
Tao, J, Liu, Z, Wang, X, Cao, Y, Zhang, M, Loughney, S, Wang, J and Yang, Z

 Hazard identification and risk analysis of maritime autonomous surface ships:
A systematic review and future directions

http://researchonline.ljmu.ac.uk/id/eprint/23831/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Tao, J, Liu, Z, Wang, X, Cao, Y, Zhang, M, Loughney, S, Wang, J and Yang, Z 
(2024) Hazard identification and risk analysis of maritime autonomous 
surface ships: A systematic review and future directions. Ocean 
Engineering, 307. ISSN 0029-8018 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Ocean Engineering 307 (2024) 118174

Available online 23 May 2024
0029-8018/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Hazard identification and risk analysis of maritime autonomous surface 
ships: A systematic review and future directions 

Juncheng Tao a,b, Zhengjiang Liu a,b, Xinjian Wang a,b,c,d,e,**, Yuhao Cao d, Mingyang Zhang f, 
Sean Loughney d, Jin Wang d, Zaili Yang d,g,* 

a Navigation College, Dalian Maritime University, Dalian, 116026, PR China 
b Key Laboratory of Navigation Safety Guarantee of Liaoning Province, Dalian, 116026, PR China 
c Seafarers Research Institute, Dalian Maritime University, Dalian, 116026, PR China 
d Liverpool Logistics, Offshore and Marine (LOOM) Research Institute, Liverpool John Moores University, Liverpool, L3 3AF, UK 
e Key Laboratory of International Shipping Development and Property Digitization of Hainan Free Trade Port, Hainan Vocational University of Science and Technology, 
Haikou, 570100, PR China 
f Department of Mechanical Engineering, Marine Technology Group, Aalto University, Espoo, Finland 
g Transport Engineering College, Dalian Maritime University, Dalian, 116026, PR China   

A R T I C L E  I N F O   

Keywords: 
Maritime transportation 
Maritime safety 
Maritime autonomous surface ships 
Hazard identification 
Risk analysis 

A B S T R A C T   

Despite the progress in autonomous ship technology, unknown risks persist in the design, operation, and regu
lation of maritime autonomous surface ships. A comprehensive literature review for hazard identification and 
risk analysis method of maritime autonomous surface ships is currently lacking. Based on a database of 62 
relevant literatures, this study presents the distribution of relevant literatures by journal, year of publication, 
country or region of authorship, and institution. To gain further insights into the research hotpots and the 
frequently neglected risk influential factors, the literatures are classified into four groups based on the categories 
of risk influential factors, and a comprehensive list of risk influential factors is compiled. Based on this, the 
research content is analysed with respect to human factors, ship-related factors, environmental factors, and 
technology factors. Furthermore, statistical analysis is conducted on 23 literatures related to systematic risk 
analysis of maritime autonomous surface ships in terms of data sources and risk analysis methods, noting that 
researchers commonly utilize datasets and a combination of risk analysis methods. This study not only con
tributes to the understanding of the current status and challenges in hazard identification and risk analysis of 
maritime autonomous surface ships but also provides potential future research directions.   

1. Introduction 

The concept of Maritime Autonomous Surface Ships (MASS) was 
officially recognized during the 98th Maritime Safety Committee (MSC) 
and formally proposed at the 99th MSC in 2017 (Jovanović et al., 2024). 
In the continuous development of ship automation, the research and 
development of MASS have been expedited (Johansen and Utne, 2024). 
The widespread implementation of MASS is expected to move the 
maritime industry into a new era, yielding benefits encompassing 
maritime safety (Hogg and Ghosh, 2016), human resources (Ghaderi, 
2019), transportation efficiency (Burmeister et al., 2014), transportation 
costs (Porathe, 2016), and environmental protection (Munim, 2019). 

