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A B S T R A C T   

Current traffic pattern mining methods fail to incorporate the temporal co-occurrence of traffic characteristics. 
To address this problem, a new spatial-temporal data mining method is developed involving three steps. Firstly, a 
three-dimensional traffic tensor is constructed utilizing AIS data. The AIS data is discretized and numbered so 
that each AIS data entry is represented by a one-dimensional array that includes region, time, ship type, and 
speed numbers. Then the AIS array is mapped to the three-dimensional ship traffic tensor. Second, non-negative 
tensor factorization (NTF) is used to break down the tensor into multiple sub-tensors (i.e., traffic patterns). The 
effect of the tensor rank (i.e., the number of traffic patterns) is discussed, and the appropriate value of the tensor 
rank is determined. Thirdly, the traffic patterns are derived from the three-dimensional traffic tensor. The ship 
traffic pattern is subsequently analyzed in accordance with the actual circumstances. To demonstrate the 
feasibility of the method, 9 traffic patterns are obtained from the AIS data of Tianjin port-Caofeidian waters. 
These patterns reveal the presentation of the spatio-temporal distribution of traffic activities of different ship 
types, and the distribution of navigation speed of different ship types in space, that are of strategic values for port 
planning, and maritime safety and sustainability.   

1. Introduction 

Since 2002, the International Maritime Organization (IMO) that all 
passenger ships and cargo ships over 300 gross tonnages must be 
equipped with the AIS (Tang et al., 2022). This measure provides the 
basis for using AIS data for traffic analysis. AIS data is composed of static 
and dynamic information, the static information includes Maritime 
Mobile Service Identity (MMSI), ship type, and sizes, which is used for 
ship identification, while the dynamic information includes ship speed, 
ship course, and geographical location relating to the interaction process 
between ships and the navigational environment (Cao et al., 2023b; 
Fang et al., 2023). In view of its strong availability and extensive in
formation coverage, AIS data has gradually become a significant data 
source for regional water traffic situation assessment (Christensen et al., 
2022; Huang et al., 2023; Valcalda et al., 2023). The AIS data within a 
specific period in a region can be used for vessel motion prediction 
(Zhang et al., 2023) and extraction of maritime traffic network (Liu 

et al., 2023), ship route planning (Filipiak et al., 2020; Han and Yang, 
2020), waterway navigable capacity estimate (Liu et al., 2020), ship 
behavior research (Kabir et al., 2022; Wu et al., 2018) and marine traffic 
safety assessment (Chen et al., 2021; Xia, 2021; Montewka et al., 2022), 
etc. The availability of AIS data also provides an opportunity to under
stand vessel traffic patterns. In this study, the traffic pattern is defined as 
a brief representation of the vessel navigation rule (Xiao et al., 2020). It 
characterizes the vessel trajectories during their daily activity, which 
can represent voluminous real-world navigation instances. These pat
terns reveal the spatiotemporal relationships between ships, including 
the relative position of ships at specific time points, the regular patterns 
and variations in their movements over time, as well as the interactive 
behaviors exhibited between ships. Information such as traffic volume 
and the layout of shipping channels and other functional areas are also 
implied. 

The extracted traffic pattern is not only supportive for the traffic 
prediction (Xiao et al., 2017) but also contributes towards maritime 
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traffic visualization (Zhen et al., 2017), anomaly detection (Ristic, 
2014a), collision alert (Wu et al., 2017a), traffic planning (Filipiak et al., 
2020) and other high level decision making support to VTS etc. 
Although showing some attractiveness, these methods still reveal some 
limitations in their applications (Cao et al., 2023a). First, the 
vector-based method focuses on the geometric topological characteris
tics in space and maritime traffic visualization. However, it often 
insufficiently takes into account other vessel traffic information such as 
ship speed changes. Secondly, the dynamic evolution of ship traffic is yet 
fully incorporated into the traffic pattern analysis. The correspondence 
relationship between each dimension (e.g. time and space dimension) 
and ship motion pattern therefore often remains unclear. Finally, the 
implicit relationship between the attributes of AIS data is at large 
ignored. In statistical-based methods, for multi-dimensional data, the 
existing studies often reduced the dimension of AIS data and imposed 
constraints such as a Gaussian distribution. As a result, they unavoidably 
change the original structure of AIS data. To promote the analysis of ship 
traffic patterns, it is necessary to find a new method that can support the 
analysis and expression of multidimensional dynamic data and better 
retain the AIS data structure. Based on these motivations, this study is 
conducted to make valuable explorations in maritime traffic patterns 
mining, providing support for subsequent studies on maritime traffic 
prediction and maritime safety planning. It will provide a theoretical 
basis for maritime authorities to enhance monitoring efficiency and 
reduce the occurrence and severity of maritime accidents. 

In this study, the traffic tensors constructed from AIS data are 
decomposed into multiple sub-tensors (i.e., vessel traffic patterns). The 
tensor can address the association between multiple attributes simul
taneously. This advanced NTF can therefore well fit the characteristics of 
the vessel traffic pattern containing multiple attributes. 

In this study, the NTF method is used to explore vessel traffic pat
terns. The main contributions are as follows:  

(1) A new method is proposed to construct three-dimensional vessel 
traffic tensors using AIS data. The research area is divided into 
irregular grids and assigned each of them a unique number, 
which corresponds to different grids where each ship is located. 
In addition, attributes such as time, ship types, and speed are 
separated and marked accordingly. Each AIS data entry is rep
resented by a concise one-dimensional array that encapsulates 
the relevant information, including area, time, ship type, and 
speed numbers. By applying a mapping rule, the three- 
dimensional ship traffic tensors are constructed from one- 
dimensional AIS data.  

(2) The NTF method is employed to directly analyze the distribution 
characteristics of AIS data, unveiling the concealed traffic pattern 
information. The influence of the tensor rank on the vessel traffic 
patterns is also discussed. A real case of Tianjin-Caofeidian waters 
is analyzed to verify the effectiveness of the vessel traffic patterns 
extraction method and the co-occurrence of traffic patterns in 
multiple attributes. 

The rest of this work is organized as follows. Section 2 introduces the 
relevant work on the discovery of vessel traffic patterns. Section 3 de
scribes the pre-processing of the AIS data, the establishment of the three- 
dimensional vessel traffic tensor and the detail of NTF algorithm. In 
Section 4, the experimental result of the Tianjin-Caofeidian water area 
and the choice of tensor rank are conducted, analyzed, and discussed. 
Section 5 discusses the application of the proposed method in practice. 
Section 6 gives the conclusion and future works. 

2. Literature review 

There are not lacking of empirical studies of using AIS data to 
analyze the vessel traffic patterns in the existing literature. Xiao et al. 
(2020) gave a comprehensive introduction to the analysis of maritime 

traffic patterns. It was found that the maritime traffic patterns mining 
methodologies can be categorized as three main methods: grid-based, 
vector-based and statistics-based methods. The grid-based approaches 
aggregate the raw AIS data into a set of indexed grids to facilitate 
retrieval and reduce storage. The vector method treats AIS data as a set 
of points and lines. The common statistics-based methods focus on the 
statistical analysis of the traffic features. Three traffic knowledge mining 
approaches are summarized respectively, including grid-based, vec
tor-based and statistical-based methods (Animah and Shafiee, 2021). 

