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Abstract 63 

Recent accumulation of evidence across taxa indicates that the ecological impacts of invasive 64 

alien species are predictable from their Functional Response (FR; e.g., the maximum feeding 65 

rate) and Functional Response Ratio (FRR; the FR attack rate divided by handling time). Here, 66 

we experimentally derive these metrics to predict the ecological impacts of both juvenile and 67 

adult lionfish (Pterois volitans), one of the world’s most damaging invaders, across 68 

representative and likely future prey types. Potentially prey-population destabilising Type II 69 

FRs were exhibited by both life stages of lionfish towards four prey species: Artemia salina, 70 

Gammarus oceanicus, Palaemonetes varians and Nephrops norvegicus. FR magnitudes 71 

revealed ontogenetic shifts in lionfish impacts where juvenile lionfish displayed similar if not 72 

higher consumption rates than adult lionfish towards prey, apart from N. norvegicus, where 73 

adult consumption rate was considerably higher. Additionally, lionfish FRR values were very 74 

substantially higher than mean FRR values across known damaging invasive taxa. Thus, both 75 

life stages of lionfish are predicted to contribute to differing but high ecological impacts across 76 

prey communities, including commercially important species. With lionfish invasion ranges 77 

currently expanding across multiple regions globally, efforts to reduce lionfish numbers and 78 

population size structure, with provision of prey refugia through habitat complexity, might 79 

curtail their impacts. Nevertheless, the present study indicates that management programmes to 80 

support early detection and complete eradication of lionfish individuals when discovered in new 81 

regions is advised.  82 

 83 

 84 
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Introduction 89 

Invasive species are predicted to continue to increase in number and severity of ecological 90 

impacts (Seebens et al. 2021; IPBES 2023). However, species-specific impacts are difficult to 91 

predict with surety and can vary considerably among invaded ecosystems due to a plethora of 92 

biotic and abiotic interactions (e.g., Dickey et al. 2021; Coughlan et al. 2022). Also, invaders 93 

with highly similar morphological and behavioural traits, and even congeneric species, may 94 

differentially impact invaded regions (e.g., Števove & Kováč 2013). Thus, we require robust 95 

metrics that are both explanatory and predictive of ecological impact across habitats and 96 

trophic and taxonomic groups (Dick et al. 2014, 2017). 97 

 98 

The red lionfish, Pterois volitans, is currently considered one of the most invasive and 99 

ecologically harmful marine fish worldwide (Goodbody-Gringley et al. 2019), with 100 

populations spreading across the Western Atlantic Ocean, Caribbean (Schofield, 2010), and 101 

Mediterranean Seas (Bariche et al. 2013). Both P. volitans and its sister species, Pterois miles, 102 

are also currently establishing themselves across the Mediterranean. Due to the significant 103 

impact of P. miles and the extensive invasion by P. volitans, we use P. volitans in this study as 104 

a proxy when referring to lionfish. As generalist and opportunistic predators, lionfish show 105 

dietary plasticity for prey items (Côté et al. 2013) and demonstrate clear negative impacts on 106 

some prey species (del Rio et al. 2022). Although adult lionfish are primarily piscivorous, they 107 

have also been recorded to predate on a variety of invertebrates (e.g., Morris and Akins 2009). 108 

Most lionfish dietary studies have been completed on adult individuals due to ease of capture 109 

compared to juveniles (i.e. <15 cm; see Dahl et al. 2014; Muñoz et al. 2011; Mizrahi et al. 110 

2017; Dahl et al. 2017; Zannaki et al., 2019; Acero et al. 2019; Batjakas et al. 2023; Samourdani 111 

et al. 2024), therefore juvenile lionfish predation is data limited, however, information 112 

available suggests a predominance of small crustaceans and larval fish (Cure et al. 2012; Eddy 113 

et al. 2016; Dahl et al. 2017). As a consequence of culling programmes, selective removal of 114 

large individuals tends to occur in invaded areas, with the remaining population being largely 115 

composed of juveniles and smaller sized individuals which are cryptic, fast moving and avoid 116 

culling activity by spear fishers (Morris et al. 2011; Frazer et al. 2012). Accordingly, a 117 

predictive assessment of lionfish invasion impacts thus requires dual examination of juvenile 118 

and adult feeding rates on representative and future likely prey communities. 119 

 120 

Functional Response (FR) metrics (described as Type I, II, and Type III) have been used 121 

successfully to assess the ecological impact of current, future and emerging invasive species, 122 