Despite these benefits, concerns are still growing regarding the safety of 
MASS, as experts warn that more complex and advanced systems may 
introduce unforeseen risks (Guo et al., 2024; Montewka et al., 2018). 
Consequently, the safety of MASS is a critical issue for its operation. In 
fact, the concept, system, and technology of MASS are still in the dis
cussion stages of research and development, while the advancement of 
autonomous technology is still in its nascent phase (Longo et al., 
Forthcoming). Thus, the practical implementation of MASS faces 
numerous challenges (Fan et al., 2024b). To gain insights into these 
challenges, a comparative analysis with research achievements in 
aviation, forestry, cars, subway systems, space operations, military, and 
cranes was conducted by Wahlstrom et al. (2015), which outlined 
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human factors challenges associated with autonomous and remote op
erations within the maritime field. Additionally, Wu et al. (2020) con
ducted simulations of collision scenarios involving MASS to investigate 
its potential in reducing ship collision incidents. Moreover, significant 
attention has been directed towards the challenges and future directions 
of existing technologies for MASS, such as autonomous decision-making 
technology (Chae et al., 2020), human-machine cooperative navigation 
technology (Liu et al., 2022a, 2023), communication technology 
(Omitola et al., 2018; Wróbel et al., 2021b), and path planning algo
rithms (Li and Yang, 2023; Ozturk et al., 2022). 

Formal Safety Assessment (FSA) recommended by the International 
Maritime Organization (IMO Maritime Safety Committee, 2007) is a 
safety analysis method consisting of five steps: hazard identification, risk 
analysis, identification of risk control options, cost-benefit assessment, 
and decision-making and recommendations (Fang et al., 2024; Wang, 
2001). Hazard identification and risk analysis play a crucial role in FSA. 
Given their significance in promoting maritime safety, hazard identifi
cation and risk analysis are expected to emerge as indispensable com
ponents in the realm of safety research for MASS (Liu et al., 
Forthcoming). However, compared to the rapid progress in autonomous 
technologies, advancements in hazard identification and risk analysis of 
MASS are relatively slow (Fan et al., 2024a). Several literature reviews 
have reviewed and summarized the work in this field. Thieme et al. 
(2018) utilized system engineering methods to derive nine standards 
that risk models for MASS should adhere to. The applicability of tradi
tional ship risk models for MASS based on these standards was evalu
ated. Their findings revealed that existing traditional ship risk models 
cannot be directly applied to risk analysis of MASS. Similarly, Zhou et al. 
(2020) utilized system engineering methods to derive 12 system safety 
requirements and 10 evaluation criteria for hazard analysis methods 
applicable to MASS. The study examined 29 commonly used hazard 
analysis methods across 269 papers published over the past 50 years, 
with System-Theoretic Process Analysis (STPA) identified as an effective 
hazard analysis method for systematic safety assessment in the design 
phase. Both studies aimed to extract insights for MASS risk analysis from 
studies of traditional ships and offer new perspectives in the field. 
Furthermore, some researchers have conducted comprehensive reviews 
and analysis from the perspective of MASS safety design, considering 
multiple factors. Fan et al. (2020) identified risk influencing factors in 
the operational phases of Degree of Autonomy 3 (DoA3) MASS, devel
oping a risk index framework with four-layer indexes of human, ship, 
environment and technology. The framework provided a basis for risk 
analysis of remotely controlled MASS. Veitch and Alsos (2022) con
ducted a comprehensive review and analysis of MASS safety design 
methodology, synthesizing 42 studies on human supervision and control 
of MASS. The study not only summarized the current research status but 
also identified research gaps, emphasizing challenges that need to be 
addressed in the design and regulation of MASS. Similarly, Li et al. 
(2023) conducted a review of relevant literatures on the technical reli
ability of MASS from 2015 to 2022, utilizing a scientometric approach to 
provide prospects for MASS reliability analysis. The review focused on 
aspects such as reliability software failure, collision avoidance, 
communication and human factors, and mechanical reliability and 
maintenance. Chaal et al. (2023) conducted a comprehensive literature 
review on the risk, safety, and reliability of autonomous ships. The study 
focused on the research hotspots and potential research directions from 
the macro perspectives of research topics, publication information, and 
collaborative networks. It leaves research gaps on the analysis of clas
sification and induction of research content and methodology from a 
micro perspective in the field. 

