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Structured Abstract 

INTRODUCTION: Word-list recall tests are routinely employed for cognitive assessment. 

Process scoring and latent modeling of these tests have shown potential to enhance accuracy 

without requiring test redesign. We examined whether a set of process-based digital cognitive 

biomarkers (DCBs) at baseline predicted Clinical Dementia Rating (CDR) longitudinally, and 

how they compared to standard metrics.  

METHODS: Secondary data analyses were carried out with ADNI data. DCBs were derived 

from ADAS-Cog Word Recall test data. Participants were 330 (baseline mean age=71.4, 

SD=7.2). We conducted Bayesian and frequentist regression analyses using CDR at 36 

months as outcome, controlled for demographics and genetic risk, and used ADAS-Cog 

traditional scores and DCBs as predictors. 

RESULTS: Across tests, the best predictor of CDR score at 36 months appeared to be M, a 

DCB reflecting recall ability. This metric outperformed traditional ADAS-Cog scores. 

Diagnostic results suggest that M may be particularly useful to identify true negatives, i.e., 

individuals who are unlikely to decline over the follow-up period.  

DISCUSSION: These results indicate that M, derived from word-list tests such as ADAS-

Cog, may outperform some of the traditional metrics used for the purpose of identifying 

individuals who are at greater risk of disease progression. More research is needed, however, 

to determine these metrics’ applicability and sensitivity with other word-list tests and across 

diverse populations.  
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1. Background 

Word list recall tests are routinely employed in clinical practice for the assessment of verbal 

memory ability, including in individuals with Alzheimer’s disease (AD) and other dementias 

[1]. Most commonly-employed neuropsychological tests of word-list recall were developed 

originally for the purposes of identifying individuals with well-defined memory loss 

predating dementia [2]. However, alongside the promise of disease-modifying drugs for AD, 

more emphasis is currently being put on identifying individuals who present subtle signs of 

underlying pathology at the earliest stages, as these subjects may benefit the most from 

pharmacological interventions. Therefore, together with advancements in neuroimaging and 

fluid biomarkers, there is also a critical need for development of more accurate 

neuropsychological testing, including with word lists, particularly as cognitive assessment 

typically is cost-effective and requires relatively little training, compared to neuroimaging 

and fluid biomarkers capture [3].  

Process scoring and latent modeling of cognitive tests, which allow for the identification of 

underlying neurocognitive mechanisms of test performance, including with word list recall 

tests, have shown potential to enhance test accuracy without requiring test redesign [3-7]. For 

example, simple adjustments in the way popular word-list tests are scored have yielded 

enhanced sensitivity to cerebrospinal fluid biomarkers of AD [8], and post-mortem pathology 

[9]. 

One approach to latent modeling of word-list recall tests is with hidden Markov modeling 

(HMM), a class of established cognitive models [10,11]. In the context of word list recall 

tests, an HMM characterizes episodic memory for a list item as existing in one of a set of 

latent storage states upon each observation of recall or non-recall during the test. Retrieval 

parameters are associated with each storage state from which an item is capable of being 
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recalled, and encoding parameters describe the transitions among the storage states [12]. The 

sequence of encoding and retrieval transitions cannot be directly observed and are therefore 

“hidden” or “latent” parameters, quantifiable as probabilities that together produce the 

observed sequence of recall and non-recall. 

One HMM that has been applied to word list recall tests is the hierarchical Bayesian 

cognitive processing (HBCP) model. The HBCP model posits that an item exists within one 

of three states upon each observation: Pre-task Storage (P), which contains only semantic 

memory of the non-novel word yet no episodic memory of its presentation during the word-

list recall test; Transient Storage (T), which contains temporarily-stored episodic memory of 

the word presentation such that it can be retrieved on immediate free recall (IFR) tasks but 

not after a delay; and Durable Storage (D), which contains episodic memory of the word 

presentation that is capable of being retrieved on immediate or delayed free recall (DFR) 

tasks. Three retrieval parameters quantify the probability of recall from the latter two states: 

Transient Retrieval (R1), from T on IFR tasks; Durable Retrieval (R2), from D on IFR tasks; 

and Delayed Retrieval (R3), from D on DFR tasks. Four encoding parameters quantify the 

probability of an item transitioning from one state to another during each task: One-shot 

Encoding (N1), from P to D; Transient Encoding (N2), from P to T; Consolidated Encoding 

(N3), from T to D on a task subsequent to its encoding into T; and Testing Effect Encoding 

