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Highlights 

 Automating wildlife monitoring with wireless 4G cameras and end-to-end data streams 

 Remote monitoring of sensor performance, API handling and automated task management 

 Deep learning for automated identification of focal species and human detection  

 Total cost saving of >40% through automation, AI and less regular site visits  

 Enabling technologies allow scaling-up of a cost-efficient biodiversity monitoring 
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Abstract 

Modern approaches with advanced technology can automate and expand the extent and resolution 

of biodiversity monitoring. We present the development of an innovative system for automated 

wildlife monitoring in a coastal Natura 2000 nature reserve of the Netherlands with 65 wireless 

4G wildlife cameras that are deployed autonomously in the field with 12V/2A solar panels, i.e. 

without the need to replace batteries or manually retrieve SD cards. The cameras transmit images 

automatically (through a mobile network) to a sensor portal which contains a PostgreSQL 

database and functionalities for automated task scheduling and data management, allowing 

scientists and site managers via a web interface to view images and remotely monitor sensor 

performance (e.g. number of uploaded files, battery status and SD card storage of cameras). The 

camera trap sampling design combines a grid-based sampling stratified by major habitats with the 

camera placement along a traditional monitoring route, and with an experimental set-up inside 

and outside large herbivore exclosures. This provides opportunities for studying the distribution, 

habitat use, activity, phenology, population structure and community composition of wildlife 

species and allows comparison of traditional with novel monitoring approaches. Images are 

transferred via application programming interfaces to external services for automated species 

identification and long-term data storage. A deep learning model for species identification was 

tested and showed promising results for identifying focal species. Furthermore, a detailed cost 

analysis revealed that establishment costs of the automated system are higher but the annual 

operating costs much lower than those for traditional camera trapping, resulting in the automated 

system being >40% more cost-efficient. The developed end-to-end data pipeline demonstrates 

that continuous monitoring with automated wildlife camera networks is feasible and cost-
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efficient, with multiple benefits for extending the current monitoring methods. The system can be 

applied in other nature reserves in open habitats with mobile network coverage. 

Keywords 

API, artificial intelligence, biodiversity survey, convolutional neural network, 

cyberinfrastructure, dunes, optical sensors, population biology, protected areas, remote sensing 
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Introduction 

The Kunming-Montreal Global Biodiversity Framework adopted in December 2022 highlights 

the need for developing a global biodiversity observing system (Gonzalez et al. 2023). This 

requires effective and cost-efficient monitoring techniques and a dramatic increase in the spatial, 

temporal, and taxonomic extent of biodiversity monitoring (Besson et al. 2022; Kissling et al. 

2018; Wearn & Glover-Kapfer 2019). To achieve this, advanced technologies such as low-power 

digital sensors, wireless communication technology, and automated approaches are important 

tools to collect, store, transfer and process data about species and ecological communities 

(Besson et al. 2022; Glover-Kapfer et al. 2019; Wägele et al. 2022). Digital sensors such as 

cameras and microphones can provide high-frequency species observations without observer 

disturbance, allow sampling in remote areas, and obtain observations at times that are otherwise 

not feasible (Kissling et al. 2018). Moreover, sensors with wireless functionality allow for 

automated data streams and near-real-time biodiversity monitoring (Porter et al. 2005). However, 

this requires innovations in automated data transmission, efficient data handling, big data storage, 

and machine learning for automated species identification (Steenweg et al. 2017; Tuia et al. 2022; 

Wägele et al. 2022). 

 Recent technological advances have resulted in wildlife cameras that can be operated 

autonomously, e.g. wildlife cameras with solar panels that do not require manual replacement of 

batteries, and with functionalities for automated data transmission (e.g. through mobile networks 

or satellite links) that avoid the need for manual retrieval of SD cards (Wearn & Glover-Kapfer 

2017). Deploying such cameras depends upon good light conditions and stable on-site 

telecommunication networks for automated data pipelines from sensors to a computational 

infrastructure. Moreover, data pipelines and storage need to be established (Scotson et al. 2017), 
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and web interfaces are needed to visualize and monitor the data streams (Ahumada et al. 2020). 

Artificial intelligence (AI) such as machine learning and deep learning algorithms for automated 

species identification (Norouzzadeh et al. 2018; Tuia et al. 2022) can also allow for near-real-

time and cost-efficient species classification, but also requires investments into image labelling 

and model development (Chalmers et al. 2023). Various online platforms have recently emerged 

to facilitate the processing of camera-trap images with AI (Tuia et al. 2022; Vélez et al. 2023), 

but the volume, variety, velocity and security of data remains a challenge for using AI models in 

operational biodiversity monitoring systems. 

 Setting-up a new wildlife camera network is typically done in several phases, including 

the collection of pilot data with sensors under field conditions, development of sampling designs, 

establishment of data handling and processing pipelines, and implementation and maintenance of 

the system (Dyo et al. 2012; Wearn & Glover-Kapfer 2017). Sampling designs should have a 

clearly defined aim, use a standardized methodology for data collection, and consider basic 

principles such as randomisation, replication and stratification (Wearn & Glover-Kapfer 2017). 

