
The high-resolution simulation resolves the largest range of stellar
mass in the SMF, from & 1086 to &~ 10" M. There is a dip around
a mass of 10!%? Mg, and a slight bump around the knee of the mass
function but the maximum deviation from the data are less than
5 percent. It seems that the emulator was unable to predict the dip,
and the best-fitting simulation falls outside of the predicted errors.
Comparing the predicted errors between the different resolutions, it
is clear that the high-resolution simulation has the largest predicted
error. This is due to it using the smallest box size. This causes
the emulator prediction to be too ‘smooth’ when compared with
simulation results. The deviation at the dip is less than the lo
uncertainty due to cosmic variance. The small box size (100 Mpc)®
used for calibration at high resolution, limits the mass range that can
be used to fit the gas fractions to halo masses lower than 6 x 10'* M.
This leaves only two data points to compare to. The agreement in the
fitted range is, however, very good.

Comparing the best-fitting subgrid parameter values for the high-
resolution model to those for intermediate resolution (Table 1), we
see that the stellar feedback requires about twice as much energy
and about half as high a kick velocity. This reflects the need for
stronger stellar feedback when higher gas densities are resolved and
the fact that feedback can be efficient down to smaller wind velocities
in the lower mass haloes that remained unresolved at intermediate
resolution. While the AGN heating temperatures are very similar, the
high-resolution simulations require a much smaller slope of the BH
accretion rate boost factor, Sgy = 0.038 (where zero corresponds
to no boost) versus Bgy = 0.514 at intermediate resolution. Since
the high-resolution simulation can resolve higher gas densities, and
hence higher BH accretion rates, we do not need to boost the accretion
rate as much.

At low resolution, the agreement with the data are also very good,
with reduced x2 = 0.95. Now it is the stellar mass range that is
very limited, M, ~ 107 Mg to M, ~ 10''> My, which includes
only two data points. The larger box size of (400 Mpc)® allows for
the use of the two Akino et al. (2022) weak-lensing data points as
well as five X-ray data points for fitting the cluster gas fractions.
However, the high-mass plateau of the gas fractions remains out of
reach for this box size. The comparison of the best-fitting subgrid
parameter values of the low-resolution model to those of the higher
resolution simulations (Table 1) is difficult to interpret because the
low-resolution model requires a much lower threshold density for
star formation, a much higher BH seed mass, and does not include
any stellar feedback.

As we obtain a good fit to the same data for each of the three
resolutions, we conclude that we have good’weak convergence’
between the three resolutions, using the terminology of Schaye et al.
(2015). The FLAMINGO suite includes high-, intermediate-, and
low-resolution simulations that were run with our fiducial subgrid
parameter values in volumes with side lengths of 1, 2.8, and 1 Gpc,
respectively. For a comparison of these models with other data, we
refer to Schaye et al. (2023).
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Figure 6. Comparison of the best-fitting models to the observed galaxy SMF (left-hand column) at z = 0 and observed cluster gas fractions (right-hand column).
The top, middle and bottom rows show results for high-, intermediate- and low-resolution simulations, respectively. The observations are plotted as points with
error bars [black: Driver et al. (2022) SMF at z = 0, dark blue: compilation of X-ray data at z = 0.1, dark magenta: Akino et al. (2022) weak-lensing data at z =
0.3]. Each panel shows the best-fitting emulator prediction as a blue curve, the emulator uncertainty as a blue-shaded region, and the result from a simulation
using the best-fitting subgrid parameter values in a (100 Mpc)3, (200 Mpc)3, and (400 Mpc)3 volume for high, intermediate, and low resolution, respectively,
as a red curve. For fgas 500c, we only plot the best-fitting simulation result at z = 0.1 in red, and leave out the result at z = 0.3 to avoid clutter. For the cluster
gas fractions, besides showing in blue the z = 0.1 emulator that should be compared with the dark blue X-ray data, we also show the z = 0.3 emulator, in
magenta, that is used to fit the dark magenta Akino et al. (2022) weak-lensing data. The grey regions indicate the mass ranges that are excluded from the fitting,
see also Table 3. The model predictions are shown using dotted lines in these excluded ranges. The vertical dotted line in the left-hand panels indicates a mass
corresponding to 10 stellar particles. The SMF and X-ray gas fraction data have been shifted by the best-fitting observational bias factors (see Table 7), which
are, however, negligible for the SMF. The SMF from the best-fitting simulation includes Eddington bias (see Section 3.1.1) in line with how the emulator is
trained. The systematic errors given by the priors on the bias parameters are shown as points with error bars in the top panels. At each resolution, we obtain
excellent agreement between the emulator, a simulation with the best-fitting parameters, and the observational data.

6.4 Feedback variations or SMFs that have been shifted away from their fiducial, observed
values. We focus mostly on changes to the gas fractions, as previous
work has shown that baryon fractions in groups and clusters anticor-
relate with the baryonic suppression of the matter power spectrum

One of the goals of FLAMINGO is to investigate the impact of
feedback on cosmological observables. In this section, we show how
we use emulators to calibrate simulations to produce gas fractions

MNRAS 526, 6103-6127 (2023)
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Table 8. Best-fitting values for the subgrid parameters for the feedback variations at intermediate resolution.

