Li, C, Nguyen, TT, Yang, M, Mavrovouniotis, M and Yang, S

An Adaptive Multi-Population Framework for Locating and Tracking Multiple Optima

http://researchonline.ljmu.ac.uk/2371/

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/
An Adaptive Multi-Population Framework for Locating and Tracking Multiple Optima

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Transactions on Evolutionary Computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>TEVC-00201-2015</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Regular Papers</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>16-May-2015</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Li, Changhe; China University of Geosciences(Wuhan), Hubei Key Laboratory of Intelligent Geo-Information Processing Nguyen, Trung Thanh; Liverpool John Moores University, School of Engineering Yang, Ming; China University of Geosciences, School of Computer Science Mavrovouniotis, Michalis; De Montfort University, School of Computer Science and Informatics Yang, Shengxiang; De Montfort University, School of Computer Science and Informatics;</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Multi-population optimization, Dynamic optimization, Multi-modal optimization, Population adaptation</td>
</tr>
</tbody>
</table>
An Adaptive Multi-Population Framework for Locating and Tracking Multiple Optima

Changhe Li, Trung Thanh Nguyen, Ming Yang, Michalis Mavrovouniotis, Shengxiang Yang

Abstract—Multi-population methods are important tools to solve dynamic optimization problems. However, to effectively track multiple optima, algorithm designers need to address a key issue: adaptation of the number of populations. In this paper, an adaptive multi-population framework is proposed to address this issue. A database is designed to collect heuristic information of algorithm behavior changes. The number of populations is adaptively adjusted according to statistic information related to the current evolving status in the database as well as a heuristic value. Several other techniques are also introduced, including a heuristic clustering method, a probabilistic prediction scheme, a population hibernation rule, and a peak hiding method. The particle swarm optimization and differential evolution algorithms are implemented into the framework, respectively. A set of multi-population based algorithms are chosen to compare with the proposed algorithms on the moving peaks benchmark using four different performance measures. The proposed algorithms are also compared with two peer algorithms on a set of multi-modal problems in static environments. Experimental results show that the proposed algorithms outperform the other algorithms in most scenarios.

Index Terms—Multi-population optimization, dynamic optimization, multi-modal optimization, population adaptation.

I. INTRODUCTION

Generally speaking, multi-population methods (MPMs) use more than one population to cooperatively search in different local areas in the fitness landscape to locate multiple optima or the global optimum. They are widely used to track multiple optima/peaks in parallel for dynamic optimization problems (DOPs) in continuous space. The motivation is that each population covers a different peak, so that tracking the global optimum would be easy if the global optimum moves to the area where a population is covering. For a DOP with a certain number of peaks, tracking the global optimum would be inefficient if the number of populations is far less than the number of peaks, on the other hand, the tracking would also be inefficient if the number of populations is far more than the number of peaks. Therefore, to effectively solve DOPs by MPMs, one key issue is to adapt the number of populations [23], [30].

A good practice is to choose the number of populations in relation to the number of optima if known [21]. Many experiments have shown that an inappropriate number of populations would negatively affect the performance of MPMs [3], [6], [21], [23], [38]. This problem becomes more challenging for DOPs with a changing number of optima/peaks [23], [38]. In the literature of MPMs for DOPs, many studies focus on a fixed number of populations [6], [16], [25]. Although algorithms based on a dynamic number of populations were proposed [9], [20], [32], the total number of individuals is fixed. This limitation constrains the adaptability of such algorithms. For example, it would be out of the capability of such algorithms to track all optima in parallel when the number of optima is more than the total number of individuals.

To the best of our knowledge, only three versions of adaptive MPMs [3], [23], [38] have been proposed for DOPs so far. The difficulties in developing such algorithms lie in that: a) the number of optima in the fitness landscape is unknown and b) the relationship between a good choice of the number of populations and the number of optima is also unknown even if a priori knowledge of the number of optima is available.

To address the aforementioned issues for MPMs, this paper proposes an adaptive multi-population (AMP) framework based on an adaptive mechanism. The adaptive mechanism learns from algorithm behavior changes by means of interacting with environments and, in turn, guides the changes of the algorithm behavior toward a promising direction. In the framework, a probabilistic scheme is used to determine whether to increase, decrease, or make no change to the total number of individuals. A peak hiding method is proposed to hide peaks that have been explored so that no more populations would move to those peaks any more.

The most important difference between this work and existing studies [3], [23], [38] is that the adaptive behavior of this work is obtained by a learning process based on historical data. In contrast, the adaptation in studies [3], [23], [38] is obtained only based on the knowledge of current evolving status (see the detailed discussions in Sect. II and Sect. III-B).

The rest of this paper is organized as follows. Sect. II reviews related research in the literature of MPMs for DOPs. The components of the proposed AMP and two instantiated algorithms are introduced in detail in Sect. III. Experimental studies are provided in Sect. IV. Finally, Sect. V concludes the paper.
II. RELATED WORK

One early version of MPM is the self-organizing scouts (SOS) algorithm [9] proposed to solve the moving peaks benchmark (MPB). SOS starts from a parent population that explores new promising peaks. Child populations, which are used to track peaks, are generated by splitting off from the parent population when a certain condition (forking generations are detected) is satisfied. Based on the scout model of SOS, several other algorithms were proposed. A multi-swarm algorithm was developed in [4], where a part of swarms exploit peaks that have been detected and remaining swarms keep exploring new peaks. Another multi-swarm forking algorithm [44] was developed to solve the MPB by applying the same idea with SOS to PSO. A fast multi-swarm optimization algorithm was proposed in [19] using a similar idea with SOS to organize multiple swarms except that child swarms are created when changes are detected. To give more computing time to those productive swarms than those unproductive swarms, a hibernation multi-swarm optimization (HmSO) was proposed in [16]. A child swarm is forced to hibernate if its radius is less than a converging threshold value and the fitness of its best particle is less than the fitness of the global best particle by a predefined level.

Instead of the splitting idea, many algorithms use a re-grouping idea to create populations. A popular algorithm is the speciation-based PSO (SPSO) [32]. As SOS, SPSO also starts with a large size swarm. Differently, the initial swarm is divided into a number of sub-swarms by a speciation-based rule. A swarm is created by combining the best particle with particles that are close to that best particle (i.e., the distance to the best particle is less than a predefined value). Once a swarm is constructed, its particles are removed from the initial swarm. These procedures are repeated until the initial swarm is empty. The construction of swarms is performed every iteration. Based on this re-grouping idea, many improved versions of SPSO and variants were proposed.

A mechanism to remove duplicated particles was introduced to enhance the performance of SPSO [33]. Another improved version of SPSO (rSPSO) was developed by integrating a least square regression method [2]. Recently, a multi-population harmony search algorithm was proposed [40], where a harmony search method [13] is used for each population to locate peaks. The best individuals of converged populations are kept to replace redundant ones.

In addition to the speciation-based approaches, niching techniques are also widely used to maintain multiple populations. An adaptive niching PSO was proposed in [1] where niching radii can be calculated adaptively. A vector-based PSO (VBPSO) was developed in [35], in which the dot product of two vectors is used to identify niches. The algorithm shows a competitive performance for multi-modal optimization. Thereafter, VBPSO was extended in [36] for DOPs. Recently, a cluster-based DE algorithm for niching was proposed in [29], in which different kinds of strategies were introduced to efficiently track multiple peaks.