In general, the current review still has several issues with the 
comprehensiveness of hazard identification and risk analysis. From the 
perspective of hazard identification, the aforementioned literatures lack 
a systematic and comprehensive process for identifying hazards in the 
design, operation, and regulation of MASS. Essential components that 
affect the safety of MASS, such as the impact of laws and regulations, 

software failures, network delays, maritime regulation, and other fac
tors, have been overlooked to varying degrees. From the perspective of 
risk analysis, most of the aforementioned studies primarily concentrate 
on potential hazards and technical barriers encountered during the 
design phase. However, due to the broad scope of MASS safety, ana
lysing the entire system solely from the perspective of design, operation, 
and regulation alone fails to capture the complex interactions between 
Risk Influential Factors (RIFs), which may underestimate the impact of 
such effects on the whole. Therefore, it is imperative to conduct a more 
comprehensive literature review, encompassing hazard identification 
and risk analysis for MASS, with a specific focus on RIFs and the risk 
analysis methods in this field. In light of the aforementioned back
ground, the primary contributions of this study to the field are as 
follows.  

1) A systematic approach is utilized to collect and analyse the latest 
literatures in the field of MASS hazard and risk analysis to create a 
database. Each selected piece of literatures is individually reviewed 
and analysed to extract the synergies and classify them accordingly.  

2) A bibliometric analysis is conducted on the literatures within the 
database to map the distribution of journal, year of publication, 
country or region of authorship, and institution. This analysis pro
vides an overview of the state of the art in the hazard identification 
and risk analysis method of MASS.  

3) RIFs are extracted from the literatures in the database to generate a 
risk list, which is subjected to statistical analysis. This analysis 
highlights the research hotspots in current studies, presents the 
prevailing views of researchers on MASS safety, and identifies 
research content that is currently missing or lacking.  

4) Special attention is given to the data sources and methods utilized for 
systematic risk analysis of MASS. The study examines the datasets, 
risk analysis methods, particularly from a quantitative analysis 
perspective, all of which provide valuable insights into the future 
direction of research in this field. 

The remainder of this study is presented below. Section 2 outlines the 
literature search strategy, providing statistics and analysis of the dis
tribution of relevant literatures by published journal, year of publica
tion, country or region of authorship, and institution, respectively. 
Section 3 describes the classification strategy, identifying the main RIFs 
from relevant literatures. Section 4 discusses and analyses the data 
sources and risk analysis methods utilized in systematic risk analysis of 
MASS. Section 5 presents the main findings from statistical analysis and 
provides future research directions. Finally, Section 6 offers a compre
hensive summary of the entire study. 

2. Literature search and selection 

Inspired by literatures of Filom et al. (2022); Rawson and Brito 
(2022); Yang et al. (2019); Cao et al. (2023); this study utilizes literature 
search, manual screening, and data visualization to extract, filter, inte
grate, classify, refine, and perform trend analysis on the existing liter
ature related to the risk analysis of MASS. 

2.1. Data collection 

Firstly, Web of Science (WOS) is selected as the data source of the 
literature search. The WOS Core Collection comprises the world’s 
leading academic journals, books, and proceedings across various fields. 
Books and proceedings are kept because the MASS risk studies are 
emerging, and many new findings are presented in the forms of book 
chapters and conference proceedings. Secondly, the time span of this 
search is set from January 2010 to November 2022 to ensure the time
liness of the results. Before 2010, there were few studies on MASS in the 
literature. Then, to accurately identify relevant literatures in the data
base, “MASS” and “risk” are selected as the search criteria. The following 
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search formulas are utilized for searching in the core collection: 
TS = (“maritime autonomous surface ship*" OR “unmanned ship*" OR 

“intelligent ship*" OR “smart ship*" OR “autonomous ship*") AND TS =
(“safe*" OR “risk*" OR “accident*" OR “incident” OR “hazard*"). 