The basic idea of the grid-based methods is to divide a target mari
time area into a certain number of indexed grids. AIS data attributes are 
filled into the indexed grids, such as geographic locations (Lei et al., 
2016; Wu et al., 2017b), ship courses (Osekowska et al., 2014), and ship 
speeds (Ristic, 2014b; Zhang et al., 2017). By comparing and combining 
the statistics of all grids, the traffic situation in the area such as the 
geographic distribution of ship density and speed can be obtained. 
However, In the grid-based methods, the study area is often divided into 
regular grids with the same size. When studying ship traffic character
istics, the study object is changed from countless AIS trajectory points to 
dozens of indexed grids. Therefore, the grid-based methods reduce the 
storage space of traffic patterns and facilitate retrieval by aggregating 
the traffic data into individual grids. It is also often used as a data pro
cessing method together with other pattern mining methods, to reduce 
the impact of noise. 

In vector-based methods, a shipping route is abstracted as an ordered 
set of straight lines and points connecting the start and end points 
(Pallotta et al., 2013a), which is often necessary to cluster historical 
trajectories and waypoints. Therefore, clustering algorithms, such as 
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 
(Millefiori et al., 2017; Pallotta et al., 2013b; Xiao et al., 2020), K-means 
(Liu et al., 2020; Vespe et al., 2012) and their improvements (Liu et al., 
2020; 2022) are used in vector-based methods. Rong et al. (2022) used 
an Ordering Points to Identify the Clustering Structure (OPTICS) algo
rithm to extract the ship motion mode and used the result for ship po
sition prediction. Zhang et al. (2021a, 2021b) used the combination of 
K-means and DBSCAN to analyze the ships’ trajectories, and provided 
the risk assessment of ship collision. The vector-based methods usually 
focus on the spatial position variation of vessels and traffic network 
visualization and overlook the effect of temporal data. 

Most statistical-based methods do not explicitly differentiate the 
concepts like waypoints or turning points. These approaches represent 
traffic patterns through the distribution profile of traffic attributes such 
as speed and density. In this way, some statistic models, such as kernel 
density estimation (KDE) (Li et al., 2016; Millefiori et al., 2016; Ristic 
et al., 2008) and nonparametric regression (Wen et al., 2016) were used 
to estimate the distribution of important vessel traffic attributes. 
Statistical-based methods often appear as evaluation models. Wang et al. 
(2021) used an ordered logistic regression model to reflect the rela
tionship between influencing factors and the severity of maritime acci
dents. Zhang et al. (2022) proposed a method to quantify the complexity 
of inland river traffic flows and evaluate the complexity of traffic flows 
in different areas. Gil et al. (2022) used ten years of AIS data to deter
mine the empirical value of the Bow Crossing Range (BCR) and analyzed 
the influential factors affecting the BCR. In the relevant studies, a 
threshold is usually determined as a judgment standard, such as the risk 
assessment of ship collision (Silveira et al., 2013) and identification of 
traffic hotspots (Zhang et al., 2017). Wang et al. (2023) proposed a risk 
assessment model to quantify and rank the risk factors during the 
evacuation process of Human Evacuation from Passenger Ships. Statis
tical methods often provide the basis for decision-making, while other 
techniques are needed to implement decisions in specific applications. 

In practical research, different methods are usually used together to 
formulate a comprehensive solution together. Wei et al. (2020) deter
mined the hyper-parameters in a DBSCAN algorithm with the help of a 
KDE model and then used the DBSCAN algorithm to extract traffic pat
terns for anomaly detection. Yang et al. (2021) proposed a grid-based 
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storage method for AIS data. The non-parametric KDE method was used 
to obtain the distribution pattern of ship density. Furthermore, such 
studies (Liu et al., 2021; Qi et al., 2021) used cellular automata for ship 
traffic behavior modeling. 

It is noteworthy that tensor is a useful tool to excavate hidden 
structures of high dimensionality and stereoscopic information (Jiang 
et al., 2018). The advantage of the NTF method is that it can be used to 
directly analyze the distribution characteristics and internal structure of 
the data itself from a data-driven perspective, investigate the feature 
extraction of high-dimensional tensors (Cichocki et al., 2009). The NTF 
method can reproduce the spatio-temporal pattern and dynamic process 
characteristics of the original data, and reveal the characteristics and 
inner coupling relationship of each dimension. The tensor-based method 

has been applied to many maritime traffic studies. For instance, Liu and 
Chen (2014) drew a global sea surveillance image of traffic patterns in 
each region within a given timeframe with satellites AIS data using a 
time-link prediction model based on tensor CANDECOMP/PARAFAC 
(CP) decomposition. Using SAR image information, Biondi (2016, 2018, 
2019) employed the CP tensor decomposition to detect and segment 
marine targets more accurately. Wang et al. (2017) extracted ship 
behavior patterns related to location, time, and ship type using 
spatio-temporal matrix decomposition and tensor decomposition. 
Although making some achievements in the field of maritime traffic 
analysis, they focused more on spatio-temporal knowledge and failed to 
incorporate other important information for a better result on traffic 
pattern recognition. Given the importance of three-dimensional traffic 

Fig. 1. The proposed framework for vessel traffic pattern extraction.  
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Fig. 2. The ray method of judging the relationship between the point and the polygon.  

Fig. 3. Special circumstances in the ray method.  

Fig. 4. Three polygons and their respective minimum circumscribed rectangles.  

Fig. 5. Tensor diagram.  
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patterns and K values, the explanation of three-dimensional traffic 
patterns becomes necessary and beneficial and the influence analysis of 
K value should also be further addressed in this study. 

3. Methodology 

This study uses AIS data and a NTF method to study ship traffic 
patterns. Section 3 explains the whole process of generating tensor using 
AIS data and obtaining traffic patterns in detail. Section 3.1 provides the 
process for discretizing and numbering various attributes of AIS data. 
Using the discretized AIS data, Section 3.2 specifies rules for mapping 
one-dimensional AIS array to three-dimensional vessel traffic tensors. In 
order to make the NTF algorithm easy to understand, Section 3.3 in
troduces the related symbols and basic operations of tensors. Section 3.4 
describes the process of decomposing the three-dimensional traffic 
tensor into non-negative factors, which is the mathematical represen
tation of the traffic pattern. Fig. 1 shows the framework for the proposed 
vessel traffic pattern extraction method. 

3.1. The preprocessing of the AIS data 

Before constructing the ship tensor, the AIS data need to be pre- 
processed. Section 3.1 introduces the separation and marking of the 
AIS data, describing the process of discretizing and marking the AIS data 
in detail. The attributes of position, time, ship type, and ship speed 
studied in this work are explained. In section 3.1.1, the discretization of 
region is described. Section 3.1.2 focuses on other attributes, such as 
time, speed and ship type. 

3.1.1. Discretization of region 

3.1.1.1. Irregular grids division. To better reflect the reality, the research 
water area is subdivided into irregular grids in this study. The grid-based 
methods aggregate the traffic data into individual grids, reducing the 
impact of noise and the burden of subsequent calculation. Some obvious 
functional regions can be pointed out with the help of experts’ knowl
edge. The grids are divided with the following three pieces of informa
tion known: (1) Distribution of functional areas in the study waters, (2) 
Traffic flow directions in the study waters, and (3) Opinions of pilots and 
officers from the pilot station and the vessel traffic service (VTS) center. 
The division process is described in detail in section 4.1 within the 

Fig. 6. Structure of 3D ship data tensor of < region, time, ship type >.  