A composite PSO was proposed in [24], where swarms are constructed in a similar way with SPSO except that the construction starts from the worst particle and all swarms contain a fixed number of three particles. Particles are randomly re-grouped into several swarms after a certain number of iterations in [15]. A multi-nation genetic algorithm was proposed in [42], where a hill-valley detection method was introduced to create sub-populations (note that, this algorithm was proposed before SPSO [32] but it has not been widely used due to the limitation of the hill-valley detection method).

Instead of creating populations during the runtime, many MPMs start with a fixed number of populations. One of the most popular algorithms is the atomic swarm model [5], where three kinds of particles with different roles are defined. They are charged particles, quantum particles, and neutral particles. In each swarm in the model, either charged particles (mCPSO [6]) or quantum particles (mQSO [6]) play the role of maintaining diversity and neutral particles are used to locate peaks. An exclusion principle ensures that only one swarm surrounds a single peak and an anti-convergence principle is also introduced to explore new promising peaks.

Motivated by the atomic model [5], several similar algorithms have been proposed. A multi-population dynamic differential evolution (DynDE) [28] algorithm was proposed, where four types of individuals, named DE, entropy DE, quantum and Brownian, are defined. An improved version of mQSO was proposed in [11], where two heuristic rules are applied to further enhance the diversity when changes occur. A fuzzy-C-means strategy was introduced to adapt the exclusion radius in [34]. In the algorithm, all particles are transformed to quantum particles till the next iteration when a change is detected. Recently, a cooperative quantum PSO [41] was proposed by using a cooperative framework introduced in [7]. A multi-swarm algorithm, called finderCtracker multi-swarm PSO (FTMPSO), was proposed in [48] by integrating several schemes, including a finder scheme, a tracker scheme, a change detection scheme, a wakening and sleeping scheme, and a local search scheme. Thereafter, the authors proposed a multi-swarm algorithm based on a new artificial fish swarm algorithm (mNAFSA) [47]. In the algorithm, a mechanism of finding and covering potential optimum peaks was proposed.

Instead of using different types of individuals in each population, several MPMs use different search algorithms for different populations. A collaborative evolutionary swarm optimization (CESO) algorithm was proposed in [25], where two swarms, using the crowding DE [39] and PSO, respectively, cooperate with each other using a collaborative principle to track the global optimum. Thereafter, a new version of CESO was proposed in [26], called evolutionary swarm cooperative algorithm (ESCA), where another swarm using PSO was added and the cooperation principle was also updated. A dual-swarm PSO was proposed in [49], where the information of the two best particles of the two swarms is transmitted at the dimensional level with a certain probability. A multi-environmental cooperative model [17] was introduced to deal with DOPs that have different sub-problems or environments.

Another important kind of MPMs are clustering-based algorithms. A popular example is the clustering PSO (CPSO) [46], where a hierarchical clustering method is used to create multiple swarms by clustering a random swarm whenever
a change is detected. In CPSO, an overlapping detection principle was proposed to identify whether two swarms crowd around one single peak when they move into each other’s search area. One of the two swarms is removed if they are not overlapped but overcrowded (i.e., they crowd around one single peak). Thereafter, CPSO was enhanced to a version, called CPSOR, which does not need to detect changes. CPSOR introduces a principle that the population diversity is automatically increased once the total number of individuals is less than a threshold value. Recently, a new cluster-based DE algorithm was proposed in [14], where \(k \)-means is used to create populations whenever a change is detected. The number of populations may vary after every certain time span depending on the performance of the algorithm.

All methods mentioned above do not address one important issue of MPMs for DOPs, which is how to adapt the number of populations to dynamic environments, especially in the situation where the number of peaks changes overtime. Several attempts have been made to address this difficult issue. A self-adaptive multi-swarm optimizer (SAMO) [3] was developed based on the nQSO [6]. SAMO starts with a single free swarm. The number of free swarms is decreased when some of them are converging. SAMO creates a new free swarm if there are no free swarms. Converging swarms are identified by simply checking their radius against a predefined value. This way, the number of populations will be adaptively adjusted. Accordingly, the search area of each swarm is also adjusted by a formula taking the number of populations into account.

The motivation of SAMO was adopted in a DE algorithm, called DynPopDE [38]. A new free population is created when one population is identified as a stagnating population. A stagnating population will be removed if it is identified for re-initialization due to exclusion.

Note that, in this paper a population is considered “converging” if the average distance between individuals begins to decrease. A population is considered “converged” if the average distance between individuals is less than a threshold value. A population is considered “stagnating” if it stops improving permanently but does not show any trend of converging [18].

Recently, an adaptive multi-swarm optimizer (AMSO) [23] was proposed. AMSO maintains a number of populations obtained by the clustering method used in [46]. Due to the overlapping handling principle [46], the number of populations will decrease after each diversity increasing point. A certain number of individuals are introduced when the drop rate of the number of populations over a time span is less than a small value. The number of individuals to be adjusted depends on the difference of the number of populations between the current increasing point and the previous increasing point. This way, AMSO is able to adaptively adjust the number of populations during the runtime.

Although there are several adaptive MPMs for DOPs, the principles to adjust the number of populations simply rely on the current information available, e.g., no free populations in SAMO [3], appearance of stagnating populations in DynPopDE [38], and the difference of the number of populations at the current and previous increasing points in AMSO [23]. Simply relying on the current information to adjust the number of populations may lead to mistakes due to the complex nature of dynamic environments. In order to address the aforementioned issues of adapting the number of populations, we introduce the AMP framework in this paper, which is described below.

III. ADAPTIVE MULTI-POPULATION FRAMEWORK

The work flow of the proposed AMP framework consists of three major components: clustering, tracking and adapting. The clustering component is used to create a number of non-overlapped populations, which have no overlapping search areas with each other without the need of manually setting any parameters. The tracking component allows locating and tracking local optima using any population-based search algorithm. Finally, the adapting component adjusts the total number of populations by predicting what will be the best number of populations.

Algorithm 1 presents the framework of the AMP. The adaptation mechanism is triggered whenever the average radius (\(r_{avg} \)) of non-stagnating populations is less than a small value \(\theta \cdot S \). Then, Algorithm 3 (introduced later in Sect.III-B) is called to estimate the number of individuals for the next phase. A random population \(C' \) is created and clustered into a number of small populations, which are appended to a list \(\mathbf{P} \). The detailed description about each component is given in the following subsections.

A. Heuristic Clustering

A single linkage hierarchical clustering method [27] is used to create non-overlapping populations. Let:

- \(d(i, j) \) be the Euclidean distance between two individuals \(i \) and \(j \) in the D-dimensional space.
- \(D(C_1, C_2) = \min_{i \in C_1, j \in C_2} d(i, j) \) be the distance between two clusters \(C_1 \) and \(C_2 \).
- \(R(C) = \frac{1}{n^2} \sum_{i \in C, i' \neq i} d(i, i') \) be the radius of cluster \(C \), where \(i^* \) is the average position of all individuals in \(C \).
- \(d_{int} = \sum_{k} \sum_{\substack{i \in C_k, j \in C_k \neq i}} d(i, j) \) is the sum of intra-cluster distances between each pair of clusters in a list \(C \).
- \(d_{int} = \sum_{k} \sum_{\substack{i \in C_k, j \in C_k \neq i}} d(i, j), k = 1, 2, \ldots, |C| \) be the sum of intra-cluster distances of all clusters in \(C \), where the
Algorithm 2 \textit{Cluster}(C')

\begin{algorithmic}
\State for $i < |C'|$ do $C_i \leftarrow C'[i]$; end for
\State Calculate d_{inter} and d_{intra} of C; \Comment{$C_c\in [C_1, C_2, \ldots]$}
\State while $d_{\text{intra}} < d_{\text{inter}}$ do
\State\quad Merge C_i and C_j, where $D(C_i, C_j)=\min_{i \neq j \in C} D(C_i, C_j)$;
\State\quad Update d_{intra} and d_{intra};
\EndWhile \Comment{$C_c\in [C_1, C_2, \ldots]$}
\State Return C;
\end{algorithmic}

The intra-cluster distance of cluster C_k is the sum of all the distances between each pair of individuals in C_k.