(N4), from T to D upon successful recall from T. In the HBCP, these parameters are employed 

as probabilities for each branch of a multinomial processing tree that reproduces the observed 

recall behavior [13]. For example, a particular word for a particular assessment that is not 

recalled on IFR 1 or 2 or DFR 1, but recalled on IFR 3, will express as increased probability 

of the encoding parameters that result in the word existing in the T or D state by IFR 3, and 

the retrieval parameters R1 and R2, respectively. See Figure 1. 
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Subsequent to generating the encoding and retrieval parameters, measures of recall ability 

can be estimated by recombining specific subsets of the multinomial processing tree branches 

comprised of these parameters. Word recall through T (M1) includes the probabilities for N2 

and R1; word recall through D on IFR tasks (M2) includes N1, N2, N3, N4, and R2; and word 

recall through D on DFR tasks (M3) includes N1, N2, N3, N4, and R3. In the above example of 

word recall on only IFR 3, M1 is the summation of the subset of branches that results in 

retrieval through R1 on IFR 3, including encoding through N2 into T but excluding branches 

that encode through N1, N2, N3, and N4 into D; the reverse is true for the generation of M2 via 

retrieval from D through R2. These memory (M) values represent generalized recall rate 

through the various processes across words and tests. For example, an individual with an M3 

of .71 is expected to recall 7.1 words out of 10 on average across delayed free recall tests. In 

unpublished findings, these M parameters have been used to distinguish individuals with mild 

cognitive impairment from those who were cognitively normal at time of assessment, with an 

AUC of .79. Collectively, the N, R, and M parameters are referred to as digital cognitive 

biomarkers (DCBs). In the present study, parameters are averaged together (e.g., average of 

M1, M2, and M3 = M) to further generalize recall ability across word-list recall test tasks. 

In this paper, we aim to confirm previous, internal findings, by testing whether HBCP-

derived DCBs (N, R, and M: indexing encoding, retrieval, and recall, respectively) are useful 

predictors of cognitive decline, as measured by the Clinical Dementia Rating (CDR) overall 

score. In particular, we want to ascertain whether baseline estimates of N, R, and M yield 

more predictive power than the traditional ADAS-Cog memory measures, such as immediate 

and delayed recall scores also derived from item response data. 

2. Methods 

2.1 Participants 
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Data were drawn from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, 

which has detailed methods [14] reported elsewhere [15,16]. The ADNI is a longitudinal 

study launched in 2003 with measures of cognitive impairment and AD including clinical and 

neuropsychological assessment. To be included in this secondary data analysis study, 

participants had to have: Alzheimer's Disease Assessment Scale–Cognitive subscale (ADAS-

Cog) scores at baseline, from which traditional scores and DCBs were extracted; a CDR 

score at baseline and after a 36-month follow up; and a Polygenic Hazard Score (PHS) to 

determine genetic risk. The initial reference pool comprised of 3,418 participants, then 

reduced to 330 participants (mean age at baseline = 71.4, SD = 7.2), after applying the 

inclusion criteria above. Of these, 184 were males, and were 146 females. At baseline, 29 

participants had a CDR score of 0; 300 scored 0.5; and one participant scored 1. At the 36-

month follow-up visit, 64 participants had a CDR score of 0; 214 scored 0.5; 39 scored 1; 12 

scored 2; and one participant scored 3. All activities for this study were approved by the 

ethics committees of the authors’ universities and competed in accordance with the 

Declaration of Helsinki. All participants provided informed consent prior to testing. 

2.2. Materials 

The Alzheimer's Disease Assessment Scale–Cognitive subscale (ADAS-Cog) [17] is a 

neuropsychological test battery consisting of 13 subtests, including immediate and delayed 

word recall. In the word recall task, participants are visually and audibly presented a list of 10 

words, then asked to recall as many words as possible over 3 tasks: the order of presentation 

is varied across tasks, and the score is calculated as the mean number of words not recalled 

across the three tasks. After a 10-minute delay with distraction, participants are once more 

asked to recall as many words as possible, this time without presentation, and the score is 

calculated as the number of words not recalled. 
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The Clinical Dementia Rating (CDR) scale [18] is a semi-structured clinical interview that 

assesses six cognitive areas: memory, orientation, judgement and problem-solving, 

community affairs, home and hobbies, and personal care. Each cognitive domain is then 

scored between 0 and 3, and to obtain a global score, the sum of each of the domains is 

calculated with equal weightings. The global CDR stages are 0, indicating normal cognition; 

0.5, indicating mild cognitive impairment; and 1, 2, and 3, indicating mild, moderate, and 

severe dementia, respectively. 

