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A B S T R A C T   

Maritime casualty analysis needs to be addressed given the increasing safety demand in the field due to the 
accidents’ low-frequency and high-consequence features. This paper aims to delve deeper into the factors that 
affect maritime accident casualties by establishing a new database and conducting an accident casualty evolution 
analysis. Based on the refined dataset, a pure data-driven Bayesian Network (BN) model is developed to conduct 
the casualty analysis of maritime accidents that occurred under different ship operational conditions. Method
ologically, it introduces new risk factors to improve maritime casualty analysis accuracy through the enriched 
updated maritime accident database. Furthermore, the new database is categorised into five new datasets based 
on temporal development trends to better analyse the evolution of the casualty. Five risk analysis models are 
individually constructed based on different timeframes to illustrate the dynamics of the casualties and compared 
by seven evaluation indexes to demonstrate the effectiveness of the proposed data-driven BN model. It, for the 
first time, investigates the changing roles of different risk factors on maritime casualties with time. The insights 
gained from this model are invaluable, contributing to improved risk prediction and maritime safety strategies by 
acknowledging the changing patterns of maritime accidents.   

1. Introduction 

Followed by the widespread adoption of digital technologies, infor
mation technologies, and the manufacturing industry, the trend of large- 
scale, high-speed, and intelligent ships is becoming increasingly prom
inent [1,2]. However, busy maritime activities inevitably result in 
complicated maritime traffic situations [3,4], complex encounter situ
ations [5], and intricate traffic patterns [6,7], thus increasing the risk of 
maritime accidents [8]. Maritime accidents are characterised by low 
probability and high consequences and often lead to significant casu
alties and property damage once they occur [9,10]. As an illustration, in 
2021, the ‘Ever Given’ (i.e., a large container ship) was grounded on the 
banks of the Suez Canal, resulting in a blockage that caused trade losses 
of approximately £7 billion per day [11,12]. Hence, it is imperative to 
mitigate navigation risks, prevent maritime accidents, and improve 
maritime safety. 

Many scholars have analysed maritime accidents and the associated 
risks to assess the emergency hazards of maritime waterways. For 
instance, Wan et al. [13] established a new model for evaluating 

maritime supply chain risk factors using Bayesian Networks (BN). Fan 
and Yang [14] developed a new model based on the Least Absolute 
Shrinkage and Selection Operator (LASSO) and BN to assess the impact 
of human fatigue factors on maritime risk. Xin et al. [15] proposed a 
multi-scale collision risk estimation model based on a graph-based 
clustering framework to identify the optimal spatial scale for risk 
assessment. Li and Yang [16] constructed a novel spatiotemporal pattern 
mining framework based on a new pirate incident database, analysing 
the influence of various risk factors on pirate attacks. Their work con
tributes to the rational formulation of anti-piracy measures to ensure 
maritime safety. Amin et al. [17] put forward a dynamic availability 
assessment method for the safety of maritime transport operations based 
on DBN. Cao et al. [18] investigated the accident severity based on the 
dataset from 2000 to 2019 using a data-driven BN to yield valuable 
insights. However, this approach incorporates subjective data and relies 
on experts’ subjective experiences, and the accident dataset does not 
encompass the most recent accidents. Yip et al. [19] used Poisson 
regression to investigate the determinants of the degree of casualties in 
passenger ship accidents. Wang et al. [20] applied the Fuzzy Analytic 
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Hierarchy Process (FAHP) to assess the navigational environmental risk 
in the shipping lanes of the South China Sea. They pointed out that the 
maritime ecological risk decreases in a V-shaped spatial distribution 
from north to south. Wu et al. [21] utilised BN to develop a probabilistic 
model to estimate the consequences of ship collisions along the Yangtze 
River. Lan et al. [22] proposed a data-driven approach that combines 
Association Rule Mining (ARM), Complex Network (CN), and Random 
Forest (RF) to identify the key risk factors for predicting the severity of 
ship collision accidents. However, the aforementioned studies reveal 
significant modelling limitations on single-directional analysis and the 
inability to expand the established models when new input parameters 
become necessary and available to add on. To solve this problem, Wang 
et al. [23] analysed the connection between maritime accident severity 
and the influential factors using an ordered logistic regression model. 
Moreover, Wang et al. [24] applied a Zero-Inflated Ordered Probability 
(ZIOP) model to classify maritime accident severity into two states and 
explore each factor’s impact on the seriousness of maritime accidents. 
These studies in the field reveal that maritime accident/risk analysis 
predominantly focuses on identifying risk factors and assessing their 
combined impact rather than giving strong emphasis to casualty anal
ysis, prediction, and diagnosis. Consequently, they do not effectively 
address the low-likelihood-high-consequence nature of maritime 
accidents. 

A maritime accident is an initial incident or event, while maritime 
casualty indicates the specific consequences or outcomes that result 
from maritime accidents. Due to the global nature of shipping, a lack of 
comprehensive and up-to-date understanding of maritime casualties on 
an international scale can hinder the development of effective control 
measures suitable for international freight shipping. This understanding 
is crucial to prevent recurring maritime casualties of a similar nature. It 
highlights a substantial research gap in conducting maritime casualty 
analysis from a global and up-to-date perspective, involving a full set of 
all relevant Risk Influencing Factors (RIFs). However, the success of any 
solution to the gap requires a huge effort in developing a new maritime 
accident database to address the data limitations exposed by the existing 
studies and constructing new analysis models that can accommodate 
both increasing datasets and new RIFs. 

The International Maritime Organization (IMO) oversees global 
shipping safety, security, and environmental protection. The IMO’s 
Global Integrated Shipping Information System (GISIS) is a renowned 
dataset for maritime accident investigations but has faced criticism for 
lacking static ship information. To enhance the dataset, it is necessary 
and beneficial to incorporate complementary information from sources 
like Lloyd’s Register Fairplay (LRF). In this paper, maritime accident 
data from 2017–2021, along with corresponding accident records, are 
collected from GISIS. The data with missing ship static information is 
then supplemented from the LRF database. Based on this comprehensive 
database, this paper has yielded several valuable contributions to both 
methodological and applied research, as detailed below.  

(1) Development of a novel data-driven maritime casualty analysis 
model based on the BN method to analyse the causes of accident 
casualty.  

(2) Analysis of maritime casualties from a global and multi- 
dimensional perspective, involving the features and impact of 
different regions, ship types, accident types and so on.  

(3) Incorporation of new RIFs in maritime casualty analysis for the 
first time, such as ‘information’, and ‘breadth’, as well as new 
accident type ‘occupational accident’ and new ship type 
‘dredger’.  

(4) Comparison of five maritime casualty analysis models, generated 
in line with temporal development trends and accessed using 
seven evaluation indexes, demonstrates the prediction perfor
mance of the proposed data-driven BN model. 

(5) Provision of new managerial implications for preventing mari
time accident prevention and reducing casualties through 

comparative analysis with previous studies and the evolution 
results of five models in this field. 

The paper is structured as follows. A comprehensive literature review 
is presented in Section 2, summarising prior research on maritime ca
sualty analysis and highlighting the current state of the field. Section 3 
details the methodology and the comparison of five models. Section 4 
presents the model validation content to demonstrate the effectiveness 
of the data-driven proposed BN model. Section 5 assesses the maritime 
casualty under different scenarios by scenario simulation and unveils the 
novel implications. The comparative evolution analysis of five models is 
listed in Section 6 to provide valuable findings and insights. Lastly, 
Section 7 concludes with new findings, discusses the limitations, and 
proposes suggestions for future research. 

2. literature review 

2.1. Review of maritime casualty analysis 

Scholars have investigated maritime casualty in recent years from 
different perspectives. Wang et al. [23] used an ordered logistic 
regression model to analyse the global accident investigation reports 
from 2010 to 2019 and explored the connection between maritime ac
cident severity and RIFs. Cakir et al. [25] utilised a Decision Tree (DT) 
and a data-driven BN model to analyse 1468 historical ship oil spill 
accidents to forecast the severity of future ship oil spills. The study 
revealed that ship type and accident type were the main factors that 
impacted the severity of ship oil spills. Wang et al. [24] applied a ZIOP 
model in 1128 maritime accident investigation reports from 2000 to 
2019 to classify maritime accident severity into two states and explore 
the impact of each influential factor. Wang et al. [26] applied density 
and clustering analysis methods to visualise maritime accident fre
quency and spatial severity patterns by Geographic Information System 
(GIS). A zero-truncated binomial regression and a binary logistic 
regression model were developed by Weng and Yang [27] to predict the 
likelihood of fatal ship accidents and the corresponding mortality rates. 
The findings showed that fire/explosion, collision, grounding, sinking, 
and contact accidents occurring under darkness and adverse weather 
had higher mortality rates. 

Although showing some attractiveness, they initiated the input data 
from accident reports and took little consideration of the impact of RIFs, 
hence suffering from the associated constraints in risk data (e.g., ship’s 
static information) and parameters. In addition, the literature review 
also indicates that the previous maritime accident casualty analysis was 
conducted against such criteria as ship types, accident types, and areas 
accident locations (sea areas). The comparative results for these three 
criteria are presented in Table 1. According to the information in 
Table 1, 11 studies focus on the impact of ship types on accident 
severity, 8 studies centre around accident types and their influence on 
accident severity, and 10 studies explore accident severity concerning 
locations. 

The influence of different ship types on maritime accident casualties 
exhibits notable variation, encompassing specific ship types and their 
respective effects on accident severity. While some studies have inves
tigated the accident severity of certain vessel types, many have relied on 
expert knowledge to compensate for the lack of objective failure data, 
raising concerns about potential subjective bias in the results. Addi
tionally, due to a lack of sufficient data, researchers have been unable to 
thoroughly explore the root causes of all accident types, which has 
hindered the development of comprehensive safety strategies. 

Regarding accident types, much of the literature has concentrated on 
examining the impact of collisions and groundings on accident casualty. 
It is therefore challenging to explore the underlying causal factors and 
corresponding countermeasures for various accident types based on the 
abovementioned studies. The severity and frequency of maritime acci
dents vary depending on the complexity of traffic and environmental 
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conditions in different seas. When it comes to analysing research areas 
related to the severity of maritime accidents, a noticeable gap is evident 
in recent global research. Consequently, the existing literature on 
maritime accident casualty analysis is often confined to specific regions, 
waterways, ship types, or particular accident types. 

2.2. Comparative analysis of risk influencing factors in maritime accident 
casualty 

Maritime accident casualty analysis is affected by various RIFs. A 
comparative literature review is carried out to investigate the effec
tiveness of the different RIFs and capture their current development. The 
keywords ‘maritime accident’ and ‘severity’ or ‘casualty’ are combined 
to search the relevant papers on the Web of Science (WoS). To ensure the 

high quality of the analysed results, only journal papers included in the 
Science Citation Index Expanded and Social Sciences Citation Index are 
selected. A total of 199 journal papers related to maritime accident 
research are obtained through this selection process. Subsequently, 19 
papers about maritime accident severity are screened by analysing ab
stracts and filtering research content and conclusions. Moreover, all the 
RIFs appearing in the 19 retrieval results are counted quantitatively, and 
the same RIF is combined. Finally, 51 RIFs in these 19 retrieval results 
are extracted, and the frequency distribution is shown in Fig. 1. The 
results indicate that the most frequently appearing 8 RIFs in the 19 
references are (1) time, (2) accident type, (3) location, (4) ship type, (5) 
wind, (6) accident injury severity, (7) visibility, and (8) ship age. 