Fig. 7. Rank-1 tensor X = a∘b∘c.  

Fig. 8. Decomposition diagram of tensor CP decomposition.  

Fig. 9. Non negative matrix factorization diagram.  
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Fig. 10. NTF calculation diagram for X ∈ RR×T×S 4. Case Study.  

Fig. 11. Study water area irregular division.  

Table 1 
Ship type number.  

Type of ship Number 

Fishing 1 
Port tender 2 
Cargo ship 3 
Passenger ship 4 
Recreational boat 5 
Tugboat 6 
Law Enforcement Craft 7 
Oil Tanker 8 
Pilot ship 9 
High-speed ship 10  

Table 2 
Time discretization result and time labels.  

Hour 
Date 

0-4(h) 4-8(h) 8-12(h) 12-16(h) 16-20(h) 21-24(h) 

01–01 1 2 3 4 5 6 
01–02 7 8 9 10 11 12 
01–03 13 14 15 16 17 18 
01–04 19 20 21 22 23 24 
01–05 25 26 27 28 29 30 
01–06 31 32 33 34 35 36  
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Tianjin port-Caofeidian waters. The latitude and longitude coordinates 
of each grid are recorded with Electronic Chart Display and Information 
System (ECDIS). 

3.1.1.2. The ray method. The latitude and longitude of ships selected 
from the AIS database are two-dimensional data. However, the spatial 
attribute is only one dimension in the three-dimensional vessel traffic 
tensor. Therefore, the two-dimensional latitude and longitude infor
mation can be represented by the region number where the ship is 
located. In this study, the ray method is used to determine the region. 

The ray method determines the relationship between the point and 
the polygon according to the number of intersections, which is the 
number between a horizontal ray emitted from the point and the poly
gon. The point is inside the polygon when the number of intersections is 
odd, and the point is outside the polygon when the number of in
tersections is even. When the point is on one of the sides of a polygon, it 
is directly concluded to be inside the polygon. 

In Fig. 2, the ray emitted from point P to the horizontal right direc
tion forms two intersections with the polygon at point A and point B. The 
number of intersections is two, and the point P is outside the polygon. In 
the same way, the ray emitted from point P’ to the horizontal right di
rection forms three intersections at points C, D, and E with the polygon. 
The number of intersections is odd, and point P’ is inside the polygon. 

There are special cases that should be noted when using the ray 
method. As shown in Fig. 3, polygon 1 and polygon 2 represent two 
adjacent irregular grids, point P is the point to be judged. It is assumed 
that the line segment MN is a common edge of two polygons, and M and 
N are the endpoints of the side respectively. When determining whether 
there is an intersection of the ray emitted from the point P with side MN:  

(1) As shown in Fig. 3(a), when the side MN is the common edge of 
two polygons, it is considered that point P is in the right polygon 
2. In Fig. 3(b), when the side MN is horizontal, then point P is in 
the upper polygon 1.  

(2) If the ray emitted from point P passes one of the endpoints M or N, 
it must determine the relationship between the two edges of the 
polygon passing the endpoint and the ray. If the two edges are on 
the same side of the ray, then the intersection is ignored, while if 
on opposite sides, it is considered that the ray has an intersection 
with the edge MN. Just shown in Fig. 3(c), the ray passes through 
point N, and both edges MN and NQ are below the ray, then point 
N is not recorded as an intersection. In Fig. 3(d), the edge MN is 
above the ray and the edge NQ is below, then point N is recorded 
as an intersection. The edge is considered on the upper side of the 
ray if one edge coincides with the ray. In Fig. 3(e), edge NQ is 
considered above the ray emitted from point P. The edges NQ and 
MN are on both sides of the ray, then point N is recorded as an 
intersection of a ray with edge MN.  

(3) If the ray emitted from point P coincides with the edge MN, as 
shown in Fig. 3, points M and N are not recorded as an 
intersection. 

It is inefficient to determine the relationship between all the ship 
position points and each edge of all irregular regions due to the huge 
amount of data. To solve this problem, the minimum circumscribed 
rectangles of all regions are drawn, and then the points outside the 
minimum circumscribed rectangle are excluded. The size of the mini
mum enclosing rectangle is determined based on the maximum and 
minimum values of the latitude and longitude within the polygon re
gion. The above processes significantly improve efficiency, as shown in 
Fig. 4. 

In Fig. 4, the blue polygon 1, green polygon 2, and gray polygon 3 
represent three irregular grids, and their outer borders form respective 
minimum enclosing rectangles. In determining the region where point P 
belongs, the minimum outer rectangle where point P is located has to be 
determined first. Point P is located in the green minimum enclosed 
rectangle of polygon 2 instead of polygons 1 and 3. Then it only needs to 
determine the positional relationship between point P and polygon 2 
whose minimum enclosed rectangle contains point P. The relationship 
between point P and polygon 2 can be judged through the ray method. 

3.1.2. Discretization of other attributes 

3.1.2.1. Time discretization. According to the seafarer duty handover 
system, the ship implements an around-the-clock duty system in both 
sailing and berthing. During a voyage, each shift is fixed as 4 h. The chief 
officer is on duty from 04:00–08:00 and 16:00–20:00, the second officer 
from 00:00–04:00 and 12:00–16:00 and the third officer from 
08:00–12:00 and 20:00–24:00. According to the duty schedule, every 4 
h is defined an interval and a whole day is divided into six intervals. 

3.1.2.2. Speed discretization. The speed changes slowly and the fluctua
tion is small. To reflect the difference in speed dimensions, each knot is 
treated as a speed interval. The value of ship speed will be rounded up to an 
integer and marked to facilitate the following analysis. For example, and 
the speed of 0–0.4 knots is marked as 0, and 0.5–1.4 knots marked as 1. 

3.1.2.3. Number of ship types. A ship type is also an important attribute 
in the study of vessel traffic. Different types of ships sail at different 
speeds and through different routes. We therefore select the studied ship 
types and assign a number to each type. 

After the pre-processing, AIS data is replaced by a set of the numbers 
of ship type, time, speed and region. The three-dimensional vessel traffic 
tensors are established from the set. An element in the set represents an 
AIS data point. 

Table 3 
AIS data list before discretization.  

Time Longitude (◦) Latitude (◦) Ship type Speed (knot) 

01-01 08:37 117.8079 38.9663 Cargo ship 3.7 
01-01 08:41 117.8134 38.9656 Cargo ship 4.3 
01-03 04:59 117.8457 38.7044 Fishing 0.2 
01-03 07:33 117.8501 38.6950 Cargo ship 5.6 
… … … … …  

Table 4 
List of ships attribute label data after discretization.  

Time Region Ship type Speed 

2 15 3 4 
2 15 3 5 
14 36 1 1 
14 36 3 6 
… … … …  

Table 5 
Type of ships in research waters.  