Algorithm 2 shows the work flow of the heuristic clustering method to cluster a population C'. It first creates a list C of clusters with each cluster containing only a single individual. Then, for each iteration, it merges a pair of clusters which have the smallest distance among all pairs of clusters in C and satisfies the condition $d_{\text{intra}} < d_{\text{inter}}$. When d_{intra} is equal to or greater than d_{inter}, the clustering procedure terminates. Then, all clusters in C are appended to a population list \mathcal{P} (see Steps 3 and 14 in Algorithm 1), which is empty initially. The benefit of this heuristic clustering method, compared to the existing method in [21], [23], [46] is that it does not need users to manually set parameter such as the lower and upper bounds for cluster size. Note that, this method cannot guarantee that the sizes of all obtained clusters meet a required minimum population size for an algorithm (e.g., in this paper, the minimum population size is five for the DE and two for PSO). In this paper, such clusters do not take part in the optimization process and their individuals are used as random individuals when a random population (C') is created (see Step 13 in Algorithm 1).

B. Adapting Populations

There are two main concerns regarding adapting the number of populations to changes: a) when to make an adjustment and b) how many populations to be adjusted.

For the first concern, many researchers consider the moment when a change occurs as the time to make an adjustment (e.g., increasing/introducing diversity or reusing information learnt from the past in many studies reviewed above [6], [8], [20], [25], [26], [33], [46]). However, this strategy has a limitation: it may not work for changes that are hard or impossible to detect by re-evaluating a set of points in complex environments, such as dynamic environments where a part of the fitness landscape changes [23], [30] or there is noise.

The adaptive MPM algorithms in [3], [23], [38] do not use the above strategy. However, these algorithms have other issues. In SAMO [3], the issue is that a stagnating swarm with a large radius due to having individuals searching on different peaks can be mistaken as a converging swarm if the total number of swarms is far less than the number of peaks. As a result, this stagnating swarm will not be eliminated and consequently no new swarm can be created. Although SAMO still works in this case because stagnating swarms normally will transform to converging swarms after a change occurs, but, this situation may affect the performance of SAMO. In DynPopDE [38], this stagnating issue is taken into account, where a population is taken as a stagnating population if its best individual does not improve over two successive iterations. However, this way of identifying stagnating populations is not very effective and it may cause too many populations to be generated. In AMSO [23] new populations are added if the number of populations over a time span is dropped beyond a threshold. However, this requires setting the correct values for the time span and drop threshold, which may not be easy [23].

Based on the above considerations, we aim to find a simple yet effective way to identify the moment when populations are converging. To this aim, the average radius (r_{avg}) of non-stagnating populations is monitored. Population adjustments are triggered when r_{avg} is less than a threshold value $\theta \cdot S$ (S denotes the range of the solution space). Stagnating populations should be excluded because they can seriously affect the judgement of whether non-stagnating populations are converging if they have large search radii. In this paper, a population C is regarded as a stagnating population if all the three conditions below are met: a) its radius does not shrink after a certain number of successive iterations, which is equal to its size $|C|$ [45]; b) its radius is greater than the average radius of all populations in \mathcal{P}; c) its radius is greater than $\theta \cdot S$. Note that, this method does not guarantee that a population, which satisfies the three conditions, is a real stagnating population. However, a real stagnating population will satisfy the three conditions.

The second concern is very difficult to address directly due to the two difficulties mentioned in Sect. I, namely the lack of knowledge on the number of optima and on the correlation between the number of optima and the number of populations. However, we may still be able to indirectly address this concern by observing changes of algorithm behaviours. For example, it can be easily inferred that in an MPM algorithm, the number of survived populations (i.e., populations that find new, unexplored peaks – these populations will survive the exclusion procedure in MPMs) is proportional with the number of peaks in the fitness landscape. If the number of peaks increases, so does the number of survived populations, and vice versa. Therefore, we can use this heuristic relationship between the number of survived populations and the number of peaks to predict the number of populations to be adjusted.

Given this heuristic, we can address the second concern by following a two-step process. The first step is to decide whether to increase, decrease, or make no change to the total number of individuals. To make a choice from the three actions, a probabilistic prediction scheme, as illustrated in Fig. 1, is introduced, where N^e_t is the number of populations at the end of evolving phase t. If N^e_t is greater than 0.2 the number of populations is decreased; if it is less than 0.2 the number of populations increases; otherwise, no change is made to the number of populations.
Algorithm 3 Adjust()

1: \(ratio \leftarrow |N_t - N_{t-1}| / M; \)
2: \(\text{if} \ ratio > 1 \ then \ f \leftarrow 1; \)
3: \(\text{else if} \ ratio = 0 \ then \ f \leftarrow 0; \)
4: \(\text{else} \)
5: \(p \leftarrow \text{rand}(); \) \(p \) is a random number within [0,1];
6: \(\text{if} \ p < ratio \ then \ f \leftarrow 1; \)
7: \(\text{else} \ f \leftarrow 0; \)
8: \(\text{end if} \)
9: \(\text{end if} \)
10: \(I_{t+1}^b \leftarrow N(D_{t,b}[N_t^u],D_{t,b}[N_t^e]) + 5f \cdot (N_t^u - N_{t-1}^u); \)

In this scheme, one of the three actions is taken depending on the value of \(N_t^u - N_{t-1}^u \) and a probability, which is related to \(|N_t^u - N_{t-1}^u| / M \). The value of \(M > 0 \) determines the probabilistic range (the scheme is deterministic if \(M = 1 \)). As illustrated in Fig. 1, the larger the difference between \(N_t^u \) and \(N_{t-1}^u \), the larger the probability of increasing/decreasing the number of individuals. Algorithm 3 presents the pseudo-code of this probabilistic scheme. Note that, this scheme cannot guarantee that an action made by it is always right. However, it is expected that this scheme will improve the adaptation of algorithms in adjusting the number of individuals.

The second step is to estimate how many individuals should be set in the near future. Different from the existing methods [3], [23], [38], where the number of populations changes based on the current evolving status, in this paper the adaptation is achieved based on historical data and a heuristic adjustment. To achieve this objective, we first create a map from the current number of populations (\(N_t^u \)) to the total number of individuals at the beginning of the current phase (\(I_t^b \)) whenever a new adjustment is triggered. Note that, for the first map an over large initial population (far larger than needed, e.g. 500 individuals for the MPB with ten peaks) would affect the estimation if we use \(I_0^b \) (the initial population size) to create it. To address this issue, we use \(I_0^b \) for the first map instead of \(I_0^b \). Then, the map is added into a database \(D \), which records all maps created since the start of the run. To estimate the number of individuals, we average the number of individuals of all maps which have the same number of populations as the current map. Then, the number of individuals for the next evolving phase is estimated by the formula below:

\[
I_{t+1}^b \leftarrow N(D_{t,b}[N_t^u],D_{t,b}[N_t^e]) + 5f \cdot (N_t^u - N_{t-1}^u), \tag{1}
\]

where \(N(a, b) \) is a normally distributed random number with the mean \(a \) and the standard variation \(b \), \(D_{t,b}[N_t^u] \) and \(D_{t,b}[N_t^e] \) are the mean and standard deviation, respectively, of individuals with maps that have \(N_t^u \) populations, \(f \in \{0, 1\} \) denotes if to take the corresponding action into account.