Table 2 lists all the 51 RIFs used in the 19 previous studies, along 
with the analysis methods employed. The RIFs are numbered from 1 to 
51, and each entry is marked with a ‘Y’ or ‘N’ to indicate whether the 
associated RIFs are analysed interdependently through a BN method. 
The comparison result presented in Table 1 verifies the applicability of 
these RIFs in the related studies. 

Table 3 presents the strengths and weaknesses of all references 
included in Table 2 from the dataset, the applied method, the research 
content, and the number of considered RIFs. Out of the 19 studies that 
are considered, 10 papers focused on examining the severity of accidents 
using various statistical models, listed in Table 2. It is notable that 
amongst the nine BN-based studies listed in Tables 2 and 3, only two 
studies [25,47] have made attempts to conduct data-driven analysis of 
accident severity without relying on expert knowledge. These two 
studies include 10 and 19 RIFs, respectively. Furthermore, the three 
other previous studies using BNs [21,38,48] suffer from such limitations 
as the use of restricted datasets and a lack of RIFs, potentially impacting 
the generality of the research findings. 

Based on the comparative results, it is essential to develop a 
comprehensive global dataset and thoroughly investigate the influence 
of all the relevant RIFs on maritime accident severity from a global 
perspective. 

2.3. The research gaps 

The above literature review and comprehensive comparative anal
ysis reveal a few research gaps that need to be addressed to prevent 
maritime casualties, including  

(1) A shortage of effective and comprehensive accident casualty 
datasets, limited RIFs, or a narrow selection of accident types, 
rendering it challenging to conduct a comprehensive study on 
accident casualty analysis. Furthermore, research relying on 
expert knowledge and judgement could potentially be influenced 
by subjective biases. 

Solution: This paper develops a new dataset combining multiple 
maritime accident data sources to support the 24 RIFs recommended by 
the IMO maritime casualty analysis. This dataset, the latest and most 
efficient for quantitative analysis, incorporates new RIFs and states for a 
thorough evaluation.  

(2) Previous research concentrated on analysing specific criteria for 
maritime casualty analysis, such as ship types, sea areas, or ac
cident types. Consequently, the findings may not be applicable to 
other contexts, limiting their practical relevance. 

Solution: Leveraging the new maritime casualty dataset, this study 
undertook a comprehensive examination of the characteristics and na
ture of maritime accident casualty from a global perspective over the 
past five years. Furthermore, a comparative analysis with other perti
nent literature offers practical guidance for maritime accident casualty 
analysis based on the obtained results and findings. 

Table 1 
Comparison review of maritime casualty analysis.  

Review focus Research targets Refs Research methods 

Impact of ship 
types on 
maritime 
casualty analysis 

Passenger ships [19] Poisson regression 
Passenger ships [28] A generic evidence- 

based framework 
Passenger ships [29] Poisson regression and 

negative binomial 
Tankers [30] Statistical analysis 

method 
Tankers [31] A stochastic model 
Ferry ships [32] An ordered Probit model 

and Tobit regression 
Ferry accidents [33] Poisson regression 
LNG carriers [34] Fault Tree Analysis 

(FTA) and Fuzzy 
Evidential Reasoning 
(FER) 

Cargo vessels [35] Binary logistic 
regression and expert 
knowledge 

Fishing vessels [36] An ordered probit model 
Crew fatalities and ship 
failures in container 
transport environments 

[37] Questionnaire survey 
and sampling technique 

Impact of accident 
types on 
maritime 
casualty analysis 

Collision accidents [21] BN and a probabilistic 
model 

Collision accidents [38] BN 
Collision accidents [39] Probability model 
Grounding [40] A probabilistic approach 
Collision accidents [41] A quantitative procedure 
Fire accidents [42] A fire dynamics 

simulator 
Overboard [43] the Poisson model 
Fisheries safety [44] Object-Oriented 

Bayesian Networks 
(OOBN) 

Impact of locations 
on maritime 
accident severity 

The global area [18] BN 
The South China Sea 
waterway 

[20] FAHP and GIS 

The Istanbul Strait [45] Generalised Fuzzy 
Analytic Hierarchy 
Process (GF-AHP) 

The Arctic region [46] An Improved Fuzzy 
Analytic Hierarchy 
Process (IF-AHP) 

Chinese coastal waters [47] A data-driven BN 
Tianjin port [48] BN 
The Yangtze River [49] Formal Safety 

Assessment (FSA) and 
BN 

The Yangtze River [50] A congestion risk 
assessment method 

The lower Mississippi 
River 

[51] A clustering analysis 

Finnish waters [52] A hazard identification 
model 

Hong Kong waters [53] A negative binomial 
regression model  
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(3) The factors affecting maritime accident casualties are not fully 
described, and the analysis of the causes of these casualties is not 
exhaustive. 

Solution: This paper captures the features of comprehensive RIFs for 
maritime accident casualty from a global standpoint, addressing gaps 
identified in existing literature.  

(4) Limited exploration of the effectiveness of influencing factors and 
the constructed risk analysis model. 

Solution: Building upon the latest accident dataset, this paper ana
lyses maritime accident casualties considering 24 influencing factors. 
The dataset is segmented into five datasets based on temporal devel
opment trends. A predictive model is constructed using the BN method, 
and its performance is evaluated using seven predictive indicators, 
thereby validating the identified influencing factors’ impact. 

(5) Insufficient research on the evolution of maritime accident ca
sualties in the field of maritime risk analysis. 

Solution: The new maritime accident casualty dataset is divided into 
five separate subsets according to their chronological development, 
encompassing the models using the data from 2021, 2020–2021, 
2019–2021, 2018–2021, and 2017–2021, respectively. This thorough 
comparative analysis across the five models deepens the understanding 
of casualty evolution and brings to light significant findings. 

3. Methodology 

3.1. The proposed framework 

This paper presents a novel framework for the data-driven BN model 
to perform maritime accident casualty analysis from a multi- 
dimensional and global perspective, highlighting its theoretical inno
vation. It is shown in Fig. 2, including five parts: dataset generation, 
model construction, comparison analysis of models, model validation, 
and model output. Compared to the traditional application of BN in 
maritime accident casualty analysis, this paper further demonstrates the 
efficacy of the constructed model and the identified factors in the 
comparison analysis of the models part. To do so, the original dataset 
spanning from 2017 to 2021 is categorised into five distinct datasets as 
follows:  

(1) Accident records for the year 2021.  
(2) Accident records covering the period from 2020 to 2021.  
(3) Accident records spanning from 2019 to 2021.  
(4) Accident records for the years 2018 to 2021.  
(5) The comprehensive set of accident records from 2017 to 2021. 

The prediction performance of the constructed models is evaluated 
by seven indexes to visualise the results. Furthermore, the comparative 
evolution analysis of these five models is listed clearly to reveal the 
invaluable insights. 

Fig. 1. The identified risk factors result from the literature.  
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Table 3 
Comparative analysis of maritime accident severity studies.  

Refs. The method Advantages Disadvantages 

[23] An ordered logistic 
regression model 

Identify influential 
factors from primary 
data 

Data limitation (i.e., 
more on objective 
variables and less on 
human factors) 

[21]  (1) NBN  
(2) Consider the 

expertise 

Consider emergency 
management when 
predicting the 
consequences of 
maritime accidents  

(1) Limited scope of 
applications (i.e., 
collision)  

(2) Data limitation (134 
records) 

[24] A ZIOP model Investigate injury 
severity in maritime 
accidents 

Seven accident types only 

[25]  (1) TAN  
(2) Purely data- 

driven 

Analyse the severity of 
an oil spill at sea  

(1) Limited attribute 
variables and data 
collection  

(2) A single case 
application (oil spills 
accident) 

[27] Binary logistic and 
zero-truncated 
binomial 
regression models 

Propose a new model 
for the severity of 
injuries in shipping 
accidents  

(1) Data limitation (no 
shipping traffic 
information)  

(2) The exclusion of 
shipping traffic 
information 

[29] Negative binomial 
and Poisson 
regression 

Investigate passenger 
ship accidents 

A few selected ship types 

[35]  (1) NBN  
(2) Consider the 

expertise 

Develop a risk 
assessment model 
using BN, logistic 
regression, and expert 
judgement. 

A few selected ship types 

[36] An order 
probability model 

Estimate the severity 
equations of crew 
injury and ship damage 

Only in the northeastern 
United States 

[38] Bayesian belief 
network (BBN) 

Introduce a systematic, 
transferable and 
proactive framework to 
estimate the risk for 
maritime 
transportation systems  

(1) A single case (only 
the severity of 
collision)  

(2) Consider subjective 
input data 

[42] A probabilistic 
method 

Estimate the death rate 
of ship fires 

Only consider ship fires 

[43] A Poisson model Analyse the impact of 
life jacket wear on the 
mortality rate of life- 
threatening events 

A single case application 

[45] A FAHP model Maritime risk 
perception while 
comparing it with 232 
maritime accident 
statistics 

Localisation analysis 
(only in the Istanbul 
Strait) 

[46] An IF-AHP model Define navigational 
risk factors of the 
Arctic Ocean 

Contain expert 
consultations and 
subjective input data 

[47]  (1) TAN  
(2) Purely data- 

driven 

Construct data-driven 
BN using advanced 
machine learning 
methods  

(1) Data limitation (no 
human factors)  

(2) Localisation analysis 
(a single scenario) 

[48]  (1) BBN  
(2) Consider the 

expertise 

Combine statistical 
data and expert 
knowledge to evaluate 
probability 
distributions 

Data limitation (234 
accidents occurred in the 
waters of Tianjin Port 
between 2008 and 2013) 

[49]  (1) NBN  
(2) Consider the 

expertise 

Adopt a structured and 
systematic approach to 
risk assessment for FSA 

Only in the Yangtze River 

[50]  (1) BN  
(2) Consider the 

expertise 

Propose a BN method 
based on an accident 
database to evaluate 
the congestion risk of 
inland waterways  

(1) Localisation analysis 
(only in one region)  

(2) Data validity (adjust 
objective data using 
expert experience) 

(continued on next page) 
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3.2. Data collection and cleaning 

This study gathers information from two authoritative and reliable 
maritime accident databases, namely GISIS and LRF. GISIS provides 
comprehensive accident data records that include ship details, accident 
cause records, weather information, and accident reports. However, 
some static ship information is missing. To address this gap, the LRF 
database is utilised to supplement and complete the essential missing 
data. The detailed clean dataset generation steps are shown below.  

(1) Original data collection from the GISIS database. 

The basic information on maritime casualty accidents is collected 
from the GISIS database, including the location, ship name, time of the 
accidents, accident type, and a brief description of their causes. 

Moreover, detailed accident information is received from the reporting 
forms in each record in GISIS, such as ship identification and particulars, 
data on very serious and serious casualties, fire casualty records, and 
life-saving appliance casualty records.  

(2) Further investigation in the GISIS database. 

The relevant maritime accident reports in the GISIS are further 
analysed to derive more comprehensive information like accident de
tails, casualty descriptions, accident cause analysis and descriptions.  

(3) Data cleaning. 