fsN Avgy (km s~ ATacN (K) or vieg (km s™1) BeH

Variation o Median + CL  Best fitting  Median + CL  Best fitting ~ Median + CL  Best fitting ~ Median + CL  Best fitting
0.16

fgas+20 +2 022790 0.219 525113 577 107697013 1077 0.58+01 0.554
0.18

Fiducial 0 0.2010.08 0.238 479+167 562 10734502 1079 0.55791 0514
0.14

fgas—20 -2 0211)% 0.206 4781149 552 10893016 10808 0.54+0:19 0.497
0.13

fgas—4o -4 0201008 0.191 479+167 532 108185013 10821 0.5175:% 0.482
0.09

fgas—8o -8 0157097 0.145 4171138 483 1083670 10840 0.49+0:07 0.462
0.14

Ms#—o 0 0.30+3:19 0.322 537+12 608 10795017 10806 0.68+01) 0.626
0.13

Mx—o +fgas—4o —4  0.257000 0.261 4901127 557 105257015 1082 0.65+0:% 0.620

+0.07 +196 +311 +0.10
Jet 0 0.19+0:07 0.166 562112 477 977434 836 0.54+019 0.597
Jet + fgas—do -4 0187008 0.176 5241299 527 19491238 1995 0.4410:01 0.439

The columns list the name of the variation, the number of o by which the observed fy.s data were shifted, and for each parameter the median and 16th to 84th
percentile CL, and the best-fitting (i.e. maximum likelihood) fiducial values. Note that for the jet AGN model, the seventh and eighth columns show vje; instead
of the heating temperature, while for the other feedback variations, they show ATxgN

on the scales relevant for current and next-generation surveys (e.g.
Semboloni et al. 2013; Debackere et al. 2020; Van Daalen et al.
2020; Salcido et al. 2023). For clusters, the gas fractions dominate
over the stellar fraction when computing the baryon fractions (the
stellar mass content of haloes becomes important at smaller scales).
While most of our variations use our fiducial thermal AGN feedback
model, we will also calibrate a model that uses kinetic, jet-like AGN
feedback.

To quantify the effect of reasonable changes in the astrophysics,
we include a set of feedback variations in the simulation suite. These
simulations should at least bracket the uncertainty in the cluster gas
fraction data, while fitting the SMF data. Previous works created
variations of subgrid physics based directly on the values of certain
subgrid parameters. For example, the BAHAMAS project (McCarthy
et al. 2018) varied the AGN heating temperature by 40.2 dex, which
resulted in very small changes to the SMF and cluster gas fractions
that roughly bracketed the observational uncertainty. To arrive at the
values of the subgrid parameters for our runs, we make use of the
emulators and we will allow all fitted subgrid parameters to vary.
Our variations are based on systematically shifting of the data, based
on their uncertainties, making the variations less reliant on the sub-
grid model used. We also include models with gas fractions that are
probably ruled out observationally, because we anticipate these will
be useful to gain insight into the effect of baryonic feedback on other
cosmological observables.

The variations are run at intermediate resolution. We use the
fiducial values of the observational bias factors listed in Table 7. For
the gas fraction variations, the SMF data are kept the same except for
one variation, where we systematically reduce all observed stellar
masses. The fy,, data are shifted up by 20 and down by 2, 4, and 8o
for the fgas+20, —20, —40, and —8c models, respectively, where
o is the error obtained from bootstrapping for the X-ray data, or the
error on the fit for the weak-lensing data from Akino et al. (2022), as
discussed in Section 3.2. We systematically shift all the data by No
under the assumption that the errors in the gas fraction are mostly
systematic and correlated. We shift in steps of 20 and 40 instead of a
smaller shift (e.g. 10') as the cluster-to-cluster scatter is much larger
than the errors we found from bootstrapping (see Section 3.2.1). We
also create models that vary the SMF. As the baryonic suppression
is sensitive to the total baryon fraction (see e.g. Salcido et al. 2023),
we include these variations to investigate the effect of changes in
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the baryon fraction at a constant gas fraction, and to see the effect of
changing the stellar fractions. For these variations, we systematically
shift the SMF data to lower masses according to the 1o given by the
stellar mass bias (0.14 dex; Section 3.1.2). For the M*— 10 model, we
use the fiducial gas fractions and for the fgas—40 + Mx*—10 model,
we simultaneously shift the X-ray and weak-lensing gas fractions
down by 4o

The best-fitting subgrid parameter values for the feedback varia-
tions can be found in Table 8. The changes in the subgrid parameters
with respect to the fiducial model are small. As expected, the AGN
subgrid parameters bracket the fiducial values, with the fgas—2¢
model having a slightly higher AGN feedback temperature. As
could already be seen in Fig. 4, the gas fraction is very sensitive
to ATacN, Which varies by only 0.37 dex between the fgas+20 and
—20 models, in good agreement with BAHAMAS. The fgas—4o
and —8¢ models follow this trend. Changes in the gas fractions are
driven mainly by changes in ATxgn. Going from the fgas—4o to
the Mx—1o + fgas—4c model, the biggest change is seen in foni
and Bgy, as expected from Fig. 4. The increase in the BH accretion
boost factor is required to compensate for the removal of gas by the
increased supernova energy.

The feedback models are compared with the fiducial model and
the calibration data in Fig. 7. In the top two panels, we show the
emulator predictions for the SMF and the gas fractions for each
of the variations. Within the fitted mass ranges, there is excellent
agreement for the SMF between all the different cluster gas fraction
variations. There is good agreement between fg for the fo,—4o
and the SMF—1o + fy;s—40 variations. In the bottom panels,
we compare the emulator predictions to the results of (200 Mpc)?
simulations run with the best-fitting parameters. For the SMF, we
see that the emulator predictions are accurate at around the per cent
level, with only the jet model fgas—4o deviating by ~5 per cent. For
Jeas» all predictions are accurate to ~10 per cent, and most predictions
are accurate to within &5 per cent. The accuracy is slightly better than
the expected emulator accuracy from cross-checks (see Table 6). We
conclude that by allowing for small adjustments to four subgrid
parameters, we are able to vary specific observables while keeping
others constant.