Recommendations for standardized sampling designs with camera traps include the use of high 

quality cameras without bait, usually at a height of 30–50 cm, and avoiding microsites with major 

obstructions (Wearn & Glover-Kapfer 2017). For monitoring larger areas, camera traps can be 

assembled in networks using systematic grids or stratified-random designs (e.g. outside well-

established trails; Wearn & Glover-Kapfer 2017). Species detection with different camera 

deployments (e.g. at different heights or in different habitat types) can be tested during pilot 

studies and preliminary analyses can show at which rates data accumulate and how well species 

are detected (Kays et al. 2020). Recommendations for camera trap sampling designs suggest 

using 40–60 camera traps per site, but 20–30 cameras can already be sufficient to estimate the 
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occupancy of common species and the species richness of sites in temperate regions (Kays et al. 

2020). Sampling designs can also include comparisons with traditional sampling methods (Wearn 

& Glover-Kapfer 2019) or experimental designs such as herbivore exclosures in rewilding 

projects (Bakker & Svenning 2018). 

 Here, we describe the development of an automated wildlife camera network in a 34 km
2
 

dune ecosystem west of Amsterdam at the coast of the Netherlands. The network aims to expand 

current monitoring approaches and should allow to study the distribution, habitat use, activity, 

phenology, population structure and community composition of ground-dwelling mammals and 

birds in an efficient way. We used pilot studies to test the autonomous deployment of wireless 4G 

wildlife cameras with solar panels and automated data transmission, with different deployment 

heights, camera lens types and an analysis of focal species detection (rabbits, deer, foxes). We 

then developed a sampling design, implemented a network of 65 cameras and tested an AI model 

for species identification and human detection in wildlife camera monitoring workflows. To 

understand whether the system is cost-efficient, we calculated the full economic costs of the 

automated camera network (including establishment and annual operation costs over a 5- and 10-

year time period, respectively) and compared it to the costs of a manual system with traditional 

camera traps. Our work thereby contributes to operationalising modern approaches for 

biodiversity monitoring using sensor networks, wireless data transmission, and automated 

processes for data streams and species identification with AI. 

Materials and methods 

Study area 
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The Amsterdam Water Supply Dunes (AWD) are a 34 km
2
 dune ecosystem west of Amsterdam, 

located just south of the resort Zandvoort (southwest of Haarlem) and stretching 8 km along the 

Dutch North Sea coast with a width varying from 1.5 to 5 km. The area is an important nature 

reserve and part of the European Natura 2000 site Kennemerland-Zuid (site code NL1000012), 

which includes two other dune areas (Nationaal Park Zuid-Kennemerland and Noordwijkse 

Noordduinen). The AWD are owned by the Municipality of Amsterdam and managed by 

Waternet, a water company for Amsterdam and the surrounding area. The management of the 

area accommodates four functions: 1) production of drinking water, 2) nature conservation, 3) 

recreation, and 4) sea defence. 

 The study area has been used for the production of drinking water since 1853. Infiltration 

canals have been made in part of the area for drinking water purification. The extensive area is 

dominated by various dune habitats, including shifting white dunes, fixed coastal dunes with 

herbaceous vegetation, dunes with sea-buckthorn formations, wooded dunes and humid dune 

slacks (EU habitat type codes 2120, 2130, 2160, 2180 and 2190, respectively). Vegetation is 

dominated by grasses (46%), but also includes large parts of scrublands (22%) and forests (21%), 

and smaller areas of sand (6%) and other low vegetation (Appendix A). The landscape is 

important for a variety of vertebrates, vascular plants and invertebrates. Nearby urbanization also 

renders the study area an important recreational area, with over 1 million visitors annually as 

much of the study area is accessible for hiking and nature-orientated recreation. The first 100 m 

from the shoreline are strictly managed for sea defence. 

As in other Dutch coastal dunes, grazing mammals such as the European rabbit 

(Oryctolagus cuniculus) and the European fallow deer (Dama dama) are key species in the study 

area because they slow down the rate of natural succession and alter plant species composition 
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and vegetation structure through their grazing and digging. To study ecosystem recovery after 

high intensity grazing by fallow deer, a total of 16 fenced exclosures ranging in size from 0.5–7.2 

ha were established in the winter of 2019–2020. Moreover, several traditional survey methods are 

already used to monitor wildlife in the study area. For rabbits, a 23.5 km long monitoring route is 

surveyed each year in spring (March–April) and autumn (September–October) to examine 

breeding success and winter mortality (van Strien et al. 2011). Surveys are done from a car 

driving along the monitoring route in the evening 1 h after sunset, with high beam headlights and 

a speed of about 20 km per hour, counting all rabbits that appear in the beam of the car light. 

Other mammals such as red fox (Vulpes vulpes), European hare (Lepus europaeus) and roe deer 

(Capreolus capreolus) are also registered, but data are insufficient for monitoring those species. 