 
 

through consideration of resource consumption (i.e., the amount of a resource utilised, such as 123 

prey) as a function of resource density (Dick et al. 2014; Dickey et al. 2021; Coughlan et al. 124 

2022). The Type I response is a linear response, characteristic of filter feeders which are not 125 

constrained by handling times (Hoxha et al. 2018); density-dependent Type II responses are 126 

characterised by a plateauing of consumption as prey density increases (Hassell 1978); Type 127 

III responses are represented by a sigmoidal curve due to a reduction of consumption at low 128 

prey densities, often providing low density refugia to rare prey species and sometimes related 129 

to learned predator avoidance behaviour in prey populations (Colton, 1987; Kalinkat et al. 130 

2023). Deriving the Type of FR, plus the attack rates, handling times and maximum feeding 131 

rates, has been successful across taxa in explaining and predicting invader impacts (Dick et al. 132 

2014; South et al. 2017; Coughlan et al. 2022). However, while high attack rates and low 133 

handling times predict high impact (Dick et al. 2017), predictions based on either parameter 134 

alone can be contradictory (e.g., when handling times are low, but attack rates are also low; 135 

Cuthbert et al. 2019). To resolve this, Cuthbert et al. (2019) proposed a composite metric, the 136 

Functional Response Ratio (FRR), that is, attack rate divided by handling time. The FRR has 137 

a clear pattern of high values predicting high ecological impact, where the worst invaders have 138 

an FRR ratio mean of 83.36. This benchmarking allows comparison of newly derived FRRs, 139 

and hence likely ecological impact, in studies such as the present regarding lionfish (see 140 

Cuthbert et al. 2019). FRR however is applicable for Type II and Type III comparison as Type 141 

I FR is devoid of a handling time. 142 

 143 

We thus assessed the predatory impacts of both juvenile and adult P. volitans on four prey 144 

species by employing the FR metrics approach. The selected prey species were used to mimic 145 

a host of similar prey found across the invaded and future ranges of lionfish, namely the brine 146 

shrimp (Artemia salina), marine gammarid (Gammarus oceanicus), dwarf white shrimp 147 

(Palaemonetes varians), and finally Dublin Bay prawn (Nephrops norvegicus), as the lionfish 148 

range is currently expanding across the Mediterranean (albeit predominantly P. miles) into 149 

areas where commercially and ecologically valuable N. norvegicus are located (Lolas and 150 

Vafidis, 2021). Given that morphological and metabolic changes may affect diet, leading to 151 

variations in preferred prey types, as well as possible restricted ability of juvenile lionfish to 152 

predate larger prey due to the size relationship between predator and prey. We hypothesised 153 

that juvenile and adult lionfish will display FR metrics consistent with high ecological impact, 154 

with ontogenetic shifts in these metrics due to predator/prey size. 155 

 156 



 
 

Materials and Methods 157 

Animal collection and maintenance  158 

Experiments were undertaken at Queen’s University Marine Laboratory (QML), Portaferry, 159 

UK, between January and October 2019. Juvenile P. volitan lionfish (n = 8) and adult P. volitan 160 

lionfish (n = 8) were obtained from Seahorse Aquarium, Dublin. Juveniles had a total body 161 

length (mean ± SE) of 102.80 ± 3.18mm, with a pectoral fin diameter of 57.89 ± 4.80mm, as 162 

measured across the widest point when elongated. Adults measured 305.51 ± 3.73mm in length 163 

with a pectoral fin diameter of 265.51 ± 6.37mm. Juveniles were kept in a holding tank (W: 164 

32cm ×L: 152cm ×H: 45cm, 218L) with external filtration containing UV- and sand-filtered 165 

recirculated Strangford Lough seawater. Adult holding tanks separately employed the same 166 

filtration set up, while two adults were housed per tank (W: 82cm ×L: 227cm ×H: 61cm, 167 

1130L). Up to 10% of the tank water was changed daily, monitoring temperature, and 168 

conditions including pH and ammonium. Seawater was maintained at 25.0 ± 1.0°C using an 169 

aquarium heater under a natural light regime. Lionfish were maintained daily ad libitum on 170 

frozen anchovy to avoid predator learning behaviour of the experimental prey species. Feeding 171 

experiments were conducted within glass tanks (juveniles: W: 33cm ×L: 46cm ×H: 30cm, 45L; 172 

adults: W: 51cm ×L: 132cm ×H: 38cm, 250L) maintained at 25.0 ± 1.0°C to ensure lionfish 173 

welfare. Experimental tanks were scaled to reflect the difference between juvenile and adult 174 

lionfish when pectoral fins were fully elongated during feeding trails, where adults were 175 

approximately five times the size of juvenile lionfish. All fish were acclimated in the 176 

experimental arenas for a 30-minute period immediately prior to experimentation.  177 