Finally, a random population \(C_t^b \) is created with the size of \(I_{t+1}^b - I_t^b \) (see Step 13 in Algorithm 1). Note that, \(I_{t+1}^b \) will need to repair in the case of \(I_{t+1}^b \leq I_t^b \), where \(C_t^b \) is created with ten individuals to guarantee that the diversity is increased when all non-stagnating populations are converging. In this situation, the size of \(C_t^b \) should be small as many over-crowding populations would be created if a large value is used. Although the exclusion scheme (introduced in Sect.III-C later) is able to remove over-crowding populations, such populations still waste computing resources. Preliminary experimental results show that the value of ten is a reasonable choice.

Fig. 2 shows an example of the estimation process from the database \(D \) with five maps. In Fig. 2, the number of populations at the current adjustment point is nine and the current map is \((9,52) \). Then, the number of individuals for the next evolving phase (\(I_t^b \)) can be obtained by Eq. (1), which is 66. As shown in the bottom right graph in Fig. 2, the adaptation of the AMP is a feedback loop. The number of populations changes over time by interacting with the problem. For example, if increasing the number of population makes the AMP find new peaks, the AMP will keep doing so until no new peaks can be found. On the other hand, if the number of peaks decreases, the number of populations will be likely to decrease accordingly. The database \(D \) keeps receiving feedback of the algorithm behavior changes, in turn, it further guides the changes of the algorithm behavior. Therefore, the AMP is a self-regulating framework.

Note that, the constant value 5 in Eq. (1) is a step size. Its value should be small and roughly equal to the average population size. This way, the number of populations for the next evolving phase would be close to the expected value. A too large/small value will cause too many/few populations generated. Considering the average population size for all instances tested in this paper (4.687) and the minimum population size for the DE (5) and PSO (2), a value of 5 is chosen for this constant.

C. Population Exclusion

Over-crowding populations, which are multiple populations that surround the same peak, are not allowed in the AMP. In this paper, two populations are detected as over-crowding if both have at least one individual in each other's search areas. Then, the population with the worse best individual is removed from \(P \) (see Step 8 in Algorithm 1). Note that, this method cannot guarantee that two populations, which are detected as over-crowding, really search on a same peak.

D. Avoidance of Explored Peaks

Exploring peaks that have already been explored wastes computational resources and hence deteriorates an algorithm's performance. This is an important issue for EAs [31]. To address this issue, we propose a peak hiding technique in this
will not evolve until they wake up. Note that, waking up hibernating populations (Step 10 in Algorithm 1) is necessary when the AMP is running in dynamic environments. This is because when a change occurs, those hibernating populations are holding outdated memories and they must wake up in time to re-locate peaks that have moved. In the AMP, we choose the diversity adjustment point as the time point to wake up hibernating populations.

F. Movements for the Best Individual

For a non-stagnating population C, in order to quickly track a moving peak or a better peak within its search area but not covered by any population, the best individual \bar{x}_{best} performs a Brownian movement [28] within the search area of C at each iteration as follows:

$$\bar{x}_{\text{best}}' = N(\bar{x}_{\text{best}}, R(C)) \quad (2)$$

and it will be replaced if a better solution \bar{x}'_{best} is found.

However, if C is a stagnating population, it may not benefit from the Brownian movement. Jumping out its search area could help it transform to a converging population. To achieve this, we allow its best individual to perform a Cauchy movement at each iteration as follows:

$$\bar{x}_{\text{best}}' = Q(\bar{x}_{\text{best}}, S/2) \quad (3)$$

where $Q(a, b)$ is a random number of Cauchy distribution with location parameter a and scale parameter b.

G. Instantiation of the AMP Framework

In the framework, any population-based algorithm can be used to search for optima. In this paper, it will be instantiated with a PSO algorithm and a DE algorithm, respectively.

1) AMP with PSO: The PSO with an inertia weight [37] is used in this paper. The velocity and position of particle i are updated as below:

$$v_i'^{t+1} = \omega v_i^t + \eta_1 r_1(x_{p_i}^{t} - x_i^t) + \eta_2 r_2(x_{g}^{t} - x_i^t) \quad (4)$$

$$x_i'^{t+1} = x_i^t + v_i'^{t+1} \quad (5)$$

where $x_{p_i}^{t}$ and x_{g}^{t} represent the current and previous positions of particle i, respectively; v_i^t and $v_i'^{t+1}$ are the current and previous velocities of particle i, respectively; x_{p_i} and x_{g} are the best positions found by particle i so far and found by the whole swarm so far, respectively; $\omega = 0.7298$ and $\eta_1 = \eta_2 = 1.496$ are constant parameters, whose values were suggested by [43]; r_1 and r_2 are vectors of random numbers uniformly generated within $[0.0, 1.0]$ for each dimension. Note that, the maximum velocity of each particle is set to the initial search radius of its swarm in the AMP. Algorithm 4 presents the framework of the PSO.

2) AMP with DE: The DE with $DE/best/2/bin$ mutation strategy is used in this paper. Algorithm 5 shows the procedures of the algorithm. The parameters F and CR are set to 0.5 and 0.6, respectively, which were suggested by [28].
IV. EXPERIMENTAL STUDIES

To investigate the performance of the AMP, two groups of experiments are carried out in dynamic and static environments, respectively. For the first group, ten peer MPMs are selected for DOPs. They are mQSO [6], SAMO [3], SPSO [33], AMSO [23], CPSO [46], CPSOR [21], and mNAFSA [47]. The two proposed algorithms are named AMP/PSO and AMP/DE, respectively. Among these algorithms, AMP/PSO, AMP/DE, SAMO, DynPopDE, and AMMO are adaptive algorithms in terms of the number of populations used in the run time. Comparison in this group is conducted based on the MPB problem [8]. For the second group in static environments, two popular multi-modal optimization algorithms: CRDE [39] and DE/rand/1 [12], which are baseline models in [22], are chosen and the comparison is performed on ten multi-modal problems.

A. Problem Description

1) The Moving Peaks Benchmark: The MPB problem [8] is constructed by a number of peaks, which change in the location, height, and width. For the D-dimensional landscape, the problem is defined as follows:

\[F(\vec{x}, t) = \max_{i=1,...,P} \frac{H_i(t)}{W_i(t) \sum_{j=1}^{D} (x_j(t) - X_{ij}(t))^2}, \]

where \(W_i(t) \) and \(H_i(t) \) are the height and width of peak \(i \) at time \(t \), respectively, and \(X_{ij}(t) \) is the \(j \)-th element of the location of peak \(i \) at time \(t \). The \(P \) independently specified peaks are blended together by the \(\max \) function. The position of each peak is shifted in a random direction by a vector \(\vec{v}_i \) of a distance \(s \) (\(s \) is also called the shift length, which determines the severity of the problem dynamics), and the move of a single peak can be described as follows:

\[\vec{v}_i(t) = \frac{s}{|\vec{r} + \vec{v}_i(t-1)|^2} \left((1 - \lambda)\vec{r} + \lambda\vec{v}_i(t-1)\right), \]

where the shift vector \(\vec{v}_i(t) \) is a linear combination of a random vector \(\vec{r} \) and the previous shift vector \(\vec{v}_i(t-1) \) and is normalized to the shift length \(s \). The correlated parameter \(\lambda \) is set to 0, which implies that the peak movements are uncorrelated. A change of a single peak can be described as follows:

\[H_i(t) = H_i(t-1) + height_severity \cdot \sigma \]

\[W_i(t) = W_i(t-1) + width_severity \cdot \sigma \]

where \(\sigma \) is a normal distributed random number with mean 0 and variation 1.