Types of ship Number of ships Number of AIS Data Information 

Fishing 236 11023 
Port tender 14 1847 
Cargo ship 898 121361 
Passenger ship 11 1010 
Recreational boat 2 66 
Tugboat 133 34090 
Law Enforcement Craft 12 496 
Oil Tanker 208 23588 
Pilot ship 5 2287 
High-speed ship 2 148 
Total 1521 195917  
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3.2. Constructing three-dimensional vessel traffic tensors 

A tensor is a multidimensional array of a data structure. A tensor of N 
order is an inherent structure of the tensor product of N vector spaces, 
each of which has its coordinate system. A first-order tensor is a vector, a 
second-order tensor is a matrix, and tensors of order three or higher are 
called higher-order tensors (Kolda and Bader, 2009), as shown in Fig. 5. 

F is the mapping rule from the set of attributes numbers to vessel 
traffic tensors. 

F:A= [a1,…,an,…,aN ]→
{
X1 ∈ RR×T×S =

[
xr,t,s

]

X2 ∈ RR×V×S =
[
xr,v,s

]

where an = [rn,tn,vn,sn], A is the set of numbers of ship type, time, speed 
and region, which is obtained after the separation and marking of the 
AIS data. The element is represented by an and n= 1, ...,N. X ∈ RR×T×S 

means a third-order tensor with the structure of R× T× S, and the 
element (r,t,s) of X ∈ RR×T×S is denoted by xr,t,s. X ∈ RR×V×S means a 
third-order tensor with the structure of R× V × S, and the element (r,v,s)
of X ∈ RR×V×S is denoted by xr,v,s. r, t, v, and s denote the values of the 
region, time, speed, and ship type, respectively. The range of values of r 
is r= 1,2, ...,R and so do t, v and s. The rule F1 from A to X ∈ RR×T×S and 

the rule F2 from A to X ∈ RR×V×S are as follows. 
Rule 1: F1:A = [a1,…,an,…,aN]→X1 ∈ RR×T×S = [xr,t,s]. 

f1(r, t, s, an)=
{

1, rn = r and tn = t and sn = s
0, others (1)  

xr,t,s=
∑N

i=1
f1(r, t, s, an) (2) 

Rule 2: F2:A = [a1,…,an,…,aN]→X2 ∈ RR×V×S = [xr,v,s]. 

f2(r, v, s, an)=
{

1, rn = r and vn = v and sn = s
0, others (3)  

xr,v,s =
∑N

i=1
f2(r, v, s, an) (4) 

Taking the construction of the tensor X1 ∈ RR×T×S of < region, time, 
ship type > as an example. Fig. 6 shows the structure of a three- 
dimensional ship traffic tensor X1 ∈ RR×T×S for < region, time, ship 
type >. It is noteworthy that the value of the corresponding element 
pluses 1 when each point in the set of attributes numbers is mapped into 
the tensor. In other words, all trajectory points denoted by a ship with 

Fig. 12. Comparison of extraction results of the same feature under different K values.  
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ship type s located in region r in time t are selected as experimental data. 
xr,t,s records the number of all points with ship type s, region r, and time 
t. 

The reason for specifying such a mapping rule is as follows：  

(1) This study is expected to discover more information about vessel 
traffic patterns. All data points are mapped into the tensors to 
prevent the loss of any value information. The distributions of 
traffic attributes are also not changed.  

(2) The simplification of data should refer to research requirements 
according to specific scenarios. In this study, the duplicated data 
will not significantly increase the burden of calculation, because 
they only result in the increased value of xr,t,s, instead of the 
increased dimension of data. The increased computational 
burden of this case is therefore limited. 

3.3. Related symbols and basic operations of tensors 

The basic algebraic knowledge and operation symbols involved in 
tensor factorization are introduced below. Supposing there are N-order 
tensors X,Y ∈ RI1×I2×…×IN (Kolda and Bader, 2009). 

Definition 1. The F-norm of a tensor X is: 

‖X‖=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑I1

i1=1

∑I2

i2=1
…

∑IN

iN=1
x2
i1 i2…iN

√
√
√
√ (5)   

Definition 2. The matricization, also known as the expansion of the 
matrix form of a tensor, is the process of reordering the N-order tensor 

into a matrix. Tensor’s mode-n matricization X ∈ RI1×I2×…×IN is repre
sented by X(n). The position of tensor element xi1 i2…iN in a tensor is (i1,
i2,…, in,…,iN) (in ∈ [1, IN] ). When being mapped to the mode-n matrix 
element (i,j) it is represented as: 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

i = in

j= 1+
∑N

k=1
k∕=n

(ik− 1)Jk with Jk =
∏k− 1

m=1
m∕=n

Im
(6) 

Slices are two-dimensional sections of a tensor, and the k th frontal 
slice of a third-order tensor is denoted as X∷k or Xk. For example, let the 
frontal slices X ∈ R3×4×2 be 

X1 =

⎡

⎣
1 2 3 4
5 6 7 8
9 10 11 12

⎤

⎦,X2 =

⎡

⎣
13 14 15 16
17 18 19 20
21 22 23 24

⎤

⎦

Then the three mode-n unfolding are X(1) ∈ R3×8、 X(2) ∈ R4×6 and 
X(3) ∈ R2×12 are: 

X(1) =

⎡

⎣

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

⎤

⎥
⎥
⎦

X(2) =

⎡

⎢
⎢
⎣

1 5 9 13 17 21
2 6 10 14 18 22
3 7 11 15 19 23
4 8 12 16 20 24

⎤

⎥
⎥
⎦

Fig. 13. A new pattern appears in the co-clustering results of K = 10.  
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X(3) =

[
1 5 9 2 6 ⋯ 11 4 8 12

13 17 21 14 18 ⋯ 23 16 20 24

]

Definition 3. Considering a tensor X ∈ RI1×I2×…×IN , and a matrix 
A ∈ RJ×In , then the mode-n product of the tensor is X×nA, whose result is 
a tensor of size I1 × …× In− 1 × J× In+1 × …× IN. The transformation of 
mode-n product satisfies Eq. (7). 

Y=X×nA ⇔ Y(n)= AX(n) (7)   

Definition 4. In general, the tensor product refers to the Kronecker 
product. The symbolic representation of the Kronecker product of a 
matrix is ⊗ . Considering the matrices A ∈ RM×N and B ∈ RP×Q, their 
Kronecker product is expressed as A⊗ B, whose calculation equation is 
shown as: 

A⊗B=

⎡

⎢
⎢
⎣

a11B a12B ⋯ a1NB
a21B a22B ⋯ a2NB

⋮ ⋮ ⋱ ⋮
aM1B aM2B ⋯ aMNB

⎤

⎥
⎥
⎦= [a1 ⊗ b1 a1 ⊗ b2⋯aN ⊗ bQ− 1 aN ⊗ bQ]

(8)   

Definition 5. The symbolic representation of the Khatri-Rao product 
(KR product) of a matrix is ⊙. Considering matrices A ∈ RM×N and 
B ∈ RP×N, KR product is denoted by A ⊙ B. The result is a matrix of size 
(MP) × N can be defined as: 

A⊙B= [a1 ⊗ b1 a2 ⊗ b2⋯aN ⊗ bQ] (9)   