 178 

Brine shrimp (Artemia salina), marine gammarid (Gammarus oceanicus), dwarf white shrimp 179 

(Palaemonetes varians), and Dublin Bay prawn (Nephrops norvegicus) were used as live prey. 180 

Artemia salina were obtained from Seahorse Aquariums, Dublin, Ireland, while G. oceanicus 181 

and P. varians were obtained from Grosvenor Tropicals, Lisburn, UK. Nephrops norvegicus 182 

were caught in fishing grounds off the western Irish Sea, by the FV Fulmar, an 11.33m trawler 183 

using a SELTRA in single-rig configuration. Once samples were landed, they were 184 

immediately brought to QML. Artemia salina, G. oceanicus and P. varians were maintained 185 

under identical conditions to the predators in separate holding tanks (W: 15cm × L: 20cm × H: 186 

18cm, 10L), whereas N. norvegicus were housed in a dark outdoor holding tank (H: 94cm × 187 

W: 142cm × L: 211cm, 2800 L), which included tunnels for refuge. All prey species were 188 

acclimated to lionfish maintenance temperature of 25.0 ±1.0°C before being introduced to the 189 

testing tank. Artemia salina, G. oceanicus, and P. varians were kept at 22.0 ± 1.0°C, which 190 



 
 

was then raised to 25.0 ± 1.0°C sixty minutes before introduction. In contrast, N. norvegicus 191 

was initially kept at 18.0 ± 1.0°C and gradually exposed to a temperature change in the testing 192 

tank over sixty minutes until reaching 25.0 ± 1.0°C. Intraspecific prey size was standardised 193 

throughout all trials. Total length (mean±SE): A. salina, (6.2 ± 0.8mm); G. oceanicus, (10.7 ± 194 

0.9mm); P. varians, (11.3 ± 0.5mm), and total carapace length for N. norvegicus (20.1 ± 195 

3.1mm).  196 

 197 

Selected prey species mimic those that are commonly found in lionfish stomachs across their 198 

invaded and potential future regions and have been used in previous lionfish FR experiments 199 

using similar laboratory set-ups to the present study (Morris and Akins 2009; Layman and 200 

Allgeier, 2012; Layman et al. 2014; Ortiz et al. 2015; Dahl et al. 2017, South et al. 2017; 201 

McCard et al. 2021). The present study represented the first comparative assessment of juvenile 202 

and adult lionfish, as well as the first assessment of lionfish impact on N. norvegicus, which 203 

are a valuable commercial fishery species across the United Kingdom and European Union that 204 

will likely be threatened by the expanding lionfish invasion (Smith and Papadopoulou, 2003; 205 

Bell et al. 2006; Nikolic et al. 2015). Furthermore, N. norvegicus can be used as a proxy for 206 

juveniles of other large crustacean species such as the Caribbean spiny lobster (Panulirus 207 

argus), the European lobster (Homarus gammarus) and Anomurans (squat lobsters).  208 

 209 

Functional response (FR) procedure 210 

Each prey species was separately supplied at 15 densities (2, 4, 6, 8, 12, 16, 20, 25, 30, 35, 40, 211 

45, 50, 55, 60; experiment replication n = 8 per density for each of the four prey species) in a 212 

randomised pattern of both prey species and densities. This was achieved with the re-use of the 213 

available lionfish in the following manner: Following the addition of the allotted prey to the 214 

experimental tanks that contained an individual predator, functional response experiments were 215 

initiated. Lionfish were allowed to feed for 3 h before being removed for enumeration of prey 216 

consumed. In a one-month period there were eight experiment days, with all lionfish being 217 

used on each experiment day (adult n = 8; juvenile n = 8). This facilitated a three-day recovery 218 

period between experiment days. Re-use of individuals was essential due to the limited number 219 

of lionfish available, hence the recovery period (see Alexander et al. 2014). The entire 220 

experiment was conducted over a 10-month period, with all lionfish being systematically 221 

exposed to all prey items at all densities, in a randomly allocated order. Controls consisted of 222 

one replicate of each prey type across all densities in the absence of lionfish predators. 223 

 224 



 
 

Statistical analyses 225 

Statistical analyses were undertaken using the ‘frair’ package in R (R Core Development Team, 226 