In this paper, a new feature, the change in the number of peaks introduced in [23], is used to test an algorithm's performance in terms of the adaptation of the number of populations. If this feature is enabled, the number of peaks changes using one of the following formulas:

\[V ar_1 : P = P + sign \cdot 2, \]
\[V ar_2 : P = P + sign \cdot r(1, 5), \]
\[V ar_3 : P = r(10, 100), \]

where \(sign = 1 \) if \(P < 10 \), \(sign = -1 \) if \(P > 100 \), and the initial value of \(sign \) is one; \(r(a, b) \) returns a random value in \([a, b]\).

2) Multi-modal Functions: In this paper, ten multi-modal functions are chosen. Table II gives a description of these functions, where the major properties are as follows.

- The Waves function (F1) is asymmetric and has ten peaks (one global optimum and nine local optima), which are irregular disposed. Some of the peaks are difficult to find as they lie on the border or on flat hills.
- The Vincent function (F2) has \(6^D \) global optima and no local optima. The global optima have vastly different spacing between them. A part of the optima are very difficult to find as they take a very narrow space in the fitness landscape.
- The Six-hump Camel Back function (F3) has six optima, which are disposed in a smooth landscape and two of the optima are global optima.
- The Shubert function (F4) contains \(3^D \) global optima unevenly disposed. These global optima are divided into \(3^D \) groups, with each group having \(D \) global optima being close to each other. F2 also contains many other local optima, which are between the global optima.
Table II

Description of ten multi-modal functions, where D is the number of dimensions

<table>
<thead>
<tr>
<th>Name</th>
<th>D</th>
<th>Function</th>
<th>F of global/local Opt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waves</td>
<td>2</td>
<td>$F(\vec{x}) = (0.3x_1)^2 + 3.5x_2^2 - 8.7091(3x_1 - x_2^2 + 2x_1)\sin(2.5x_2 x_1)$</td>
<td>1/9</td>
</tr>
<tr>
<td>Vincent</td>
<td>D</td>
<td>$F(\vec{x}) = G_{\max} \cdot \min({\text{ webpage }}/D)$</td>
<td>6/0</td>
</tr>
<tr>
<td>Six-hump Camel Back</td>
<td>2</td>
<td>$F(\vec{x}) = (4 - 2.1x_1^2 + x_1 x_2 + (-4 + 4x_2^2)x_2)$</td>
<td>2/4</td>
</tr>
<tr>
<td>Shubert</td>
<td>D</td>
<td>$F(\vec{x}) = D/10 \sum_{i=1}^{D} \cos(x_1 + x_i) + 10/\pi \sum_{i=1}^{D}</td>
<td>x_i - 1</td>
</tr>
<tr>
<td>Modified Shekel</td>
<td>D</td>
<td>$F(\vec{x}) = \sum_{i=1}^{D}</td>
<td>x_i - a_i</td>
</tr>
<tr>
<td>IBA</td>
<td>2</td>
<td>$F(\vec{x}) = (x_1^2 + x_2^2)/(1 + x_1^2 + x_2^2) + (14(x_1^2 + x_2^2))^{1/2} - 1/x_1 - 1/x_2$</td>
<td>3/1</td>
</tr>
<tr>
<td>Himmeblau</td>
<td>D</td>
<td>$F(\vec{x}) = x_1 + x_2 - 4x_1^2 - x_2^3 + 0.5(1 - x_1^2)^2 + (1 - x_2)^2$</td>
<td>1/3</td>
</tr>
<tr>
<td>Five hills</td>
<td>2</td>
<td>$F(\vec{x}) = \sin(2\pi x_1 + 0.5\pi x_2)(2 + 0.5\pi x_1 - 0.5\pi x_2) + \sin(0.5\pi x_1 + 0.5\pi x_2)(2 - 0.5\pi x_1 - 0.5\pi x_2)$</td>
<td>1/4</td>
</tr>
<tr>
<td>Center peak</td>
<td>2</td>
<td>$F(\vec{x}) = 3\sin(0.5\pi x_1 + 0.5\pi x_2)(2 - \sqrt{x_1^2 + x_2^2})/4$</td>
<td>1/4</td>
</tr>
<tr>
<td>BraninRCONS</td>
<td>2</td>
<td>$F(\vec{x}) = (x_1 - 5.1)^2 + x_1^4 + 5x_2^2 - 6x_1x_2 + 10x_1 - 1.0x_1^2 + 10/\pi \sin(x_1 + x_2)$</td>
<td>3/0</td>
</tr>
</tbody>
</table>

- The Modified Shekel function (F5) has eight optima, one of which is the global optimum. Most of the optima are separated from each other by wide flat valleys. The parameters a_{ij} and c_j are given by

 $a_{ij} = \begin{pmatrix} 4 & 4 & 6.3 & 4.4 \\ 1 & 3 & 8.5 & 1.1 \\ 6 & 6 & 9.1 & 9.6 \\ 3.5 & 7.5 & 4.9 & 4.4 \\ 5 & 5 & 3.3 & 3.9 \\ 9.1 & 8.2 & 2.3 & 3.9 \\ 1.5 & 9.3 & 7.4 & 3.9 \\ 7.8 & 2.2 & 5.3 & 9.3 \end{pmatrix}$

 $c_j = (0.10.20.40.150.60.20.060.18)$. The location of the global optimum is given by vector row $a_{j_j}, j \in [1, D]$, and the other seven local optima are determined by other vector rows of the matrix $|a_i|$. The IBA function (F6) has three global optima and one local optimum. In the function, $k = -0.95$ and $\chi = -1.26$ is used.

- The Himmeblau function (F7) has one global optimum and three local optima with different objective values.

- The Five hills function (F8) and the Center peak function (F9) have each one global optimum and four local optima. F8 has five very close hills with lines of valleys between them. The four local optima in F9 are on the edge of the intervals and the global optimum is in the middle.

- The BraninRCONS function (F10) has three global optimum, which are distributed within an irregular and asymmetric landscape. In addition, the function has no local optima.

B. Experimental Setup

1) Performance Evaluation: To evaluate an algorithm’s performance in tracking the global optimum, the offline error (E_O) [10] and the best-before-change error (E_{BBC}) are used. The offline error used in this paper is the average of the best error found every two objective evaluations and the best-before-change error is the average of the best error achieved at the fitness evaluation just before a change occurs.

In addition, to evaluate an algorithm’s performance in tracking multi-optima, the ratio of of peaks that are traced (PR) and the success rate of tracking all peaks (SR) are used. A peak is assumed to be traced if the difference of objective value between any individual and the peak is less than ϵ_o and the Euclidian distance between the individual and the peak is less than ϵ_s (see Table III for the values of ϵ_o and ϵ_s for all problems tested in this paper). For the value of ϵ_s for the MPB, it is set to $min(\min_{i,j}^D \delta_d \cdot D(X_i(t), X_j(t))/2, 0.1)$ at time t.

A two-tailed t-test with 58 degrees of freedom at a 0.05 level of significance was conducted for each pair of algorithms on E_O and E_{BBC}. The t-test results are given with the letters “w”, “t”, or “c”, which denote that the performance of an algorithm is significantly better than, significantly worse than, or statistically equivalent to its peer algorithms, respectively.