2.3. Digital Cognitive Biomarkers 

Digital cognitive biomarkers scores were generated using ADAS-Cog Word Recall item 

response data with the HBCP model, using Bayesian inference with a Markov-chain Monte 

Carlo (MCMC) algorithm [13]. Each assessment’s observed sequence of recall and non-recall 

was used to update prior information of DCB distributions for typical individuals in the 

general population who come from demographic groups (age, sex, and education level) 

specific to the participant who performed the assessment. The HBCP model additionally 

included adjustment for word presentation position effects on each of the three ADAS-Cog 

English word lists. These DCBs are proprietary (Embic Corporation). 

2.4. Polygenic Hazard Score 

The Desikan AD PHS was computed based on a Cox proportional hazard regression model 

combining 31 AD-associated single nucleotide polymorphisms (SNPs) with 

two APOE variants (ε2/ε4), trained with genetic data from an independent cohort. The PHS, 

composed of a weighted score of 33 risk- or protection-conferring SNPs, was calculated for 

each participant as previously described [19]. 

 

2.5. Analysis plan 
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First, we carried out a longitudinal Bayesian linear regression analysis with CDR score at 36 

months as outcome. Predictors were N (as average of N1, N2, N3, N4), R (as average of R1, R2 

and R3), and M (as average of M1, M2, and M3), and the traditional ADAS-Cog memory 

scores (immediate and delayed recall), all measured at baseline, and control variables were 

years of education, gender, polygenic hazard score, age at baseline, and baseline CDR score. 

Credible intervals (CIs) were set to 95%. The prior was set to JZS, and the model prior was 

set to Uniform. One thousand MCMC simulations were conducted to determine parameters 

and compensate for possible violations of normality, but we also evaluated q-q plots of 

residuals to estimate normality. Following that, we carried out two sensitivity tests. We 

conducted a frequentist ordinal regression analysis with the same outcome and covariates but 

limited predictors to those that emerged from the initial Bayesian regression as strongest. 

Finally, to evaluate clinical validity of these predictive metrics, we conducted a frequentist 

logistic regression analysis: we used the increase in CDR score between baseline to 36 

months of at least 0.5 as outcome and used the same predictor(s) and covariates (minus the 

baseline CDR score, already included in the change score) as in the ordinal analysis. 

Analyses were conducted using JASP (0.18.3) [20] and SPSS (29.0; IBM). 

 

3. Results 

Table 1 reports demographics, CDR, and memory scores in the cohort under examination.  

Results indicated that the CDR score at 36 months was best predicted by a model including 

only M (extreme evidence: BF10 > 1 billion, BFinclusion = 26.9) — this model’s odds were 

about three times as high (BFM = 9.3 vs. BFM = 3.2) as the next best model, including M and 

R. In comparison to models including the traditional ADAS-Cog immediate and delayed 

recall scores, the model with M alone performed over 3.5 times better than the model with 

immediate recall and M combined (BFM = 9.2 vs. BFM = 2.6, respectively), and over 5 times 



 9 

better than the model with delayed recall and M combined (whose BFM was 1.7). The best 

model without DCBs (including both immediate and delayed recall) had a BFM of 0.1: this 

finding indicates that the top model, with M alone, had model odds about 90 times greater 

than the best model with only traditional ADAS-Cog metrics.  

The higher the M score was, the lower the CDR score at 36 months (mean coefficient = -2.38, 

SD = 0.79): a cross-sectional difference of 0.2 M points corresponds to a CDR difference of 

about 0.5 (credibility intervals: -4.52 to -1.05).  

Given that the q-q plot for the analysis above displayed some degree of non-normality, we 

also carried out the same analysis on square-root transformed follow up CDR scores, which 

gave us more linear q-q plots. The overall pattern of results was unchanged. 

The sensitivity ordinal (frequentist) regression confirmed the overall findings above. The 

model fit was significant (χ2 (6) = 122.8, p < .001; Nagelkerke pseudo-R2 = 0.36), as was M 

(coefficient estimate = -12.92, SE = 1.79, Wald coefficient = 52.32, p < .001). 

Finally, the frequentist logistic regression (269 individuals did not increase their CDR score 

by 0.5 or more, and 61 did) showed that adding M to the model reduced the AIC from 293.95 

to 245.24. M was a significant predictor in this analysis (unstandardized coefficient estimate 

= -14.94, standardized coefficient estimate = -1.23, Wald coefficient = 39.75, Odds Ratio < 

0.001, p < .001). Setting M at approximately 0.58 yielded the following performance 

diagnostics: the area under the curve (AUC) was 0.84 (without M and only covariates the 

AUC was 0.71), negative predictive value was 0.87 (258 correct rejections vs. 38 misses), 

and positive predictive value was 0.68 (23 hits vs. 11 false alarm). Furthermore, specificity 

was very high (0.96; 258 correct rejections vs. 11 false alarms), while sensitivity was lower 

(0.38; 23 hits vs. 38 misses). Figure 2 displays the association between the baseline M score 
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and the probability of declining by at least 0.5 CDR points at follow-up (36 months), and 

Figure 3 reports the receiver operating characteristics (ROC) curve. 