A total of 1105 maritime accident records are compiled from the 
GISIS database from 2017 to 2021. To ensure the accuracy of the 
dataset, any records without necessary IMO or an Mobile Service Iden
tification (MMSI) number or limited information are excluded from the 
study. After the initial stage of data cleaning, 462 accident records 
remained.  

(4) Add missing static information from the LRF database. 

Out of these, ships’ basic information and physical parameters are 
added from the LRF database to generate 428 records using the ship’s 
IMO and MMSI numbers to ensure the consistency of data from the two 
data sources, including details such as the ship’s age, breadth, length, 

Table 3 (continued ) 

Refs. The method Advantages Disadvantages 

[53] A negative 
binomial 
regression 

Analyse traffic accident 
risks in Hong Kong 
ports 

Localisation analysis 
(only one region) 

[18]  (1) TAN  
(2) Purely data- 

driven 

Apply a data-driven BN 
to analyse the 
relationship between 
accident severity and 
influencing factors  

(1) Contain subjective 
data  

(2) Consider the experts’ 
subjective 
experience  

Fig. 2. The proposed framework.  
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type, deadweight, gross tonnage, and hull structure.  

(5) Final filtering. 

The dataset is further filtered to remove records with unclear infor
mation on the causes, environmental conditions, and ship equipment. 
This step is crucial in ensuring the validity and accuracy of the dataset. 
Ultimately, a total of 402 maritime accident records are used in this 
study. 

3.3. RIF identification 

The frequency of the RIFs presented in Table 2 and the comparative 
analysis in Table 3 highlight the innovation of this study, which de
velops a purely data-driven BN model for analysing maritime accident 
severity. This paper establishes and standardises a list of RIFs by ana
lysing the most commonly used RIFs in literature and their relationship 
with the 24 risk factors that the IMO recommends as influential in 
maritime casualties. Additionally, a maritime accident severity database 
is developed using the GISIS and LRF databases to investigate the 
combined impact of various RIFs on a global scale. This model can 
guarantee that no relevant RIF is omitted due to data limitations. The 

use of accurate data and comprehensive RIFs ensures the robustness of 
the BN model. 

Furthermore, previous studies simplified the state definitions of 
some involved RIF to avoid extensive requirements on data availability 
and computation when quantifying their interdependencies [38,45,46]. 
However, this approach may compromise the sensitivity of the BN 
model and result in inaccurate and insensitive outcomes. To address this 
problem, the current study redefines and standardises the states of RIFs 
based on the IMO standards. For example, the study defines ship types 
into 11 groups, including ‘RORO’, ‘dredger’, ‘tug’, ‘container ship’, 
‘cargo ship’, ‘bulk carrier’, ‘offshore ship’, ‘fishing ship’, ‘passenger 
ship’, ‘tanker’ or ‘chemical ship’, and ‘others’. It ensures that the acci
dent severity analysis covers a wide range of ship types and enhances the 
comprehensiveness of the BN model. In addition, the detailed classifi
cation given by the IMO is applied for the voyage segment, containing 
11 states (e.g., anchorage, archipelagos, at berth, etc.). Lastly, the def
initions and status of all identified RIFs in this study are presented in 
Table 4, which are highly consistent with the IMO GISIS form, hence 
providing a standard for maritime accident casualty analysis in future. 
Therefore, the following 24 RIFs are adopted to explore their collective 
impact on maritime accident severity, generating new findings more 
compelling than previous studies based on the recommendation from 

Table 4 
Definition and states of 24 RIFs for maritime accident severity [54].  

No. Main factors Classification RIFs Definitions States 

1 Accident Accident type Type of accident Capsize, collision, contact/crush, fire/explosion, flooding, grounding, occupational 
accident, overboard, ship/equipment damage, sinking, others 

1,2,3,4,5,6,7,8,9,10,11 

2  Time Time of day (07:00,19:00], (19:00,07:00] day, night 
3 Environment External 

environment 
Wind (Beaufort 
scale) 

>5, (0,5] high, low 

4   Visibility (nm) >2, (0,2] good, bad 
5   Weather 

condition 
Considering rain, visibility, wind, fog, and extreme weather good, bad 

6   Sea condition Considering waves, currents, sea state, and falling or rising tide good, bad 
7 Ship Ship details Ship type Bulk carrier, cargo ship, container ship, dredger, fishing ship, offshore ship, passenger 

ship, RORO, tanker or chemical ship, tug, others 
1,2,3,4,5,6,7,8,9,10,11 

8   Ship age (years) (0,5], [6,20], >20, NA 1,2,3,4,5,6 
9   Length (meters) (0,100], (100,200], >200 1,2,3 
10   Breadth 

(meters) 
(0,20], (20,30], (30,40], >40 1,2,3,4 

11   Hull type Aluminium alloy, composite materials, GRP, 
light alloy, steel, wood, NA 

1,2,3,4,5,6,7 

12   Hull 
construction 

Double bottom, double hull, single hull 1,2,3 

13   Gross tonnage 
(GT) 

(0,3000], (3000,10,000], (10,000,20,000], >20,000 1,2,3,4 

14   Deadweight 
(DWT) 

(0,5000], (5000,15,000], (15,000,30,000], >30,000 1,2,3,4 

15   Draught 
(meters) 

(0,6], (6,9], >9 1,2,3 

16   Power (kW) (0,3000], >3000 1,2 
17   Vessel condition Good state of ships or the accident is unrelated to the ship state; 

Bad state of ships (e.g., ship equipment failure and ship design errors) 
good, bad 

18 Navigation Voyage 
particulars 

Voyage segment Anchorage, archipelagos, at berth, canal, channel, coastal waters, inland waters, open 
sea, port, port approach, river 

1,2,3,4,5,6,7,8,9,10,11 

19   Ship operation At anchor, fishing, loading/unloading, on passage, manoeuvring, pilotage, towing, 
others 

1,2,3,4,5,6,7,8 

20   Ship speed 
(knots) 

(0,6], (6,12], >12 low, middle, high 

21   Information Providing effective and updated information; 
Lack of effective and updated information (e.g., failure to send signals or respond 
appropriately, inadequacy of navigational equipment, unreliable and poor chart data, 
etc.) 

good, bad 

22  Equipment/ 
design 

Equipment The ship’s equipment is in good state and is being operated correctly; 
Bad state involving malfunction or improper functioning (e.g., deactivation of alarm 
systems, unnoticed alarms, propulsion machinery failures, electrical installation failures, 
etc.) 

good, bad 

23   Ergonomic 
design 

The ergonomic design of the ship is unrelated to the occurrence of accidents; 
Unfriendly ergonomic design (e.g., insufficient stability, poor bridge ergonomics, etc.) 

good, bad 

24 Human Human factor Human factor The accident has nothing to do with human factors; 
Human errors or violations (e.g., stress, fatigue, inadequate familiarity or training, poor 
management, insufficient supervision, error in judgement, etc.) 

no, yes  
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the IMO dataset. 

3.4. Model construction 

A BN was proposed by Pearl in 1988 [55] and is usually represented 
as a Directed Acyclic Graph (DAG) containing a set of nodes and directed 
edges connecting these nodes. Due to its powerful reasoning and 
learning capabilities, BN is widely used as a risk assessment method in 
maritime safety research [56]. It combines probabilistic knowledge with 
graph structures and visually demonstrates the interrelationships be
tween variables. There are two main methods to configure a BN struc
ture, a data-driven approach or a subjective approach based on the 
causal relationship between the variables/nodes. Comparatively, the 
data-driven approach is lately better used due to its objectivity and 
availability of relevant data. 

The BN structure in this study is built based on a data-driven 
approach. Several types of BN classifiers have been used to train a 
data-driven BN structure, including Naive Bayesian Networks (NBN), 
Augmented Bayesian Networks (ABN), and Tree Augmented Naïve 
Bayesian (TAN). The NBN structure assumes conditional independence 
between each factor, but this is not always accurate in reality, which 
limits its practical applications of BN structures. The disadvantages of 
ABN include increased complexity, high data requirements, computa
tionally intensive training, increased risk of overfitting, and reduced 
interpretability. The TAN structure is an improvement over NBN as it 
relaxes the independence assumption and better reflects feature de
pendencies. TAN enhances overall performance by allowing attribute 

nodes to be dependant on no more than one non-class node, simulta
neously preserving the robustness and computational ease of NBN. 
Consequently, TAN is often used to construct reliable assessment models 
for maritime safety from large datasets. 

In this study, TAN is chosen to train the BN for maritime accident 
severity analysis. A maritime accident severity BN model with 24 nodes 
is constructed based on the TAN mechanism. The Conditional Proba
bility Table (CPT) for each node is obtained through parameter learning 
in this study, with reference to [57]. The constructed maritime accident 
severity BN model is displayed in Fig. 3. 

In Fig. 3, the 24 individual boxes around the edges represent the 24 
RIFs, functioning as child nodes in the BN. The central box symbolises 
the research target, which is the type of casualty, serving as the parent 
node in the BN. On the left side of each box, the state divisions for the 
corresponding RIF are listed. For instance, ‘type of casualty’ is cat
egorised into three states: ‘less serious,’ ‘serious’, and ‘very serious’. On 
the right side of the boxes, the numbers and black bars indicate the 
probability values for each state. For RIFs with numerical states like 
‘draught’, displayed as ‘1.8 ± 0.83’, the first number 1.8 denotes the 
mean, and the second number 0.83 signifies the standard deviation, 
reflecting the dispersion of the RIF state values around the mean. These 
two numbers collectively express the uncertainty in the RIF state’s 
probability distribution. 

The marginal probability of each child node can be calculated based 
on the CPT of each node [57]. The calculation follows Bayesian rules and 
can be simulated using software packages such as Netica. Fig. 3 indicates 
that given the global maritime accident severity data from 2017 to 2021, 

Fig. 3. The constructed BN model for maritime accident casualty.  
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the accident rates of ‘less serious’, ‘serious’, and ‘very serious’ were 
7.48%, 27.6%, and 64.9%, respectively. To test the initial statical reli
ability of the model, the rates of each type of maritime casualty are 
directly computed using the raw data. The basic statistical analysis re
sults are 7.46%, 27.61%, and 64.93% for ‘less serious’, ‘serious’, and 
‘very serious’. The model’s initial test shows that the two sets of results 
keep a high-level consistency, revealing the validity of the model at this 
stage. 

3.5. Comparison of five different models 

To further demonstrate the effectiveness of the proposed model and 
the selected 24 RIFs, the five models by the temporal development 
trends (i.e., 2021, 2020–2021, 2019–2021, 2018–2021, and 
2017–2021) are constructed and compared. This paper introduces a 
confusion matrix and seven indicators to evaluate the prediction per
formance of five different models comprehensively. The confusion ma
trix is displayed in Fig. 4, which is a standard format for representing 
accuracy evaluation, also known as the error matrix. The overall accu
racy can be obtained by a confusion matrix, and generally, a higher 
accuracy indicates a better predictive classification. However, it is not 
scientific and rigorous to evaluate the model by accuracy alone. 

80% of the accident records in the dataset are randomly selected to 
train the model, and the remaining 20% are utilised as the test dataset. 
To comprehensively assess the five models’ prediction performance, six 
evaluation metrics are also utilised based on the confusion matrix, 
including precision, recall, F-Measure, specificity, False Positive Rate 
(FPR), and Area Under Curve (AUC). The definitions of these seven in
dexes are listed in Table 5 to provide a clear understanding. To assess 
their performance, Table 6 displays the prediction results of five models 
based on these seven indices. 

