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Abstract
The solution spaces of many real-world optimization problems change over time. Such problems are called dynamic opti-
mization problems (DOPs), which pose unique challenges that necessitate adaptive strategies from optimization algorithms 
to maintain optimal performance and responsiveness to environmental changes. Tracking the moving optimum (TMO) is 
an important class of DOPs where the goal is to identify and deploy the best-found solution in each environments Multi-
population dynamic optimization algorithms are particularly effective at solving TMOs due to their flexible structures and 
potential for adaptability. These algorithms are usually complex methods that are built by assembling multiple components, 
each of which is responsible for addressing a specific challenge or improving the tracking performance in response to changes. 
This survey provides an in-depth review of multi-population dynamic optimization algorithms, focusing on describing these 
algorithms as a set of multiple cooperating components, the synergy between these components, and their collective effec-
tiveness and/or efficiency in addressing the challenges of TMOs. Additionally, this survey reviews benchmarking practices 
within this domain and outlines promising directions for future research.

Keywords Dynamic optimization problems · Tracking the moving optimum · Multi-population optimization algorithms · 
Benchmarking

1 Introduction

Dynamic optimization problems (DOPs) evolve over time, 
causing changes in their search spaces [1]. These changes 
can be influenced by various factors, such as evolutionary 
processes within the algorithm, variable interactions, spon-
taneous environmental changes, or time-linkage effects, 
where current solutions impact future problem states [2, 3]. 
These problems are common across numerous real-world 
scenarios, including energy management systems for hybrid 
electric vehicles [4], dynamic scheduling issues [5, 6], and 
dynamic trajectory optimization tasks [7–9]. Within these 
dynamic scenarios, the efficiency of previously optimal solu-
tions can significantly decrease after environmental changes. 
This requires the application of dynamic optimization algo-
rithms (DOAs) that excel in detecting and adapting to chang-
ing optima over time [10–12].

DOPs are categorized by several factors, including 
whether their search spaces are continuous [13] or discrete 
[14], aimed at single [15] or multiple objectives [16–18], and 
whether they focus on tracking optimal solutions or finding 
solutions robust to upcoming environmental changes [19, 
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20]. While several surveys offer reviews of different DOP 
types, encapsulating multiple categories within a single 
review [1, 10, 11, 21], others dedicate their focus to a spe-
cific type of DOPs. Numerous surveys have reviewed vari-
ous types of DOPs, including multiple categories within one 
study [1, 10, 11, 21]. In contrast, other surveys focus on a 
specific type of DOP, aiming for a more in-depth exploration 
and detailed insights, such as those on robust optimization 
over time (ROOT) [22, 23], multi-objective DOPs [16, 17, 
24], combinatorial DOPs [14], and continuous single-objec-
tive DOPs [15, 25]. Additionally, some surveys concentrate 
on algorithmic or benchmarking aspects, with topics cover-
ing dynamic benchmark generators [26], self-adaptive meth-
ods for solving DOPs [27], and hyper-heuristics for DOPs 
[28].

Single-objective unconstrained continuous DOPs with the 
goal of tracking the moving optimum (TMO) represent a 
widely studied area with an extensive body of literature. 
The mechanisms and methods developed for addressing this 
specific type of DOP can be readily adapted and extended 
to address various other DOPs, such as ROOT [29] and 
constrained DOPs [30]. In this survey, we focus on single-
objective unconstrained continuous DOPs which can be for-
mulated as follows:

where x is a d-dimensional solution within the search space 
� . The objective function is denoted as f, influenced by 
a vector of time-dependent control parameters � , which 
can trigger changes in the search space. The time index is 
t ∈ [0, T] . The TMO literature mainly focuses on scenarios 
where environmental changes happen at discrete time inter-
vals, that is, t ∈ {1,… , T} . In the context of a problem fea-
turing T environmental states, it is assumed that there exists 
a sequence of T stationary environments. In the literature, it 
is commonly presumed that successive environmental states 
share a degree of similarity, a characteristic that is often 
observed in real-world problems [3, 31]. The dynamic objec-
tive function f (t)(x) across T environments can be restruc-
tured as follows:

The main objective in TMO is to find and deploy the opti-
mum solution in each environment t.

The two-part survey in [15, 25] focuses on this specific 
class of DOPs. DOAs are typically constructed by combin-
ing multiple components to address the unique challenges 
posed by TMOs, thus enhancing and accelerating the opti-
mization process in response to each environmental change. 

(1)f (t)(x) = f
(
x,�(t)

)
, x = {x1, x2,⋯ , xd}, x ∈ �

(2)
Maximize ∶f (t)(x) =

{
f (x,�(k))

}T

k=1

=
{
f (x,�(1)), f (x,�(2)),… , f (x,�(T))

}
.

Existing classifications [1, 11, 21] for DOAs are basically 
performance-based, which can lead to significant overlap, 
with a single algorithm potentially falling into multiple cat-
egories. Additionally, these classifications may not compre-
hensively cover essential components such as convergence 
detection and computational resource allocation. To address 
these issues, the survey in [15] proposes a comprehensive 
taxonomy for the components of DOAs. By utilizing a com-
ponent-based taxonomy, the survey aims to achieve a clearer 
categorization of the different components of DOAs, effec-
tively reducing overlaps. These components include: 

Population management:
Includes strategies for organizing and managing the 
population, incorporating multi-population approaches 
that utilize multiple subpopulations to explore differ-
ent regions of the search space and maintain exploration 
capability [13, 32].
Explicit Memory:
Includes storing information from past environments, 
such as the locations of promising regions, to accelerate 
the optimization process in new environments by utilizing 
historical data [33].
Diversity Control:
Concerns strategies to manage the diversity within a 
population, divided into global diversity control (aiming 
to maintain exploration capabilities) and local diversity 
control (aiming to boost exploitation efforts in areas of 
promise) [34–36].
Convergence Detection:
Refers to methods for determining if a population or sub-
population has converged on a promising area [37, 38].
Environmental Change Detection:
Covers methods for detecting changes in the environment 
[39, 40].
Static Optimization:
Comprises various optimization algorithms originally 
designed for static environments [10, 11]. When com-
bined with the components mentioned previously, these 
optimization techniques are effective at navigating the 
unique characteristics, requirements, and challenges 
posed by DOPs.

In [15, 25], the authors review and explain the methods 
of how each component works. However, discussing each 
component separately makes it hard to understand how they 
come together to form DOAs. This approach may prevent 
readers from seeing how these parts interact as a unified 
whole. Each DOA involves complex interactions among dif-
ferent components, and understanding these interactions is 
essential for fully understanding DOAs.

Identifying this critical gap, our survey aims to provide 
a detailed review of DOAs in their entirety, emphasizing 
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the cohesive interaction among their components for solv-
ing TMOs. This approach aims to offer a bird’s-eye view, 
facilitating a deeper understanding of the construction and 
operational dynamics of DOAs. By reviewing the collec-
tive functionality and connection of components as a unified 
system, we aim to equip researchers with a more comprehen-
sive insight into the architectural structures of DOAs, thus 
enhancing their understanding of the design and effective-
ness of DOAs in tackling dynamic optimization challenges.

Based on the classification outlined in existing surveys 
[10, 11, 15] in the field, DOAs for TMO can be categorized 
into single-, bi-, and multi-population algorithms. Among 
these, multi-population algorithms stand out as the current 
state-of-the-art in navigating the complexities of TMO in 
dynamic environments. While this survey focuses on multi-
population algorithms, it is important to distinguish these 
from co-evolutionary and divide-and-conquer strategies. 
Multi-population algorithms explore different regions of the 
search space with several subpopulations that may interact 
through information exchange. Co-evolutionary algorithms 
also use multiple populations but emphasize their interac-
tions through competition or cooperation, crucial for prob-
lems with interdependent components [41]. Thus, multi-pop-
ulation algorithms can be seen as a subset of co-evolutionary 
approaches when such interactions are present. In contrast, 
divide-and-conquer strategies solve a problem by breaking it 
into smaller, independent subproblems and combining their 
solutions [42].

Multi-population algorithms are proven to be effective 
and widely utilized for solving TMOs. Their prominence 
can be attributed to their inherent flexibility in incorporating 
multiple diverse components, their compatibility with vari-
ous optimization strategies, and their capacity to enhance or 
preserve diversity by managing multiple populations simul-
taneously [13]. Given these compelling attributes, this sur-
vey narrows its focus to multi-population DOAs (mDOAs), 
on explaining how these advanced algorithms benefit from 
their complex structures and diverse components to address 
TMO challenges.

In this survey, we explain the mDOAs by describing 
their components and illustrating how these components 
are assembled to build an mDOA framework. Our analysis 
utilizes the component classification proposed in [15], with 
Fig. 1 serving as a visual guide. For a more in-depth under-
standing of these classifications, we refer readers to [15]. 
To improve readability, we categorize the explanation of 
algorithms based on two distinct factors rather than introduc-
ing a new taxonomy. These factors ensure that algorithms 
within one category do not overlap with those in another. 
The two factors considered are the nature of the subpopula-
tions and the population size. In Sects. 2 and 3, we catego-
rize the algorithms according to whether their subpopula-
tions shows homogeneity (i.e., are identical to each other) or 

heterogeneity, and by whether the population size remains 
constant or varies over time.