For fallow deer, the whole study area is surveyed once per year at the end of winter (end of 

March, beginning of April) by subdividing it into eleven counting sectors, each counted 

simultaneously by a separate counting team with at least two counters. Counting is done from a 

car using a standardized sampling protocol (https://www.fbezh.nl/telrapporten/) and each count 

consists of three consecutive counting sessions with 2.5 hours in the evening, morning and 

evening twilight hours, respectively.  

Wildlife cameras 

To expand current monitoring, we used camera traps with wireless functionality and solar panels 

(Fig. 1). The cameras are triggered by a passive infrared sensor (PIR) and use an infrared flash at 

night, comparable with other widely used wildlife cameras (see comparison in Table B.1 in 

Appendix B). A key difference to other cameras on the European market is that they allow setting 

up an automated sensor network because (1) they can be deployed autonomously for long time 

periods using a 12V/2A solar panel, (2) they can automatically transmit images (and a daily 
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report) via 4G using MMS, email or an FTP server, and (3) allow users to define SIM card plans 

and the end point of the images. Details on camera settings can be found in the supplement 

(Appendix B: Fig. B.1). Cameras and solar panels were mounted with security cages on wooden 

poles at 30–50 cm height (Fig. 1B), installed off-trail, facing north, without bait, at microsites 

without major obstructions, and not facing towards trails or steep upward angles, taking best 

practices for camera trap studies into account (Wearn & Glover-Kapfer 2017).  

Pilots 

We conducted three pilots with 2–6 wildlife cameras each between summer 2021 and spring 

2023 (details in Table C.1 of Appendix C) to test (1) the autonomous deployment (with solar 

panels, no battery replacement and no SD card retrieval), (2) wireless data transmission (with 

SIM cards and 4G via a telecommunication network), (3) data accumulation of images over time, 

and (4) differences in the detection of focal species (rabbit, fallow deer and the red fox as top 

predator) inside and outside exclosures and between regular lens (52°) and wide lens (100°) 

cameras. For comparing lens angles, two cameras with different lenses were installed as pairs at 

the same locations and the same time, allowing a direct comparison of detection rates. 

Observations for this lens angle comparison were defined within sequences of images taken 

within 120 seconds. A total of 47,597 images from these three pilots were manually checked 

(Appendix C). Data were compared in terms of data accumulation over time, number of detected 

individuals of focal species, total species richness, and differences in detection rates with 

different lens angles (regular vs. wide lens). For the latter, we fitted occupancy models (details in 

Appendix C) to estimate the effect of lens angle (regular vs. wide) and location on the probability 

of detection for two species with sufficient sample sizes (rabbit and fallow deer). The R code for 
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the occupancy analysis is available on GitHub 

(https://gist.github.com/jevansbio/b6d76371e79eb68b7b8f6c2b6c32dfbd).  

Sampling design of camera network 

The overall sampling design of the camera network was guided by three research questions 

(Table 1). This resulted in an integrated sampling design, combining a grid-based sampling 

approach with the monitoring along a traditional survey route and with the paired sampling 

inside/outside deer exclosures. For the grid-based sampling, a 1 × 1 km
2
 grid was put over the 

study area and camera placement was stratified by major habitat types (Appendix D), using a 

digital vegetation map of the study area (Appendix A: Fig. A.1). Along the traditional survey 

route for rabbit monitoring, cameras were placed approximately 1 km apart and within a buffer of 

up to 20 m from the route, taking locations of grid camera placements into account. For the 

exclosures, a paired sampling design was used, with exclosure cameras inside exclosures and 

control cameras outside (placed in a buffer 200–300 m away from the exclosure boundary). All 

geospatial analyses such as grid placement and distance or buffer calculations were done in 

ArcGIS Pro 3.0 (Appendix D). 

Data handling 

Data handling was done with a sensor portal that was developed for the monitoring 

demonstration sites of the large-scale research infrastructure project ARISE (https://www.arise-

biodiversity.nl/teammonitoringdemonstration). The sensor portal was built with open source 

software such as Django, Celery, Podman, PostgreSQL and PostGIS (Appendix E) and uses 

Python as the main programming language (50%), but also Java (25%), CSS (15%) and HTML 

(10%). A first shareable version of the source code is on GitHub 
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(https://github.com/jevansbio/ARISE-MDS-sensor-portal) and will be further expanded to make 

it more portable, reusable and generalisable. Several system security and data protection 

considerations have been taken into account (Appendix E). The data pipeline automatically 

imports the images and daily reports from the cameras (transmitted over 4G to an external 

landing zone) into the sensor portal. The sensor portal allows managing and remotely monitoring 

the cameras, and includes local data storage, a PostgreSQL database, and functionalities for 

automated task management and application programming interfaces (APIs; Appendix E). From 

the sensor portal, images are securely transferred via APIs to external platforms for automated 

species identification. Images are archived (as TAR files) on long-term cold storage of the Dutch 

national IT infrastructure SURF (Appendix E).   