 

4. Discussion 

In this analysis of ADNI data, we examined how HBCP-derived DCBs  (N, R, and M, 

indexing encoding, retrieval, and recall, respectively) compared to the traditional ADAS-Cog 

assessment metrics (immediate and delayed recall scores) in predicting CDR score over a 36-

month span. Our analysis included 330 individuals and showed that DCB M was the better 

overall predictor in the test. These findings are in line with recent efforts demonstrating the 

validity of process metrics for early detection of cognitive impairment [3-7,21-25]. 

One observation is that the M metric, comparably to other cognitive tools in recent literature 

[3,25,26], appears more useful to exclude false negatives than to identify targets correctly, as 

indexed by the high negative predictive value and specificity. In other words, individuals 

scoring at M = 0.58 or higher at baseline were unlikely to be declining after 36 months. While 

identification of positive cases appears more difficult with process scoring compared to, for 

example, fluid biomarkers [27,28], a high negative predictive value still yields great utility. 

Typically, cognitive assessment is cost- and resource-effective when compared to most 

biomarker assessments, as cognitive assessments are cheaper (many are non-proprietary), 

require less administrator training, and are less invasive for delivery. Therefore, especially in 

addressing global need where biomarker assessment is cost-restrictive, there is value in 

cognitive screening which may help exclude individuals who, despite possible subjective 

concerns, are unlikely to be on a disease trajectory. Future assessments of M and related 

DCBs should include direct comparisons to state-of-the-art fluid and imaging biomarkers. 
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Further research should also use the latest in process scoring and latent modeling. In the time 

since these analyses were performed, a second generation of DCBs was generated and 

included in the ADNI database as quantified cognitive processes (qCP). These qCPs account 

for additional differences in word features across the alternate lists of the ADAS-Cog Word 

Recall test and include alternate M parameters representative of recall on specific immediate 

and delayed tasks. Future analyses can be performed to evaluate the predictive capability of 

these qCPs. 

This secondary and preliminary assessment of HBCP-derived DCBs  has a definite limitation 

worth noting. The outcome (CDR score) is based upon clinical assessment of primarily 

cognitive function, and the predictors (N, R, M, and traditional immediate and delayed recall 

scores) are also measures of cognitive function, specifically memory, which risks issues of 

circularity. However, to note, 1) the memory scores are not contributors to the CDR score, 

and 2) M outperformed other measures of recall performance. In addition to measures of 

cognitive function, further confirmation of the utility of HBCP-derived DCBs should come 

from tests comparing this score to measures of pathology. Moreover, further studies should 

consider adding more demographic variety, such as including younger cohorts (as the present 

cohort was on average 70+ at baseline) and more ethnic diversity.  

To conclude, word list memory tests are widely utilized for evaluating cognitive function, 

especially in Alzheimer's disease research and screening. These tests vary in their elements, 

such as list length, number of learning attempts, sequence of presentation across attempts, 

and inclusion of semantic categories. Traditionally, scoring techniques, such as overall scores 

and more recently composite scoring, have not adequately addressed differences among these 

elements or their impact on learning and memory during the test [29]. Recent advancements 

in process scoring and latent modeling offer promise in overcoming these limitations to 
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provide better ways to assess cognitive performance. In this study, we show a specific 

example in HBCP-derived DCBs, M.  
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Figure Legends 

 

Figure 1. Hierarchical Bayesian Cognitive Processing Model. The model has three episodic 

memory storage states (P, T, and D), four processes of encoding into them (N1, N2, N3, and 

N4), and three processes of retrieval from them (R1, R2, and R3) that episodic memory of a 

word may exist in or transition through during each immediate and delayed free recall task. 

 

Figure 2. Conditional estimates plot with 95% confidence intervals (shaded area). The Y-axis 

represents the probability of CDR decline at follow-up (36 months). The X-axis represents M 

scores at baseline. Grey circles represent unique individuals’ data points. Circles at the 

bottom represent individuals who did not show CDR decline at follow up, whereas circles at 

the top represent CDR decliners at follow-up. 

 

Figure 3. Receiver Operating Characteristics (ROC) plot comparing false positive rate (Y-

axis) to false negative rate (X-axis) in the frequentist logistic analysis. 

 

 