Moreover, this survey reviews the benchmarking methods 
used for evaluating the performance of mDOAs. We describe 
the commonly used and state-of-the-art dynamic benchmark 
generators and performance indicators. Concluding our sur-
vey, we explore potential avenues for future research, aiming 
to inspire continued advancements in the field.

The rest of this survey paper is organized as follows: 
Sect. 4 reviews dynamic benchmark generators commonly 
used in the TMO literature, alongside well-known per-
formance indicators. It also explores the applications of 
mDOAs in real-world problems. Section 5 outlines poten-
tial future research directions in the field. Finally, Sect. 6 
concludes this survey.

2  mDOAs with homogeneous 
subpopulations

Homogeneous subpopulations imply that all subpopu-
lations are identical to each other [15]. This uniformity 
means that they all use the same optimizer and parameter 
settings. Additionally, they share identical tasks and roles. 
Furthermore, all subpopulations have an equal number of 
members. Homogeneous subpopulations are often uti-
lized in multi-population DOAs that use the indices of 
individuals to form subpopulations [13, 43] and in those 
that employ clustering methods where the number of indi-
viduals is predefined as an input parameter [44–46]. The 
population size of mDOAs can either remain constant or 
be adjusted by replacing or generating subpopulations 
that resemble the existing ones. In the following, mDOAs 
with homogeneous subpopulations are described in detail. 
For further clarification, we categorize them based on 
whether the overall population size is modified or remains 
unchanged during the process.

2.1  Homogeneous mDOAs with constant 
population size

Some mDOAs employ index-based clustering methods to 
create subpopulations, leading to homogeneity among these 
subpopulations. Blackwell and Branke [47] introduce two 
mDOAs: mCPSO and mQSO, where the population divided 
into subpopulations based on the index of the individuals, 
and both the number of subpopulations and their sizes are 
predetermined. To enhance global diversity, these mDOAs 
utilize an exclusion method, randomizing redundant subpop-
ulations when the Euclidean distance between the best-found 
positions of any two subpopulations falls below a predefined 
threshold rexcl . Meanwhile, local diversity is preserved over 
time in mCPSO by employing charged particles [35], and in 
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mQSO, through the use of quantum particles within a radius 
around each sub-population’s best-found position. Addition-
ally, a classic round-robin approach ensures the equitable 
distribution of computational resources among subpopula-
tions. To adapt to environmental changes, the algorithms 
detect changes by reevaluating the best positions within 
each subpopulation and respond by updating their memory. 

Further enhancements to these mDOAs in [13] have intro-
duced an anti-convergence method, aimed at increasing 
global diversity by randomizing the worst-performing sub-
populations once convergence is achieved. The convergence 
is determined when the maximum distance along any dimen-
sion between individuals within a subpopulation falls below 
a predefined threshold.

Components of Multi-population 
Optimization Algorithm in Dynamic

Environments

Managing Population

Diversity Loss Handling

Explicit Memory

Convergence Dete ction

Population Size and
Number of the 
Subpopulations

Homogeneity of
Subpopulations

Methods of
popu lation cluste ring

Cluste ring frequency

Controlling
Comp utational 

Resources

Both constant

Both changeable

Constant population size and changeable 
number of subpopulations

Heterogeneous

Homogeneous

By position and tness value

By dividing the search space

By index

At some speci points of time

Highly frequent

Using a local search operator around the 
best found position

Performance based subpopulation selection

Subpopulation size control

Deactivation converged subpopulations

Round robin/ Parallel

Local diversity Increasing local diversity afte r
environmental change

Maintaining over time

Prediction

Randomization in a 
limited area

Global diversity

Randomizing redundant subpopulations /
individuals

Maintaining global diversity overtime

Other

Randomization afte r environmental change

Randomizing converged subpopulations

Others/hybrid

Spatial size
monitoring

Fitness monitoring

Environmental Change 
Detection Fitness monitoring

based method

Reevaluation based
method

Static Optimization Evolutionary
compu tation

Local search

Swarm intelligence

Fig. 1  Classification of the components of mDOAs [15]
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The mDOA proposed in [43], DynDE, introduces a multi-
population structure with predetermined member counts in 
each subpopulation and a fixed number of subpopulations. It 
utilizes the exclusion method outlined in [13] to randomize 
redundant subpopulations, thus increasing global diversity. 
To preserve local diversity over time, DynDE employs three 
methods: the use of quantum individuals [47], the incorpora-
tion of Brownian individuals with a Gaussian distribution, 
and the implementation of entropic models that introduce a 
Gaussian step in each iteration. Moreover, an equal distribu-
tion of computational resources among subpopulations is 
achieved through the classic round-robin method, ensuring 
that all subpopulations receive an equitable share of compu-
tational resources. The algorithm has been further enhanced 
as detailed in [48] by utilizing two methods for managing 
computational resources. The first method adjusts the size of 
subpopulations by a migration strategy, effectively reallocat-
ing more individuals to better-performing subpopulations 
and transferring individuals from inferior ones. The second 
method implements a prioritization mechanism, focusing all 
computational resources on higher performing subpopula-
tions for a given iteration, while temporarily deactivating 
inferior ones. This prioritization is based on the fitness value 
of the best-found position within a subpopulation.

Brest et al. [49] introduce a mDOA that adopts the same 
multi-population structure as described in [47], employ-
ing several methods to effectively manage global diversity. 
First, it randomizes redundant, inferior subpopulations that 
overlap by utilizing an exclusion method similar to [47], 
but with a modification wherein the exclusion radius is a 
fixed, user-defined number. Secondly, the algorithm includes 
an aging-based method to introduce additional randomiza-
tion among individuals or subpopulations. If the age of a 
non-best individual exceeds a predetermined threshold, it 
is randomized with a specified probability. Similarly, if the 
best individual of a subpopulation ages beyond a different 
threshold, the entire subpopulation is randomized, also with 
a specified probability. Moreover, if the distance between 
the individual and the best individual within a subpopula-
tion is less than another threshold, the individual itself is 
randomized. Note that there are two modes for the location 
of randomization. Individuals can be randomized across the 
search space or around one of the best found positions in the 
previous environments, which are stored in explicit memory. 
Computational resources are evenly distributed among sub-
populations through the application of a classic round-robin 
method. The algorithm detects a change by reevaluating the 
best found position within each subpopulation and responds 
by reevaluating all solutions to address outdated memory, 
and storing the best found position of each subpopulation in 
explicit memory from the previous environment.

Plessis and Engelbrecht [50] propose an improved ver-
sion of the DynDE algorithm [43], with some modifications. 

Herein, to maintain local diversity over time, Brownian indi-
viduals [43] are used. Additionally, the exclusion method 
has been modified to address the challenge of differentiat-
ing between subpopulations located in the same promising 
regions or in extremely close ones. This method involves 
finding the midpoint between the best positions of overlap-
ping sub-populations. If the fitness of this midpoint is worse 
than that of the best positions of both sub-populations, then 
neither sub-population should be re-initialized; otherwise, 
the inferior subpopulation is randomized to increase global 
diversity. Furthermore, the allocation of computational 
resources is managed by prioritizing subpopulations based 
on performance. First, all subpopulations run for two itera-
tions, during which the improvement in fitness of the best 
position is calculated. Then, the difference between the fit-
ness of the best position of a subpopulation and the worst 
best-found fitness among all sub-populations is considered. 
Based on these two factors, performance is assessed. In each 
iteration, only the subpopulation with the highest perfor-
mance is activated and allowed to continue, ensuring effi-
cient use of resources until another subpopulation demon-
strates superior potential.

In [51], an mDOA is introduced, similar to the approach 
found in [13]. This approach involves a fixed number of 
subpopulations, each maintaining a set population size. To 
ensure local diversity during iterations, two randomiza-
tion methods are employed. First, randomization around 
each individual, and secondly, a Levy distribution-based 
approach. Moreover, global diversity is enhanced through 
three randomization methods. The first method involves 
randomizing converged non-best subpopulations, which 
are identified by observing each member’s fitness pro-
gress over a set period. A subpopulation is considered to 
be converged if its members fail to demonstrate signifi-
cant progress within this duration. Second, individuals that 
have not shown sufficient improvement within a certain 
number of iterations are randomized. Third, redundant 
subpopulations are randomized through the exclusion 
method [13], wherein inferior overlapping subpopulations 
are randomized.

Zuo and Xiao [52] also utilize a multi-population 
approach similar to [13]. The proposed mDOA uses explicit 
memory to store and retrieve solutions. After a change 
occurs, a predefined number of individuals within a sub-
population are replaced with the stored solutions, while the 
remaining members are randomized, leading to increased 
global diversity. Furthermore, fair distribution of com-
putational resources among subpopulations is achieved 
through the classic round-robin method. Change detection 
is facilitated by reevaluating the best-found position of each 
subpopulation.

The mDOA presented in [53] utilizes a multi-population 
method with a constant number of subpopulations. The 
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local diversity of each subpopulation is preserved over time 
through randomizing individuals within a self-adaptive 
radius from the best individual within the subpopulation, 
termed as quantum individuals. In the proposed mDOA, 
change is detected by reevaluating the best individual in the 
entire population.