In addition to the parameter variations, we also calibrate a different
implementation of AGN feedback. As described in Section 2.3.1,
this model uses kinetic bipolar kicks instead of thermal injections
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Figure 7. Top left- and right-hand panels: the emulator predictions for the SMF and gas fractions, respectively, for the feedback variations and the fiducial
model (different colours, as indicated in the legend). The observations are shown as black points with error bars. In the top corners of the panels, we indicate
the assumed systematic errors in the data from the priors on the fitted biases. The bottom panels show the ratio of the emulator prediction and a (200 Mpc)?
simulation run with the same parameters. In both panels, the black-dotted line indicates a ratio of one. For the SMF (fgas, 500c), the black dot—dashed lines
indicate deviations of 1 percent (5 per cent). We only show the cluster gas fraction emulator prediction at z = 0.1 and leave out the z = 0.3 gas fraction results
to avoid clutter. The excluded mass range for fitting is indicated by the grey regions (see also Table 3.) We use the emulators to make a direct mapping between
our subgrid physics models and systematic shifts in the observations, based on the observational errors.

to distribute AGN feedback energy around accreting BHs®. As the
subgrid model differs fundamentally from the fiducial model, we run
a new Latin hypercube with 32 intermediate-resolution simulations
in (200 Mpc)® volumes. The subgrid parameter ranges for this
hypercube can be found in Table C1. To construct the emulator,
we again follow the prescription of Section 4 and we again verify
its accuracy using cross-checks (see Table 6). The goal is to have
a simulation with a different implementation of AGN feedback
calibrated to the same observables as the fiducial implementation.
We therefore use the same fitting limits, methods and likelihoods as
for the fiducial intermediate-resolution model. For the jet model, we
fit to both the fiducial data and to the perturbed data used to calibrate
the fyas—40 model. The resulting medians and best-fitting values can
be found in Table 8.

The jet models are shown as the green lines in Fig. 7. They
show some differences from the fiducial thermal AGN feedback
models. The jet models fit the knee of the SMF slightly better by
having slightly more galaxies with M, &~ 10!%7 M. The difference
at the very low-mass end of the SMF, below the fitted range, is
due to the fact that the bug in the threshold of star formation for
zero metallicity gas® was fixed for the jet models. The fys—40 jet
model also has a significant reduction in the number of galaxies

8Due to a bug, the calibration of the jet models was done using a version of
the model where the jets are launched along the z-direction of the simulation
box, instead of along the spin axis of the black hole. We have verified that this
leads to small differences, in agreement with the results reported by Husko
et al. (2023), who showed that the directionality of the jets has little effect.
When using the correct implementation, the agreement with the emulator of
the SMF becomes slightly better for both runs that use jets; and for fgas, the
agreement only worsens outside the range used for calibration.

with masses above our fitting limit, thus yielding an SMF with
a steeper high-mass cut off. However, the bottom panel suggests
that this is at least partially explained by the fact that the emulator
underpredicts the number density by a few percent. Compared
with the thermal AGN models fit to the same data, the jet models
predict higher gas fractions in groups (Msg. ~ 10'* My), where
there is, however, no observational data. From the bottom panels,
we can see that for fy,, the accuracy of the jet emulator does not
differ significantly from the emulator for the thermal AGN feedback
models.

7 CONCLUSIONS

In order to fully exploit the large-scale structure data that will become
available with surveys like Euclid and LSST, we need to acquire a
deeper understanding of how baryonic effects, like AGN and stellar
feedback, impact the matter distribution. The most self-consistent
way of experimenting with these effects is through the use of
cosmological hydrodynamical simulations. The FLAMINGO project
provides such simulations in volumes sufficiently large to study
the evolution of large-scale structure and massive galaxy clusters
for different numerical resolutions, cosmologies and astrophysical
models.

As feedback processes originate on unresolved scales, we have
to add them via subgrid prescriptions. However, because these
subgrid models are theoretically not well constrained, they need
to be calibrated to reproduce a relevant set of observables. Previous
simulation projects like EAGLE (Crain et al. 2015; Schaye et al.
2015), IustrisTNG (Pillepich et al. 2018), BAHAMAS (McCarthy
et al. 2017, 2018), and SIMBA (Davé et al. 2019) achieved good
agreement with data by varying subgrid parameters by hand until
the simulation lined up with the target observations. However,
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for cosmology, a more robust and objective calibration method is
desirable, particularly if it can also be used to predict the effect of
subgrid variations that have not been simulated directly.

To create a robust method of calibration, we make use of ma-
chine learning, specifically Gaussian process emulators. Instead of
emulating the effects of changes in the cosmological parameters,
which is becoming a common application of machine learning in
cosmology, we emulate the observables that we want to match
to observations as a function of a set of subgrid parameters. For
three different numerical resolutions, which span a factor of 64
in particle mass, we train an emulator on 32 input simulations
where we vary the four most impactful subgrid parameters, two
of which relate to stellar feedback and two of which relate to AGN
feedback (Section 2). In addition, we train an emulator for another
intermediate-resolution implementation of AGN feedback, which
uses jets (i.e. directed kinetic feedback) instead of injecting the
feedback energy thermally. At each resolution, we run simulations
with 360° gas particles, implying a (100 Mpc)?, (200 Mpc)?, and
(400 Mpc)? volume for FLAMINGO high [m8], intermediate [m9],
and low [m10] resolution, respectively. We then use MCMC to fit the
emulator to carefully selected observational data. We repeat the same
procedure for each resolution, and only change the fitted mass ranges
to account for resolution and box size limitations. Additionally, we
have created a set of subgrid physics implementations based on fitting
the emulators to the data after systematically shifting it by No.