Definition 6. Considering matrices A and B, both of size I× J, their 
Hadamard product is denoted by A ∗ B, which size is also I × J and 
defined as: 

Fig. 14. Co-cluster 1 of < region, time, ship type>.  
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A ∗ B=

⎡

⎢
⎢
⎣

a11b11 a12b12 ⋯ a1Nb1N
a21b21 a22b22 ⋯ a2Nb2N

⋮ ⋮ ⋱ ⋮
aM1bM1 aM2bM2 ⋯ aMNbMN

⎤

⎥
⎥
⎦ (10)   

Definition 7. Here † denotes the Moore–Penrose pseudoinverse of 
Matrix. If there is a Matrix B of the same type as the transpose matrix a of 
A, and these two matrices satisfy ABA =A,BAB = B, then the Matrix B is 
called the pseudo-inverse of the Matrix A, also known as the generalized 
inverse Matrix. The Usual Transformations for tensor operations are as: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(A⊗ B)(C ⊗ D) = AC ⊗ BD
(A⊗ B)† = A† ⊗ B†

A⊙ B⊙ C = (A⊙ B) ⊙ C = A⊙ (B⊙ C)
(A⊙ B)T(A⊙ B) = ATA ∗ BTB

(A⊙ B)† =
( (
ATA

)
∗
(
BTB

))†
(A⊙ B)T

(11)   

3.4. Non-negative tensor factorization algorithm 

CP decomposition is a basic form of tensor decomposition. The NTF 

used in this study is a deformation of the PARAFAC model, which is both 
based on the decomposition of Rank-1. The difference is that the PAR
AFAC model rotates the entire space of the data, and the result may be 
negative. By imposing non-negative constraints on the coefficients, the 
NTF method in this study can better characterize the meaning and 
structure embedded in the data, which is expected to achieve an 
approximate approximation to the original data (Yu et al., 2011). 

Considering an N-order tensor X ∈ RI1×I2×…×IN , which is called a 
rank-1 tensor when it can be expressed by the outer product of N vectors. 

X= i1∘i2∘…∘iN (12) 

The symbol ∘ is the outer product, which means that each element of 
the tensor is the product of the corresponding vector element. A third- 
order rank-1 tensor X is shown in Fig. 7, and X = a∘b∘c. 

The main idea of tensor CP decomposition is to express a tensor as 
the sum of a finite number of rank-one tensors. For a third-order tensor 
X ∈ RI1×I2×I3 , the CP decomposition is illustrated in Fig. 8. The rank of 
the tensor K can be understood as the number of rank-1 tensors obtained 
by decomposition. ak is a vector with I1 elements, bk is a vector with I2 

elements, and ck is a vector with I3 elements. The tensor X ∈ RI1×I2×I3 is 
written as: 

Fig. 15. Co-cluster 2 of < region, time, ship type>.  
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X≈
∑K

k=1
ak∘bk∘ck (13) 

Euclidean distance is used to define the loss function. The optimi
zation problem for the tensor CP decomposition is: 

min
X̂

‖X − X̂‖
2
F

2
with X̂ =

∑K

k=1
ak∘bk∘ck (14) 

The results of tensor CP decomposition have negative values. To 
make the results of tensor decomposition more interpretable, the non- 
negativity needs to be guaranteed. Lee and Seung (2000) proposed the 
multiplication update rule for solving the Nonnegative Matrix Factor
ization (NMF). This method converts the additive form of gradient 
descent into the multiplicative form so that the iterative process and the 
result are guaranteed to be nonnegative as long as the initial matrixes 
are nonnegative. Detailed derivation and convergence proof of the 
method is given by Lee and Seung. In NMF, for a non-negative data 
matrix Vm×n.，there is a non-negative matrix Wm×k and a non-negative 
matrix Hk×n, their relationship is shown in Equation (15)： 

Vm×n ≈ Wm×kHk×n (15)  

where, W is the basis matrix, H is the coefficient matrix, k is the rank of 
the matrix obtained by decomposition. k is required to satisfy k <

min (m,n). Wm×kHk×n represents the approximate reconstruction matrix, 
and the schematic diagram of non-negative matrix decomposition is 
shown in Fig. 9. The columns in the original matrix Vm×n can be rep
resented by the weight sum of all columns of basis matrix Wm×k. The 
weight coefficient is corresponding column in matrix Hk×n. Each column 
in Vm×n is a local feature of the original data Vm×n.The larger the value of 
an element in a column vector, the more prominent the element is in the 
feature and the more dominant it is in the feature. This value is defined 
as the relative degree of belonging in Section 5. 

In this study, this method is extended to the three-dimensional 
tensor, exploring the iteration rules of non-negative tensor factoriza
tion and obtaining computational results. 

Let the matrix A∈ RI1×K = [a1,a2,⋯,aK], Matrix B∈ RI2×K = [b1, b2,⋯ 
, bK] and matrix C∈ RI3×K = [c1,c2,⋯,cK]. When the tensor X ∈ RI1×I2×I3 is 
unfolded in mode-1 form, the optimization problem can be written as 
Equation (16)： 

min
A

⃦
⃦X(1) − A(C ⊙ B)T

⃦
⃦2
F

2
(16) 

Fig. 16. Co-cluster 3 of < region, time, ship type >.  
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Through the expansion of the matrix form of a tensor, the problem of 
NTF is transformed into NMF. Matrix A ∈ RI1×K corresponding the basis 
matrix in NMF. Each column of matrix A is a local feature. 

The minimum value is obtained when and only when X(1) and 
A(C ⊙ B)T are equal. The gradient HA is obtained by taking the partial 
derivative of A. The step size in the gradient direction is ηA. The iterative 
equation for the matrix A is: 

A←A − HAηA (16a)  

HA and ηA can be expressed as： 

HA=
[
X(1) − A(C ⊙ B)T

]
[− (C⊙B)] (17)  

ηA=
A

A(C ⊙ B)T(C ⊙ B)
(18) 

The iterative equation for the matrix A based on the multiplicative 
update rule can be obtained as: 

A←A ∗
X(1)(C ⊙ B)
A
(
CTC ∗ BTB

) (19)  

Similarly, the iterative equation for matrix B and matrix C are: 

B←B ∗
X(2)(C ⊙ A)

B
(
CTC ∗ ATA

) (20)  

C←C ∗
X(3)(B ⊙ A)

C
(
BTB ∗ ATA

) (21)  

In this way, only multiplication exists in the iterative process, and as 
long as the initial value of matrix A, B and C are non-negative, the result 
of the iteration has to be non-negative. 

For the tensor X ∈ RR×T×S, matrix A ∈ RR×K represents the regional 
characteristics of the obtained traffic pattern. Matrix B∈ RT×K repre
sents the temporal characteristics and matrix C∈ RS×K represents the 
composition of the ship type. Fig. 10 shows the NTF calculation diagram 
for X ∈ RR×T×S. 

Fig. 17. Co-cluster 4 of < region, time, ship type>.  
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The calculation process for the non-negative tensor factorization 
based is shown in Algorithm 1. The initial non-negative matrix A, B and 
C are generated randomly. The maximum number of iterations is 500, 
and the calculation is terminated early when the change in relative error 
change is less than 0.0001 compared to the result of the previous iter
ation.   