Vafashoar and Meybodi [54] propose a multi-population 
approach with a fixed number of subpopulations. In the pro-
posed mDOA, the global diversity is increased in three ways. 
Firstly, by employing an anti-convergence method that ran-
domizes converged subpopulations during the environment, 
noting that the algorithm benefits from explicit memory to 
archive the best-found position before randomization. Sec-
ondly, after each environmental change, individuals within 
each sub-population with fitnesses below the median of 
the sub-population’s fitnesses are randomized. Thirdly, by 
randomizing redundant subpopulations through exclusion 
method [13]. The convergence of a subpopulation in the 
proposed mDOA, is determined by monitoring the fitness 
of its best-found position; if there is no improvement for a 
predefined iteration, it is considered the subpopulation is 
converged. Through the classic round robin method, com-
putational resources are distributed evenly among subpop-
ulations. The change detection component operates by re-
evaluating the best individual of each sub-population at each 
generation. For change reaction, the best individual of each 
sub-population is added to explicit memory. Additionally, 
the median fitness of the individuals in each sub-population 
is calculated, and those with fitness worse than the median 
are randomized across the search space before all individuals 
are re-evaluated.

Novoa et al. [55], propose an mDOA with an adaptive 
number of subpopulations, while maintaining the overall 
size of the population and the number of members constant. 
The local and global diversity both increase after an envi-
ronmental change through a grouping strategy. After each 
environmental change, individuals in each sub-population 
are sorted and divided into three predefined groups. The 
best group’s individuals retain their previous positions. The 
second group’s individuals are randomized around the best-
found position using a Gaussian distribution to enhance local 
diversity. The last group, containing the worst individuals of 
the sub-population, is randomized across the search space 
to boost global diversity. Additionally, this algorithm incor-
porates exclusion and anti-convergence methods from [13] 
to further increase global diversity through the randomiza-
tion of subpopulations. Computational resources are man-
aged by deactivating low-quality subpopulations that have 
converged, based on a specific convergence determination 
rule. The quality of each subpopulation is assessed using a 
fuzzy decision rule, considering various factors, including 
the best fitness value, the average fitness of all sub-popula-
tions, and the fitness of each individual sub-population. If a 

subpopulation is considered converged and of low quality, 
without any recent environmental change, it is temporar-
ily deactivated until the next environmental change occurs. 
Detect a change is by reevaluating the best-found position 
among all subpopulations. This is followed by a reaction that 
includes reevaluating all solutions to ensure the memory is 
updated.

In the mDOA proposed in [56], a fixed number of sub-
populations are formed according to the division of the 
search region. This involves a master node as a controller 
and several slave nodes. The master node first scans the 
entire search space and, depending on the number of slave 
nodes, generates population bounds. The search space and 
bounds are evenly divided, and within these bounds, random 
individuals are generated until each sub-population reaches 
a predetermined size. To maintain global diversity, the algo-
rithm employs two methods: reinitialization based on suc-
cess rate and a population aging mechanism. For the first 
method, if a sub-population is ineffective in finding better 
solutions, indicated by its success rate, it is reinitialized with 
random individuals. For the second method, a predefined 
threshold value as population age is set, and if a sub-pop-
ulation does not contribute to finding better solutions after 
this period, it is re-initialized with random individuals. The 
algorithm also benefits from two explicit memories. The first 
memory, collects the best individuals from all sub-popula-
tions, while the processed results, representing the optimal 
solutions up to the current iteration, are stored in second 
memory. These stored information are used under certain 
conditions. First, when an environmental change is detected, 
the algorithm uses historical information to quickly adapt 
to the changes. Second, when sub-populations are reinitial-
ized, the historical information may be used to ensure that 
the new individuals generated are not just random but are 
somewhat informed by past successes. To detect an envi-
ronmental change, some test points are reevaluated at each 
iteration, which are randomly selected individuals from the 
population. If there is a difference in the fitness of the chosen 
test points between iterations, a change is happen.

2.2  Homogeneous mDOAs with varying population 
size

Blackwell [57] introduces AmQSO, an adaptive version 
of the mQSO algorithm proposed in [13]. In AmQSO, the 
number of individuals within each subpopulation remains 
constant, but the number of subpopulations can dynami-
cally vary over time, leading to a flexible overall population 
size. Initially, AmQSO starts with a single population. As 
it converges, additional subpopulation is initialized. Once 
multiple subpopulations exist, they must all converge before 
a new one can be added. The anti-convergence method [13] 
is removed here, as the algorithm’s adaptation in the number 
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of subpopulations to discover promising regions enhances 
global diversity. Similar to [13], local diversity is maintained 
over time using quantum particles [47]. AmQSO employs 
the exclusion method [13] with modifications, opting to 
remove the inferior subpopulation in case of a collapse 
instead of randomizing it. This modification saves compu-
tational resources and prevents unnecessary exploitation and 
overcrowding. The allocation of computational resources 
among subpopulations follows a classic round-robin method, 
ensuring fairness. As part of AmQSO, detecting a change 
involves reevaluating the best-found position of the entire 
population, followed by reevaluating all solutions to update 
outdated memory.

Rezazadeh et al. [58] introduce an mDOA where the 
number of subpopulations adjusts adaptively to the discov-
ered promising regions. Global diversity is enhanced by ini-
tializing new subpopulations. To achieve this, if the count of 
non-converged subpopulations falls below a certain thresh-
old, a new subpopulation is initiated. However, there is an 
upper bound for the maximum number of subpopulations. If 
the count exceeds this threshold, the worst subpopulations 
are removed until their number reaches the maximum limit. 
This strategy of controlling the number of subpopulations 
helps prevent overcrowding and minimizes the wastage of 
computational resources. In the proposed mDOA, the local 
diversity is increased under certain conditions during the 
optimization process by modifying the core optimizer rule. 
The mDOA introduced in [58] has been further improved 
in [59]. This enhancement addresses the issue of diversity 
loss after environmental changes. When a change occurs, the 
sub-populations are divided into two groups, the better and 
worse ones. The individuals in the better sub-populations 
are randomized around their best-found positions to increase 
local diversity. Meanwhile, those in the worse sub-popu-
lations are randomized across the search space to enhance 
global diversity. Moreover, two methods are employed to 
manage computational resources. First, by deactivating sub-
populations with velocity vectors below a certain thresh-
old for a set number of iterations. Secondly, by allocating 
additional computational resources to the best-performing 
subpopulation. This is achieved by performing a local search 
around the best-found position among all subpopulations in 
each iteration.

The mDOA proposed in [60] uses a population structure 
similar to [61] which features an adaptive number of subpop-
ulations. Global diversity is increased by initializing a new 
subpopulation whenever all current subpopulations have 
converged. A subpopulation is considered converged when 
the longest Euclidean distance between any pair of individu-
als in a subpopulation is less than a threshold. Local diver-
sity is enhanced after an environmental change by modifying 
the rules of the core optimizer. To manage computational 
resources more effectively, more resources are allocated for 

the best found position among all subpopulations through 
performing a local search around it.

An adaptive mDOA is introduced in [62], utilizing a 
population management approach similar to [61], where ini-
tially, there is a single population exploring the search space, 
and as this population converges, a new subpopulation is 
generated and introduced to explore other regions. The con-
vergence of a subpopulation is determined by comparing the 
best position found in the current iteration with predefined 
previous iterations, indicating convergence if the difference 
is below a certain threshold. This mechanism enables the 
number of subpopulations to adaptively change based on 
the discovered promising regions, thus increasing the global 
diversity. Local diversity is enhanced after an environmental 
change by randomizing non-best individuals around the best 
individual within a radius. To effectively manage computa-
tional resources, more resources are allocated to the best-
performing subpopulation, and by reevaluating a single indi-
vidual, a change is detected. The proposed mDOA has been 
further improved in [63], first by utilizing the method for 
controlling fitness resources through deactivating converged 
subpopulations from [64], and second by detecting changes 
through the reevaluation of the best-found positions of each 
subpopulation rather than one.

Plessis and Engelbrecht [65] introduce a multi-population 
structure adapted from the AmQSO [61], wherein the num-
ber of subpopulations is adaptive, and the overall population 
size can change. This adaptability ensures the preservation 
of global diversity. Local diversity is maintained over time 
by utilizing the Brownian individuals [50]. To effectively 
manage fitness resources, the algorithm employs two strat-
egies. First, an improved version of the resource alloca-
tion method from [50] is added, using a penalty value in 
each sub-population’s performance measurement, which 
decreases when there is no improvement in their best-found 
position from previous iterations. The second method is a 
modified version of the exclusion from [50], where instead 
of randomizing the inferior subpopulation, it removes that 
subpopulation to prevent the unnecessary consumption of 
computational resources. In the proposed mDOA, the con-
vergence status of a subpopulation is determined based on 
the fitness monitoring of the best-found position. If fitness 
does not improve from the last predefined iteration, it is con-
sidered to have converged. By re-evaluating the best indi-
viduals of each sub-population an environmental change is 
detected.

The proposed mDOA in [66] has been improved in [67]. 
The approach to population handling changed, allowing the 
overall population size to adaptively change. This adjust-
ment is made by comparing the number of overall individu-
als, which meets the increasing global diversity condition, to 
the previously met condition. The increasing global diversity 
condition is defined based on a time period parameter. If the 
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ratio of the difference between the number of subpopulations 
in the current fitness evaluation and the current fitness evalu-
ation itself is less than a threshold, the mDOA will initiate a 
diversity-increasing process. Herein, if there are more indi-
viduals than the previous count, new individuals are reini-
tialized. If the number is less but the difference exceeds a 
threshold, some individuals are removed to decrease the 
population. If the number remains the same, the population 
size is maintained, and no changes are made.