We calibrate to the observed low-redshift galaxy SMF from the
GAMA survey and a compilation of group and cluster gas fraction
measurements based on X-ray and weak-lensing data. A novel aspect
of our approach is that we also fit for possible observational biases
(i.e. systematic errors). We account for biases in the stellar mass and
the cluster mass inferred from X-ray data under the assumption of
HSE, as well as for the effect of cosmic variance on the SMF. In
addition, we account for the effect of random errors in the observed
stellar mass on the SMF (i.e. Eddington bias) by randomly perturbing
the simulated stellar masses(Section 3). The observational biases
are only fit during the calibration of the intermediate-resolution
simulations and the best-fitting values are then also applied to the
other resolutions.

Our main conclusions are as follows:

(i) By carefully setting up the subgrid parameter space, we were
able to train emulators that are more accurate than the target
observational constraints (Fig. 3).

(i) The emulator framework enables simultaneously fitting for
subgrid parameters and observational biases. For FLAMINGO, the
posteriors found for the biases are driven by and in agreement with
the priors. We find a negligible value for the stellar mass and cosmic
variance error, and a hydrostatic bias of bysg = 0.743.

(iii)) Emulators can be used to make parameter sweeps, i.e. plots
showing how the trained relation depends on the value of a single
subgrid parameter (Fig. 4). As the emulators give the continuous
response of the trained relation to changes in subgrid parameters,
emulators can be used to gain a deeper understanding of how the
observable relations are affected by the subgrid models.

(iv) The parameter space that we explore is devoid of major de-
generacies between the subgrid parameters. The emulator + MCMC
framework finds a single best-fitting solution (Fig. 5). We note
that this is partially by construction, as parameters that had major
degeneracies were omitted from the parameter space (see Section 2).
For future work, it might be interesting to see if these degeneracies
can be solved by fitting the model to additional observational data.
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(v) At each resolution, we find excellent agreement between the
best-fitting model and the calibration data (Fig. 6).

(vi) The emulator framework can be used to map observational
uncertainties onto changes in subgrid parameters. By fitting the
emulator to variations in gas fractions and the SMF, we produce
a set of simulations for which specific observables are varied while
keeping others constant (Fig. 7). As the model variations are directly
tied to observations, the resulting simulations can be used to quantify
the effect of uncertainties in the calibration data on the predictions
for other observables.

(vii) We used the emulator framework to calibrate a different
implementation of the model, which we did for kinetic AGN feedback
(in contrast with the thermal AGN feedback used our fiducial model;
Fig. 7). By making different models match the same calibration
observations, the simulations can be used to quantify the uncertainty
in predictions for other observables due to uncertainties in the
underlying physics.

We have used Gaussian process emulators to create a close
link between subgrid models and observations. By creating a ro-
bust statistical framework for calibration, future hydrodynamical
simulations will be able to use available and upcoming data to
constrain the subgrid physics and to quantify the uncertainty in
the predictions of simulations that remains after the models have
been constrained to fit particular sets of data. In this work, we have
focused on calibrating simulations using different resolutions, and
a single variation of the implementation of AGN feedback. For
future work, the same framework could be used to get agreement
between different simulation codes and subgrid models for specific
observables. In this way, we could improve our understanding of the
degeneracies between different methods and the uncertainties in their
predictions.

In the companion paper (Schaye et al. 2023), we present the large-
volume FLAMINGO simulations that use the calibrated parameter
values that we obtained here. More information on and visualizations
of the FLAMINGO simulations can be found on the website.’

ACKNOWLEDGEMENTS

This work is partly funded by Vici grant 639.043.409, Veni
grant 639.041.751 and research programme Athena 184.034.002
from the Dutch Research Council (NWO). This work used the
DiRAC@Durham facility managed by the Institute for Computa-
tional Cosmology on behalf of the STFC DiRAC HPC Facility (www.
dirac.ac.uk). The equipment was funded by BEIS capital funding via
STFC capital grants ST/K00042X/1, ST/P002293/1, ST/R002371/1,
and ST/S002502/1, Durham University and STFC operations grant
ST/R000832/1. DiRAC is part of the National e-Infrastructure. EC is
supported by the funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Sktodowska-
Curie grant agreement No 860744 (BiD4BESt). We gratefully
acknowledge financial support from the Swiss National Science
Foundation (SNSF) under funding reference 200021-213076. FH
would like to acknowledge support from the Science Technology
Facilities Council through a CDT studentship (ST/P006744/1). IV
gratefully acknowledges UKRI (EP/W011956/1) and Wellcome
(218261/Z/19/Z) funding. AJ, CGL, JCH and CSF acknowledge the
STFC consolidated grants ST/T000244/1 and ST/X001075/1. This
research project has received funding from the European Research

“https://flamingo.strw.leidenuniv.nl/

202 ABIN 0L U 153NB AQ 016162 ./€019/7/92SG/2I01HE/SEIUW/ W09 dNO"d1WLSPED.//:Sd)lY WO PaPEOjUMOQ


https://www.dirac.ac.uk
https://flamingo.strw.leidenuniv.nl/

FLAMINGO: calibration with machine learning

Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement no. 769130). The
research in this paper made use of the SWIFT open-source simulation
code (http://www.swiftsim.com, Schaller et al. 2018) version 0.9.0.

DATA AVAILABILITY

The SWIFT-EMULATOR framework used for this work is publicly
available (see Kugel & Borrow 2022).'° The simulation data used
will be provided upon reasonable request to the corresponding author.