2018). Logistic regression was used to derive FR types based on analyses of proportional prey 227 

consumption across prey densities, with ‘prey density’ included as a continuous variable 228 

(Pritchard et al. 2017). To model the FRs, data were fit using Rogers’ random predator 229 

equation, as prey were not replaced once consumed (Rogers, 1972): 230 

 231 

𝑁𝑁𝑒𝑒 =  𝑁𝑁0(1 − 𝑒𝑒𝑒𝑒 𝑝𝑝�𝑎𝑎(𝑁𝑁𝑒𝑒ℎ − 𝑇𝑇)�)                                    (1) 232 

 233 

Wherein Ne represents the amount of prey consumed, N0 is initial prey density, a is the attack 234 

rate parameter, h is the handling time and T is the total time available. Data of prey eaten were 235 

then non-parametrically bootstrapped (n = 2000) to produce 95% confidence intervals using 236 

initial maximum likelihood estimates of a and h. The handling time parameter was used to 237 

determine maximum feeding rates (1/h) of lionfish across prey groups. Additionally, the 238 

Functional Response Ratio (FRR) was calculated for each prey species using the parameter 239 

estimates of a and h derived from the FR curve from eqn (1): 240 

 241 

     FRR = a / h       (2) 242 

 243 

 244 

Results 245 

Across all control groups (i.e., no predator) for all prey species, survival of the prey exceeded 246 

99% in the absence of lionfish, therefore, all mortality of prey in experimental groups was 247 

assumed to be due to predation by lionfish. 248 

 249 

Functional responses (FRs) 250 

First order terms were significantly negative as per Juliano (2001), indicating Type II FRs by 251 

all lionfish towards all prey species (Table 1; Figure 1).  252 

 253 

Juvenile Lionfish 254 

The attack rates and handling times of juvenile lionfish towards the four prey species resulted 255 

in FR magnitudes greatest for A. salina, lowest for N. norvegicus and intermediate for G. 256 

oceanicus and P. varians (Table 1; Figure 1). FRR values for juvenile lionfish were greatest 257 



 
 

for A. salina (564.29), followed by P. varians (350.14), G. oceanicus (158.54), and N. 258 

norvegicus (57.62: Table 1). The first three FRR values are markedly higher than the mean 259 

FRR value of 83.36 that was found for highly damaging invaders across taxa (see Cuthbert et 260 

al. 2019), by factors of 7, 4.5 and 2, predicting high ecological impacts of juvenile lionfish on 261 

prey with similar traits to A. salina, P. varians and G. oceanicus. 262 

 263 

Adult lionfish 264 

The attack rates and handling times of adult lionfish result in quite different FR magnitudes 265 

compared to juveniles, with adult FRs ordered greatest for N. norvegicus followed by A. salina, 266 

P. varians and G. oceanicus (Table 1; Figure 1). FRR values for adult lionfish were greatest 267 

for N. norvegicus (310.91), then A. salina (237.74), P. varians (207.76) and G. oceanicus 268 

(122.61; Table 1). All these FRR values are substantially higher than the mean FRR value of 269 

83.36 found by Cuthbert et al. (2019) by factors of 3.8, 3, 2.6 and 1.5, predicting high ecological 270 

impacts of adult lionfish on such crustacean prey. 271 

 272 

Discussion 273 

The observed consumption patterns and Functional Response (FR) metrics predict that both 274 

juvenile and adult lionfish can exert damaging impact on a range of crustacean prey where 275 

larger individuals show size dependent preferences for larger prey items compared to the gape 276 

limited juveniles (Morris and Akins, 2009; Mihalitsis and Bellwood, 2017; Rojas-Velez et al. 277 

2023). These findings are in line with in-situ stomach content analyses (e.g., Muñoz et al. 2011; 278 

Eddy et al. 2016; Dahl et al. 2017).  279 

 280 

The Type II FRs by both juveniles and adults suggests potential destabilising effects on 281 

invertebrate prey species populations, although lionfish may switch prey preference for species 282 

that are more abundant in the environment, which provides a low-density prey refuge, and 283 

complex habitat structure can mitigate impacts (McCard et al. 2021; Kalinkat et al. 2023). 284 

These mitigating drivers may explain the difference in field impact between the Bahamas 285 

(high) and Belize (low) (Green et al. 2012; Hackerott et al. 2017). Habitat structure can offer 286 

refuges for prey, reducing predator search success at low prey densities, leading to sigmoid 287 