Result: Matrices A ∈ RI1×K、 B∈ RI2×K、 C∈ RI3×K 

Input: The tensor X ∈ RR×T×S， rank K 
1: Initialize ε = 1e− 4 

2: X(1)← unfold X in mode-1 
3: X(2)← unfold X in mode-2 
4: X(3)← unfold X in mode-3 
5: Generated non-negative matrices A0、 B0、 C0 

6: for i ϵ {1,…, 499} do 

7. Ai←Ai− 1 ∗
X(1)(Ci− 1 ⊙ Bi− 1)

Ai− 1(Ci− 1
TCi− 1 ∗ Bi− 1

TBi− 1)

8. Bi←Bi− 1 ∗
X(2)(Ci− 1 ⊙ Ai− 1)

Bi− 1(Ci− 1
TCi− 1 ∗ Ai− 1

TAi− 1)

9. Ci←Ci− 1 ∗
X(3)(Bi− 1 ⊙ Ai− 1)

Ci− 1(Bi− 1
TBi− 1 ∗ Ai− 1

TAi− 1)

10. εi←
⃦
⃦
⃦
⃦X −

∑K
k=1ak∘bk∘ck

⃦
⃦
⃦
⃦

F 

(continued on next column)  

(continued )  

11: if |εi − εi− 1| < 1e− 4 then 
12. break 
13. end for 14. return Matrix Ai ∈ RI×K、 Bi ∈ RI2×K、 Ci∈ RI3×K  

Algorithm 1. Non-negative Tensor Factorization 
In this study, Tianjin Port is selected as the research water area to 

verify the effectiveness of the proposed method. Two perspectives <
region, time, ship type > and < region, speed, ship type > are chose to 
analyze from the definition of the traffic pattern as they both present the 
increasing interests from the perspective of traffic management practice. 

3.5. The separation and marking of the AIS data 

The study area includes part of Tianjin Port and part of Caofeidian Port. 
It ranges from 117◦35′35″ to 118◦43′0″ in longitude and from 38◦34′30″ to 
39◦3′30″ in latitude. The area is divided into 38 irregular regions as shown 
in Fig. 11. The green hollow squares indicate the ship trajectories. 

First, according to the main anchorages, waterways, and the areas 
with traffic separation schemes, the following important functional 

Fig. 18. Co-cluster 5 of <region, time, ship type >.  
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areas are divided and regulated. The main functional areas contained in 
the Tianjin Port include Dagukou north anchorage (region 17), Dagukou 
south anchorage and Dagukou bulking anchorage (region 18), the Bei
jiang port area (region 3), Nanjiang port area, Dongjiang port area and a 
channel between them (regions 13, 15 and16), Dagukou port area (re
gion 14) and a waterway into it (region 27). In Caofeidian Port, there are 
an east anchorage (region 8) and a west anchorage (the adjacent parts of 
regions 21 and 23). In addition to the above, some regions are set up 
with a traffic separation scheme. Regions 9, 23, and 25 are located in the 
waterway into Tianjin Port, while regions 10 and 30 are located in the 
leaving one. Regions 22 and 24 are an exclusive waterway involving the 
traffic into and out of Caofeidian Port. 

Then according to the traffic flow in the study waters, the Haihe river 
with a small amount of traffic flow in the upper left corner of Fig. 10 is 
divided into region 2. The traffic flow in the lower right corner of Fig. 9 
is large, with a large number of ships coming in and out of Tianjin port. 
According to the trend of traffic flow, regions 11, 12, 22, and 34 are 
divided. 

Finally, for the areas that have not yet been divided, the division is 
based on the opinion of the ship navigational officers. In the research 

waters of this study, this part is in the lower left part of Fig. 10, which 
has less traffic and fewer functional areas. It can also be seen that the 
grids in this part are more regular. 

AIS data was used from 00:00:00 on January 1, 2019, to 23:59:59 on 
January 6, 2019. The AIS data are processed according to the method 
mentioned in Section 3.1. All ship types were selected for the study and 
the 10 ship types are numbered as shown in Table 1. In time, all AIS data 
are divided into 36 categories, as shown in Table 2. The AIS data before 
discretization and the ship attribute label data applied to tensor con
struction are shown in Table 3 and Table 4, respectively. Table 5 shows 
the number of ships and AIS data for each ship type after cleaning. 

3.6. The selection of tensor rank 

There is no exact way and only a limited boundary to select the value 
of the tensor factorization rank K. For tensor X ∈ RI1×I2×I3 , tensor rank 
K = rank(X) ≤ min {I1I2, I1I3, I2I3}. The factorization results vary 
depending on the value of K. The factorization result represents co- 
occurrence traffic patterns, which is called co-cluster in this study. To 
compare the differences in co-clusters under different values of K, this 

Fig. 19. Co-cluster 6 of <region, time, ship type>.  
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section makes a comparative experiment to illustrate the influence of K 
on the three-dimensional vessel traffic patterns. Tensor X ∈ RR×T×S of 
mode < region, time, ship type > is selected for the comparative 
experiment. Tensor X ∈ RR×T×S is decomposed non-negatively respec
tively, when the values of K are 6, 9, and 10. The co-clusters representing 
the same traffic pattern are selected for comparative analysis. Fig. 10 (a), 
(b), and (c) are the comparison of the co-clustering results showing a 
similar feature when K are 6, 9, and 10, respectively. The X-axis is the 
label of the attribute. The value of the Y-axis is the result of the l2-norm 
normalized tensor factorization. It can also be interpreted as the degree 
of attribution to the cluster. It should be noted that the value of the Y- 
axis of each point represents the relative "degree of belonging” in the co- 
cluster. There is no quantity contrast relation and no addition relation 
among the values of the Y-axis. 

From Fig. 12, it can be seen that under different K values, the co- 
clusters show similar trends for the same < region, time, ship type >
pattern. The co-clusters have almost the same degree of belonging 
against each attribute. Therefore, the change in K does not affect the 
extraction of the main traffic patterns. The new patterns will appear as 
the increase of K. Data points with a small relative degree of belonging 
may form new co-clusters with some data points on the attribute in other 

patterns. Fig. 13 shows the phenomenon found in the experiment. 
In the co-clustering results obtained with K = 10, a new pattern 

emerges. In Fig. 12 (b) and Fig. 12 (c), two patterns show the difference 
when ship type = 1. The difference is that the degree of belonging of the 
fishing boat in the traffic pattern shown in Fig. 12 (c) is 0.0141, which is 
close to 0, indicating that the distribution of fishing boats is no longer 
included in this pattern. At the same time, a new pattern that does not 
exist in the result of K = 9 is found and shown in Fig. 13. The fishing boat 
in this pattern has a degree of belonging of up to 0.9912, which is a 
vessel traffic pattern dominated by fishing boats. It is evident that most 
data points with ship type = 1 in the pattern as Fig. 12 (c) participate in 
the formation of a new pattern as Fig. 13. 

The results can therefore be drawn as follows:  

(1) The value of K does not affect the extraction of the main ship 
traffic patterns. There is barely difference in the three traffic 
patterns in Fig. 12 under different K values. As the value of K 
increases, more new ship traffic patterns may emerge. The 
emergence of new patterns may result in the decrease of the 
relative degree of belonging of some data points on the old 

Fig. 20. Co-cluster 7 of <region, time, ship type>.  
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pattern. It means that these points are more consistent with the 
traffic characteristics of the new pattern.  