Automated species identification 

We tested the automated species identification with a deep learning model from Conservation AI 

that uses the Faster R-CNN architecture (based on ResNet101) to detect and classify species from 

camera trap images (Chalmers et al. 2023; Fergus et al. 2023). We fine-tuned the learned 

parameters of this deep learning model and added additional training data to support our focal 

species (Appendix F). Performance of the trained model was assessed by comparing its results 

with a manual classification of 4,058 images from 46 cameras deployed mainly from August–

October 2023. Results were summarized into a confusion matrix (Table F.1 in Appendix F). In 

the main text, we mainly refer to the balanced accuracy (i.e. the sum of sensitivity and specificity 

divided by 2) and the recall (= sensitivity) of five classes (rabbit, fallow deer, fox, person, blank). 

Additional performance metrics are reported in the supplement (Table F.2 in Appendix F). 

Cost estimation 
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To estimate whether an automated camera network is cost-efficient compared to traditional 

camera traps, we calculated the total costs of both networks with 65 cameras each, using the 

sampling design and focal species of our study area. The total costs covered all establishment 

costs and all annual operating costs of the implemented system over either a 5-year or a 10-year 

time span (see Appendix G: Fig. G.1). This included materials (e.g. cameras, batteries, SIM 

cards, fuel, data transmission, data storage) and staff time (technicians, researchers) for data 

collection, workflow and administration (Table 2). Costs were derived from the pilots, standard 

market sale prices, official reimbursement rates, standard salaries rates, and our own experience 

(Appendix G). For traditional camera traps, we included costs for cameras with batteries and SD 

cards, manual data collection and battery replacement, manual upload and external hard drive 

storage, and species identification by humans (assuming support through an online system). For 

the automated camera network, we calculated costs for wireless cameras with solar panels and 4G 

data transmission, data pipelines for automated data handling and archiving, and automated AI 

species identification (extension of the existing deep learning model). Cost efficiency (the 

relative costs of generating an identical dataset) was calculated as the difference in costs between 

the two camera networks.  

Results 

Pilots 

The autonomous deployment of wildlife cameras with solar panels did not require any battery 

replacement or SD card retrieval, thereby reducing the need for regular site visits. This also 

applied to the three cameras of pilot 1 which were deployed over a total of 746 days (> 2 years). 

Wireless data transmission with 4G and SIM cards over the Dutch KPN telecommunication 

network worked well in the coastal dunes. In 47,597 manually annotated images over ~500 days 
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of deploying three cameras of pilot 1 (placed in exclosures), a total of 20 species were detected 

(Table C.2 of Appendix C). The rabbit was the most commonly detected species in pilot 1 (Fig. 

2A), with >1,500 observations per year (Fig. 2B). The accumulated number of rabbit 

observations was 8 times higher per year than that of foxes (Fig. 2B), and the number of blank 

images (including daily report images and false triggers) was two times higher than that of rabbit 

observations (Fig. 2B). Rabbits were also the most often detected species in pilot 2, whereas 

fallow deer were detected only in pilot 3 (outside exclosures; Fig. 2C). Foxes were detected in 

low numbers in all pilots (Fig. 2C). Comparisons of different lens angles (in pilots 2 and 3) 

showed that a wide lens can detect 1.5–2.5 times more individuals of the same species than a 

regular lens (Fig. 2C). However, while the total number of detections differed between lens 

angles (Fig. 2C), the detection rate of both species showed no statistically significant difference 

between wide and regular lens (Fig. 2D, Appendix C: Table C.3). This suggested that species 

which occupy and inhabit a particular site can be equally detected by both lens angles. However, 

pilot 2 and 3 also showed that rare or less frequently visiting species such as mice (genus 

Apodemus), polecats (Mustela putorius) and various bird species (e.g. Parus major, Scolopax 

rusticola, Fringilla coelebs) often remained undetected by a regular lens, resulting in 2–6 times 

more species detected with a wide lens than with a regular lens (Fig. 2E). 

Sampling design of camera network 

The vegetation distribution in the study area (Fig. 3A) together with the integrated sampling 

design (Table 1) defined the locations of the 65 wildlife cameras (Fig. 3B,C) which were installed 

during July–November 2023. Based on the pilot results, we opted for an installation at ~35 cm 

height and using cameras with a wide lens. A total of 41 cameras (one per 1 × 1 km
2
 grid cell) 

were implemented for the grid-based design (Fig. 3B). Of those, 27 were shared with either the 

                  



Page 15 
 

rabbit monitoring route (n = 14), the exclosure control (n = 10), or both (n = 3). Two additional 

cameras were installed in forest habitat (Fig. 3B). A total of 20 cameras were placed along the 

rabbit monitoring route (Fig. 3B). For the paired exclosure design, 32 cameras (= 16 × 2) were 

installed (Fig. 3C). Camera locations were approximately stratified according to the proportion of 

habitat types in the study area (Fig. 3E,F).  