REFERENCES

Abbott T. M. C. et al., 2022, Phys. Rev. D, 105, 023520

Acuto A., McCarthy I. G., Kwan J., Salcido J., Stafford S. G., Font A. S.,
2021, MNRAS, 508, 3519

Akino D. et al., 2022, Publ. Astron. Soc. Japan, 74, 175

Alam S. et al., 2021, Phys. Rev. D, 103, 083533

Ambikasaran S., Foreman-Mackey D., Greengard L., Hogg D. W., O’Neil
M., 2015, IEEE Trans. Pattern Anal. Mach. Intell., 38, 252

Angulo R. E., Zennaro M., Contreras S., Arico G., Pellejero-Ibafiez M.,
Stiicker J., 2021, MNRAS, 507, 5869

Aricd G., Angulo R. E., Contreras S., Ondaro-Mallea L., Pellejero-Ibafiez
M., Zennaro M., 2021, MNRAS, 506, 4070

Ayromlou M., Nelson D., Yates R. M., Kauffmann G., Renneby M., White S.
D. M, 2021, MNRAS, 502, 1051

Bahé Y. M., McCarthy L. G., King L. J., 2012, MNRAS, 421, 1073

Bahé Y. M. et al., 2022, MNRAS, 516, 167

Baldry I. K. et al., 2012, MNRAS, 421, 621

Baudin M., Christopoulou M., Collette Y., Martinez J.-M., 2012, pyDOE:
The experimental design package for Python, available at: https://github
.com/tisimst/pyDOE

Becker M. R., Kravtsov A. V., 2011, ApJ, 740, 25

Behroozi P., Wechsler R. H., Hearin A. P., Conroy C., 2019, MNRAS, 488,
3143

Bernardi M., Meert A., Sheth R. K., Fischer J. L., Huertas-Company M.,
Maraston C., Shankar F., Vikram V., 2017, MNRAS, 467, 2217

Bernardi M., Meert A., Sheth R. K., Vikram V., Huertas-Company M., Mei
S., Shankar F., 2013, MNRAS, 436, 697

Bondi H., Hoyle F., 1944, MNRAS, 104, 273

Booth C. M., Schaye J., 2009, MNRAS, 398, 53

Borrow J., Schaller M., Bahe Y. M., Schaye J., Ludlow A. D., Ploeckinger
S., Nobels F. S. J., Altamura E., 2022a, preprint (arXiv:2211.08442)

Borrow J., Schaller M., Bower R. G., Schaye J., 2022b, MNRAS, 511,
2367

Bower R. G., Vernon L., Goldstein M., Benson A. J., Lacey C. G., Baugh C.
M., Cole S., Frenk C. S., 2010, MNRAS, 407, 2017

Bower R. G., Schaye J., Frenk C. S., Theuns T., Schaller M., Crain R. A.,
McAlpine S., 2017, MNRAS, 465, 32

Caias R., Elahi P. J., Welker C., del P Lagos C., Power C., Dubois Y., Pichon
C., 2019, MNRAS, 482, 2039

Chabrier G., 2003, Publ. Astron. Soc. Pac., 115, 763

Chaikin E., Schaye J., Schaller M., Benitez-Llambay A., Nobels F. S. J.,
Ploeckinger S., 2022a, MNRAS, 523, 3709

Chaikin E., Schaye J., Schaller M., Bahé Y. M., Nobels F. S. J., Ploeckinger
S., 2022b, MNRAS, 514, 249

Cole S., Lacey C. G., Baugh C. M., Frenk C. S., 2015, Astrophysics Source
Code Library, record ascl:1510.005

Crain R. A. et al.,, 2015, MNRAS, 450, 1937

D’Souza R., Vegetti S., Kauffmann G., 2015, MNRAS, 454, 4027

Dalla Vecchia C., Schaye J., 2008, MNRAS, 387, 1431

Dalla Vecchia C., Schaye J., 2012, MNRAS, 426, 140

Davé R., Anglés-Alcazar D., Narayanan D., Li Q., Rafieferantsoa M. H.,
Appleby S., 2019, MNRAS, 486, 2827

1Ohttps://swiftemulator.readthedocs.io/en/latest/

6123

De Graaff A., Trayford J., Franx M., Schaller M., Schaye J., van der Wel A.,
2022, MNRAS, 511, 2544

Debackere S. N. B., Schaye J., Hoekstra H., 2020, MNRAS, 492, 2285

DeRose J. et al., 2021, Phys. Rev. D, 105, 123520

Di Matteo T., Colberg J., Springel V., Hernquist L., Sijacki D., 2008, ApJ,
676, 33

Driver S. P., Robotham A. S. G., 2010, MNRAS, 407, 2131

Driver S. P. et al., 2022, MNRAS, 513, 439

Eckert D. et al., 2016, A&A, 592, A12

Eddington A. S., 1913, MNRAS, 73, 359

Elahi P. J., Caiias R., Poulton R. J. J., Tobar R. J., Willis J. S., Lagos C. d. P.,
Power C., Robotham A. S. G., 2019, Publ. Astron. Soc. Aust., 36, ¢021

Elbers W., Frenk C. S., Jenkins A., Li B., Pascoli S., 2021, MNRAS, 507,
2614

Elliott E. J., Baugh C. M., Lacey C. G., 2021, MNRAS, 506, 4011

Euclid Collaboration, 2019, MNRAS, 484, 5509

Euclid Collaboration, 2020, A&A, 642, A191

Ferland G. J. et al., 2017, Rev. Mex. Astron. Astrofis., 53, 385

Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013, Publ. Astron.
Soc. Pac, 125, 306

Frieman J. A., Turner M. S., Huterer D., 2008, ARA&A, 46, 385

Giri S. K., Schneider A., 2021, J. Cosmol. Astropart. Phys., 2021, 046

Gonzalez A. H., Sivanandam S., Zabludoff A. I., Zaritsky D., 2013, ApJ, 778,
14

Greengard L., Rokhlin V., 1987, J. Comput. Phys., 73, 325

Hahn O., Rampf C., Uhlemann C., 2021, MNRAS, 503, 426

Hiring N., Rix H.-W., 2004, ApJ, 604, L89

Heitmann K., Higdon D., White M., Habib S., Williams B. J., Lawrence E.,
Wagner C., 2009, ApJ, 705, 156