The prediction accuracy of five different models is assessed through 
seven distinct indexes, with the corresponding confusion matrices pro
vided in Appendix I. Impressively, each model’s overall accuracy rate 
surpasses 90%, underscoring the effectiveness of the developed models 
and the 24 chosen RIFs. The models display consistent performance over 
various timeframes, indicating their stable predictive capabilities. Minor 
fluctuations in performance metrics over different years might indicate 
the models’ adaptability to varying data quantities and temporal shifts. 
The uniformly high scores on critical performance metrics confirm the 
robustness and dependability of the models for forecasting the severity 
of maritime accidents. The models used for maritime accident casualty 
prediction show excellent performance, with high accuracy and strong 
metrics across precision, recall, F-measure, specificity, FPR, and AUC. 
This suggests that the selected RIFs are effective predictors of maritime 
casualty severity. 

To better present the results of the five-year model in our study, the 
confusion matrix and the accuracy rate are listed in Table 7. The pre
diction accuracy of the three types of casualty is 100%, 81.48% and 
95.74%, respectively. Therefore, it is confirmed that the model can 
reasonably predict maritime accident severity levels. 

4. Model validation 

Along with the above marginal probability test and predictive per
formance analysis, the constructed model’s correctness is further 

validated by the following three methods [58,59]. 

4.1. Sensitivity analysis 

Sensitivity analysis is a widely employed technique to assess uncer
tainty in maritime safety, aimed at pinpointing and measuring the 
impact of sensitive factors amongst various variables on key perfor
mance indicators. In this study, a combination of mutual information, 
joint probability distributions, and True Risk Influence (TRI) methods 
are employed to execute sensitivity analysis [60]. 

4.1.1. Mutual information 
The degree of dependence between two random variables can be 

measured using mutual information, which can be represented as I(X,Y). 
A higher mutual information value indicates a stronger correlation be
tween the two random variables [61]. It signifies that the child nodes 
with higher mutual information values exert a greater influence on the 
parent node ‘Type of casualty’. 

The calculated mutual information values, entropy reduction per
centages, and belief variances are shown in Table 8. Based on Table 8, 
‘Type of accident’ has the most significant influence on the accident 
severity, with a mutual information value of 0.2686. The mutual in
formation values of each RIF and the trend of changes are shown in 
Fig. 5. The trend of entropy reduction is illustrated by the orange line, 
while the mutual information values are represented by the blue bars. 
Entropy reduction can measure the reduction in uncertainty within a 
system when an influential factor is added. A lower entropy reduction 
suggests a lesser impact of that variable on the target node in a BN. 
Variables are chosen based on a threshold criterion of 2% for entropy 
reduction, selecting those factors that exhibit an entropy reduction 
greater than 2%. As a result, the top 8 RIFs, including the ‘type of ac
cident’ (22.4%), ‘ship operation’ (9.72%), ‘ship type’ (7.06%), ‘voyage 
segment’ (6.13%), ‘hull type’ (3.47%), ‘gross tonnage’ (2.46%), ‘length’ 
(2.12%), and ‘hull construction’ (2.11%), are identified to have signif
icant impacts on accident severity. 

4.1.2. Joint probability distribution 
After the eight significant RIFs are screened from the mutual infor

mation calculation, the joint probability distribution is used to analyse 
the level of influence of different states and/or variables on the accident 
severity. To ensure the correctness of the probability distribution in the 
BN network, a normalisation condition is applied to the network. 
Simultaneously, this condition enables the computation of the posterior 
probability of any variable and facilitates Bayesian inference. Table 9 
lists the results obtained by setting the probability of each state for each 
RIF independently to 100% to calculate the joint probabilities. 

The probabilities for three states of accident casualty under the in
fluence of different RIFs are presented in Table 9, with bolded values 
indicating the states where each RIF has the greatest and least impact on 
each type of accident severity. The first row depicts the initial proba
bilities before the RIFs’ states are adjusted individually. The rows in 
Table 9 illustrate the change in probability values for each type of ca
sualty when a specific RIF is fixed in a particular state. 

Table 9 reveals new findings and patterns. When the ‘type of acci
dent’ is ‘occupational accident’, there is a high probability of a ‘very 
serious’(96.9%). Conversely, when the state ‘contact/crash’ in ‘type of 
accident’, the probability of a ‘very serious’ casualty is low (25.4%) 
while the probability of a ‘less serious’ casualty is high (35.1%). 
Regarding ship type, a ‘fishing vessel’ is most likely to cause a ‘very 
serious’ casualty (84.7%) and least likely to cause a ‘less serious’ casu
alty (2.5%). On the other hand, a ‘RORO’ has the lowest probability of 
causing a ‘very serious’ casualty (19.6%). When considering ‘hull con
struction’, a ship with a ‘single hull’ has a 69.0% chance of causing a 
‘very serious’ casualty. Conversely, a ship with a ‘double bottom’ con
struction has the highest likelihood of causing a ‘less serious’ casualty, 
with a probability of 10.6%. It therefore provides empirical evidence of Fig. 4. The confusion matrix.  
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the effect of ‘double hull’ on maritime safety. 
The latest research reveals how specific states of individual variables 

can affect maritime accident casualty, as well as the likelihood of 
different levels of casualties depending on the state of these variables. It 
is worth noting that the single variable state with the highest probability 
value under a given casualty warrants greater attention, as it denotes a 

higher likelihood of occurrence of the corresponding casualty. 

4.1.3. True risk influence 
TRI is an effective analytical method for testing multivariate sensi

tivity proposed by Alyami et al. [60] and is popularly used in maritime 
safety research. As the RIFs in this study have multiple states, the TRI 
method is utilised to assess the influence of the significant RIFs on the 
severity of each accident. The TRI values for each significant RIF on 
accident severity can be calculated by the initial probability values and 
the bold values in Table. 

Taking the TRI value of ‘type of accident’ on ‘less serious’ as an 
example, in the second column of the ‘type of accident’ section of 
Table 10, the maximum and minimum probability values are 35.101 and 
0.400, respectively. The difference between the original probability 
values of 7.482 and 35.101 is the High-Risk Inference (HRI) (i.e., 
27.619). The difference between the original probability value of 7.482 
and 0.400 is the Low-Risk Inference (LRI) (i.e., 7.082). The TRI of the 
RIF for the type of casualty is 17.4. The remaining RIFs’ TRI on the type 
of casualty can be calculated similarly, and the results are shown in 
Table 10. According to the average column in Table 10, the eight 
important RIFs can be ranked by the magnitude of their impact on 

Table 5 
The seven indexes for evaluating the prediction performance of the constructed model.  

Indexes Equations Definitions 

Overall accuracy TP + TN

TP + FP + TN + FN 

The proportion of the entire sample that is accurately predicted. 

Precision TP

TP + FP 

The probability of a positive sample within the set of all samples predicted as positive. 

Recall/ 
Sensitivity 

TP

TP + FN 

The probability of receiving a positive prediction amongst the samples that are actually 
positive. 

F-measure 2 ∗ precision ∗ recall
precision + recall 

The overall average distribution. 

Specificity TPR =
TN

FP + TN 

The ratio of correctly predicted negative samples to all actual negative samples. 

FPR 1 − TPR =
FP

FP + TN 

The proportion of samples predicted as positive amongst the actual negative samples. 

AUC It can be calculated from the Receiver Operating Characteristic (ROC) 
curve. 

The area is encompassed by the ROC curve.  

Table 6 
The prediction performance comparison of five models based on seven indexes.  

Datasets (data 
volume) 

Overall 
accuracy 

Indexes Type of casualty 

Less 
serious 

Serious Very 
serious 

2021 (11) 100% Precision – 1 1 
Recall – 1 1 
F-measure – 1 1 
Specificity – 1 1 
FPR – 0 0 
AUC – 1 1 

2020–2021 (65) 92.86% Precision 1 1 0.875 
Recall 1 0.8333 1 
F-measure 1 0.9167 0.9375 
Specificity 1 1 0.8571 
FPR 0 0 0.1429 
AUC 1 1 1 

2019–2021 
(140) 

92.86% Precision 1 0.8333 1 
Recall 1 1 0.8667 
F-measure 1 0.9167 0.9334 
Specificity 1 0.8889 1 
FPR 0 0.1111 0 
AUC 1 1 1 

2018–2021 
(258) 

90.38% Precision 1 0.8 0.9697 
Recall 1 0.9231 0.9143 
F-measure 1 0.8616 0.9420 
Specificity 1 0.9231 0.9412 
FPR 0 0.0769 0.0588 
AUC 1 0.9941 0.9891 

2017–2021 
(402) 

91.25% Precision 1 0.9167 0.9 
Recall 1 0.8148 0.9574 
F-measure 1 0.8627 0.9278 
Specificity 1 0.9623 0.8485 
FPR 0 0.0377 0.1515 
AUC 1 0.9476 0.9745  

Table 7 
The predicted results of different kinds of accident severity.  

Predicted less 
serious 

serious very 
serious 

Actual 
total 

Accuracy rate 
(100%) 

less serious 6 0 0 6 100 
serious 0 22 5 27 81.48 
very serious 0 2 45 47 95.74 
Predicted 

total 
6 24 50 80 91.25  

Table 8 
Different results between ‘Type of casualty’ and RIFs.  

Variable Mutual 
Information 

Entropy Reduction 
Percent 

Variance of 
Beliefs 

Type of casualty 1.1973 100 0.2887 
Type of accident 0.2686 22.40 0.0547 
Ship operation 0.1164 9.72 0.0178 
Ship type 0.0846 7.06 0.0163 
Voyage segment 0.0734 6.13 0.0110 
Hull type 0.0416 3.47 0.0068 
Gross tonnage 0.0295 2.46 0.0047 
Length 0.0254 2.12 0.0029 
Hull 

construction 
0.0252 2.11 0.0063 

Human_factor 0.0234 1.95 0.0057 
Power 0.0202 1.68 0.0037 
Ship age 0.0187 1.56 0.0038 
Deadweight 0.0184 1.53 0.0028 
Ergonomic_design 0.0181 1.51 0.0043 
Breadth 0.0169 1.42 0.0029 
Draught 0.0144 1.20 0.0013 
Ship speed 0.0131 1.10 0.0026 
Information 0.0073 0.612 0.0019 
Vessel condition 0.0036 0.303 0.0009 
Visibility 0.0019 0.158 0.0002 
Equipment/device 0.0019 0.157 0.0003 
Weather condition 0.0017 0.146 0.0002 
Time of day 0.0013 0.106 0.0001 
Wind 0.0006 0.048 0.0001 
Sea condition 0.0002 0.0193 0.00003  
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maritime accident casualty. Amongst the eight factors, the type of ca
sualty is most significantly influenced by the ‘type of accident’, while the 
‘length’ has the least impact. The ranking results are as follows: 

Type of accident > Voyage segment > Ship type > Hull type > 
Ship operation > Gross tonnage > Hull construction > Length 

Table 11 displays the descending order ranking of TRI values for each 
accident severity by the results in Table 10, ranging from 1 to 8. It can be 
observed that the RIFs have varying levels of influence on different types 
of casualty. For instance, ‘ship type’ has the most significant impact on 
‘serious’ type and is less critical for other types of casualty. On the other 
hand, the ‘voyage segment’ has the greatest impact on the ‘less serious’ 
and ‘very serious’ casualty and is less critical for the ‘serious’ type. 