Qin et al. [68] introduce a multi-population algorithm 
with an adaptive number of subpopulations. The number of 
individuals within subpopulations is fixed; however, due to 
adaptability, the overall population size can vary. Subpopula-
tions can be either active or inactive. Initially, the algorithm 
starts with one active subpopulation to explore the search 
space. Upon convergence, it becomes inactive, and a new 
active subpopulation is created, which will maintain global 
diversity over time. An active subpopulation is considered 
converged by monitoring its spatial size, particularly when 
the average distance of its individuals from its best-found 
position is less than a predefined threshold. Inactive sub-
populations remain deactivated until the environment ends, 
thus preventing overexploitation and conserving computa-
tional resources. Another method to avoid computational 
resource wastage is by removing redundant subpopulations 
when a new active subpopulation enters the search range of 
an inactive one, and the one with inferior best-found fitness 
is removed. After an environmental change, local diversity is 
enhanced by reactivating inactive subpopulations and rand-
omizing subpopulation members around the best-found indi-
vidual within the subpopulation. A detection subpopulation 
is employed to identify changes, separate from the active 
and inactive subpopulations. Each iteration re-evaluates each 
individual of the detection subpopulation, and a difference 
in fitness signifies a change.

3  mDOAs with heterogeneous 
subpopulations

Heterogeneous subpopulations in mDOAs differ in various 
aspects, such as optimization components, parameter set-
tings, tasks, or roles [15]. For example, in some mDOAs 
that use the parent–child approach [69], subpopulations are 
heterogeneous, with some dedicated to exploring the search 
space to find promising regions and others focusing on 
exploiting these discovered regions [64]. These subpopula-
tions usually vary in size. Additionally, they may utilize dif-
ferent core optimizers [70]. Clustering methods that use the 
position and/or fitness of individuals (e.g., k-means [71] and 
Nearest Better Clustering [72]) often result in heterogeneous 
subpopulations, forming groups with different member sizes. 
The overall number of individuals in these mDOAs may 

either vary throughout the optimization process or remain 
constant. In the following, the components of mDOAs that 
have heterogeneous subpopulations are described in details, 
and they are categorized based on the modification of the 
population size.

3.1  Heterogeneous mDOAs with constant 
population size

Biswas et al. [73] introduce an mDOA that utilizes a posi-
tion-based clustering method to form subpopulations using 
the k-means algorithm. Clustering occurs at the beginning 
of each environment, and the number of subpopulations 
remains fixed. An explicit memory is employed to store 
the best-found position of converged subpopulations before 
randomization in the proposed mDOA. Subpopulation con-
vergence is determined by the average Euclidean distance 
of its members to the center, which represents the average 
position of all members. These stored positions in explicit 
memory serve a crucial role, as they are utilized to replace 
the worst individuals within the population after an envi-
ronmental change. Furthermore, local diversity is enhanced 
after a change by adding a random number generated from 
a normal distribution to the positions of all individuals. 
Computational resources are allocated fairly among sub-
populations by employing the classic round-robin method. 
Additionally, the change detection mechanism involves 
re-evaluating a single individual to identify environmental 
changes accurately.

Moradi et al. [71] suggest a clustering multipopulation 
approach that relies on k-means algorithm which use the 
position of the individuals. At the start of each environment, 
this clustering technique creates diverse sub-populations. 
The number of sub-populations and the overall population 
size remain constant throughout the process. To enhance the 
algorithm’s performance, an explicit memory is employed. 
This memory is initialized alongside the population using 
a Logistic Chaotic function and is updated every random 
number of iterations. The update process involves calculat-
ing the center of all sub-populations and determining the 
closest sub-population center for each archived solution in 
the explicit memory. Any memory solutions that are farthest 
from their closest sub-population center are replaced with 
new entries. Updating the population includes finding the 
center of clusters, assigning all individuals to their nearest 
cluster centers, and replacing the individual farthest from 
its corresponding cluster center with the best explicit mem-
ory solution of that cluster. If a cluster does not have any 
members, a nearest memory solution is chosen for replace-
ment. The algorithm also maintains local diversity over 
time through the modification of optimizer rules. Detecting 
change involves re-evaluating a randomly chosen individual 
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and a change reaction that updates the explicit memory, re-
evaluates the archived solutions, and retrieves memory.

Oppacher and Wineberg [74] introduce a multi-popu-
lation algorithm, SBGA, inspired by the Shifting Balance 
Theory. This algorithm begins with a large central popula-
tion known as the Core Group, responsible for exploitation. 
To explore the search space and increase global diversity, the 
Core Group generates subpopulations, referred to as colo-
nies, by distributing individuals. The number of colonies is 
variable and controlled by the Core Group. To prevent over-
lap between colonies and between colonies and the Core, the 
algorithm employs an exclusion method based on Hamming 
distance, pushing individuals of redundant colonies away if 
they lie within the search region of the Core Group, which 
also improves global diversity. Computational resources are 
evenly allocated among subpopulations using the classic 
round-robin method.

The Self-Organizing Scouts (SOS) algorithm, introduced 
in [75], employs a multi-population approach wherein the 
overall population size remains constant; however, the num-
ber of subpopulations and the members within each can vary. 
The algorithm starts with a single explorer population as 
the parent. Upon discovering a new promising region, some 
individuals split off to form a child population as exploiters. 
Resource allocation is managed through two methods: one is 
setting a threshold for the number of exploiters. If this num-
ber is reached, the least effective exploiter is removed. Sec-
ondly, by prioritizing better exploiters, more individuals are 
allocated to them. Utilizing an exclusion method increases 
the global diversity by randomizing the redundant subpopu-
lations. If any individuals from the explorer population are 
found within an exploiter search space, they are randomly 
relocated to positions outside the exploiter search range. 
Furthermore, if the best individual of an exploiter is within 
the search space of another exploiter, it will be removed. 
Each child subpopulation exploits a hyper-ball search space 
with a specific diameter centered around its best individual, 
thus maintaining local diversity over time. In the proposed 
mDOA, there is no component for detecting changes, and 
all individuals are updated frequently to prevent outdated 
memory.

In [76], a  mDOA is proposed, utilizing species-based 
clustering based on both position and fitness. Clustering 
occurs at every iteration. While the total population size 
remains constant, the number of subpopulations varies. The 
clustering procedure initiates by sorting individuals accord-
ing to their fitness values. The individual with the best fit-
ness is selected as the initial seed. This seed, along with 
any subsequent seeds, is stored in a seed set, denoted as S, 
while a non-seed set, M, remains empty at the start. Each 
individual in the sorted list is evaluated against the seeds in 
S: if its Euclidean distance to all seeds in S is greater than a 
predefined threshold, it is added to S; otherwise, it is placed 

in M. After the entire sorted list has been processed, individ-
uals in M are assigned to their nearest seed in S, determined 
by Euclidean distance. Global diversity is enhanced in two 
ways. Firstly, redundant individuals are randomized when 
overlap between subpopulations occurs; they are merged 
using an exclusion method. If the number of individuals sur-
passes a specific threshold, the inferior ones are randomized. 
This randomization also happens post-clustering if a subpop-
ulation becomes overly large. Secondly, solo seeds without 
any members after clustering are randomized. Utilizing a 
traditional round robin method, computational resources are 
equally distributed among subpopulations.

Li et  al. [77], introduce an enhanced version of the 
mDOA from [76], named SPSO, by utilizing some key 
modifications. Firstly, to enhance global diversity, it uti-
lizes an anti-convergence method from [13]. This method 
randomizes the worst-performing converged subpopulation 
when all subpopulations have converged. Subpopulation 
convergence is defined as the maximum Euclidean distance 
between the best individual and others, falling below a spe-
cific threshold. Secondly, for managing local diversity, the 
algorithm utilizes quantum individuals [47] to ensure con-
tinual diversity maintenance. Moreover, when subpopulation 
diversity falls below a predefined threshold, half of the non-
optimal individuals are transformed into quantum particles 
within a defined radius to enhance local diversity. Lastly, the 
algorithm adopts a reevaluation-based approach for the top 
five best individuals of the entire population to detect envi-
ronmental changes. This approach has been further refined 
in [61] with modifications to the SPSO components. In the 
improved SPSO (iSPSO), local diversity control is adjusted 
to be maintained only after environmental changes by con-
verting neutral individuals into quantum ones for a single 
iteration, and the convergence status of subpopulations is 
calculated differently using the Euclidean distance between 
the two farthest individuals in each subpopulation.

The parent–child concept from [70] is utilized in [69], 
where a mDOA is proposed with a variable number of 
subpopulations but a fixed overall population size. In this 
algorithm, once the explorer converges, determined by the 
largest Euclidean distance between its individuals, it uses 
some of its best individuals to form the exploiter subpopula-
tion, while the remaining individuals are randomized. This 
post-convergence randomization of the explorer contributes 
to increased global diversity. Additionally, the use of the 
exclusion method [47] aids in enhancing global diversity 
by randomizing redundant subpopulations in two situations. 
First, by randomizing the inferior exploiter if two of them 
enter into each other search range, and second, by randomiz-
ing the explorer if it gets closer to an exploiter than a pre-
defined threshold. Local diversity within each exploiter is 
maintained over time by incorporating immigrant individu-
als that shows behavior similar to the quantum individuals 
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[47]. Computational resources are equally distributed among 
exploiters using the classic round robin method. By reevalu-
ating the best-found positions within each subpopulation, 
changes are detected. This is followed by a response that 
involves reevaluating all solutions to address outdated 
memory.