Heitmann K. et al., 2016, ApJ, 820, 108

Heymans C. et al., 2021, A&A, 646, A140

Hirschmann M., Dolag K., Saro A., Bachmann L., Borgani S., Burkert A.,
2014, MNRAS, 442, 2304

Hoekstra H., Herbonnet R., Muzzin A., Babul A., Mahdavi A., Viola M.,
Cacciato M., 2015, MNRAS, 449, 685

Husko F., Lacey C. G., Schaye J., Schaller M., Nobels F. S. J., 2022, MNRAS,
516, 3750

Husko F., Lacey C. G. Schaye J. Nobels F. S. J. Schaller M. 2023, preprint
(arXiv:2307.01409)

Jo Y. etal., 2023, ApJ, 944, 67

Kaviraj S. et al., 2017, MNRAS, 467, 4739

Kennicutt Jr R. C., 1998, ApJ, 498, 541

Kennicutt Jr R. C. et al., 2007, ApJ, 671, 333

Kugel R., Borrow J., 2022, J. Open Source Softw., 7, 4240

Lacey C. G. et al., 2016, MNRAS, 462, 3854

Lagand T. F., Martinet N., Durret F., Lima Neto G. B., Maughan B., Zhang
Y. Y, 2013, A&A, 555, A66

Le Brun A. M. C.,, McCarthy I. G., Schaye J., Ponman T. J., 2014, MNRAS,
441, 1270

Li C., White S. D. M., 2009, MNRAS, 398, 2177

Lin Y.-T., Stanford S. A., Eisenhardt P. R. M., Vikhlinin A., Maughan B. J.,
Kravtsov A., 2012, ApJ, 745, L3

Lovisari L., Reiprich T. H., Schellenberger G., 2015, A&A, 573, A118

Lovisari L. et al., 2020, ApJ, 892, 102

Macquart J. P. et al., 2020, Nature, 581, 391

Maughan B. J., Jones C., Forman W., Van Speybroeck L., 2008, ApJS, 174,
117

McAlpine S., Bower R. G., Rosario D. J., Crain R. A., Schaye J., Theuns T.,
2018, MNRAS, 481, 3118

McCarthy I. G., Schaye J., Bird S., Le Brun A. M. C., 2017, MNRAS, 465,
2936

McCarthy 1. G., Bird S., Schaye J., Harnois-Deraps J., Font A. S., van
Waerbeke L., 2018, MNRAS, 476, 2999

McKay M. D., Beckman R. J., Conover W. J., 1979, Technometrics, 21, 239

Mead A. J., Peacock J. A., Heymans C., Joudaki S., Heavens A. F,, 2015,
MNRAS, 454, 1958

Moran K. R. et al., 2023, MNRAS, 520, 3443

Moster B. P., Naab T., White S. D. M., 2018, MNRAS, 477, 1822

MNRAS 526, 6103-6127 (2023)

202 ABIN 0L U 153NB AQ 016162 ./€019/7/92SG/2I01HE/SEIUW/ W09 dNO"d1WLSPED.//:Sd)lY WO PaPEOjUMOQ


http://www.swiftsim.com
http://dx.doi.org/10.1103/PhysRevD.105.023520
http://dx.doi.org/10.1093/mnras/stab2834
http://dx.doi.org/10.1093/pasj/psab115
http://dx.doi.org/10.1103/PhysRevD.103.083533
http://dx.doi.org/10.1109/TPAMI.2015.2448083
http://dx.doi.org/10.1093/mnras/stab2018
http://dx.doi.org/10.1093/mnras/stab1911
http://dx.doi.org/10.1093/mnras/staa4011
http://dx.doi.org/10.1111/j.1365-2966.2011.20364.x
http://dx.doi.org/10.1093/mnras/stac1339
http://dx.doi.org/10.1111/j.1365-2966.2012.20340.x
https://github.com/tisimst/pyDOE
http://dx.doi.org/10.1088/0004-637X/740/1/25
http://dx.doi.org/10.1093/mnras/stz1182
http://dx.doi.org/10.1093/mnras/stx176
http://dx.doi.org/10.1093/mnras/stt1607
http://dx.doi.org/10.1093/mnras/104.5.273
http://dx.doi.org/10.1111/j.1365-2966.2009.15043.x
http://arxiv.org/abs/2211.08442
http://dx.doi.org/10.1093/mnras/stab3166
http://dx.doi.org/10.1111/j.1365-2966.2010.16991.x
http://dx.doi.org/10.1093/mnras/stw2735
http://dx.doi.org/10.1093/mnras/sty2725
http://dx.doi.org/10.1086/376392
http://dx.doi.org/10.48550/arXiv.2211.04619
http://dx.doi.org/10.1093/mnras/stac1132
http://dx.doi.org/10.1093/mnras/stv725
http://dx.doi.org/10.1093/mnras/stv2234
http://dx.doi.org/10.1111/j.1365-2966.2008.13322.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21704.x
http://dx.doi.org/10.1093/mnras/stz937
https://swiftemulator.readthedocs.io/en/latest/
http://dx.doi.org/10.1093/mnras/stab3510
http://dx.doi.org/10.1093/mnras/stz3446
http://dx.doi.org/10.1103/PhysRevD.105.123520
http://dx.doi.org/10.1086/524921
http://dx.doi.org/10.1111/j.1365-2966.2010.17028.x
http://dx.doi.org/10.1093/mnras/stac472
http://dx.doi.org/10.1051/0004-6361/201527293
http://dx.doi.org/10.1093/mnras/73.5.359
http://dx.doi.org/10.1017/pasa.2019.12
http://dx.doi.org/10.1093/mnras/stab2260
http://dx.doi.org/10.1093/mnras/stab1837
http://dx.doi.org/10.1093/mnras/stz197
http://dx.doi.org/10.1051/0004-6361/202038071
http://dx.doi.org/10.1086/670067
http://dx.doi.org/10.1146/annurev.astro.46.060407.145243
http://dx.doi.org/10.1088/1475-7516/2021/12/046
http://dx.doi.org/10.1088/0004-637X/778/1/14
http://dx.doi.org/10.1016/0021-9991(87)90140-9
http://dx.doi.org/10.1093/mnras/staa3773
http://dx.doi.org/10.1086/383567
http://dx.doi.org/10.1088/0004-637X/705/1/156
http://dx.doi.org/10.3847/0004-637X/820/2/108
http://dx.doi.org/10.1051/0004-6361/202039063
http://dx.doi.org/10.1093/mnras/stu1023
http://dx.doi.org/10.1093/mnras/stv275
http://dx.doi.org/10.1093/mnras/stac2278
https://doi.org/10.48550/arXiv.2307.01409
http://dx.doi.org/10.3847/1538-4357/aca8fe
http://dx.doi.org/10.1093/mnras/stx126
http://dx.doi.org/10.1086/305588
http://dx.doi.org/10.1086/522300
http://dx.doi.org/10.21105/joss.04240
http://dx.doi.org/10.1093/mnras/stw1888
http://dx.doi.org/10.1051/0004-6361/201220423
http://dx.doi.org/10.1093/mnras/stu608
http://dx.doi.org/10.1111/j.1365-2966.2009.15268.x
http://dx.doi.org/10.1088/2041-8205/745/1/L3
http://dx.doi.org/10.1051/0004-6361/201423954
http://dx.doi.org/10.3847/1538-4357/ab7997
http://dx.doi.org/10.1038/s41586-020-2300-2
http://dx.doi.org/10.1086/521225
http://dx.doi.org/10.1093/mnras/sty2489
http://dx.doi.org/10.1093/mnras/stw2792
http://dx.doi.org/10.1093/mnras/sty377
http://dx.doi.org/10.1093/mnras/stv2036
http://dx.doi.org/10.1093/mnras/stac3452
http://dx.doi.org/10.1093/mnras/sty655