(2) Different K values determine different pattern extraction scales. 
With a higher tensor rank K, the knowledge contained in each 
traffic pattern is more individualized and more focused on the 
detailed features of the vessel traffic. On the contrary, the lower 
the tensor rank, the fewer number of the obtained traffic patterns 
is, and the information is more macroscopical. Increasing the 
tensor rank K for the same vessel traffic tensor may result in sit
uations where only a few data points can form traffic patterns, 
leading to traffic patterns containing more microscopic knowl
edge. To address this issue, an appropriate tensor rank can be set, 
or high-dimensional data can be reduced to low-dimensional 
space using methods such as PCA or ICA for better feature and 
pattern extraction. 

3.7. < region, time, ship type > traffic pattern tensor co-clustering 
experiment 

The co-clustering result with K = 9 is obtained through repeated 

experiments. It can reflect the general ship traffic situation in Tianjin 
port waters. Refer to the information of navigational charts, the traffic 
information contained in the 9 patterns is analyzed. The result of co- 
clustering contains three attributes, including region, time, and ship 
types. The points with a degree of belonging being greater than 0.1 have 
the characteristic of the co-clusters. To make the results more intuitive, 
the values of the degree of belonging are set from less than 0.1 to 0 (see 
Fig. 21). 

The co-clusters extracted from the < region, time, ship type > tensor 
show the spatio-temporal distribution of traffic activities of different 
ship types. However, the study of time has a certain complexity because 
of its continuity in sequence and discretization. Therefore, only part of 
the trend is observed here and there is no specific limitation on the 
degree of belonging of time. In summary, by analyzing the distribution 
of < region, time, ship type > of each co-cluster, the meaning hidden in 
each co-cluster can be concluded. The co-clusters extracted from < re
gion, time, ship type > traffic tensor is shown in Figs. 14, 15, 16, 17, 18, 
19, 20, 21 and 22. In each figure, (c) represents the characteristic re
gions distribution. The values on the region attribute are colored red 
(0.5 ~ 1), green (0.3 ~ 0.5), and blue (0.1 ~ 0.3). 

Fig. 21. Co-cluster 8 of <region, time, ship type>.  
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The characteristic regions of co-cluster 1 are 3, 13, 15, 16 and 22. 
These characteristic regions include the Nanjiang port area, Dongjiang 
port area, Dagukou port area, and the Haihe river. The largest number of 
ships are in Nanjiang port and Dongjiang port. This is a pattern that 
tugboats berth or work in the port area. Some cargo ships and oil tankers 
are also contained in the co-cluster. 

In co-cluster 2, the characteristic regions are 9, 17, 19, 23, and 25. 
This is a pattern of cargo ships entering the Tianjin Port. Since the sec
ond day, almost every period, a large number of cargo ships entered the 
Tianjin Port through the exclusive waterway, passing through the Dagu 
anchorage. 

The characteristic regions in co-cluster 3 are 10, 15, 16, 18, 20, and 
30. These regions are an exclusive route that leaves the Tianjin port, 
passing through the Dagukou south anchorage and Dagukou bulking 
anchorage. The Dagukou bulking anchorage is limited to cargo ships and 
oil tankers. Co-cluster 3 shows a pattern of cargo ships leaving the 
Tianjin Port. The cargo ships leave with the help of Tugboats. 

In co-cluster 4, the characteristic regions are 15, 16, 17, 18, 19, 20, 
23, 24, 25, and 30. The contained ship type is mainly cargo ships. The 
area with the highest density of ships is near the Dagukou north 
anchorage. The Dagukou north anchorage is limited to cargo ships. Co- 
cluster 4 represents a traffic pattern of cargo ships berthing at the 
Dagukou north anchorage. The Dagukou bulking anchorage and 

Nanjiang port area, also allow cargo ships to berth, so the two regions 
consisted in the pattern, too. The time characteristics are not obvious, 
but ships are berthing at all times except at night. 

The characteristic regions in co-cluster 5 are 10, 12, 18, 20, 30, and 
34. The information reflected in this co-cluster includes two routes of the 
cargo and oil tanker leaving the Tianjin port. One of the routes is the 
channel through the Caofeidian area, and the other is the channel at the 
southeast area of the Tianjin port. Ship activities are always frequent on 
January 4th and January 6th. 

The co-cluster 6 includes fishing ships, cargo ships, and tugboats, and 
it can be observed that the labels of characteristic regions are 5, 6, 8, 10, 
12, 21, 22, 24, 27, 29 and 31, respectively. There is little correlation 
among the characteristic regions except for region 8. To explain the 
reasons, the following analyses can be conducted based on the actual 
situations. 

The answer can be obtained by correlating the regional and time 
attributes. On one hand, by analyzing the region attribute, it can be seen 
that region 8, has the highest degree of belonging. Region 8 includes the 
east anchorage of Caofeidian and channels in which ships enter and 
leave the Caofeidian third harbor (Caofeidian third harbor is not within 
the study area of this study). Meanwhile, the vessels waiting to enter the 
Caofeidian third harbor usually anchor in the northeast of the east 
anchorage outside the Caofeidian port. This co-cluster contains a large 

Fig. 22. Co-cluster 9 of <region, time, ship type>.  
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number of fishing ships. The reason is that many fishing areas are 
distributed in Caofeidian third harbor. Region 27 is also an important 
fishing area in Tianjin Port. These fishing ships left a lot of trajectory 
information in region 8 when they enter and leave the harbor. These 
data are grouped into the same co-cluster according to the association of 
region 8. The co-cluster, which contains a variety of navigation condi
tions, results in the scattered regional distribution. On the other hand, 
the time distribution also enhances the relevance of these data. Although 
the time pattern is not prominent, it can still be seen that traffic volume 
is generally large from 0400 to 2000 every day. 

The co-cluster 7 contains the characteristic regions 3, 10, 14, 15, 16, 
17, 18, 20 and 30, respectively. It represents a pattern of cargo ships 
berthing in the Nanjiang port area and leaving the Tianjin port to the 
northeast in the morning. 

The co-cluster 8 has the characteristic regions are 3, 12, 13, 15, 16, 
17, 18, 19, 20, 23, 30 and 34, respectively. The cargo ships, tugboats, 
and a few oil tankers are included in this co-cluster. These characteristic 
regions indicate a route leaving the Tianjin port from a southeastern 
direction. Unlike co-cluster 5, the proportion of oil tankers is greater and 
the active time is mainly in the early morning. The regional distribution 

of co-cluster 8 also includes the pilotage area of Tianjin Port. 
The co-cluster 9 includes fishing ships, cargo ships, and oil tankers. It 

can be observed that the relevant regions are 10, 12, 13, 14, 15, 16, 18, 
20, 26, 27, 30, 33, and 34, respectively. The regional information re
flected by this co-cluster is still the ship traffic on the route leaving the 
port. It is an oil tank’s leaving route. In addition, some fishing boats are 
also included. Region 27 is the main fishing area in the Tianjin Port Area. 
A small amount of fishing ship data results in a less degree of belonging. 
The data have a strong characteristic association with temporal attri
butes. These regions are at the peak of traffic from 0800 to 1600 every 
day. 