Woldesenbet and Yen [78], introduce a mDOA that uti-
lizes a density-based clustering method [79] to form sub-
populations. This method clusters a fixed number of indi-
viduals based on their positions, where individuals within a 
predefined threshold distance are connected to form groups. 
These groups become subpopulations if their membership 
exceeds a predefined lower bound threshold. Any individ-
ual not belonging to a group is assigned to the closest one. 
This clustering process occurs after environmental changes, 
resulting in varying subpopulation sizes. Local diversity is 
increased after environmental changes through a variable 
relocation method. This method monitors individual pro-
gress in terms of fitness and position, using this information 
to estimate the severity of changes and adjust subpopula-
tion distributions accordingly. Computational resources are 
distributed evenly among subpopulations using the classic 
round robin approach. The algorithm detects changes by 
reevaluating some individuals and responds by perform-
ing the variable relocation method on individuals, which 
changes their positions.

Li and Yang [80] introduce a mDOA that uses a clus-
tering method on a fixed number of overall individuals at 
the beginning of each environment. This clustering algo-
rithm starts with a randomized population, assigning each 
individual a single neighbor based on Euclidean distance to 
distribute them into sub-regions. Then, a bi-phase single-
linkage hierarchical clustering process occurs. The first 
phase clusters individuals until each group has at least two 
members, forming temporary sub-populations, while the 
second phase refines these sub-populations based on dis-
tance and spatial size. Then, the neighborhood topology 
shifts to a global star configuration, where the best indi-
vidual in each sub-population becomes the attractor. After 
an environmental change, the best positions of each sub-
population is kept and the remaining individuals randomly 
redistributed throughout the search space. This approach not 
only enhances global diversity and exploration capability but 
also avoids the loss of local diversity. By utilizing the mutual 
exclusion method, if more than a predefined percentage of a 
sub-population’s individuals lie inside the search region of 
another sub-population, they will be merged. To effectively 
manage computational resources, the converged subpopula-
tions are deactivated until the end of the environment. The 
convergence of a subpopulation is determined by measuring 
its spatial size, which is defined as the average distance of 
all its members to the center.

The mDOA proposed in [80] has been further improved 
in [81] with several modifications. First, an upper bound 
limit is set for the maximum number of individuals in a 
subpopulation. Second, the method used for clustering is 
changed. Each individual initially forms its own cluster. 
Then the Euclidean distances between all pairs of clus-
ters are calculated. Next, the closest clusters are identified, 
ensuring that their combined population does not exceed 
the specified upper limit, and are merged. After each merge, 
the distances between all clusters are updated based on the 
Euclidean distance between their closest individuals. This 
iterative process continues until all clusters contain at least 
two individuals. Third, after performing mutual exclusion, 
if the number of individuals exceeds the upper bound, the 
remaining inferior individuals are removed to prevent wast-
age of computational resources. Finally, a change detection 
component is also incorporated to detect environmental 
changes by reevaluating the best found position in each 
subpopulation.

Turky and Abdullah [82] further modified the [81], 
through two modifications. First, an explicit memory is 
added to store the best-found positions of subpopulations 
during convergence. The memory has a limited capacity, 
and if full, it replaces the worst archived solutions with new 
ones. Second, redundant individuals, through exclusion, are 
not removed but replaced with a solution from the explicit 
memory.

Daneshyari and Yen [83] introduce a mDOA where the 
total number of individuals and the number of individuals 
in each subpopulation are fixed. At the beginning of each 
environment, clustering is performed using the k-means 
algorithm. This method relies on the positions of the indi-
viduals, and the resulting subpopulations are distinct from 
each other. A migration strategy, is performed after envi-
ronmental changes, aids in enhancing global diversity. By 
modifying some rules of the subpopulations’ core optimizer, 
local diversity is maintain over time. Equal distribution of 
computational resources among subpopulations is achieved 
through the classical round-robin method. The proposed 
mDOA utilizes a cultural framework, which includes a 
memory for storing information about individuals and pro-
cedures. By re-evaluating positions in the cultural memory, 
changes can be detected. Change reaction involves re-evalu-
ating individuals to address the outdated memory issue and 
boosting global diversity.

The mDOA proposed in [84] introduce a new method for 
clustering individuals. This clustering is done at every itera-
tion and considers the position of the individuals to form 
subpopulations. First, for each individual, a predefined num-
ber of close individuals, measured by Euclidean distance, are 
connected to form a group. In this case, some individuals can 
be members of multiple groups. If this occurs, the groups 
with shared members will be merged, and the best individual 
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among them becomes the cluster head. If two cluster heads 
become closer than a predefined threshold, they also merge. 
The total number of the individuals is fixed and there is a 
limitation on the maximum number of subpopulations and 
their members. Setting such thresholds controls the com-
putational resources by avoiding overcrowding. Hence, the 
redundant inferior individuals or those from redundant sub-
populations are randomized, help enhance global diversity. 
Allocation of computational resources among subpopula-
tions follows a classic round robin method to ensure equal 
access.

Wang et al. [85] introduce a mDOA that employs a clus-
tering method based on the positions and fitness of indi-
viduals. While the number of subpopulations can vary, the 
overall population size remains constant. In the proposed 
mDOA, there are two ways to increase global diversity. The 
first is by randomizing the converged subpopulations. To do 
so, the best-found position of a converged subpopulation is 
stored in explicit memory before the subpopulation is rand-
omized. Convergence status is defined based on the average 
Euclidean distance of all members of a subpopulation to the 
center of that subpopulation. The second method uses an 
exclusion method to randomize redundant subpopulations. 
This exclusion applies to the best position of a subpopula-
tion and the archived solutions in memory. If the Euclidean 
distance between them falls below a specific threshold, the 
subpopulation is randomized. To manage resource alloca-
tion, more resources are allocated to the best found posi-
tion among all subpopulations using a local search operator. 
Changes are detected by reevaluating the best-found position 
of the entire population.

Li and Yang [66] introduce a framework that modifies 
[81]. This mDOA uses the same population managing 
approach, but the change detection component is removed. 
To address the outdated memory issue, all solutions are re-
evaluated every iteration. In the proposed mDOA, global 
diversity is increased under various conditions. Herein, 
when the ratio of remaining individuals to the initial overall 
number falls below a specified threshold, a re-diversification 
process is initiated. During this process, the best positions 
found by converged subpopulations are stored in memory, 
and the remaining individuals are randomized.

Luo et al. [72] propose a multi-population clustering 
approach with a varying number of subpopulations, but the 
overall number of individuals remains constant. To form 
subpopulations, both the position and fitness of individu-
als are considered, and the population is clustered using a 
NBC method, which is based on graphs. Initially, distances 
between all individuals are calculated. Then, each individual 
is connected to its nearest better individual, creating a span-
ning tree. After that, the average of all edges in the tree is 
calculated, and edges longer than a threshold are removed. 
The remaining connected individuals form subpopulation. 

The mDOA also benefits from explicit memory [86], into 
which solutions are injected into the population after an 
environmental change, thus increasing global diversity. To 
maintain local diversity over time, Brownian individuals 
using a normal distribution are applied to the best-found 
position of each sub-population.

Zhu et al. [87] add an explicit memory component to [76], 
which aids in increasing global diversity after environmental 
changes. At the beginning of each environmental change, the 
algorithm identifies and marks sub-populations that have 
converged to local optima. If the number of marked sub-
populations falls below a certain threshold, the best non-
converged sub-populations are marked until the threshold 
is met. The best individuals from these marked sub-popu-
lations are then stored in explicit memory. If the memory 
reaches its capacity, existing solutions may be replaced by 
new ones based on predefined criteria. To update the popu-
lation after changes, two methods are employed: the fittest 
memory solutions are distributed equally among sub-popu-
lations to replace their worst individuals, and a species seed 
detection procedure is used to distribute the fittest memory 
seeds among sub-populations similarly.

Liu et  al. [88] utilize affinity propagation clustering 
(APC) to automatically generate subpopulations through 
a message-passing process. This approach considers each 
individual within the population as a potential exemplar 
(or cluster center). Subpopulations are then created based 
on the similarities between individuals, determined by the 
negative Euclidean distance, effectively grouping individu-
als into subpopulations. The overall population size remains 
constant; however, the number of subpopulations and their 
sizes can change. Exclusion method from [61] is utilized to 
avoid overlapping. Herein, when two subpopulations over-
lap, they are merged, and an equivalent number of the worst-
performing individuals from the inferior subpopulation are 
randomized. This randomization of redundant individuals 
improves global diversity. The algorithm also incorporates 
a memory; when a subpopulation converges based on a 
threshold, it stores its best-found position in memory. A 
subpopulation is considered converged if the average Euclid-
ean distance between individuals within a subpopulation and 
the subpopulation’s centroid, the average position of all its 
members, is less than a threshold. When a change in the 
environment is detected, through fitness re-evaluation, the 
algorithm utilizes the information stored in memory about 
these exemplars to quickly relocate and adapt to the new 
conditions.