6124  R. Kugel et al.

Mulroy S. L. et al., 2019, MNRAS, 484, 60

Nicastro F. et al., 2018, Nature, 558, 406

Oh B. K., An H., Shin E.-j., Kim J.-h., Hong S. E., 2022, MNRAS, 515, 693

Pakmor R. et al., 2022, MNRAS, 524, 2539

Pearson R. J. et al., 2017, MNRAS, 469, 3489

Pillepich A. et al., 2018, MNRAS, 473, 4077

Planck Collaboration VI, 2020, A&A, 641, A6

Ploeckinger S., Schaye J., 2020, MNRAS, 497, 4857

Pratt G. W. et al., 2010, A&A, 511, A85

Rasmussen C. E., Williams C. K. 1., 2006, Gaussian Processes for Machine
Learning. MIT Press Ltd, Cambridge, MA

Rasmussen C., Bousquet O., Luxburg U., Rétsch G., 2004, Advanced Lectures
on Machine Learning: ML Summer Schools 2003, 3176, Springer, Berlin,
Heidelberg

Rasmussen J., Ponman T. J., 2009, MNRAS, 399, 239

Rezzolla L., Barausse E., Dorband E. N., Pollney D., Reisswig C., Seiler J.,
Husa S., 2008, Phys. Rev. D, 78, 044002

Richings A. J., Schaye J., 2016, MNRAS, 458, 270

Riess A. G. et al., 2022, ApJ, 934, L7

Rodrigues L. F. S., Vernon I., Bower R. G., 2017, MNRAS, 466, 2418

Salcido J., McCarthy I. G., Kwan J., Upadhye A., Font A. S., 2023, MNRAS,
523, 2247

Sanderson A. J. R., O’Sullivan E., Ponman T. J., Gonzalez A. H., Sivanandam
S., Zabludoff A. L., Zaritsky D., 2013, MNRAS, 429, 3288

Schaller M., Gonnet P., Draper P. W., Chalk A. B. G., Bower R. G., Willis
J., Hausammann L., 2018, Astrophysics Source Code Library, record
ascl:1805.020

Schaller M. et al., 2023, preprint (arXiv:2305.13380)

Schaye J., Dalla Vecchia C., 2008, MNRAS, 383, 1210

Schaye J. et al., 2010, MNRAS, 402, 1536

Schaye J. et al., 2015, MNRAS, 446, 521

Schaye J. et al., 2023, preprint (arXiv:2306.04024)

Schneider A., Teyssier R., 2015, J. Cosmol. Astropart. Phys., 2015,
049

Schneider A., Stoira N., Refregier A., Weiss A. J., Knabenhans M., Stadel J.,
Teyssier R., 2020, J. Cosmol. Astropart. Phys., 2020, 019

Semboloni E., Hoekstra H., Schaye J., van Daalen M. P, McCarthy I. G.,
2011, MNRAS, 417, 2020

Semboloni E., Hoekstra H., Schaye J., 2013, MNRAS, 434, 148

Smith G. P. et al., 2016, MNRAS, 456, L74

Springel V., 2005, MNRAS, 364, 1105

Sun M., Voit G. M., Donahue M., Jones C., Forman W., Vikhlinin A., 2009,
ApJ, 693, 1142

Turner M. S., 2022, Annu. Rev. Nucl. Part. Sci., 72, 1

van Daalen M. P, Schaye J., Booth C. M., Dalla Vecchia C., 2011, MNRAS,
415, 3649

van Daalen M. P., McCarthy 1. G., Schaye J., 2020, MNRAS, 491, 2424

Velliscig M., van Daalen M. P., Schaye J., McCarthy I. G., Cacciato M., Le
Brun A. M. C., Dalla Vecchia C., 2014, MNRAS, 442, 2641