3.8. < region, speed, ship type > traffic pattern tensor co-clustering 
experiment 

AIS contains data of multiple attributes, and in this study, the data 
tensors of < region, speed, ship type > are selected to carry on the co- 
cluster analysis with K = 9. The co-clustering results are illustrated by 
taking co-cluster 1–2 as an example. The co-cluster results are shown in 
Fig. 23 and Fig. 24. Each (c) represents the distribution of the 

Fig. 23. Co-cluster 1 of <region, speed, ship type>.  
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characteristic regions. The values on the region attribute are colored red 
(0.5 ~ 1), green (0.3 ~ 0.5), and blue (0.1 ~ 0.3). 

The result of co-cluster 1 reveals that the characteristic regions are 3, 
6, 8, 13, 14, 17, 18, 19, 21, 22, 23, 26, 33, and 34, respectively. The 
regions with the higher density of ships are the Nanjiang Port Area, the 
Beijiang Port Area, and the Dagukou North Anchorage. The speed is 
mainly distributed in 0–2 knots. Co-cluster shows a pattern that a big 
amount of cargo ships berths in port and anchorage. Except for regions 
13 and 17, other regions are the anchorage and port areas. 

The reasons why ships are moored in these locations and at speeds 
between 4 and 9 knots are twofold. Firstly, these regions include not 
only the anchorage but also the forbidden anchorage areas between 
anchorages. Secondly, the ships enter and leave these regions at a 
certain speed. 

The characteristic regions of co-cluster 2 are 10, 16, 20, 25, and 30, 
respectively. Cargo ships and tankers in these regions have the speed 
distribution from 10 to 18 knots. These regions are the main channels 
entering and leaving the Tianjin port, where the speed is not allowed less 
than 5 knots. 

4. Discussion 

4.1. Validity discussion 

The experimental results are consistent with the actual rules of 
Tianjin Port, indicating that the pattern mining method in this study is 
effective. The comparison with the existing research methods and results 
are as follows: 

During the AIS data preprocessing stage, several steps are taken. 
Firstly, the AIS data is discretized into irregular grids based on the 
different functional and geographical attributes of actual sea areas. This 
method is superior over the traditional approach of regular grid pro
cessing (Lei et al., 2016; Wu et al., 2017b), as it enables clearer differ
entiation of the impact of different sea areas on vessel traffic. Secondly, 
this method considers the influence of time data and crew operation 
level on vessel traffic pattern extraction, in contrast to the vector-based 
clustering statistical method (Pallotta et al., 2013a). In the time dis
cretization process, time intervals are divided according to the crew 
duty schedule to obtain more AIS data with similar characteristics. 
Lastly, ship type is an important attribute in vessel traffic research, as 
different types of vessels sail at different speeds and through different 
routes. Therefore, this method conducts clustering analysis on the data 

Fig. 24. Co-cluster 2 of < region, speed, ship type >
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based on different ship types, which is a novel approach in the study of 
vessel traffic patterns (Millefiori et al., 2017; Pallotta et al., 2013b; Xiao 
et al., 2020). 

In the method of mining vessel traffic patterns, several steps are 
taken. Firstly, in contrast to the single grouping mode of the clustering 
feature extraction method (Liu et al., 2020; Vespe et al., 2012), the 
proposed method considers that AIS data points may contribute to 
multiple traffic patterns. Therefore, this method classifies the data 
points into multiple clusters with different degrees of belonging. The 
results in Section 4 show that ships in the same area are classified into 
different co-clusters. In actual sea areas, there may be ships with 
different motion patterns in the same area, which is consistent with 
reality. Secondly, unlike the statistical method (Gil et al., 2022), the 
original structure of AIS data is not altered in this method. The NTF 
method can reproduce the spatiotemporal patterns and dynamic process 
characteristics of the original data, which better describes the actual 
situation of vessel traffic. Moreover, the method has fewer parameters 
and is easy to adjust. Thirdly, to obtain better traffic pattern recognition 
results, this study establishes a three-dimensional traffic pattern based 
on the existing NTF method (Liu and Chen, 2014; Biondi, 2016, 2018, 
2019). Experiments are conducted with different K values, and further 
analysis is performed. The range of K values needs to match the user’s 
needs. Different needs of maritime management requirements, such as 
macro, meso, and micro, correspond to different K values. Experimental 
results indicate that the value of K should not be too large. 

4.2. Limitations and uncertainties 

Although showing some attractiveness, this study still reveals some 
limitations and uncertainties to be addressed in future studies.  

(1) The balance between ship types should be considered. The 
number of cargo ships is large in study waters, resulting in a small 
degree of belonging of other ship types.  

(2) In irregular grids division, there is no strict rule on the shape and 
size of the grids and the degree of utilization of prior knowledge. 
When the focus of the study is different, the division results of the 
same water area will be different. This leads to the uncertainty of 
the experimental results. There are also some limitations in using 
of prior knowledge.  

(3) The parameter K also influences the experimental results. 
Different K values determine different pattern extraction scales, 
and a large value of K is not necessarily better. Increasing the 
value of K can result in fewer data points in each co-cluster, which 
cannot be accurately indicated in the NMF and NTF, a good 
choice of K value can also be determined by statistical measures, 
such as the cophenetic correlation coefficient or residual sum of 
squares (RSS) (Gao et al., 2019). In the RSS-based method, by 
plotting the variation of RSS with the variation of K value, the K 
value at the inflection point of the RSS curve is determined as the 
optimal one. We will also consider using other methods, to select 
appropriate K value in future studies. 

5. Conclusion 

In this study, a new three-dimensional traffic pattern extraction 
method is developed to incorporate the effect of the co-occurrence of 
multiple traffic attributes simultaneously. A real case study is carried out 
to analyze the AIS data from Tianjin Port-Caofeidian waters. More 
specifically, new findings of managerial insights from the analysis and 
case study are summarized as follows: 

The tensor rank is set as 9 in this work when applying NTF for a 
traffic pattern study, the result shows that the vessels entering the 
Tianjin port are mainly through the exclusive channel in front of the 
Caofeidian and Dagukou north anchorage, and passing the Nanjiang 
port and Dongjiang port areas. Vessels leave the Tianjin port through 

two main routes: (a) from the Dagukou bulking anchorage towards the 
southeast; (b) from the Dagukou north anchorage and the exclusive 
waterway on the south side of Caofeidian, towards the east. Almost all of 
the ships on the routes have a speed of 10–18 knots. Furthermore, tug
boats help cargo ships and oil tankers leaving the Tianjin port in the 
morning on route (b), and there are also a large number of tugboats 
working at the Nanjiang port and Dongjiang port throughout the day. 
Most oil tankers leave the Tianjin port through route (b). Cargo ships are 
the most active type of ships in these waters. Finally, in addition to the 
routes of entering and leaving the Tianjin port, there are a large number 
of cargo ships berthing at the Dagukou north anchorage all day, plan to 
enter the Tianjin port and Nanjiang port. Incorporation of the charac
teristics of the speed attribute reveals the new finding that the Nanjiang 
port has a significant amount of cargo ship berthing, which is over
looked in the existing literature, but has significant impact on port 
development and management. 
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