3.2  Heterogeneous mDOAs with varying 
population size

In [70], a multi-population approach, FMSO, is introduced, 
featuring an adaptive number of subpopulations to allow a 
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variable overall population size while maintaining a pre-
defined number of individuals within each subpopulation. 
FMSO utilizes a parent–children approach, creating het-
erogeneous subpopulations using different core optimizers. 
Here, the parent acts as the explorer, exploring the search 
space to locate promising regions. Once the parent con-
verges, a child, as the exploiter, is created. This is done by 
randomizing individuals within a hyper-ball centered around 
the best-found position of the explorer population, defined 
by a radius. This radius determines the search area for each 
exploiter subpopulation, taking inspiration from SPSO 
[76]. The exploration also increased using the exclusion 
method; it randomizes any explorer’s individual that enters 
an exploiter’s search region. Additionally, if two exploiter 
subpopulations encroach upon each other’s search regions, 
the inferior one is removed to save computational resources. 
To prevent overcrowding and efficiently manage resources, 
a maximum number of exploiters is set. When this limit is 
reached, if a new exploiter needs to be introduced, the one 
that has not improved the best-found position for a specified 
number of iterations is removed first. Alternatively, if no 
new exploiter is created but the cap is reached, the worst-
performing one is randomized using the anti-convergence 
method [13]. Through the use of a classic round robin 
method, computational resources are evenly divided among 
subpopulations.

Kamosi et al. [89] present a modified version of the 
FMSO [70]. In the proposed mDOA, both the explorer 
and exploiter utilize the same core optimizer. The process 
starts with one explorer population. When the best-found 
position of the explorer improves, a hyperball within a 
predefined radius around its best-found position is formed. 
Any individuals inside this hyperball create the exploiter. 
If the number of individuals within the hyperball exceeds 
the exploiter population size, the best ones are chosen as 
the exploiter members. Otherwise, additional individu-
als are randomly generated within the hyperball. After 
that, all explorer individuals within the hyperball are 
randomized. Using the explorer, global diversity is main-
tained over time. The proposed mDOA also addresses 
the issue of local diversity by increasing it within each 
exploiter after an environmental change. Within the pro-
posed mDOA, the exclusion method removes the inferior 
exploiters if two of them overlap. However, if the explorer 
and exploiter overlap, and the fitness of the best-found 
position of the explorer is better than that of the exploiter, 
the best-found position of the exploiter is replaced with 
that of the explorer, and only the best-found solution of 
the explorer is randomized. Allocation of computational 
resources among subpopulations follows a classic round-
robin method to ensure equal access. Additionally, changes 
are detected through a reevaluation of the best-found posi-
tion of each exploiter.

In [90], resource allocation is added to the approach 
described in [89], a hibernation method similar to the deac-
tivation method from [80]. If a sub-population converges, 
meaning the maximum Euclidean distance between all pairs 
of individuals within that sub-population falls below a pre-
defined threshold, and the difference in fitness between its 
best-found position and the best-found position of the entire 
population falls below another threshold, that sub-population 
is deactivated until the next environmental change.

Halder et  al. [91] introduce a mDOA that employs 
k-means clustering, based on the positions of individu-
als. This clustering occurs every predetermined number of 
iterations. The overall population size and the number of 
subpopulations can change, and there are upper and lower 
bounds for the number of subpopulations. Additionally, there 
is a threshold for the number of individuals within each sub-
population. Controlling the number of subpopulations and 
subpopulation sizes helps prevent wastage of computational 
resources by avoiding overcrowding. The algorithm benefits 
from explicit memory. To further manage computational 
resources, when a subpopulation converges, its best-found 
position is stored in explicit memory, and then the subpopu-
lation is removed. A subpopulation is considered converged 
if the average Euclidean distance between the individuals 
and the midpoint of all individuals is less than a thresh-
old. Global diversity is increased under certain conditions. 
First, after each environmental change, the whole popula-
tion is reinitialized. Second, the best-found position does 
not improve for a predefined set number of iterations, new 
individuals are initialized throughout the search space to 
form a new sub-population. Third, by utilizing exclusion, in 
the case of overlap between two subpopulations, they will be 
merged, and if the number of members exceeds the thresh-
old, the redundant ones will be randomized. A change is 
detect by reevaluating a sentry.

Yazdani et al. [64] propose a mDOA with an adaptive 
number of subpopulations and a varying overall popula-
tion size. The subpopulations differ from each other; one 
is a free or explorer subpopulation responsible for explor-
ing the search space. When the explorer subpopulation is 
considered to have converged, a new subpopulation, termed 
an exploiter, is created. Then, the explorer is randomized to 
discover another promising region, thus increasing global 
diversity. The free subpopulation’s convergence is deter-
mined by monitoring the fitness of its best-found position 
over a predefined number of previous iterations. If the differ-
ence is less than a threshold, it is considered to be converged. 
Moreover, randomizing the explorer subpopulation through 
the exclusion method [61], when it is within the exploit-
er’s search range, further increases global diversity. Local 
diversity is enhanced after environmental changes through 
randomization; the individuals of each subpopulation are 
distributed in a limited area around their best-found position 
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with a uniform distribution. Resource allocation is managed 
in several ways. First, by deactivating converged subpopula-
tions, excluding the best one, until the next environmental 
change; second, by applying a local search operator on the 
best-found position of the best exploiter subpopulation; and 
third, by removing an inferior exploiter subpopulation when 
two exploiters enter each other’s search range. In the pro-
posed mDOA, change is detected by reevaluating a single 
individual.

Li et al. [32], propose a multi-population approach that 
uses a position-based clustering method to form subpopula-
tions. The overall number of individuals and the number of 
subpopulations can change over time. Clustering is initiated 
when the average radius of non-stagnating sub-populations, 
those still actively exploring and improving solutions, falls 
below a predefined percentage of the search range, known 
as the diversity adjustment point. Initially, each individual 
forms a cluster. Then, the clustering process merges the 
closest clusters until the total distance within each cluster 
becomes smaller than the distance between clusters, result-
ing in distinctly different subpopulations. Computational 
resources are saved under two conditions. First, when a 
subpopulation has converged, it becomes inactive until the 
next diversity adjustment point occurs. A subpopulation is 
converged if the average distance of individuals to the sub-
population center is less than a threshold. Second, redundant 
inferior subpopulations are removed by exclusion method if 
two sub-populations have at least one individual overlap-
ping in each other’s search areas. When the diversity adjust-
ment point is reached, individuals previously removed by 
the exclusion mechanism are reinitialized, along with any 
new individuals added the population if the size needed to 
be increased. This reinitialization of individuals increases 
global diversity. Moreover, using Brownian individuals with 
a Gaussian distribution, local diversity is maintained over 
time. The proposed mDOA is change-independent and do 
not use any specific method to detect a change.

Kordestani et  al. [92] describe a multi-population 
approach with varying number of subpopulations and overall 
population sizes. In the proposed mDOA, the local diversity 
is maintain over time by modifying the core optimizer rule. 
Additionally, global diversity is preserved by introducing 
new subpopulations when all existing ones have converged. 
Herein, a subpopulation is considered converged when the 
fitness of its best-found position has not improved in the 
previous iteration. Resource allocation is managed in three 
ways. First, by employing a local search operator around 
the best position found among all subpopulations; second, 
by controlling the size of the subpopulations. This control 
is achieved by calculating the Euclidean distances between 
the best-found positions of all subpopulations and the global 
best-found position. Subpopulations closer to the global best 
position than a predefined percentage of the longest distance 

will receive more individuals, while the others will have 
fewer. Third, the exclusion method [61] is used to remove 
redundant inferior subpopulations in case of a collapse. 
Change detection is done by reevaluating three individuals, 
prompting a comprehensive reevaluation of all individuals 
to address the outdated memory issue.

The mDOA proposed in [37] utilizes the same cluster-
ing method as [45], where individuals are clustered based 
on their fitness and positions. The number of subpopula-
tions adapts to the discovered promising regions. Cluster-
ing occurs at each iteration, and the subpopulation size is 
predetermined. Subpopulations differ in their tasks and are 
divided into tracker and non-tracker subpopulations. A non-
tracker subpopulation becomes a tracker when it is consid-
ered to have converged. Convergence is detected if the maxi-
mum Euclidean distance between the best-found position 
in the subpopulation and any other member is less than a 
threshold. To increase global diversity, when all subpopula-
tions have converged, new randomly initialized individuals 
are injected into the population. Local diversity is increased 
after an environmental change for tracker subpopulations 
by randomizing the positions of all members around the 
best-found position, within a subpopulation in a hyper-ball. 
The radius of this hyper-ball is determined by the estimated 
environment shift severity. Computational resources are 
managed in three ways. First, by introducing an innovative 
adaptive deactivation mechanism that systematically allo-
cates computational resources to the subpopulations. This 
resource allocation component deactivates subpopulations 
that have sufficiently converged to their local optima, thus 
saving computational resources. These saved resources are 
then allocated to subpopulations that are still actively explor-
ing and to the best-performing subpopulation. Second, by 
removing redundant subpopulations when they overlap, 
using the exclusion method. Third, by setting an upper limit 
for the maximum number of subpopulations to avoid over-
crowding. If the number of species reaches this limit and 
all subpopulations have converged, an anti-convergence is 
employed to re-initialize the individuals of the subpopu-
lations with the worst performance, which also improves 
global diversity. The algorithm is informed of environmental 
changes and does not have any specific component to detect 
changes.