Vernon I., Goldstein M., Bower R., 2014, Stat. Sci., 29, 81

Vikhlinin A., Kravtsov A., Forman W., Jones C., Markevitch M., Murray S.
S., Van Speybroeck L., 2006, ApJ, 640, 691

Villaescusa-Navarro F. et al., 2021, ApJ, 915, 71

Wendland H., 1995, Adv. Comput. Math., 4, 389

WiersmaR. P. C., Schaye J., Theuns T., Dalla Vecchia C., Tornatore L., 2009,
MNRAS, 399, 574

Wright A. H. et al., 2017, MNRAS, 470, 283

APPENDIX A: DIFFERENT APERTURES

Fig. Al compares the SMF results for different choices of 3D
apertures with radii of 30, 50 (our fiducial aperture), and 100 kpc.
For each non-fiducial aperture, we retrain the emulator on the SMFs
obtained with the different aperture. The new emulator, based on a
different aperture, is then evaluated at the fiducial subgrid parameter
values. We do not refit the SMF for each aperture, because we wish
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Figure Al. The effect on the SMF of choosing a different aperture when
measuring stellar masses in the simulation. For each line, we set up a new
emulator based on the simulation results for the corresponding aperture. Each
emulator is then used to predict the behaviour at the best-fitting parameter
values for the fiducial 50-kpc aperture. Differences between the apertures
start to occur above a stellar mass of 10'! M.

to quantify the effect of the aperture size on the SMF predicted by
a given simulation. The choice of aperture only has an impact at the
largest stellar masses (see also Schaye et al. 2015). For our analysis,
this implies that the main effect of an increase in aperture would be
a slight increase in the slope of the density dependence of the AGN
accretion rate boost factor. However, for the fitted mass range, this
effect is relatively small. The effect of using a mass measurement
method more similar to that used by observers may be larger (e.g.
De Graaff et al. 2022), but such a comparison is not feasible at the
resolution of our simulations.

APPENDIX B: POSTERIORS FOR HIGH AND
LOW RESOLUTIONS

The posteriors for low resolution are shown in Fig. B1. There is
a degeneracy between the two parameters. Both parameters are
sampled well within our chosen ranges. Even though the range for the
heating temperature is much wider than for the other resolutions, we
find that the best-fitting value is in the range where AGN feedback
is well sampled, and does not suffer from catastrophic numerical
overcooling (see Section 2.3).

The posteriors for the high-resolution simulation are shown in
Fig. B2. Similar to the intermediate-resolution posteriors, we find a
best-fitting model within the chosen parameter ranges. The best-
fitting value for Spy is quite close to the edge, partly due to a
degeneracy between By and Avgn. The high-resolution posteriors
are more degenerate than for the intermediate resolution. This
is likely due to the fact that we fit a much broader range of
the SMF, making it more important to get the balance between
stellar and AGN feedback right. The posteriors show that there
are some significant degeneracies in how this problem can be
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Figure B1. The posterior distributions of the model parameters resulting
from fitting the emulator for low-resolution simulations to the observed
SMF and cluster gas fractions. The parameters shown are the AGN feedback
temperature jump ATsgN and the logarithmic slope of the density dependence
of the BH accretion rate boost factor, Spn. The two subgrid parameters are
described in Section 2. The black contours show the 68 and 95 per cent
CLs. The panels along the diagonal show the one dimensional probability
density for each parameter. In these plots, the three vertical lines indicate the
16th, 50th, and 84th percentiles. The solid, red circle indicate the maximum-
likelihood values, which were used for the fiducial model. There is some
degeneracy, but there is a clear single best-fitting solution.

solved. Note that for both high and low resolutions, we have
fixed the biases to the values for the intermediate resolution, see
Section 6.2.
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Figure B2. The posterior distributions of the model parameters resulting from fitting the emulator for high-resolution simulations to the observed SMF and
cluster gas fractions. The parameters shown are the stellar feedback energy, fsn, the stellar feedback kick velocity, Avgn, the AGN feedback temperature jump,
ATagn and the logarithmic slope of the density dependence of the BH accretion rate boost factor, Sgn. The four subgrid parameters are described in Section 2.
The black contours show the 68 and 95 per cent CLs. The panels along the diagonal show the one dimensional probability density for each parameter. In these
plots, the three vertical lines indicate the 16th, 50th, and 84th percentiles. The solid, red circles indicate the maximum-likelihood values, which were used for
the fiducial model. The results show some moderate degeneracies, but the individual parameters each have a clear peak close to the best-fitting values.
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APPENDIX C: PARAMETER RANGES FOR THE
AGN JET MODEL

The subgrid parameter ranges for the Latin hypercube that was used
to train the emulators for the AGN jet model can be found in Table C1.

© 2023 The Author(s).
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Table C1. Subgrid parameter ranges for the Latin hypercube used to train
the jet model emulators.

Parameter Prior
fsn [0.0,0.5]
Avgy (kms~1) [10%3, 107]
Vier (km s71) [10*7, 10%]

BeH [0.1,0.7]

This paper has been typeset from a TEX/I&TEX file prepared by the author.

(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

MNRAS 526, 6103-6127 (2023)

202 ABIN 0L U 153NB AQ 016162 ./€019/7/92SG/2I01HE/SEIUW/ W09 dNO"d1WLSPED.//:Sd)lY WO PaPEOjUMOQ


https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 SIMULATIONS
	3 OBSERVATIONAL DATA AND BIASES
	4 EMULATOR CONSTRUCTION
	5 USING THE EMULATOR FOR PARAMETER ESTIMATION
	6 RESULTS
	7 CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: DIFFERENT APERTURES
	APPENDIX B: POSTERIORS FOR HIGH AND LOW RESOLUTIONS
	APPENDIX C: PARAMETER RANGES FOR THE AGN JET MODEL