Data handling 

The images (~0.5 MB per file) are sent from the 4G wildlife cameras (within max. 60 seconds 

after triggering) to an external landing zone (FTP server; Fig. 4A). The sensor portal then imports 

the data every 15 min and handles them automatically (Fig. 4A). The sensor portal includes a 

web graphical user interface (GUI) to view the collected images in near-real time via a file 

browser (Fig. 4B). It further provides several ways of remotely monitoring the performance of 

the cameras, including the number of files uploaded per camera and per day, battery status and 

available space for SD card storage (Fig. 4C).  

Automated species identification 

The accuracy assessment showed that the deep learning model performed reasonably well for 

automatically identifying the focal species (Appendix F: Table F.2). The fox showed the highest 

balanced accuracy (0.88) and recall (0.78) of the three focal species, followed by the rabbit (0.75, 

0.50) and the fallow deer (0.69, 0.42). The fallow deer had the highest prevalence whereas the 

rabbit and the fox showed a low prevalence in the validation dataset (Appendix F: Table F.2). 

The model performed particularly well in detecting humans (balanced accuracy = 0.90; recall = 

0.85). Blank images had a low balanced accuracy (0.60) and low recall (0.51). 

Cost estimation 

                  



Page 16 
 

Comparing the data collection and processing workflows of a traditional vs. an automated system 

(Fig. 5A) showed that establishment costs of the automated camera network are 62,918 € 

(+131%) higher than traditional camera trapping, especially due to the higher material costs for 

data collection and the staff time needed for workflow set-up (Fig. 5B). However, the automated 

system strongly reduces the staff costs for annual data collection, workflow maintenance and 

species identification, leading to a saving of 57,156 €per year (-51%) for the annual operating 

costs compared to the traditional camera trapping (Fig. 5B). Overall, the total costs (incl. 

establishment and annual operation) of the automated system over a 10-year period are 43% 

lower, with a cost saving of >500,000 € (Fig. 5B). Over a 5-year period, overall costs of both the 

traditional and automated system are ~50% lower than over a 10-year period (Appendix G: Table 

G.2), but the cost-efficiency of the automated camera network remains nearly the same (-40% vs. 

-43%). 

Discussion 

Our results demonstrate that wildlife monitoring in a central European coastal dune ecosystem 

can be operationalized with autonomous wildlife cameras, automated data pipelines and AI 

species identification using deep learning. The pilot studies suggest that the installation of 

wildlife cameras with a wide lens has advantages compared to a regular lens because it increases 

the detection of rare and infrequently visiting species and thereby improves estimation of 

community-level parameters such as species richness. The cost analysis demonstrated that an 

automated system can be >40% more cost-efficient than data collection and processing with 

traditional camera traps. Near-real-time data streams additionally provide several advantages. 

Camera performance can be remotely monitored, including battery status, SD card usage, file 

uploads, potential damage from wildlife, water ingress, blank images caused by misfires, or 
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vegetation grown in front of cameras. This reduces the need for regular site visits and thus makes 

the automated system more efficient. Moreover, the rapid sharing of rare and unusual 

observations with site managers also allows timely information about biodiversity for visitors in 

the nature reserve. In addition to cost-efficiency and public outreach, camera traps are also more 

effective than traditional survey methods in detecting a wide range of wildlife species and for 

recording a large number of detections of focal species (Wearn & Glover-Kapfer 2019). 

 Expanding the extent and resolution of biodiversity monitoring with camera traps in our 

study area provides several opportunities for research and management. Rabbits are currently 

surveyed only twice per year from a car along a monitoring route which is limited to path and 

road sides. The automated wildlife camera network therefore expands the rabbit monitoring not 

only with a higher temporal frequency, but also to the whole study area (i.e. beyond the transect 

route). Rabbit populations in the mainland coastal dunes of the Netherlands have strongly 

collapsed in recent years (Dijkstra et al. 2023) and wildlife cameras are now used in our study 

area to assess reintroduction efforts and changes in occupancy. Other mammals such as red fox 

(Vulpes vulpes), European hare (Lepus europaeus) and roe deer (Capreolus capreolus) are 

currently not sufficiently monitored and wildlife cameras will thus provide new insights into their 

distribution, habitat use, activity and phenology. For fallow deer, wildlife cameras can provide 

additional information on population structure such as sex ratios and age classes which are 

relevant for assessing the effectiveness of culling management. The continuous monitoring with 

wildlife cameras can also provide novel insights into the role of species interactions such as 

competition between rabbit and hare or between fallow deer and roe deer, and for the detection of 

rare, cryptic or inconspicuous species such as the night-active European polecat (Mustela 

putorius), which are difficult to monitor with traditional survey methods. The wildlife cameras 
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will also enable estimation of community-level parameters such as species richness and β-

diversity of ground-dwelling wildlife, and enable the detection of rapid changes in wildlife 

distributions that require interventions (such as the population collapses of rabbits). The new 

wildlife camera network therefore provides a single sampling tool for a broad range of research 

and management purposes which is more effective than combining a range of other survey 

methods such as line transects, live traps, track plots and scat surveys (Wearn & Glover-Kapfer 

2019). 