4  Benchmarking methods for evaluating 
mDOAs

Benchmarks play a crucial role in evaluating and compar-
ing the performance of various evolutionary optimization 
algorithms. These benchmarks consist of standardized test 
problems that allow researchers to assess the strengths 
and weaknesses of their algorithms under controlled and 
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reproducible conditions. Selecting the right benchmarks is 
crucial for effectively evaluating and comparing mDOAs. In 
addition, utilizing the proper performance indicators is also 
crucial for evaluating the effectiveness of the algorithms in 
solving optimization problems. A performance indicator is 
an statistical indicator used to assess and compare the per-
formance of different solutions or algorithms.

The following presents a review of state-of-the-art bench-
mark generators, along with commonly used performance 
indicators that measure the effectiveness of algorithms based 
on the fitness or error of obtained solutions.1 For a com-
prehensive survey of dynamic benchmark generators and 
a complete list of performance indicators, researchers can 
refer to [26] and [25], respectively. In the last part of this 
section, the real-world applications of DOAs are reviewed.

4.1  Dynamic benchmark generators

Dynamic benchmark generators can be classified into two 
types, those that construct the problem landscape and those 
that generate dynamic datasets. The majority of research in 
this field employs dynamic landscape generators, character-
ized by solution spaces that feature “multiple moving peaks" 
[25]. These benchmark generators are favored for their ease 
of understanding and implementation, and offering high con-
figurability to produce numerous dynamic scenarios with 
varied, controlled characteristics. Recently, a dynamic data-
set generator has been introduced [95], designed specifically 
for creating dynamic datasets for clustering in dynamic envi-
ronments. This new tool is capable of generating real-world 
morphological and dynamical characteristics that were not 
previously captured by dynamic landscape generators. In the 
subsequent sections, we will explore  widely used moving-
peaks-based dynamic landscape generators, as well as this 
innovative dynamic dataset generator.

4.1.1  Dynamic landscape generators

Constructed landscapes in moving peaks baseline func-
tions are created by utilizing multiple elements. Typically, a 
max(⋅) function is employed to establish the attraction basin 
for these components. Each element within the moving 

peaks baseline functions often includes a peak, the charac-
teristics of which, like height and position, change with time. 
The Moving Peaks Benchmark (MPB), as introduced in [39], 
stands as one of the initial DOP benchmarks to utilize mov-
ing peaks baseline functions. The foundational function of 
MPB is described as follows:

where c (t)

i,j
 is the jth dimension of the center of ith peak in 

the tth environment ( c (t)

i
 ), h(t)

i
 and w(t)

i
 are the height and 

width of the ith peak in the tth environment, respectively, xj 
is the jth dimension of a solution ( x ) in a d-dimensional 
problem space, and m is the number of peaks. The second 
version of MPB, which is known as Scenario 2 in the litera-
ture [2] uses a baseline function that generates landscapes 
with conical peaks:

The Generalized Dynamic Benchmark Generator (GDBG) 
offers six different types of dynamic scenarios to create 
benchmark landscapes [96], including small step changes, 
large step changes, random changes, chaotic changes, recur-
rent changes, and recurrent changes with noise [25]. Among 
these scenarios, the baseline function for scenario F1 of the 
GDBG, which is frequently utilized in the DOP literature, is 
the Dynamic Rotation Peak Benchmark Generator (DRPBG) 
[97], formulated as follows:

Yazdani et al. [98] introduce the Generalized Moving Peaks 
Benchmark (GMPB), the most state-of-the-art benchmark 
that produces landscapes by combining several compo-
nents. Unlike the typical moving peaks baseline functions, 
the components generated by the GMPB baseline function 
can range from smooth to extremely uneven, from unimodal 
to multimodal, and from symmetric to asymmetric forms. 
Additionally, these components might have circular contours 
or could be significantly ill-conditioned. The baseline func-
tion used by GMPB is outlined as follows:
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1 Evolutionary Dynamic Optimization Laboratory (EDOLAB) [93] 
is an open-source [94] MATLAB platform that provides a compre-
hensive library, which includes the benchmark landscape genera-
tors and performance indicators reviewed in this section, as well as 
a collection of 25 DOAs. EDOLAB features two main modules. The 
Experimentation Module allows for extensive configuration and com-
parison of algorithms, and the Education Module is designed to visu-
ally demonstrate the optimization process and enhance learning about 
dynamic optimization challenges.
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where W(t)

i
 represents a diagonal matrix of size d × d , where 

the diagonal elements indicate the width of the ith compo-
nent across different dimensions. The parameters �(t)

i,k∈1,2,3,4
 

and � (t)
i

 characterize the irregularity of the ith component. 
R

(t)

i
 stands for the rotation matrix of the ith component in the 

tth environment. Finally, yj refers to the jth dimension of the 
vector y . Similar to other baseline functions involving mov-
ing peaks, GMPB offers control over the position, height, 
and width of individual components. Moreover, GMPB 
allows for variations in component width across different 
dimensions, providing control over the condition number 
of components. By employing a rotation matrix for each 
component, the degree of variable interactions within each 
component can be adjusted. Additionally, the irregularity 
degree and modality can be regulated through parameters � (t) 
and �(t)

k∈1,2,3,4
 . Lastly, adjusting the values of �(t)

k∈1,2,3,4
 allows 

for control over the symmetry of the components, with sym-
metric components generated when all four �k values are 
the same.

Li et al. [99] introduce the Free Peaks benchmark (FPs), 
which generates landscapes featuring multiple moving peaks. 
FPs divides the landscape into hypercubes, which define the 
basins of attraction for the peaks. This characteristic of FPs 
distinguishes it from other moving peaks baseline functions, 
which typically employ the max(⋅) function to determine 
basin boundaries. Within each hypercube, there is precisely 
one peak, and its boundaries are restricted to that hypercube. 
Both the position of a component within a hypercube and the 
boundaries of the hypercube are adjustable. Additionally, [99] 
propose several single-peak baseline functions, such as the 
conical peak, to be utilized within each hypercube.

Figure 2 illustrates landscapes generated by reviewed 
benchmark. The parameter settings for the baseline functions 
in (3), (4), and (5) are the same among them for a fair com-
parison. These landscapes have five peaks, and the same val-
ues for height and width are used for all of them. The search 
range for (4) is [−50, 50] , and for (3) and (5), it is [−5, 5] . To 
generate peak positions in all baseline functions according to 
their search ranges, the same random seed numbers are used. 
Figure 2(d) shows a landscape created by baseline function 
(6). This landscape includes three components characterized 
by high irregularity and asymmetry, two of which are also 
ill-conditioned and rotated. Figure 2(e) illustrates a landscape 
generated using FPs [99], featuring three conical peaks, each 
defined by its surrounding hypercubes that dictate the basins 
of attraction.
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4.1.2  Dynamic dataset generator

The Dynamic Dataset Generator (DDG) proposed in [95] is 
a benchmark generator tool designed for creating dynamic 
datasets with known and controllable characteristics, specifi-
cally for evaluating clustering algorithms in dynamic envi-
ronments. The DDG simulates a broad range of dynamic 
scenarios using multiple dynamic Gaussian components 
(DGCs), enabling the systematic performance evaluation of 
clustering algorithms across diverse and realistic dynamic 
conditions. DDG utilizes these DGCs for data generation, 
with each DGC in the tth environment defined as follows:

where at time N(t)

i

(
c
(t)

i
,�

(t)

i
,�(t)

)
 represents the ith DGC. 

The equation describes the relationship where r is a d(t)
-dimensional random vector, with each component drawn 
from a standard normal distribution N(0, 1) . The vector c(t)

i
 

represents the mean or center position of the ith DGC within 
the tth environment, and d(t) denotes the number of variables 
at time t. Additionally, �(t)

i
 is a d(t)-dimensional vector indi-

cating the standard deviation, reflecting the spread of the ith 
DGC across each dimension. The d(t) × d(t) matrix �(t)

i
 is 

pivotal in determining the rotation of each component. In the 
context of DDG, m(t) DGCs are utilized for data generation, 
each assigned a weight w(t)

i
 governing the probability of gen-

erating a data point via the ith DGC. The DDG structure, 
utilizing DGCs, provides an easy approach for adjusting 
parameters to generate a range of dynamic scenarios. Param-
eters such as the number of DGCs (m(t)) , probability weights 
for data generation ( w(t)

i
 ), DGCs’ standard deviations ( �(t)

i
 ), 

number of variables ( d(t) ), rotation angles ( �i,j,k = �
(t)

i
(j, k) ), 

and center positions ( c(t)
i

 ) can all be modified over time 
through various patterns of change including random, cha-
otic, circular, or pendulum movements, as discussed in [25].

4.2  Performance indicators

Performance indicators are crucial for assessing how effec-
tively mDOAs adapt to changing environments, track mov-
ing optima, and maintain solution quality over time. Among 
the different types of performance indicators, those based on 
fitness or error are most commonly utilized in the DOP lit-
erature. These include offline error ( EO ), best before change 
error ( EBBC ), and offline performance indicator ( PO ) [25], as 
described below.