4.2. Model correctness validation 

To further validate the correctness of the constructed BN-based 
model, an additional sensitivity analysis is conducted for the given 
RIFs by analysing the model’s results. The sensitivity analysis reasoning 
process should satisfy at least the following two axioms: 

Axiom1: A minor increase or decrease in the prior probabilities of 
each RIF should contribute to the correspondence increase or 
decrease in the posterior probability of the target node. 
Axiom 2: The total impact of integrating the probability variations of 
x parameters should be larger than the one from the set of y (y∈x) 
RIFs. 

To prove that the model satisfies the two axioms, the eight significant 
RIFs are taken as a set of variables to examine the combined impact of 
multiple variables on the type of casualty. Given that the parent node 
has multiple states, this study computes the variation of probability 
values for each state. Taking the ‘less serious’ casualty as an example, 
‘hull construction’ is chosen as the first node, and its prior probability is 
increased by a 2% step to reach two extreme states with the maximum 
and minimum influence on the ‘less serious’, respectively. Similarly, the 
process is then applied to the other seven RIFs. The cumulative proba
bility change values are obtained in the order of ‘hull construction’, 
‘length’, ‘gross tonnage’, ‘hull type’, ‘voyage segment’, ‘ship type’, ‘ship 
operation’, and ‘accident type’. Finally, the above process is used for the 
two remaining accident casualty types to acquire the results shown in 
Table 12. 

The second column of Table 12 displays the original probability 
values for each type of casualty in the TAN structure, with the updated 
cumulative change values presented in the remaining columns. The re
sults demonstrate that an increase or decrease in the prior probability of 
the chosen RIF correspondingly leads to an increase or decrease in the 

posterior probability of the type of casualty, which verifies Axiom 1. In 
addition, the last three rows in Table 12 show that the cumulative 
probability change values of the parent node increase in sequence as the 
number of variables changing increases, testing Axiom 2. Therefore, the 
results prove the correctness of the constructed model. 

4.3. Model consistency verification 

The sample of maritime accident casualty in this study is unevenly 
distributed. The ‘very serious’ type accounts for 64.9% of accident 
severity, while the ‘less serious’ accounts for only 7.48%. Cohen’s kappa 
coefficient is therefore introduced to test the consistency of the model in 
predicting the severity of various types of accidents [54]. 

The Kappa coefficient is calculated between [− 1,1] but usually be
tween [0,1]. When the kappa value falls in the range of [0.81,1], it can 
be inferred that the model predicts the maritime accident casualty with 
almost identical accuracy. Based on the above formula and the confusion 
matrix, the kappa coefficient is calculated as 0.83363. Therefore, the 
kappa coefficient falls between [0.81,1], proving the strong consistency 
of the model. 

5. Results and implications 

5.1. Scenario analysis 

This study conducted a comprehensive risk analysis to investigate 
the impact of different RIFs on maritime accident casualty. The BN 
model constructed based on TAN can simulate various types of casualty 
and derive the corresponding RIF states. To illustrate this in detail, 
multiple scenario analyses are conducted to reveal the casualty of a 
particular accident occurring under a specific scenario with multiple 
RIFs combined. 

5.1.1. Scenario one: the combined impact of important RIFs 
The BN model enables the investigation of the combined influence of 

eight important RIFs (i.e., type of accident, voyage segment, ship type, 
hull type, ship operation, gross tonnage, hull construction, and length) 
on maritime accident casualty. Scenario one simulates the most likely 
accidents to cause a ‘very serious’ severity. By using the joint probability 
table of important RIFs, the state with the most significant impact on 
‘very serious’ type is set to a 100% probability. The resulting change in 
the probability of ‘very serious’ casualty is shown in Fig. 6, where the 
probability value increases significantly from 64.9% to 99.7% compared 
to the initial state. This variation indicates that the casualty of an 
occupational accident is most likely to be ‘very serious’ (e.g., crew ca
sualty) when a wooden, single-hull fishing vessel is engaged in loading/ 

Fig. 5. Mutual information values and changes.  

K. Zhou et al.                                                                                                                                                                                                                                    



Reliability Engineering and System Safety 244 (2024) 109925

12

unloading operations at berth. Therefore, maritime fisheries authorities 
should take specific action based on these critical factors, such as timely 
vessel maintenance and improved crew protection measures during 
loading/unloading to prevent casualties. 

5.1.2. Scenario two: the combined impact of environment-related factors 
Scenario two simulates the changes in maritime accident casualty 

under the combined influence of environment-related RIFs. These RIFs 
contain ‘time of day’, ‘sea condition’, ‘visibility’, ‘weather condition’, 
‘wind’, ‘voyage segment’, and ‘ship operation’. Depending on different 
environmental conditions, maritime accident casualty may exhibit 
different types. 

When the above RIFs are set to the specific states, as shown in Fig. 7, 
the ‘very serious’ type has the highest probability of accident casualty, 
accounting for 98.8%, which is a significant increase of 33.9% compared 
to the initial probability. It indicates that if the ship sails on a river at 
night with low visibility and poor sea and weather conditions, the 
severity of an accident is likely to be ‘very serious’. 

If the ‘sea condition’ and ‘weather condition’ are set to ‘good’, 
‘voyage segment’ to ‘canal’, ‘time of day’ to ‘day’, and the remaining 
RIFs are unchanged, the probability of ‘less serious’ casualty signifi
cantly increases to 98.9% compared to Fig. 7. This finding suggests that 
ships are safer sailing in the canals with good sea and weather conditions 
during daylight hours, and even if an accident occurs, the casualty is less 
serious and will cause insignificant damage. Therefore, shipowners 
should conduct adequate prior inspections before performing maritime 
operations, sail in good sea and weather conditions whenever possible, 
and pay attention to the choice of voyage segment. Additionally, rele
vant traffic authorities should improve preventive measures in accident- 
prone segments at night to reduce accidents’ casualties. 

5.1.3. Scenario three: the combined impact of ship-related factors 
Scenario three investigates the impact of ship-related RIFs on mari

time accident casualty by altering their status. These RIFs include ‘ship 
type’, ‘hull type’, ‘ship age’, ‘deadweight’, ‘gross tonnage’, ‘length’, 
‘breadth’, ‘power’, ‘draught’, ‘hull construction’, and ‘vessel condition’. 
By varying the status of these RIFs, the accident casualty can likewise be 
characterised differently. 

When the ship-related RIFs are set to the specific state displayed in 
Fig. 8, the probability of a ‘very serious’ accident casualty increases 
significantly to 99.6% compared to the initial probability. This proba
bility indicates that a fishing vessel in that particular state (e.g., ‘hull 
type’ is ‘wood’, ‘length’ is in (0,100], etc.) is most likely to suffer a ‘very 
serious’ casualty once an accident occurs while conducting maritime 
operations. 

Furthermore, by setting the status of ship-related RIFs to 100% for 

Table 9 
The joint probability of each variable and accident severity.   

less serious serious very serious 
original 7.482 27.616 64.902 

Type of accident    
capsize 0.400 4.505 95.095 
collision 8.737 36.670 54.592 
contact/crush 35.101 39.502 25.397 
fire/explosion 5.895 44.980 49.126 
flooding 2.952 33.248 63.800 
grounding 9.124 52.231 38.644 
occupational accident 1.500 1.536 96.965 
others 0.862 36.174 62.965 
overboard 5.335 0.260 94.404 
ship/equipment damage 7.506 42.625 49.868 
sinking 0.531 5.983 93.486 
Ship operation    
at anchor 1.865 25.444 72.691 
fishing 6.199 15.815 77.986 
loading/unloading 5.522 5.544 88.934 
manoeuvring 17.439 41.738 40.823 
on passage 4.158 26.613 69.229 
others 10.964 15.244 73.793 
pilotage 25.208 56.343 18.449 
towing 16.037 8.886 75.078 
Ship type    
bulk carrier 4.813 29.435 65.752 
cargo ship 8.173 23.721 68.106 
container ship 3.797 34.724 61.478 
dredger 8.673 12.396 78.931 
fishing vessel 2.500 12.760 84.740 
offshore vessels 13.804 33.529 52.667 
others 12.650 15.361 71.989 
passenger vessel 25.647 32.030 42.323 
RORO 10.879 69.460 19.662 
tanker or chemical ship 5.172 28.352 66.476 
tug 10.822 5.957 83.220 
bulk carrier 4.813 29.435 65.752 
Voyage segment    
anchorage 1.946 24.887 73.166 
archipelagos 10.587 33.217 56.195 
at berth 3.206 9.176 87.618 
canal 47.437 40.406 12.156 
channel 34.101 39.210 26.689 
coastal waters 4.796 31.551 63.652 
inland waters 21.065 10.196 68.740 
open sea 3.486 20.353 76.161 
port 10.130 31.798 58.072 
port approach 17.216 40.674 42.110 
river 3.642 34.870 61.487 
Hull type    
aluminium_alloy 17.830 59.900 22.271 
composite materials 14.715 33.319 51.966 
GRP 6.306 7.712 85.982 
light alloy 31.736 48.131 20.133 
NA 8.104 27.389 64.507 
steel 6.596 28.207 65.198 
wood 5.541 6.777 87.681 
Gross tonnage    
1 8.937 20.692 70.371 
2 6.861 24.611 68.529 
3 15.341 42.085 42.574 
4 4.192 31.652 64.156 
Length    
1 9.599 19.224 71.177 
2 8.706 32.354 58.940 
3 2.369 33.211 64.420 
Hull construction    
double bottom 10.639 44.181 45.179 
double hull 6.003 25.125 68.871 
single hull 7.639 23.334 69.027  

Table 10 
TRI of RIFs for casualty type (100%).  

Node TRI     
less serious serious very serious average 

Type of accident 17.4 26.0 35.8 26.4 
Ship operation 11.7 25.4 35.2 24.1 
Ship type 11.6 31.8 32.5 25.3 
Voyage segment 22.7 15.7 37.7 25.4 
Hull type 13.1 26.6 33.8 24.5 
Gross tonnage 5.6 10.7 13.9 10.1 
Length 3.6 7.0 6.1 5.6 
Hull construction 2.3 10.4 11.9 8.2  

Table 11 
The most important RIFs for casualty type.   

less serious serious very serious 

Type of accident 2 3 2 
Ship operation 4 4 3 
Ship type 5 1 5 
Voyage segment 1 5 1 
Hull type 3 2 4 
Gross tonnage 6 6 6 
Length 7 8 8 
Hull construction 8 7 7  
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‘offshore vessels’, ‘composite materials’, ‘5’ (ship age >20), ‘4’ (dead
weight > 30,000), ‘2’ (gross tonnage in (3000,10,000]), ‘3’ (length >
200), ‘3’ (breadth in (30,40]), ‘1’ (power in (0,3000]), ‘2’ (draught in 
(6,9]), ‘double bottom’ and ‘good’, the probability of a ‘less serious’ 
accident casualty increases significantly to 99.9% compared to Fig. 8. 
The result demonstrates that the probability of a ‘serious’ or ‘very 
serious’ accident casualty is low when offshore vessels are in specific 
conditions (e.g., ‘hull type’ is ‘composite materials’, ‘vessel condition’ is 
‘good’, etc.). Even if an accident does occur, it will result in low severity 
and not cause significant economic or human losses. This finding pro
vides valuable insights for transport authorities and ship owners, help
ing them develop effective safety measures to reduce accident casualty 
during maritime operations based on the ship’s factors. 