Type III functional responses (Rickers and Scheu, 2005; Birkhofer et al. 2008). In contrast, the 288 

absence of habitat structure and the effects of arena size often result in Type II functional 289 

responses (Vucic-Pestic et al. 2010). Our comparative laboratory study used standardised 290 

conditions for all organisms without additional habitat complexity. Despite this, FR analyses 291 



 
 

and related impact assessment metrics are highly predictive of per capita impacts and simple 292 

laboratory settings of FR analyses are predictive of actual field impacts (Dick et al. 2014, 2017; 293 

Dickey et al. 2018). While lionfish use the entire water column to hunt, benthic and pelagic 294 

prey can attempt escape in both the upward and downward direction, which adds additional 295 

complexity to in situ foraging by lionfish in nominal 2-dimensional benthic and 3-demensional 296 

pelagic environments.  297 

 298 

Further predictive confidence of high lionfish impact is their remarkable Functional Response 299 

Ratio (FRR) values, that were up to seven times higher than the mean FRR across known 300 

damaging invasive taxa (Cuthbert et al. 2019). The benchmark FRRs values of Cuthbert et al. 301 

(2019) indicate that, overall, mean FRRs of 83.36 typify high impact invaders, since attack 302 

rates are high and handling times are low. The FRR values found here for lionfish were 303 

distinctively high, indicating an ecologically damaging ability of lionfish to find, subdue, 304 

consume and digest prey, which is clearly commensurate with actual field impacts of lionfish.  305 

 306 

Lionfish pose a threat to commercial crustacean fisheries and can disturb benthic food webs in 307 

both current and potential invasion areas (Ballew et al. 2016; Savva et al. 2020). Lionfish have 308 

been observed at varying depths in regions they have infiltrated: surpassing 100 meters in the 309 

Bahamas (Lesser and Slattery, 2011), reaching depths of 250 meters in Honduras (Gress et al. 310 

2017), and descending as far as 304 meters in Bermuda (Gress et al. 2017) where dense lionfish 311 

populations have been identified at specific locations, particularly at or below 60 meters, in 312 

select Bermuda sites (Eddy, 2016; Andradi-Brown et al. 2017). The potential for high 313 

consumption rates of N. norvegicus by adult lionfish is a cause for concern considering that 314 

lionfish range expansions will overlap with commercially important fishing grounds. While 315 

juveniles also fed on N. norvegicus, they did so in smaller numbers, which may be due to 316 

limitations in gape and their inability to efficiently predate the hard exoskeleton (Björnsson 317 

and Dombaxe 2004; Rojas-Velez et al. 2023). Nephrops norvegicus are generally a deep-water 318 

species which reside in mud-flat burrows at depths of 20-800 meters, given that lionfish have 319 

been found at mesophotic depths this suggests that deep water populations could be sustained 320 

on N. norvegicus (Andradi-Brown et al. 2016). Furthermore, high FRR values on P. varians 321 

indicates high potential for consumption of functional analogue species such as Pandalus 322 

montagui and Cragon crangon, both of which form a high percentage of diet for native fish 323 

predators (Myers and Worm, 2003). The full and pernicious impacts of lionfish invasion may 324 



 
 

be further revealed if prey depletion leads to trophic cascades through loss of prey for native 325 

predators (Moll et al. 2017; Palmer et al. 2022). 326 

 327 

While A. salina and P. varians are generally pelagic with high mobility (Ward-Booth and 328 

Reiss, 1988; Harding et al. 2023), G. oceanicus and N. norvegicus tend to be epibenthic with a 329 

relatively lower rate of mobility (Maynou and Sarda, 2001; Navarro-Barranco et al. 2020; 330 

Coughlan et al. 2021). It appears that both lionfish life stages can exploit pelagic and epibenthic 331 

prey (Green and Côté, 2014; Green et al. 2019), with utilisation of prey items being linked to 332 

body type (McCleery, 2011; Muñoz, Currin & Whitfield, 2011), size (Green and Côté, 2014; 333 

Kindinger and Anderson, 2016; Navarro-Martínez et al. 2022) and digestibility (Steell et al. 334 

2019; Trehern et al. 2024) rather than mobility (Trehern et al. 2024) for juvenile lionfish, while 335 

adults appeared to better utilise the largest prey and least mobile prey. Previous studies have 336 

shown lionfish may specialise on small prey species that are solitary, nocturnal, and bottom 337 

dwelling (Layman and Allgeier, 2012; Green and Côté, 2014), however, the adult lionfish in 338 

this study showed a reduced consumption of small epibenthic species (G. oceanicus) compared 339 

to the larger N. norvegicus and the pelagic species. This may indicate some difficulty in 340 

consumption within the tank confines due to spatial limitations on manoeuvrability.   341 