 Operationalizing a wildlife camera network in an area where large herbivores and humans 

are present requires to take several practical aspects into account. Installing camera traps in areas 

where large ungulates are present (e.g. through rewilding projects) can attract animals such as 

horses, cows, bison and red deer to scratch on poles or to chew the antennae. Such damages 

would require additional protection (e.g. with small wooden exclosures). This was not an issue in 

our study area where only ungulates such as European fallow deer and roe deer are present. 

However, humans are clearly a factor in a recreational area with >1 million visitors a year, 

creating the risk of theft and vandalism. We therefore installed metal security cages with locks 

around the cameras and an additional custom-designed security cage for the solar panels. 

Cameras and solar panels were mounted on wooden poles and hammered up to 1 m into the 

ground to minimize theft and vandalism (Meek et al. 2019). In addition, access to settings and 

image viewing in each camera is password protected. Stickers were added on the security cages 

of the cameras with a personal and polite message and a QR code to inform about the project, 

which can reduce potential negative interactions with people (Clarin et al. 2014). The visitor 

centre of the nature reserve also has a fact sheet about the camera network which informs about 

the ongoing research with wildlife cameras.  
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 AI algorithms are becoming crucial tools for the efficient handling of wildlife camera 

images (Tuia et al. 2022). For automated species identification, we tested a convolutional neural 

network with the ResNet101 as a base model (Chalmers et al. 2023; Fergus et al. 2023). This 

deep learning algorithm already showed good performance for detecting humans and red fox 

(balanced accuracy of 0.90 and 0.88, respectively). For fallow deer and rabbit, the recall was low 

(0.42 and 0.50, respectively), suggesting that there were many images in which the species 

remained undetected. However, fallow deer showed a high precision (0.88), demonstrating that 

once it was detected in an image, the species identification was mostly correct. For rabbits, 

precision was low (0.27), probably due to confusion with the European hare. Overall, automated 

species identification needs to be further improved. This could be efficiently addressed by an 

active learning cycle in which AI algorithms minimize labelling by optimally selecting the most 

informative samples for model improvement (Bodesheim et al. 2022; Norouzzadeh et al. 2021; 

van Ommen Kloeke et al. in press). This would reduce staff costs for image labelling and (re-

)training and extending the AI model beyond the focal species. The wildlife monitoring network 

in the Dutch dunes has enough cameras to study species richness and community composition of 

ground-dwelling wildlife species (Kays et al. 2020), but the AI model needs to be extended to 

identify all wildlife species of the study area. The key challenges here is to have sufficient images 

with high-quality labels (i.e. bounding boxes) for the rare species. While there are several 

projects and initiatives already working on a (western) European wildlife AI model, there is 

currently no model that shows satisfactory performance to automatically identify all wildlife 

species in our study area.  

Biodiversity monitoring in Europe is characterized by short-term budgets and a lack of 

financial resources (Moersberger et al. 2024). It is thus important to test whether long-term 
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biodiversity monitoring can be cost-effective (Breeze et al. 2021). We provide the first detailed 

cost calculation of an automated wildlife camera network and its cost efficiency relative to 

traditional camera traps. We show that the initial establishment costs of an automated system 

might be >130% higher, but that a significant reduction (>50%) in annual operating costs can be 

achieved with automation, resulting in an overall cost saving of >40% over a 5- or 10-year 

period. These cost estimations depend on various assumptions. For instance, our calculation 

assumes that traditional camera traps require 18 field visits per year (every three weeks) whereas 

automated cameras require only four visits per year (due to solar panels and the remote 

monitoring of camera performance). Reducing the number of field visits for traditional camera 

traps to four visits per year would lower the annual operating costs by up to 75% (Appendix G: 

Fig. G.2A). However, a low visitation rate introduces a high risk of data loss due to human, 

environmental or wildlife damages, empty batteries, overwriting of images on SD cards, grown-

up vegetation etc. We therefore assumed (and recommend) 3–4 weekly visits to traditional 

camera traps to minimize data loss. The cost differences between traditional and automated 

monitoring can also be sensitive to the annual operating costs for the processing workflow, 

especially salary costs for manual species identification (‘tagging’) in the traditional system, and 

for manual validation of AI image classification (i.e. correcting species names and bounding 

boxes) and labeling of images (with bounding boxes) in the automated system. For traditional 

camera trapping workflows, one of the most-needed technological developments are algorithms 

for automated filtering of blank images (Glover-Kapfer et al. 2019). This would strongly reduce 

the staff costs for manual species identification. The recent development of open-source object 

detection models such as the Microsoft AI for Earth MegaDetector already provides exciting 

opportunities for filtering out human and blank images (Mitterwallner et al. 2023; Tuia et al. 

2022). For automated wildlife detection, annual operating costs will strongly depend on the costs 
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for manual validation of the AI image classification and additional labelling (e.g. to improve 

current models and to expand them to other species). We assumed that each year 10% of the 

images from the AI model classification (~95,000 images across all 65 cameras) would be either 

manually validated (90%, i.e. correcting species names and bounding boxes) or newly labelled 

(10%, i.e. creating bounding boxes for improving the AI model for focal or new species). 