5.1.4. Scenario four: the most likely scenario for each severity type 
All three scenarios above are analysed in a forward manner using the 

BN model. Furthermore, the BN model enables reverse analysis by 
observing the effect on the variable node when the state of the parent 
node is adjusted. In Scenario four, the probability value of each state of 
the target node is set to 100% to observe the change in the variable node 
compared to the initial state. 

As shown in Fig. 9, setting the probability of the ‘less serious’ to 
100% reveals the most likely scenario for ‘less serious’ casualty. It can be 
found that the probability values of some node states increase signifi
cantly compared to their initial states, such as ‘day’ in ‘time of day’, 
‘good’ in ‘ergonomic design’, ‘port’ in ‘voyage segment’, and ‘manoeu
vring’ in ‘ship operation’. This finding suggests that the accident 

Table 12 
The combined influence of multiple variables.  

Hull construction +2% +2% +2% +2% +2% +2% +2% +2% 
Length   +2% +2% +2% +2% +2% +2% +2% 
Gross tonnage    +2% +2% +2% +2% +2% +2% 
Hull type    +2% +2% +2% +2% +2% 
Voyage segment     +2% +2% +2% +2% 
Ship type      +2% +2% +2% 
Ship operation        +2% +2% 
Accident type         +2% 
Less serious 7.48 7.52 7.68 7.96 8.30 8.78 9.46 9.98 10.13 
Serious 21.62 21.75 21.94 22.22 22.61 23.14 23.67 24.35 24.92 
Very serious 64.90 65.13 65.48 65.86 66.39 66.97 67.58 68.10 68.78  

Fig. 6. The combined impact of important RIFs on ‘very serious’ casualty.  
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casualty is most likely to be ‘less serious’ in a scenario consisting of the 
node states described above. Therefore, stakeholders such as transport 
authorities and shipowners can focus on these nodes when developing 
preventive measures to ensure safety and minimise accident damage 
caused by ‘less serious’ accident type. 

When the probability of ‘serious’ is set to 100%, the most probable 
scenario corresponding to ‘serious’ accident casualty is revealed. 
Compared to the initial states, the probability of ‘collision’, ‘fire/ex
plosion’ and ‘grounding’ in the ‘type of accident’ increased significantly, 
while the percentage of ‘good’ in ‘information’, ‘equipment/device’, and 
‘vessel condition’ decreased. This result implies that ‘collision’, ‘fire/ 
explosion’, and ‘grounding’ accidents are more likely to result in 
‘serious’ casualty. Meanwhile, failure to ensure that the correct infor
mation is obtained promptly is more likely to result in a ‘serious’ acci
dent during the voyage. 

In maritime operations, stakeholders are keen to avoid ‘very serious’ 
accident casualty. Therefore, when the probability of ‘very serious’ is set 
to 100%, its corresponding most likely scenario is revealed. It can be 
found that the probabilities corresponding to ‘fishing vessels’ in ‘ship 
type’, ‘single hull’ in ‘hull construction’, ‘open sea’ in ‘voyage segment’, 
and ‘bad’ in ‘weather condition’ have all increased. Notably, there is a 
significant increase in the likelihood of ‘occupational accident’ in the 
‘type of accident’. This finding reveals that an occupational accident on 
a fishing vessel with a single-hull structure operating in the open sea is 
highly likely to have severe accidental consequences. Therefore, the 
relevant authorities should develop bespoke preventive measures, such 
as improving the hull construction of fishing vessels and crew protection 

measures, to avoid ‘very serious’ accident casualty. 

5.2. Implications 

According to the scenario analysis, the new findings, enabled by the 
most comprehensive and up-to-date dataset, suggest that (1) ‘very 
serious’ accident casualties have a higher likelihood of occurring when 
ships are in the ‘open sea’ compared to ‘port’ and ‘coastal waters’; and 
(2) the study highlights the need to focus on ‘occupational accidents’ 
alongside the commonly occurring accidents to prevent casualties more 
effectively. 

To improve understanding of the changing risks linked with mari
time accidents and the various factors contributing to maritime accident 
casualty, this study further undertakes a comparative analysis between 
our new findings and the established ones from the existing literature. 
Amongst the six comparative studies, 4 references [18,25,47,55] 
employed a BN model, while 2 other references [23,24] utilised an or
dered logistic regression model and ZIOP model, respectively. This 
comparative analysis result discloses the uniqueness of the 
multi-dimensional and global maritime accident casualty analysis. 

The comparison focuses on two aspects: (1) the identified important 
RIFs; and (2) the variables and states that are most likely to result in 
severe casualties in maritime accidents, including ‘type of accident’, 
‘ship type’, and ‘voyage segment’. The results of the comparative anal
ysis are presented in Table 13. 

Based on the comparative analysis presented in Table 13, the 
following results can be drawn: 

Fig. 7. Posterior probability analysis about ‘very serious’ type from environment-related factors.  
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(1) In terms of the most important RIFs influencing accident casualty, 
this study identifies 8 important RIFs. Specifically, this study 
identifies ‘ship operation’, ‘hull type’, ‘hull construction’, and 
‘length’ as important RIFs for the first time, highlighting the 
importance of ship operations and characteristics for accident 
casualty from a global perspective. Improper ship operation (e.g., 
negligent navigation or manoeuvring) can lead to more severe 
consequences, resulting in loss of life and environmental pollu
tion. Similarly, ‘hull type’, ‘hull construction’, and ‘ship size’ 
directly affect vessel safety and seaworthiness, thus impacting 
accident casualty.  

(2) Compared to the identified 8 important RIFs, the frequency of a 
RIF appearance does not necessarily represent its importance. As 
a result, it raises an argument on the rationale for choosing the 
most frequently used RIFs in future maritime accident casualty 
studies.  

(3) In contrast to previous research listed in Table 12, ‘voyage 
segment’ and ‘hull type’ are ranked as the top RIFs in this study. 
This finding suggests that the selection and evaluation of ‘voyage 
segment’ are important measures to prevent serious maritime 
accidents, including the development of reasonable navigation 
plans and the improvement of navigation safety management 
systems. Additionally, it highlights once again the significant 
impact of ‘hull type’ on vessel safety performance and the casu
alty of maritime accidents.  

(4) Regarding the impact of accident types on casualty, ‘capsize’, 
‘sinking’, ‘occupational accident’ are most likely to cause ‘very 

serious’ casualties, with ‘occupational accident’ having the 
greatest impact. Unlike the previous findings from the existing 
literature, this study includes ‘occupational accident’ as a state of 
accident types for the first time. It therefore generates a new 
finding, suggesting that personnel casualties caused by ‘occupa
tional accidents’ can lead to erroneous ship operations and even 
cause the vessel to lose control, thus seriously endangering the 
safety of the vessel and other personnel. Without appropriate 
solutions, the shipping industry could suffer significant economic 
and reputational damage from ‘occupational accidents’, and 
hence adversely affecting the industry’s sustainable 
development.  

(5) In terms of ship type, ‘dredger’, ‘fishing vessel’, and ‘tug’ are 
more likely to cause ‘very serious’ accident consequences. 
Compared with the existing literature, this study first introduces 
‘dredger’ in the state of ‘ship type’ and indicates that ‘dredger’ 
and ‘tug’ are more likely to cause serious accident consequences 
than ‘passenger ship’ and ‘chemical ship’. This is due to the fact 
that ‘dredger’ and ‘tug’ relatively less follow international legis
lation compliance compared to other commercial ships and often 
appear in regions/waters of a high-level traffic density, 
increasing the probability of colliding with other vessels.  

(6) Regarding voyage segments, ‘open sea,’ ‘at berth,’ and ‘coastal 
waters’ are more prone to ‘very serious’ maritime accident ca
sualty. Unlike the previous relevant studies, this study proposes 
that vessels are more susceptible to experiencing severe maritime 
accidents when operating in ‘open sea’ and ‘at berth’. This is 

Fig. 8. Posterior probability analysis in ‘very serious’ type from ship-related factors.  
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because vessels are susceptible to adverse weather and sea con
ditions in ‘open sea’, and there are also many navigating vessels 
and hazardous obstacles, seriously affecting the safety of the 
navigation process. Furthermore, when vessels are at berth, they 
need to perform complex ship operations (e.g., anchoring, 
mooring, turning) in a small space, making it easy for equipment 
failures or ship collisions to occur. 

The presented comparative analysis provides several valuable im
plications for the maritime industry and stakeholders, including:  

(1) The identification of eight crucial RIFs by this study, including 
previously unexplored factors such as ‘ship operation’, ‘hull 
type’, ‘hull construction’, and ‘length’, enables new concerns 
when developing the countermeasures to reduce maritime acci
dent casualty. This highlights the importance of ship character
istics and operations in determining the severity of accidents.  

(2) The inclusion of occupational accidents as a new state of accident 
types underscores the need for targeted policies and prevention 
strategies to mitigate personnel casualties that can lead to serious 
vessel damage and economic losses. 

Fig. 9. Prior probability analysis in ‘less serious’ casualty type.  

Table 13 
A comparative analysis with the existing literature.  

Refs. The claimed important RIFs Type of accident Ship type Voyage segment 

[18] accident type, ship type, engine power, gross tonnage, location (5 
RIFs) 

capsizing/sinking, hull/ 
machinery damage, collision 

fishing ships, passenger ships, 
chemical ships 

coastal areas 

[23] accident type, human element, ship type, ship condition, 
environment (5 RIFs) 

sinking fishing vessels, yachts, sailing 
vessels 

far away from port 

[24] – stranding/grounding, capsizing/ 
sinking 

– near the coast 

[55] accident type, location, ship type, ship age (4 RIFs) sinking fishing vessel inland or coastal 
waterway 

[47] encounter situations, weather condition, and traffic density (3 RIFs) collision small general cargo ships coastal waters 
[25] accident type, ship type (2 RIFs) flooding, grounding tanker, generaldrycargoVessel strait, open sea 
This 

study 
type of accident, voyage segment, ship type, hull type, ship 
operation, gross tonnage, hull construction, length (8 RIFs) 

capsize, occupational accident, 
sinking 

dredger, fishing vessel, tug open sea, at berth, 
coastal waters  
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(3) The study’s introduction of dredgers in the state of ship type 
emphasises the higher likelihood of serious accidents for dredgers 
and tugs due to their current legislative frameworks and the 
traffic characteristics of their operating regions.  

(4) The identification of open sea, at berth, and coastal waters as 
more prone to ‘very serious’ maritime accident casualty high
lights the need for additional safety measures, such as better 
equipment and navigation systems, to minimise the impact of 
adverse weather and sea conditions, navigating vessels, and 
hazardous obstacles. 

Overall, these insights from the analysis can inform the development 
of effective risk mitigation policies and practices to enhance the sus
tainability and safety of the maritime industry. 