  342 

The current geographical spread and increased growth in abundance of lionfish in the Atlantic 343 

has made eradication impossible (Johnston and Purkis, 2015). While the data in this study were 344 

collected in a laboratory setting, with prey being presented in isolation from other prey 345 

resources, this work provides a basis for estimates of consumption rates of both juvenile and 346 

adult lionfish on representative and future prey types. Further, current management strategies 347 

for lionfish populations rely on the removal of adults (Barbour et al. 2011; Johnston and Purkis, 348 

2015), however, our data indicate that juvenile lionfish can have a greater impact on native 349 

prey species than adult lionfish. This increased predation pressure reduces prey availability for 350 

native predators. Therefore, populations composed of juveniles and adults will have wide 351 

ranging impacts across multiple prey species, potentially driven by ontogenetic shifts in 352 

functional morphology, since juveniles have traits associated with a mechanical advantage 353 

during prey capture, whereas adult morphology is more associated with locomotion and 354 

sustained swimming but a lower suction velocity (Rojas-Velez et al. 2023). Accordingly, 355 

management strategies will need to be developed to efficiently control all life stages, rather 356 

than adults alone. Finally, whilst culling might reduce lionfish impacts through reduced 357 

numbers of individual predators, imaginative strategies to alter FR metrics might also be 358 



 
 

employed; for example, Type III FRs and lowered FRRs may result from increased habitat 359 

complexity such as artificial reefs. The present study demonstrates both juvenile and adult 360 

lionfish can have a considerable impact on prey populations if allowed to establish and persist 361 

in regions at risk of invasion.  Ultimately, early detection and eradication remain the best, if 362 

least utilised, strategies for invasive species management.  363 

 364 
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Table 1: First order terms from logistic regression of prey consumed, alongside rounded initial 613 

and bootstrapped (n = 2000; 95% CIs) functional response parameters (attack rates, handling 614 

times, maximum feeding rates and FRRs), of juvenile and adult Pterois volitans with different 615 

prey types.  616 

 617 

Predator Prey First 

Order 

Term, p 

FR 

Type 

a, 95% 

CIs 

h, 95% CIs Maximum 

feeding rate 

(1/h) 

FRR 

(a/h) 

Juvenile P. 

volitans 

Artemia salina -0.09 

<0.001 

II 7.11, 5.47 – 

9.43 

0.01, 0.01 – 

0.02 

79.37 564.29 

Juvenile P. 

volitans 

Gammarus 

oceanicus 

-0.06 

<0.001 

II 4.44, 3.18 – 

6.14 

0.03, 0.02 – 

0.03 

35.71 158.54 

Juvenile P. 

volitans 

Palaemonetes 

varians 

-0.08 

<0.001 

II 10.15, 7.22 – 

14.55 

0.03, 0.03 – 

0.03 

34.48 350.14 

Juvenile P. 

volitans 

Nephrops 

norvegicus 

-0.06 

<0.001 

II 6.45, 3.85 – 

11.84 

0.11, 0.10 – 

0.13 

8.93 57.62 

Adult P. 

volitans 

Artemia salina -0.07 

<0.001 

II 6.42, 5.19 – 

7.94 

0.03, 0.03 – 

0.03 

37.04 237.74 

Adult P. 

volitans 

Gammarus 

oceanicus 

-0.06 

<0.001 

II 5.27, 3.61 – 

7.83 

0.04, 0.04 – 

0.05  

23.26 122.61 

Adult P. 

volitans 

Palaemonetes 

varians 

-0.07 

<0.001 

II 6.86, 5.11 – 

10.07 

0.03, 0.03 – 

0.04 

30.30 207.76 

Adult P. 

volitans 

Nephrops 

norvegicus 

-0.08 

<0.001 

II 7.15, 5.60 – 

9.27 

0.02, 0.02 – 

0.03 

43.48 310.91 

618 
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 620 

Figure 1: Functional Responses showing the order of highest to lowest consumption of prey 621 

with both juvenile (a) and adult (b) Pterois volitans towards all prey types: Artemia salina 622 

(red), Gammarus oceanicus (orange), Palaemonetes varians (blue) and Nephrops norvegicus 623 

(green). Shaded areas are bootstrapped (n=2000) 95% confidence intervals. 624 
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