2) Algorithm Configurations: For the AMP, there are three parameters to be investigated (see Sect. IV-C later). They are the initial population size ($gSize$), the convergence threshold (θ), and the probabilistic range M, whose default values are set to 100, 0.005 \times S, and 3, respectively. For parameters of all the peer algorithms, default values suggested in their proposals are used if the algorithms show their best results. For example, the equations of setting the exclusion radius for each population suggested by Blackwell [6], [3] work well in our test. Therefore, we also use the default setting regarding this parameter for mQSO [6], SAMO [3], SPSO [33], DynDE [28], mNAFSA [47], and DynPopDE [38] as their authors used. However, for mNAFSA [47] try_number=2 and $N=10$.
are used instead of \textit{try} number=4 and \textit{N}=2 suggested in the original paper [47]. The stopping criterion is 200 changes for the MPB problem and 2.0E+5 function evaluations or finding all peaks for multi-modal problems in static environments. All the results reported in the paper are averaged over 30 independent runs.

3) Open Framework of Evolutionary Computation: The open framework of evolutionary computation (OFEC) is a template library written in C++ based on the Boost library. It supports any population based EC methods running in parallel on CPU (a new feature of parallel running on GPU will be available in the next release). OFEC has so far collected a number of algorithms from PSO, GA, DE, and several other domains for global optimization problems, multi-modal optimization problems, dynamic optimization problems, multi-objective problems, and travelling salesman problems. Common algorithm performance evaluation measurements are also available. The source code of the AMP will be available in OFEC. The OFEC-v0.3.0 has been released on github at https://github.com/Changhe160/OFEC.

C. Experimental Investigation of the AMP

In this section, the AMP is investigated regarding its key parameters and mechanisms, based on AMP/PSO.

1) Sensitivity Analysis of Parameter \textit{gSize}: To test the effect of varying the initial population size, \textit{gSize} was chosen from the range of 10 to 500. Fig. 4 presents the results of \textit{E}_O, \textit{E}_{BBC}, \textit{PR}, and \textit{SR} of AMP/PSO with different values of \textit{gSize} on the MPB with different numbers of peaks.

Fig. 4 shows that varying the value of \textit{gSize} in all MPB cases does not affect the results too much. This indicates that AMP/PSO has a very stable performance regardless of the initial population size. We would attribute the stable performance of AMP/PSO to its adaptation mechanism. The continuous adjustment to historical data (see Eq. (1)) would enable AMP/PSO to adjust the number of populations to an appropriate level (see evidences in Figs. 6, 8 and 9 later). Therefore, different choices of \textit{gSize} do not affect the performance of AMP/PSO, and \textit{gSize} = 100 is used for both AMP algorithms in this paper.

2) Sensitivity Analysis of Parameter \textit{θ}: For the convergence threshold (θ), the smaller it is, the more time will be spent on exploiting local optima. The larger the value of θ, in contrast, the more time will be spent on exploring new optima. To investigate the effect of this parameter on the performance of AMP/PSO, we conduct an experiment with different values of θ. Fig. 5 presents the results of AMP/PSO with different values of θ on the MPB with different numbers of peaks, where the darker the shade is, the better the results are.

Fig. 5 shows that varying the value of \textit{θ} does affect the performance of AMP/PSO. For \textit{E}_O, \textit{E}_{BBC}, \textit{SR}, in most cases the results get better as \textit{θ} increases from 1E-4 to 5E-3 but then get worse as \textit{θ} further increases. However, for \textit{PR}, the smallest value of \textit{θ} helps AMP/PSO obtain the best performance and the results of \textit{PR} get worse as \textit{θ} increases. This is because the measurement \textit{PR} focuses more on exploitation of local optima than exploration of the global optima. AMP/PSO will spend the largest amount of time on exploiting local optima with the smallest value of \textit{θ} and hence, the largest number of peaks is tracked. To take a trade-off between exploring new optima and exploiting local optima, \textit{θ} was set to 5E-3 for the AMP in all the other experiments in this paper.

3) Effect of the Adaptive Adjustment Mechanism: Fig. 6 shows the distribution of the number of populations of AMP/PSO and SAMO over 1,000 changes. For both algorithms, we take one sample when the number of populations changes. Therefore, the samples of AMP/PSO are the same data as in the database D. Both algorithms are able to maintain a good correlation between the number of populations and the number of peaks. In problems where the number of peaks remain unchanged, each distribution curve has a very narrow shape. However, the performance of AMP/PSO is better than that of SAMO at least on problems with a small number of peaks (e.g., \textit{P}=10 and 20), where the numbers of populations of AMP/PSO at the curve peaks are equal to the actual numbers of peaks. However, the corresponding numbers obtained by SAMO are larger than the actual numbers...
of peaks. For problems with a large number of peaks, the numbers of populations at the curve peaks for both algorithms are smaller than the actual numbers of peaks. However, the numbers for AMP/PSO are closer to the actual numbers of peaks.

In problems with a varying number of peaks by a certain pattern (Var1 and Var2), for both algorithms the distribution curves now have a large band with multiple spikes, corresponding to the variation in the number of peaks of these problems. However, both algorithms do not show such a behavior in Var3 where the number of peaks changes without a pattern (further comparison of detailed changes of the number of populations can be seen later in Figs. 8 and 9).

4) Effect of the Probabilistic Prediction Scheme: To show the effect of using the probabilistic prediction scheme, an experiment was carried out to calculate the average wrong action rate for AMP/PSO with the probabilistic range \(M > P \) less/greater than the current number of populations. Table IV presents the results, where \(P \) is the number of evaluations used by the peak hiding scheme and \(M \) is the total number of individuals when the number of peaks is increased. Hence, a wrong action is an action to increase/decrease the probability of taking a wrong action.

![Image of distribution of changes of the number of populations of AMP/PSO and SAMO over 1,000 changes.](image)

Fig. 6. Distribution of changes of the number of populations of AMP/PSO and SAMO over 1,000 changes.

TABLE IV

Effect of varying the probabilistic range \(M \) on the MPB with different numbers of peaks, where \(W_{AR} \) is a wrong action rate and \(N_{R} \) is the number of maps created in the database D.

<table>
<thead>
<tr>
<th>(P)</th>
<th>(M=1)</th>
<th>(M=2)</th>
<th>(M=3)</th>
<th>(M=4)</th>
<th>(M=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.295/320.038/386</td>
<td>0.128/427</td>
<td>0.059/489</td>
<td>0.066/529</td>
<td>0.043/559</td>
</tr>
<tr>
<td>20</td>
<td>0.320/689</td>
<td>0.14/204</td>
<td>0.128/2977</td>
<td>0.114/2985</td>
<td>0.091/2995</td>
</tr>
<tr>
<td>30</td>
<td>0.327/2000</td>
<td>0.22/2176</td>
<td>0.153/2310</td>
<td>0.114/2371</td>
<td>0.103/2292</td>
</tr>
</tbody>
</table>

TABLE V

Performance comparison of AMP/PSO with different values of \(M \) on multi-modal functions, where \(RE \) is the ratio of \(eval \) to the largest \(eval \) of each problem, \(N_{R} \) is the number of maps created in the database D.

<table>
<thead>
<tr>
<th>Function</th>
<th>Algorithm</th>
<th>(M=1)</th>
<th>(M=2)</th>
<th>(M=3)</th>
<th>(M=4)</th>
<th>(M=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shubert(F4,D=2)</td>
<td>AMP/PSO</td>
<td>0.41</td>
<td>0.39</td>
<td>0.37</td>
<td>0.35</td>
<td>0.33</td>
</tr>
<tr>
<td>Vincent(F2,D=2)</td>
<td>AMP/PSO</td>
<td>0.95</td>
<td>1.919317</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE VI

Comparison of \(SR \) and \(PR \) of AMP/PSO with and without the peak hiding scheme on functions F2 and F4, where \(eval^* \) is the number of evaluations used by the peak hiding scheme and \(eval \) is the total number of evaluations.