6. Comparative evolution analysis of five models 

6.1. Comparative results of the basic content of the five models 

Table 14 presents a comparative evolution analysis across five 
models, with the details outlined as follows: 

The number of important RIFs varies across five models: 10 in 2021, 
7 in 2020–2021, 7 in 2019–2021, 6 in 2018–2021, and 8 in 2017–2021. 
The models are based on different amounts of maritime accident data in 
the five different timeframes: 11 accidents in 2021, 65 in 2020–2021, 
140 in 2019–2021, 258 in 2018–2021, and 402 in 2017–2021. 

Each model shows varying statistics for common RIFs like gross 
tonnage, length, ship speed, weather conditions, sea conditions, voyage 
segments, and ship operations. The trends and percentages of these 
factors differ in each model, reflecting changes over time. The devel
opment trends of various factors in maritime accidents across different 
models are summarised as follows:  

(1) Gross Tonnage (< 10,000) 

There is a fluctuating trend, starting at 53.1%, dropping to 50.4%, 
and then increasing to 59.4%. The fluctuating trend in accidents 
involving smaller ships (gross tonnage < 10,000) suggests varying levels 
of risk exposure over time. This indicates the need for targeted safety 
measures and regulations for smaller vessels, considering their changing 
role in maritime incidents.  

(2) Length (meters) 

In terms of contributary probabilities, ships of less than 100 m show a 
general increase from 37.7% to 42.5%, while those over 100 m exhibit a 
slight decrease from 62.3% to 57.5% in the accident records. The in
crease in accidents involving ships of less than 100 m and a slight 
decrease for larger ships (>100 m) suggest that smaller vessels are 
becoming more prone to accidents. This could be due to increased 
traffic, operational challenges, or less stringent safety protocols for 
smaller ships.  

(3) Ship Speed (knots) in (6, 12] and >12 

The percentage of ships in the 6–12 knots range shows an increasing 
trend from 29% to 40.8%. Ships moving faster than 12 knots also 
increased from 18.9% to 23.6%. The rising trend of accidents at speeds 
of 6–12 knots and above 12 knots highlights the danger of high speed in 
navigation practices, especially in high-traffic areas or adverse 
conditions.  

(4) Weather Conditions (‘Poor’) 

Poor weather conditions rose from the original 35.3% to a peak of 
46.5% in the latest accident records. The increase in accidents during 

poor weather conditions underscores the importance of enhanced 
weather forecasting, better preparation and training for adverse 
weather, and more robust ship design to withstand harsh conditions.  

(5) Sea Condition (‘Poor’) 

A general decreasing trend is seen from 33.0% to 25.2%, with a 
fluctuation by a value of 29.8%. The trend in accidents under poor sea 
conditions suggests the continuous improvement in the sea-readiness of 
vessels and crew training, especially in navigating rough seas.  

(6) Voyage Segment (‘Port’) 

There is a decreasing trend from 22.3% to 12.6% for accidents 
occurring in port segments. The decrease in accidents in port areas could 
indicate improvements in port safety and operations. However, contin
uous efforts are needed to maintain and enhance safety protocols, 
especially considering the complexity of port operations.  

(7) Ship Operation (‘At Anchor’ and ‘Manoeuvring’) 

The percentage changes of accidents ‘at anchor’ keep stable rela
tively, ranging from 19.2% to 19.8%. For ‘manoeuvring’, there is a slight 
decrease from 13.6% to 12.6%. The values with the changes indicate 
‘manoeuvring’ aid to improve operational practices. However, these 
activities still represent a relatively high level of risk, requiring further 
attention on operational safety in these scenarios. 

Each of these points reflects specific areas where maritime safety can 
be improved through targeted strategies, policy changes, and techno
logical advancements. 

6.2. Comparative results by various scenario analyses 

The comparison of five models incorporates scenario analyses, 
focusing on the combined impact of important RIFs, ship-related factors, 
environment-related factors, and the most likely scenario. These sce
narios illustrate the effect of varying RIFs configurations on maritime 
accident casualties. The overall comparison is provided below. 

Most less serious maritime accident casualties that are due to ‘contact 
or crush’ involve cargo ships during manoeuvring or transit. This in
dicates a need for enhanced navigation and collision avoidance for cargo 
ships. Serious accident casualties often involve grounding and collision, 
especially with bulk carriers and container ships, pointing to a need for 
better route planning and situational awareness in coastal areas. Very 
serious accident casualties are frequently caused by occupational haz
ards on cargo and bulk carrier ships, emphasising the necessity for 
improved safety and training, especially at sea. 

Although most accidents happen in good weather and sea conditions, 
these occurrences suggest a potential underestimation of risk and 
highlight the need for constant safety vigilance. The varied ages of ships 
involved in accidents suggest that maintenance and safety updates are 
crucial for all vessels, regardless of their age. The increase in coastal 
water accidents for very serious cases calls for heightened safety mea
sures in these challenging environments. 

An upward trend in less serious accident casualties caused by ‘con
tact or crush’ accidents underscores the need for better spatial aware
ness. The involvement of ships over 20 years is decreasing, yet mid-aged 
ships (11–15 years) are seeing increased incidents, which implies a 
continuous need for safety checks across all ship ages. The decline in 
good weather conditions as a factor in the fourth case further stresses the 
importance of preparedness for all conditions. 

Overall, these points suggest that while environmental conditions 
are often favourable, improvements in human factors and operational 
practices are essential for reducing accident casualties. 
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Table 14 
Summary comparison amongst the five models.   

2017–2021 2018–2021 2019–2021 2020–2021 2021 
RIFs 24 RIFs in total, of which 

8 are important RIFs 
24 RIFs in total, of which 
6 are important RIFs 

24 RIFs in total, of which 
7 are important RIFs 

24 RIFs in total, of which 
7 are important RIFs 

24 RIFs in total, of which 
10 are important RIFs 

Data records 402 258 140 65 11 
The state change of common 

RIFs  
(1) Gross tonnage <

10,000 (53.1%);  
(2) Length (meters) <

100 (37.7%), >100 
(62.3%);  

(3) Ship speed (knots) in 
(6, 12] (29%), >12 
(18.9%);  

(4) Weather conditions in 
‘poor’ (35.3%);  

(5) Sea condition is ‘poor’ 
(33.0%);  

(6) Voyage segment in 
‘port’ (22.3%);  

(7) Ship operation in ‘at 
anchor’ (19.8%), in 
‘manoeuvring’ 
(13.6%).  

(1) Gross tonnage <
10,000 (50.8%);  

(2) Length (meters) <
100 (32.9%), >100 
(67.1%);  

(3) Ship speed (knots) in 
(6, 12] (29.4%), >12 
(20.0%);  

(4) Weather conditions in 
‘poor’ (31.3%);  

(5) Sea condition is ‘poor’ 
(27.8%);  

(6) Voyage segment in 
‘port’ (18.6%);  

(7) Ship operation in ‘at 
anchor’ (19.3%), in 
‘manoeuvring’ 
(11.2%).  

(1) Gross tonnage <
10,000 (50.4%);  

(2) Length (meters) <
100 (34.2%), >100 
(65.8%);  

(3) Ship speed (knots) in 
(6, 12] (33.4%), >12 
(19.4%);  

(4) Weather conditions in 
‘poor’ (36.9%);  

(5) Sea condition is ‘poor’ 
(32.7%);  

(6) Voyage segment in 
‘port’ (18.7%);  

(7) Ship operation in ‘at 
anchor’ (18.2%), in 
‘manoeuvring’ 
(11.5%).  

(1) Gross tonnage <
10,000 (52.6%);  

(2) Length (meters) <
100 (37.7%), >100 
(62.3%);  

(3) Ship speed (knots) in 
(6, 12] (37.3%), >12 
(18.2%);  

(4) Weather conditions in 
‘poor’ (38.8%);  

(5) Sea condition is ‘poor’ 
(25.2%);  

(6) Voyage segment in 
‘port’ (13.5%);  

(7) Ship operation in ‘at 
anchor’ (17.7%), in 
‘manoeuvring’ 
(6.00%).  

(1) Gross tonnage <
10,000 (59.4%);  

(2) Length (meters) <
100 (42.5%), >100 
(57.5%);  

(3) Ship speed (knots) in 
(6, 12] (40.8%), >12 
(23.6%);  

(4) Weather conditions in 
‘poor’ (46.5%);  

(5) Sea condition is ‘poor’ 
(29.8%);  

(6) Voyage segment in 
‘port’ (12.6%);  

(7) Ship operation in ‘at 
anchor’ (19.2%), in 
‘manoeuvring’ 
(12.6%). 

Scenario one: The combined 
impact of important RIFs 

Important RIFs setting:   

(1) Type of accident: 
occupational 
accident;  

(2) Ship operation: at 
anchor;  

(3) Ship type: container 
ship;  

(4) Voyage segment: 
anchorage;  

(5) Hull type: steel;  
(6) Gross tonnage: 

(0,3000];  
(7) Length: (0,100];  
(8) Hull construction: 

single hull. 

Important RIFs setting:   

(1) Type of accident: 
occupational 
accident;  

(2) Ship operation: at 
anchor;  

(3) Ship type: container 
ship;  

(4) Voyage segment: 
anchorage;  

(5) Hull construction: 
single hull;  

(6) Human factor: yes. 

Important RIFs setting:   

(1) Type of accident: 
occupational 
accident;  

(2) Ship operation: at 
anchor;  

(3) Hull construction: 
single hull;  

(4) Voyage segment: 
anchorage;  

(5) Ship type: container 
ship;  

(6) Deadweight: 
>30,000;  

(7) Gross tonnage: 
>20,000. 

Important RIFs setting:   

(1) Type of accident: 
occupational 
accident;  

(2) Ship type: container 
ship;  

(3) Ship operation: at 
anchor;  

(4) Voyage segment: 
anchorage;  

(5) Hull type: steel;  
(6) Ship age: [6,10];  
(7) Deadweight: 

>30,000. 

Important RIFs setting:   

(1) Type of accident: 
occupational 
accident;  

(2) Ship type: cargo 
ship;  

(3) Ship age: [6,10];  
(4) Sea condition: bad  
(5) Ship operation: at 

anchor;  
(6) Voyage segment: 

anchorage;  
(7) Gross tonnage: 

>20,000;  
(8) Length: >100;  
(9) Draught: (6,9];  

(10) Breadth: >0. 
The result:   

(1) less serious: 0.010%;  
(2) serious: 0.11%;  
(3) very serious: 99.9% 

The result:   

(1) less serious: 0.036%;  
(2) serious: 0.003%;  
(3) very serious: 100% 

The result:   

(1) less serious: 0.002%;  
(2) serious: 0.82%;  
(3) very serious: 99.2% 

The result:   

(1) less serious: 0.074%;  
(2) serious: 1.36%;  
(3) very serious: 98.6% 

The result:   

(1) serious: 0%;  
(2) very serious: 100% 

Scenario two: The combined 
impact of ship-related 
factors 

The result:   

(1) less serious: 0.080%;  
(2) serious: 0.27%;  
(3) very serious: 99.6% 

The result:   

(1) less serious: 0.013%;  
(2) serious: 0.092%;  
(3) very serious: 99.9% 

The result:   

(1) less serious: 0.18%;  
(2) serious: 3.31%;  
(3) very serious: 96.5% 

The result:   

(1) less serious: 0.022%;  
(2) serious: 0.059%;  
(3) very serious: 99.9% 

The result:   

(1) serious: 27.7%;  
(2) very serious: 72.3% 

Scenario three: The 
combined impact of 
environment-related 
factors 

The result:   

(1) less serious: 0.14%;  
(2) serious: 1.08%;  
(3) very serious: 98.8% 

The result:   

(1) less serious: 0.44%;  
(2) serious: 1.27%;  
(3) very serious: 98.3% 

The result:   

(1) less serious: 0.65%;  
(2) serious: 1.48%;  
(3) very serious: 97.9% 

The result:   

(1) less serious: 77.2%;  
(2) serious: 4.03%;  
(3) very serious: 18.8% 

The result:   

(1) serious: 2.15%;  
(2) very serious: 97.9% 

Scenario four: 
The most 
likely scenario 
for each 
severity type  

Note that 1) refers to ‘Type of accident’, 2) indicates ‘Ship type’, 3) represents ‘Ship operation’, 4) corresponds to ‘Ship age’, 5) pertains to ‘Voyage 
segment’, 6) is ‘Sea condition’, and 7) expresses ‘Weather condition’. 