When the details about the global optimum in each envi-
ronment are known, it is possible to measure the error of 
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solutions. However, in practical real-world scenarios, 
accessing the global optimum’s data is often unfeasible, 
though such information is mostly available in numerous 
DOP benchmarks. One performance indicator requiring the 

global optimum’s details is EO , as outlined by [2]. This indi-
cator, widely referenced in academic studies, determines the 
mean error of the optimal position identified across all evalu-
ations of fitness, according to a specific formula:
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(a) Contour plot of the generated land-
scape by (3).
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(b) Contour plot of the generated land-
scape by (4).
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(c) Contour plot of the generated land-
scape by (5).
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(d) Contour plot of the generated land-
scape by (6).
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(e) Contour plot of the generated landscape
by FPs.

Fig. 2  Landscapes generated by MPB (3), MPB Scenario 2 (4), DRPBG (5), GMPB (6), and FPs [25]
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where in the tth environment, x⋆(t) represents the global 
optimum position, T is the total number of environments, 
� denotes the change frequency, c is the fitness evaluation 
counter for each environment, and x∗((t−1)�+c) denotes the 
best-found position at the cth fitness evaluation.

Another performance indicator is EBBC [100], which consid-
ers only the final error at the end of each environment.

where x∗(t) , fetched at the end of the tth environment, repre-
sents the best-found position.

The EO and EBBC both require knowledge of the global 
optimum’s position and fitness, which does not align well 
with practical dynamic optimization problems. Branke [39] 
proposed the offline-performance indicator ( PO ), which does 
not require such details. Instead, it calculates the average fit-
ness of the best position found across all evaluations, accord-
ing to the provided formula:

For a fair assessment with PO , it is crucial that environmen-
tal aspects of the problem, including peak features in the 
moving peaks baseline scenario, are kept constant across 
every algorithm being evaluated.

4.3  Real‑world applications of DOAs

Exploring the application of DOAs in real-world scenarios 
offers a rich field for discovery and innovation. Various stud-
ies have demonstrated the practical utility of DOAs across 
different domains. Rakitianskaia et al. [101, 102] utilized 
DOAs to train supervised feed-forward neural networks, 
addressing dynamic classification challenges caused by con-
cept drift. Similarly, Kalita and Singh [103] employed DOAs 
to optimize the hyper-parameters of support vector machines 
(SVMs) in dynamic environments, considering both gradual 
and batch data inflows. In the coal mining industry, Liu et al. 
[104] proposed a cutting pattern recognition method based 
on an SVM optimized by a DOA.

In the agricultural sector, Jin et al. [105] applied DOAs 
to develop adaptive farming strategies, maximizing income 
through optimal mixed grazing techniques. For dynamic 
load balancing, Sesum and Kuhn [106] employed DOAs 
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to achieve optimal workload distribution among resources, 
enhancing system efficiency.

The work done in [107] utilize DOAs to optimize the 
parameters of a control strategy for a distribution static com-
pensator on an all-electric ship power system, focusing on 
maintaining consistent bus voltage regulation. In the realm 
of robotics, Jatmiko et al. [108] applied DOAs to solve the 
Odor Source Localization problem, enabling mobile robots 
to locate chemical odor sources in dynamically changing 
environments.

In energy management, Wang et al. [109] utilized DOAs 
to tackle the dynamic economic dispatch problem, aiming to 
minimize operational costs in electrical power systems. Liu 
et al. [110] addressed contaminant source identification in 
water distribution networks using DOAs, where the search 
space evolved with new information.

The adaptability of DOAs in existing applications pave 
the way for their use in emerging fields. One key applica-
tion is in dynamic facility location problems [111]. DOAs 
optimize facility placement and relocation to minimize 
costs and response times as demand and geographical fac-
tors change. This is crucial for strategic redeployment, such 
as relocating security forces in response to crowd dynam-
ics or incidents. In real-time data analysis and concept drift 
management [112], DOAs are essential. They help main-
tain accurate clustering in fields like finance, marketing, and 
cybersecurity, where data patterns constantly evolve. Online 
deep clustering methods, for instance, adjust to new data 
without retraining, keeping data analysis relevant and pre-
cise. Resource allocation and management also benefit from 
DOAs [113]. They dynamically adjust resources to meet 
fluctuating demands in logistics, supply chain management, 
and smart city infrastructures. In disaster response, DOAs 
optimize the deployment of search and rescue operations, 
improving efficiency and outcomes in critical situations.

5  Future directions

Despite extensive research in the field, a significant gap 
remains between academic research and practical applica-
tion. To bridge this gap, future research should focus on top-
ics that narrow it. Considering the current state of research, 
we identify several potential future research directions aimed 
at reducing the disparity between academic research and 
their real-world applicability.

5.1  Adaptive parameter tuning over time

mDOAs typically comprise several components, each gov-
erned by its own set of parameters. Conventionally, these 
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parameters operate based on fixed values, optimized accord-
ing to the initial state of the problem. Given that commonly 
used benchmarks in the field often exhibit homogeneous 
behavior over time, this static tuning approach is usually 
sufficient; there is no compelling need to adjust parameters 
dynamically as the problem’s characteristics remain consist-
ent. However, real-world problems frequently show dynamic 
behavior, evolving significantly over time. This evolution 
calls for strategies that can adaptively modify parameter 
values in response to the current state of the problem. Con-
sequently, the development of adaptive parameter tuning 
methods represents a crucial direction for future research, 
promising to bridge the gap between the static assumptions 
of academic models and the fluid dynamics of real-world 
applications.

5.2  Designing algorithms for problems with high 
temporal severity

Current mDOAs are primarily designed for scenarios where 
environmental changes occur at discrete intervals. Yet, the 
real world presents numerous challenges where changes 
unfold continuously over time. The current methodologies, 
being reactive in nature, activate certain mechanisms and 
components only in direct response to these changes. This 
approach, while effective for discrete adjustments, may 
prove detrimental in the face of continuous or highly fre-
quent temporal changes, as the frequent triggering of reac-
tions can lead to inefficiency. A crucial direction for future 
research lies in developing components and algorithms 
specifically designed to excel in environments that undergo 
continuous change.

5.3  Handling problems with multiple types 
of changes

The body of existing research has mainly concentrated on 
problems showing regular characteristics, including con-
sistent frequencies and severities of changes, along with 
uniform dynamics during environmental changes. How-
ever, the real-world often presents scenarios where multiple 
types of environmental changes occur over time, each dis-
tinguished by its own spatial and temporal severities, pat-
terns of change, and domains of influence. Current methods 
are designed to address a singular type of change, assuming 
static characteristics over time, and therefore fall short when 
confronted with multiple types of environmental changes. 
Addressing these challenges necessitates mDOAs capable 
of identifying the specific nature of each change and deploy-
ing appropriate responses designed for each situation. The 
development of such algorithms, equipped to differentiate 
and react suitably to various types of changes, represents 
a critical avenue for future research. This approach would 

allow for more effective handling of the complex dynamics 
characteristic of real-world problems.

5.4  Solution deployment and quick recovery

The design of most existing mDOAs does not take 
into account the time in which a new solution must be 
deployed. In real-world scenarios, there often exists a 
deadline or temporal constraint for selecting and deploying 
a solution following each environmental change, necessi-
tating what is termed as “quick recovery” [3]. To enhance 
the optimization of the best-found solution before this 
deadline, mDOAs require strategic allocation of compu-
tational resources along with other mechanisms aimed at 
acceleration. Such considerations, however, have largely 
been overlooked in the current algorithmic designs within 
the field. Developing components for mDOAs that incor-
porate the need for quick recovery and efficient solution 
deployment under tight deadlines represents an important 
direction for future research.

5.5  Changes in the boundaries of the search range

One significant challenge that has not been investigated in 
the field is the change in the boundaries of the search space. 
This challenge poses a significant difficulty for mDOAs 
in many real-world problems where the search range, or 
at least the effective search range, changes over time. For 
example, in facility location problems, the effective search 
range includes areas where there are demands. A change 
in the distribution of demands causes the effective search 
range to change over time. When the search ranges change 
over time, they may not remain hypercubes. In fact, assum-
ing hypercubes is a simplistic assumption. However, when 
there is a disparity between the range in different dimen-
sions, many components of the algorithms that assume the 
search range is a hypercube face difficulties. For example, 
many mechanisms rely on Euclidean distances and hyper-
balls around specific points, such as the best-found solution, 
which may become ineffective when the search range is not 
a hypercube. One initial way to address this challenge is to 
normalize the ranges. However, normalizing the ranges itself 
introduces new dynamics into the system, which affects the 
algorithm. Therefore, developing methods that can dynami-
cally adjust to non-hypercube search ranges without intro-
ducing additional complexities remains a crucial area for 
future research.
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6  Conclusion

In this survey, we focused on the domain of single-objective 
unconstrained continuous dynamic optimization problems 
(DOPs), with a specific focus on multi-population dynamic 
optimization algorithms (mDOAs) as a main approach for 
tracking the moving optimum (TMO). We commenced a 
comprehensive review of mDOAs by providing a detailed 
analysis of mDOAs’ components, their assembly into cohe-
sive algorithms, and how these elements collectively create 
a framework for addressing TMO challenges. Additionally, 
we reviewed benchmarking methodologies, highlighting 
the use of dynamic benchmark generators and performance 
indicators to assess the effectiveness of mDOAs. By offer-
ing insights into the current state-of-the-art and suggesting 
avenues for future research, this survey aims to advance the 
understanding and development of mDOAs in the context 
of TMO in dynamic environments.
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