Increasing this to 20% would double the respective annual staff costs to €20,206, but reducing it 

to 5% (assuming improved AI model performance) would lower it to €5,053 per year. We expect 

that costs are likely to further decrease with the rapid development of suitable AI algorithms for 

automated wildlife detection. We also emphasize that our staff cost calculations are relatively 

high because the Netherlands has one of the highest wages in Europe. 

Conclusions 

The development of a wireless 4G wildlife camera network in a coastal nature reserve of the 

Netherlands with an associated end-to-end data pipeline represents an innovative example of how 

advanced technology can automate biodiversity monitoring. While the initial establishment costs 

of automated monitoring systems can be high, this can pay off because these systems can be more 

cost-efficient in their annual operation than manual data collection and data processing. We 

suggest that monitoring systems similar to the one presented here can be implemented in many 

other temperate nature reserves where sufficient 4G coverage and sunlight is available. Costs will 

be lower in countries with low wages and with the availability of open-source wildlife and object 

detection models. Interdisciplinary collaborations with computer vision researchers, software 

developers, data scientists and stakeholders will clearly advance sensor portals and deep learning 

algorithms for automated species identification (Ahumada et al. 2020; ENETWILD Consortium 

et al. 2022; Tuia et al. 2022; van Ommen Kloeke et al. in press). This will innovate biodiversity 
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monitoring and conservation efforts while simultaneously providing new opportunities for 

extended biodiversity monitoring and improved nature management. 
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Fig. 1. Wildlife camera deployment in the Dutch coastal dunes. (A) The Snyper Commander 4G 

Wireless and its successor the Wilsus Tradenda 4G Wireless, with a 12V/2A solar panel and its 

custom-designed solar panel bracket. (B) Camera mounted on a wooden pole, with metal cage 

and lock around the camera, and with a solar panel in a custom-designed bracket. (C) Camera 

trap images of focal species. Left: European rabbit (Oryctolagus cuniculus); Middle: red fox 

(Vulpes vulpes); Right: European fallow deer (Dama dama). A story map is available online 

(https://arcg.is/1OPb1X).   

 

Fig. 2. Results of pilot studies. (A) Number of wildlife species detected in images from pilot 1 

(three cameras in exclosures over >1 year). Species are ordered by decreasing numbers (see 

Appendix C: Table C.2). (B) Examples of data accumulation over time (pilot 1). (C) Total 

number of detected individuals of focal species (pilots 1, 2 and 3). Photo shows pilot installation 

with paired cameras, one with a regular lens (52°, left) and one with a wide lens (100°, right). (D) 

Differences between regular angle (blue) and wide angle (orange) in detection probabilities of 

rabbit (pilot 2) and fallow deer (pilot 3). (E) Differences in species richness caused by lens 

angles.  

 

Fig. 3. Habitats and sampling design. (A) Major habitat types of the study area. (B) Locations of 

wildlife cameras for grid-based sampling design (one camera per 1 km
2
 grid cell) and along an 

existing rabbit monitoring route (red line). (C) Exclosure design with one camera inside and one 

outside sixteen exclosures. (D) Location of the study area in the Netherlands. (E) Percentage of 
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habitat types in the whole study area (~32 km
2
 of vegetated area). (F) Percentage of habitat types 

of camera locations (n = 65). See Appendix A: Table A.2 for details on the stratification of 

camera placement. A story map is available online (https://arcg.is/1OPb1X).   

 

Fig. 4. Data management and performance monitoring of wildlife cameras. (A) End-to-end data 

pipeline (sensor -> sensor portal -> data processing and archiving services). (B) Map viewer and 

file browser of the sensor portal. (C) Monitoring of sensor performance. See Appendix E for 

sensor portal details. 

 

Fig. 5. Comparing traditional and automated camera trapping. (A) Conceptual illustration of data 

collection and processing workflows for traditional camera trapping and automated camera 

networks. Icons from https://www.flaticon.com/. (B) Costs over a 10-year period for 

establishment and annual operation of camera trapping and automated camera networks. The 

difference shows the % cost increase or decrease of the automated system relative to the 

traditional one. See Appendix G: Table G.2 for a 5-year calculation.
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Table 1. Sampling designs for implementing a wildlife camera network in the Amsterdam Water 

Supply Dunes of the Netherlands. Each type of sampling is guided by a specific research 

question. 

Type Design criteria Research question 

Grid-based 

sampling 

One camera per 1 × 1 km
2
 grid cell, 

stratified by major habitats (grass, 

scrubland, forest, sand, other low 

vegetation) 

How does the diversity and community composition of 

wildlife and the occupancy of mammalian herbivores 

(e.g. rabbits, hare, fallow deer, roe deer) and top 

predators (red fox) change over space and time? 