Less 
serious 
(100%) 

1): contact/crush 
(32.5%); 
2): cargo ship (20.0%); 
3): manoeuvring (31.7%); 
4): > 20 (25.2%); 
5): port (30.2%); 
6): good (65.7%); 
7): good (72.2%); 

1): contact/crush 
(27.3%); 
2): cargo ship (25.4%); 
3): on passage (37.7%); 
4): (0,5] (29.9%); 
5): coastal waters 
(23.1%); 
6): good (77.7%); 
7): good (77.5%) 

1): contact/crush 
(35.0%); 
2): cargo ship (22.1%); 
3): on passage (38.9%); 
4): [11,15] (27.6%); 
5): coastal waters 
(26.4%); 
6): good (72.9%); 
7): good (73.9%); 

1): contact/crush 
(52.5%); 
2): cargo ship and 
passenger vessel (19.9%); 
3): on passage (38.6%); 
4): [11,15] (44.5%); 
5): coastal waters 
(43.6%); 
6): good (60.3%); 
7): good (58.8%); 

– 

Serious 
(100%) 

1): grounding (30.4%); 
2): bulk carrier (19.5%); 
3): on passage (41.6%); 
4): > 20 (31.4%); 
5): coastal waters 
(25.8%); 
6): good (68.3%); 
7): good (65.6%) 

1): collision (27.9%); 
2): container ship 
(23.5%); 
3): on passage (42.3%); 
4): >20 (28.8%); 
5): open sea (23.1%); 
6): good (74.3%); 
7): good (69.9%) 

1): grounding (30.5%); 
2): container ship 21.1%); 
3): on passage (44.1%); 
4): > 20 (32.4%); 
5): coastal waters 
(22.8%); 
6): good (68.6%); 
7): good (66.4%) 

1): collision and 
grounding (29.6%); 
2): container ship 
(22.2%); 
3): on passage (50.2%); 
4): > 20 (43.0%); 
5): coastal waters 
(25.7%); 

1): collision (67.4%); 
2): cargo ship (35.3%); 
3): on passage (36.7%); 
4): [16,20] (42.3%); 
5): coastal waters 
(36.9%); 
6): good (95.4%); 
7): good (66.7%) 

(continued on next page) 
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7. Conclusion 

This study addresses significant research gaps in maritime accident 
casualty analysis, including a deficiency in comprehensive analysis, 
substantial datasets, and a lack of detailed model comparison and evo
lution analysis. A new global maritime casualty database is developed in 
this study, and then a data-driven BN model is constructed. The data
base, containing 402 records of global maritime accidents, provides a 
more comprehensive dataset for casualty analysis than previous 
research from a global perspective. This study details 24 RIFs with 
specific state divisions, enabling a comprehensive examination of the 
various factors influencing maritime accident casualties and enhancing 
the applicability of the findings to various regions and scenarios. 
Additionally, five models derived from maritime accident temporal 
trends are compared, validating the effectiveness of the proposed BN 
model and the accuracy of the selected 24 RIFs. In the meantime, it also 
reveals the evolution of maritime casualties against different time
frames. The evolution analysis of these five models reveals valuable 
findings and implications. Unlike expert-driven models, the proposed 
data-driven TAN model uncovers more intricate relationships within the 
24 RIFs, providing more objective and predictive outcomes. The study 
delivers important findings that contribute to the reduction of casualties 
from maritime accidents. The new findings of this paper suggest that:  

(1) Exploring the combined effect of significant RIFs on accident 
severity, it is found that lighter, smaller, wooden, single-hull 
fishing vessels are more likely to suffer ‘very serious’ accident 
severity when carrying out loading/unloading operations. In 
addition, various accident types have varying impacts on acci
dent severity. For example, an occupational accident on a fishing 
vessel would probably result in a ‘very serious’ accident. How
ever, in terms of sinking or grounding, the accident’s severity 
would be significantly reduced and tend to be ‘less serious’.  

(2) The influence of environment-related and ship-related factors on 
the severity of accidents is also significant. Under daylight, good 
sea and weather conditions, ships are safer sailing in ‘canal’ with 
a low probability of serious accident consequences. Small, light
weight, single-hull, wooden ships are prone to cause ‘very 
serious’ accident severity. On the contrary, larger and double- 
bottom boats have a low probability of causing serious accident 
consequences.  

(3) According to the BN model’s backward risk diagnosis analysis, 
mitigating the severity of accidents requires consideration of 
various factors such as the ‘time of day’, ‘voyage segment’, 
‘weather conditions’, ‘sea state’, and ‘vessel condition’. Appro
priate states of RIFs can significantly reduce the severity of ac
cidents. Particular attention should be paid to occupation 
accidents, and relevant departments should formulate targeted 
policies to avoid them to reduce casualties and material losses. 

(4) Different scenarios highlight specific causes of maritime acci
dents, such as contact or crush incidents, grounding, collision, 

and occupational hazards. These scenarios emphasise the need 
for enhanced navigation, collision avoidance, route planning, 
situational awareness, safety training, and safety checks. 

(5) Environmental conditions are often favourable, but improve
ments in human factors and operational practices are crucial for 
reducing accident casualties. 

The implications for different stakeholders are listed below. 

(1) Maritime authorities and regulators should consider implement
ing targeted safety measures and regulations for smaller vessels to 
address their changing role in maritime incidents. Shipowners 
and operators of smaller ships should prioritise safety protocols 
and training.  

(2) Safety measures and regulations should be tailored to address the 
increasing risk associated with smaller vessels. Shipowners and 
operators of larger vessels should continue to adhere to safety 
protocols, as accidents can still occur.  

(3) Stakeholders, including ship operators and navigators, should be 
cautious about the dangers of high speed in navigation practices, 
especially in high-traffic areas or adverse conditions. Enhanced 
training and safety measures should be considered.  

(4) Improved weather forecasting, better preparation, and training 
for adverse weather conditions should be prioritised by maritime 
authorities and ship operators. Ship design should also be 
enhanced to withstand harsh weather.  

(5) Continuous improvements in the sea-readiness of vessels and 
crew training should be maintained and further enhanced 
through ongoing efforts.  

(6) While there are improvements in port safety and operations, 
stakeholders should continue their efforts to maintain and 
enhance safety protocols, given the complexity of port 
operations.  

(7) Stakeholders should focus on operational safety, particularly 
during ‘manoeuvring’ activities, as they still represent a relatively 
high level of risk. Continuous attention to safety practices is 
crucial.  

(8) Maritime authorities, shipowners, operators, and crew members 
should tailor their safety strategies and training programs to 
address the specific causes of accidents highlighted in different 
scenarios. Safety vigilance is essential, even in favourable envi
ronmental conditions.  

(9) Maritime industry stakeholders should prioritise continuous 
improvement in human factors, training, and operational prac
tices to enhance safety and reduce accident casualties, regardless 
of environmental conditions. 

The findings and implications from the data-driven BN model for the 
maritime sector and stakeholders are groundbreaking, which can also 
aid them in developing risk prevention policies and reducing accident 
losses. Nevertheless, there are several limitations in this study. For 

Table 14 (continued )  

2017–2021 2018–2021 2019–2021 2020–2021 2021 
RIFs 24 RIFs in total, of which 

8 are important RIFs 
24 RIFs in total, of which 
6 are important RIFs 

24 RIFs in total, of which 
7 are important RIFs 

24 RIFs in total, of which 
7 are important RIFs 

24 RIFs in total, of which 
10 are important RIFs 

6): good (86.3%); 
7): good (65.1%) 

Very 
serious 
(100%) 

1): occupational accident 
(26.4%); 
2): cargo ship (19.3%); 
3): on passage (46.0%); 
4): > 20 (28.1%); 
5): open sea (31.8%); 
6): good (66.6%); 
7): good (63.5%) 

1): occupational accident 
(29.4%); 
2): bulk carrier (19.9%); 
3): on passage (43.6%); 
4): > 20 (27.9%); 
5): open sea (33.6%); 
6): good (70.9%); 
7): good (67.4%) 

1): occupational accident 
(33.9%); 
2): bulk carrier (21.1%); 
3): on passage (45.3%); 
4): > 20 (26.7%); 
5): open sea (36.7%); 
6): good (67.2%); 
7): good (61.7%) 

1): occupational accident 
(20.3%); 
2): bulk carrier (22.9%); 
3): on passage (50.7%); 
4): [6,10] (24.7%); 
5): open sea (41.8%); 
6): good (69.1%); 
7): good (59.0%) 

1): collision and sinking 
(27.6%); 
2): fishing vessel (35.0%); 
3): on passage (46.1%); 
4): > 20 (35.4%); 
5): open sea (45.8%); 
6): good (55.7%); 
7): bad (54.1%)  
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instance, human factors are not further classified into multiple states, 
and the impact of human factors on maritime accident severity could 
therefore not be explored in detail. In future studies, data collection and 
analysis in this area should be strengthened to make the BN model more 
comprehensive in performance and more widely applicable. 
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Appendix I 

The confusion matrices of four models are presented in Tables 15–18.  

Table 15 
Confusion matrix of the one-year model.  

Predicted serious very serious Actual total Accuracy rate(100%) 

serious 1 0 1 100 
very serious 0 2 2 100 
Predicted total 1 2 3 100   

Table 16 
Confusion matrix of the two-year model.  

Predicted less serious serious very serious Actual total Accuracy rate(100%) 

less serious 1 0 0 1 100 
serious 0 5 1 6 83.33 
very serious 0 0 7 7 100 
Predicted total 1 5 8 14 92.86   

Table 17 
Confusion matrix of the three-year model.  

Predicted less serious serious very serious Actual total Accuracy rate(100%) 

less serious 3 0 0 3 100 
serious 0 10 0 10 100 
very serious 0 2 13 15 86.66 
Predicted total 3 12 13 28 92.86   

Table 18 
Confusion matrix of the four-year model.  

Predicted less serious serious very serious Actual total Accuracy rate(100%) 

less serious 3 0 1 4 75 
serious 1 11 1 13 84.62 
very serious 0 2 33 35 94.29 
Predicted total 4 13 35 52 90.38 

The constructed models based on the four datasets are visualised in Figs. 10–13.  
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Fig. 10. The constructed BN model based on the data from 2021.   
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Fig. 11. The constructed BN model based on the data from 2020 to 2021.   
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Fig. 12. The constructed BN model based on the data from 2019 to 2021.   
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Fig. 13. The constructed BN model based on the data from 2018 to 2021.  
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