<table>
<thead>
<tr>
<th>Function</th>
<th>Algorithm</th>
<th>(eval^*)</th>
<th>(eval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP/PSO</td>
<td>1.0</td>
<td>140139</td>
<td>102871</td>
</tr>
<tr>
<td>AMP/PSO</td>
<td>0.99</td>
<td>82437</td>
<td>0</td>
</tr>
</tbody>
</table>

D. Comparison with Peer Algorithms on the MPB Problem

The number of populations can be seen later in Figs. 8 and 9).
TABLE VII

Comparison of Errors of E_O and E_{BBC} on the MPB Problem with Different Numbers of Peaks

<table>
<thead>
<tr>
<th>P</th>
<th>w</th>
<th>l</th>
<th>t</th>
<th>w,t</th>
<th>l,t</th>
<th>w,l</th>
<th>E_O</th>
<th>E_BBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.69±0.03</td>
<td>0.92±0.01</td>
<td>2.43±0.3</td>
<td>4.81±0.1</td>
<td>4.4±0.5</td>
<td>1.91±0.3</td>
<td>5.0±0.3</td>
<td>5.2±0.3</td>
</tr>
<tr>
<td>20</td>
<td>0.016±0.01</td>
<td>0.009±0.01</td>
<td>1.20±0.3</td>
<td>3.5±0.5</td>
<td>3.1±0.5</td>
<td>0.3±0.5</td>
<td>0.9±0.3</td>
<td>0.96±0.3</td>
</tr>
<tr>
<td>30</td>
<td>0.49±0.02</td>
<td>0.40±0.01</td>
<td>1.92±0.3</td>
<td>4.3±0.5</td>
<td>4.2±0.5</td>
<td>1.7±0.3</td>
<td>5.1±0.3</td>
<td>5.1±0.3</td>
</tr>
</tbody>
</table>

Fig. 7. Comparison of the peak ratio (PR) and success rate (SR) on the MPB with different numbers of peaks.

1) Effect of Varying the Number of Peaks: Table VII presents the offline errors and the best-before-change errors for all algorithms on the MPB with different numbers of peaks. Fig. 7 presents the comparison of the results of SR and PR for all peer algorithms. Fig. 8 plots the changes in the number of populations against time for AMP/PSO, SAMO, AMSO, and DynPopDE.

From Table VII, it can be seen that the results of AMP/PSO are significantly better than those of the other algorithms in all cases. Following with AMP/PSO, AMP/DE achieves the second best performance. The performance of the four adaptive algorithms (AMP/PSO, AMP/DE, SAMO, and AMSO) are better than that of those non-adaptive algorithms. Due to a large number of populations generated with DynPopDE, the algorithm achieves very poor performance compared with the other algorithms. Given the manually configured number of individuals, CPSOR also achieves a good performance.

Regarding the performance of tracking multiple peaks (see Fig. 7), AMP/PSO and AMP/DE achieve the best success rate (SR) in all cases. However, for the peak ratio, AMSO performs better than AMP/PSO and AMP/DE in the cases with many peaks. This is because many populations of the AMP have not converged yet when changes occur. The number of peaks tracked will be increased if we give more time for the AMP to evolve before changes occur (see Fig. 10 in Sect. IV-D3 later).

Fig. 8 shows that all the four adaptive algorithms exhibit adaptive behaviors, where the number of populations at the end of the run increases as the number of peaks increases. For problems with a large number of peaks, AMP/PSO, DynPopDE, and SAMO shows similar behaviors where the number of populations gradually increases as the search goes on. Different from the above three algorithms, the number of populations obtained by AMSO quickly converges at a certain level in most cases. Among the four adaptive algorithms, DynPopDE generated the largest number of populations in all cases, followed by AMP/PSO, SAMO, and AMSO.

2) Comparison on Problems with a Varying Number of Peaks: Problems with a fixed number of peaks may be easy to solve. However, problems with a varying number of peaks will challenge an algorithm’s adaptability. Table VIII and Fig. 9 present the errors of E_O and E_{BBC}, SR and PR, respectively, on problems with a varying number of peaks.

From Table VIII, AMP/PSO and AMP/DE achieve significantly better performance than all the other algorithms in all the cases. The adaptive algorithms SAMO and AMSO also achieve relatively good results in comparison with the other non-adaptive algorithms. Among the non-adaptive algorithms, the number of populations in CPSOR is configured according to the number of peaks, which makes it behave as an adaptive algorithm. Therefore, CPSOR performs as well as AMSO.

The four adaptive algorithms again show adaptive behaviors to the changing number of peaks, where the number of populations is basically synchronous with the change of the number of peaks in the cases of Var_1 and Var_2 (they also show such adaptive behavior in the case of Var_3 if we observe the curves...
with Var3 closely). Among these four algorithms, AMP/PSO and SAMO show the most similar behavior and they also show the best synchronization, which almost perfectly matches the changes of the number of peaks. DynPopDE again generates the largest number of populations, which makes it perform very poorly. Although all the adaptive algorithms show similar behaviors to AMP/PSO in terms of populations adaptation, they perform much worse than AMP/PSO regarding the errors E_0 and E_{BBC}.

3) Effect of Varying the Change Frequency: Fig. 10 and Table IX present the results of SR and PR, and the errors of E_0 and E_{BBC}, respectively, for all the involved algorithms. From Table IX, it can be seen that AMP/PSO achieves the best results in all cases, followed by AMP/DE. Although AMP/PSO and AMP/DE do not achieve the best results regarding the PR, they show the best results regarding the SR. AMSO shows very competitive performance regarding the PR. Increasing the change frequency means that algorithms will have more evaluations to locate and track optima before changes occur.

Fig. 9. Changes in number of populations against time for four adaptive algorithms on the MPB with a varying number of peaks.

Fig. 10 and Table IX present the results of SR and PR, and the errors of E_0 and E_{BBC}, respectively, for all the involved algorithms. From Table IX, it can be seen that AMP/PSO achieves the best results in all cases, followed by AMP/DE. Although AMP/PSO and AMP/DE do not achieve the best results regarding the PR, they show the best results regarding the SR. AMSO shows very competitive performance regarding the PR. Increasing the change frequency means that algorithms will have more evaluations to locate and track optima before changes occur.

Fig. 8. Changes in the number of populations against time for four adaptive algorithms on the MPB with different numbers of peaks.