Rabbit 

monitoring 

route 

Approximately one camera per kilometre 

along the 23.5 km traditional survey 

route, within a 20 m buffer of the edge of 

the route 

How do population trends of rabbits derived from 

traditional monitoring (i.e. transect counts) compare to 

trends derived from wildlife cameras? 

Exclosures One camera inside and one outside 

exclosures (n = 16), each pair placed in 

same habitat 

How does the diversity and occupancy of wildlife 

differ inside and outside large herbivore exclosures? 

                  



Page 35 
 

Table 2. Overview of how costs were calculated. See Appendix G for additional details. 

Cost categories and cost 

items 

Description Automated camera 

network 

Traditional camera 

trapping 

Establishment costs   

Materials for data 

collection* 

The full supplier costs of all 

materials used for data 

collection, plus fuel costs for 

setting-up the cameras 

Cameras**, memory 

cards**, batteries**, 

security enclosures, 

poles, solar panels** 

& mount. Site set-up 

fuel costs (9 visits at 

95.82 km) 

Cameras**, memory 

cards**, batteries**, 

security enclosures, 

poles. Site set-up fuel 

costs (9 visits at 95.82 

km) 

Staff for camera set-up The initial labour required to 

set-up the cameras. 

Camera set-up (10 

days total), assembly 

and configuration (4 

days) and quality 

control (2 days) 

Camera set-up (10 days 

total), assembly and 

configuration (2 days) 

and quality control (2 

days) 

Materials for workflow The initial material costs 

required to set-up the data 

pipeline. 

SIM cards Multi SD-card reader 

Staff for workflow set-up The initial labour required to 

set-up the data pipeline from 

camera to database 

Two months time of a 

data scientist, plus 

time for making high-

quality labels (with 

bounding boxes) to 

develop a training 

dataset (14 s/image, 

2000 images/species) 

 

Annual operating costs   

Fuel for maintenance of data 

collection 

Annual fuel costs for camera 

maintenance 

Charged at 0.21 EUR/km (reimbursement rate at 

the University of Amsterdam), assuming 72.4 km 

round trips to the site and within-site travel 

spanning 23.42 km for each visit (total 95.82 

km/trip). 

Material losses of data 

collection 

The costs of replacing 

cameras that are damaged or 

stolen 

Assumes two cameras per year and fuel costs to 

set them up and replace them. 

Staff for annual data 

collection 

Annual pro-rata costs of 

technicians conducting field 

maintenance, based on 

estimates from the pilots 

(2021–2023). 

Time for four physical 

maintenance visits per 

year. 

Time to set up and 

reinstall two lost 

cameras per year. 

Changing batteries and 

memory cards (4 days 

every three weeks), plus 

travel time for site visits 

and time for recharging 

batteries. Collectively 

34 person days per year. 

Time to set up and 

reinstall two lost 

cameras per year. 

Workflow costs for data 

transmission* 

Annual costs of data 

transmission from SIM cards 

by the wireless 4G wildlife 

cameras 

Data transmission 

(1.78 EUR/camera/ 

month based on an 

average of 40 images, 

each 0.47 MB, 

transmitted daily at 2.5 

EUR/GB)  

FTP server (6.05 

NA 
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EUR/month) and 

virtual machine (80 

EUR/month). 

Workflow costs for data 

storage 

Annual costs of storing data 

generated from the sampling 

network. 

Each camera generates 

an average of 572 

MB/month of data per 

month at 0.061 

EUR/GB/month (rates 

of SURF Data 

Archive). This is 

cumulative, i.e. the 

value increases by the 

same amount each 

year (a 10 year average 

is presented). 

Two 5 TB external hard 

drives (one as a primary 

storage and the other for 

backup) at €149.5 each 

(incl. VAT).  

Staff for workflow 

maintenance 

Annual pro-rata costs of a 

technician involved in the 

workflow, based on 

estimates from the pilots 

(2021–2023) 

Remotely monitoring 

the performance and 

automated data upload 

of cameras (2 

hrs/month). 

Memory card extraction 

and download (0.25 

hrs/camera/visit). 

Staff for species 

identification 

Annual costs of species 

identification, based on 

estimates from the pilots, 

Conservation AI, and camera 

trapping projects 

Automated species 

identification with 

Conservation AI 

platform at cost of 

0.02 EUR per 18,000 

images, and 10% 

manual validation per 

year (of which 90% for 

manual validation and 

10% for new labelling) 

with ~6 s or 0.0017 hrs 

per image. 

Manual identification of 

all images, with 2 s or 

0.00056 hrs per image, 

assuming the use of an 

online platform for easy 

and efficient tagging of 

species in sequences of 

images. 

Administration (staff) Annual costs of a part time 

administrator to lead the 

project. 

Based on a single administrator at the level of an 

academic non-scientific employee working at 

20% FTE. 

*VAT at 21% (Netherlands standard rate) is applied to items in this category.  

**These items are replaced every 5 years and ~2 cameras per year are assumed to need replacing due to damage or 

theft, with associated travel (1 visit), labor and material costs. 

 

 

                  