TABLE VIII ON THE MPB PROBLEM WITH A VARYING NUMBER OF PEAKS

<table>
<thead>
<tr>
<th>P</th>
<th>error</th>
<th>AMP/PSO</th>
<th>AMP/DE</th>
<th>SAMO</th>
<th>DynPopDE</th>
<th>SPSO</th>
<th>mNSO</th>
<th>CPSOR</th>
<th>CPSO</th>
<th>FTMPSO</th>
<th>DynDE</th>
<th>AMSO</th>
<th>mNAFSA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>w,l</td>
<td>1.80±0.1</td>
<td>2.30±0.7</td>
<td>2.80±0.2</td>
<td>6.13±0.9</td>
<td>6.69±0.9</td>
<td>3.80±0.4</td>
<td>4.70±0.2</td>
<td>5.10±0.2</td>
<td>4.10±0.2</td>
<td>3.40±0.3</td>
<td>2.80±0.3</td>
<td>6.60±0.3</td>
</tr>
<tr>
<td>Var1</td>
<td>w,l</td>
<td>11.00</td>
<td>10.01</td>
<td>9.02</td>
<td>0.29</td>
<td>1.19</td>
<td>5.06</td>
<td>6.05</td>
<td>3.08</td>
<td>4.07</td>
<td>7.04</td>
<td>8.03</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>w,l</td>
<td>10.10</td>
<td>10.10</td>
<td>7.04</td>
<td>2.09</td>
<td>0.11</td>
<td>4.07</td>
<td>8.12</td>
<td>6.05</td>
<td>3.08</td>
<td>5.06</td>
<td>8.12</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>E_{BBC}</td>
<td>1.40±0.08</td>
<td>1.60±0.09</td>
<td>2.20±0.1</td>
<td>5.70±1</td>
<td>6.20±0.6</td>
<td>3.30±0.5</td>
<td>4.10±0.1</td>
<td>3.90±0.2</td>
<td>3.10±0.3</td>
<td>3.20±0.2</td>
<td>6.60±0.4</td>
<td></td>
</tr>
<tr>
<td>Var2</td>
<td>w,l</td>
<td>11.00</td>
<td>10.01</td>
<td>9.02</td>
<td>1.19</td>
<td>0.11</td>
<td>4.25</td>
<td>5.33</td>
<td>3.08</td>
<td>5.33</td>
<td>4.43</td>
<td>4.43</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>w,l</td>
<td>10.10</td>
<td>10.10</td>
<td>7.04</td>
<td>2.09</td>
<td>0.11</td>
<td>4.07</td>
<td>8.12</td>
<td>6.05</td>
<td>3.08</td>
<td>5.06</td>
<td>8.12</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>E_0</td>
<td>1.90±0.2</td>
<td>2.20±0.2</td>
<td>2.90±0.1</td>
<td>10.01</td>
<td>4.50±0.7</td>
<td>3.30±0.2</td>
<td>4.10±0.2</td>
<td>4.60±0.2</td>
<td>4.00±1</td>
<td>3.10±0.2</td>
<td>3.30±0.5</td>
<td>6.90±0.6</td>
</tr>
<tr>
<td>Var3</td>
<td>w,l</td>
<td>11.00</td>
<td>10.01</td>
<td>9.02</td>
<td>0.11</td>
<td>2.18</td>
<td>6.23</td>
<td>4.07</td>
<td>2.18</td>
<td>5.06</td>
<td>6.23</td>
<td>6.23</td>
<td>10.10</td>
</tr>
<tr>
<td></td>
<td>E_{BBC}</td>
<td>1.20±0.4</td>
<td>1.40±0.2</td>
<td>2.00±0.1</td>
<td>6.60±0.8</td>
<td>4.50±0.7</td>
<td>2.50±0.2</td>
<td>1.80±0.1</td>
<td>1.90±0.2</td>
<td>3.70±0.5</td>
<td>2.60±0.2</td>
<td>1.90±0.4</td>
<td>4.90±0.6</td>
</tr>
<tr>
<td></td>
<td>w,l</td>
<td>11.00</td>
<td>10.01</td>
<td>6.23</td>
<td>0.11</td>
<td>2.18</td>
<td>4.16</td>
<td>9.02</td>
<td>6.23</td>
<td>6.23</td>
<td>1.16</td>
<td>6.23</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>eval $(P=10)$</td>
<td>65</td>
<td>55</td>
<td>30</td>
<td>-54</td>
<td>-52</td>
<td>-20</td>
<td>-20</td>
<td>-15</td>
<td>-15</td>
<td>2</td>
<td>18</td>
<td>-34</td>
</tr>
</tbody>
</table>
Therefore, the performance of all the algorithms improves as the change frequency increases. It is interesting to see that AMP/PSO achieves the greatest improvement in PR among all the algorithms (Fig. 10), especially when $u > 5000$. This indicates that the AMP is able to make full use of the available evaluations to explore as many peaks as possible by adaptively adjusting the number of populations.

E. Comparison on Multi-modal Problems

In order to test the performance of the AMP in locating multiple peaks, an experimental comparison is carried out on ten multi-modal problems. In this paper, we do not choose the best and latest algorithms for the comparison since the motivation of this paper is for DOPs. To compare the performance of the AMP in static environments, two popular algorithms, DE/rand/1 and CRDE proposed for multi-modal problems, were chosen. Table X presents the results of SR, PR, and the total number of evaluations spent ($eval$).

From Table X, AMP/DE and AMP/PSO outperform the other two algorithms on most problems. AMP/PSO successfully finds all peaks for every run on all problems. AMP/DE also obtains such good results as AMP/PSO except on F2, where one peak is not found for all runs. DE/rand/1 also finds all peaks for all runs on F4, F7, and F10. However, it spends a much larger number of evaluations than AMP/PSO and AMP/DE on most problems. For the two AMP algorithms,
although they perform the same in SR and PR on nine out of ten problems, AMP/DE spends slightly less evaluations than AMP/PSO on most problems.

Fig. 11 presents the comparison of the progress of the number of peaks located by the four algorithms on three problems. From the results, it can be seen that AMP/PSO and AMP/DE are the quickest in locating multiple peaks.

In order to test the capability of locating many peaks of the AMP, AMP/DE and AMP/PSO are tested on the Vincent and Shubert function in 3D and 4D space with the corresponding maximum number of function evaluations of 5.0E+06 and 1.0E+07. Table XI shows the results of PR and SR of the two algorithms. For the 3-D-Vincent function with 216 global optima, AMP/PSO successfully finds all peaks under the given maximum number of evaluations and AMP/DE misses only one peak in one run. For the 4-D-Vincent function with 1296 global optima, although both algorithms fail to find all peaks under the given maximum number of evaluations, the peak ratio is 0.78 for AMP/DE and 0.95 for AMP/PSO, respectively. For the 3D-Shubert function with 81 global optima, AMP/PSO finds all the peaks for all runs and AMP/DE achieves a PR of 0.98 and a SR of 0.43. For the 4-D shubert function with 324 global optima, AMP/PSO and AMP/DE have no successful runs but they achieve the PR of 0.82 and 0.70, respectively.

V. CONCLUSIONS

Identifying the correct number of populations is a key issue to apply MPMs to solving DOPs. In order to address this issue, this paper proposes an adaptive multi-population framework. A database is used to record important information for guiding the adjustment of the total number of populations. Multiple populations are created by a heuristic clustering method without any manual inputs. Learning from historical data makes the AMP robust to solve problems, and continuously giving feedback to the database helps the AMP produce precise solutions.

From the experimental results of the two implemented algorithms with the AMP, several conclusions can be drawn. Firstly, the AMP is able to adaptively adjust the number of populations according to the number of peaks in the fitness landscape. Secondly, the AMP achieves the best performance among all the peer algorithms in most test cases, especially with regards to the capability of tracking multiple peaks. Thirdly, the AMP is also good at tracking multiple peaks in static environments.

Several interesting topics will be addressed for the future work. Firstly, the investigation on performance differences between AMP/PSO and AMP/DE on different problems should be performed. This would help to understand what kinds of EAs are good at solving what kinds of problems. Secondly, how to reduce the number of evaluations spent by the peak hiding method would also be interesting, especially in a high dimensional space. Thirdly, it is also interesting to make the peak hiding method work efficiently on problems with noise or with rugged fitness landscape. Finally, the application of the AMP to real-world problems is also important.

REFERENCES