The search formula consists of two sets of keywords. The first set 
includes “maritime autonomous surface ships*", “unmanned ships*", 
“intelligent ships*", “smart ships*", and “autonomous ship*", which 
narrow the search to the literature related to autonomous ships. The 
second set includes “safe*", “risk*", “accident*", “incident”, and “haz
ard*", which narrow the search to the literatures related to safety and 
risk. The symbol "*" denotes multiple forms of the same keyword 
interpretation. To ensure that the search results include all of the liter
atures related to MASS and safety in the core collection, two sets of 
keywords are linked by the Boolean operator “AND” and keywords 
within each set are linked by the Boolean operator “OR”. The search was 
concluded in November 2022, yielding 992 results using the afore
mentioned strategy. 

2.2. Review criteria 

To ensure the high relevance of the database, a meticulous review of 
the search results is conducted on an article-by-article basis. The criteria 
to be adopted are as follows. 

1) Titles and abstracts are examined to confirm that they contain rele
vant content related to MASS. The inclusion criteria are that the 

research focuses on MASS or that the findings can be applicable to 
MASS.  

2) Literature that merely includes terms such as MASS, automation 
process, and risk analysis as part of the background or introduction is 
manually excluded.  

3) The remaining literature is analysed based on its research content. 
Literature is retained if it involves a systematic risk analysis of MASS 
or an analysis of the specific risk influential factors pertaining to 
MASS. 

The aim of the search is to acquire research concerning hazard 
identification and risk analysis of MASS in the areas of design, operation, 
and regulation, that is, the subject of the selected literatures is limited to 
the category associated with the keywords in Section 2.1. A portion of 
the initial search results, which focuses on enhancing the safety of MASS 
through technological advancements, is manually excluded. It is worth 
noting that although “safe” is one of the aims of these literatures, the 
process of hazard identification or risk analysis is the missing part of 
these literatures. For example, there are some literatures about collision 
avoidance techniques, trajectory planning methods, and decision- 
making algorithm of MASS. On the one hand, these literatures primar
ily revolve around real-time collision risk assessment and have a strong 
thematic focus. On the other hand, these literatures predominantly 
concentrate on enhancing algorithms and improving techniques rather 
than identifying, analysing, and prioritizing risks in collision avoidance, 
trajectory planning, and autonomous decision-making. As a result, these 

Fig. 1. The search and review framework.  
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literatures are not highly relevant to the subsequent research content, 
and will not be reiterated in this study. However, it is worth noting that 
literatures exploring changes in ship collision risk due to the operation 
of MASS and assessing risk in collision scenarios have been retained. 

Finally, 62 papers are retained through a manual screening process 
in terms of the research methods, research subjects, and scope of 
application. This process leads to the establishment of the final database. 
The specific search and review criteria are depicted in Fig. 1. 

2.3. Analysis of the overall literature 

This section offers comprehensive statistics of research in the field of 
hazard identification and risk analysis of MASS. A systematic data 
analysis approach will be utilized to examine all literatures in the final 
database in terms of the distribution by journal, year of publication, 
country or region, and institution. 

2.3.1. Distribution by journal 
An analysis of the journals is conducted, and the results show that the 

relevant papers were published across 28 different journals or confer
ence proceedings. Table 1 lists the six journals that have published more 
than two cumulative papers in this field. Reliability Engineering & 
System Safety (RESS), Safety Science (SS), and Ocean Engineering (OE) 
are the top three journals in terms of the number of papers published, 
which lead the field with around 42%. The followers are Applied 
Sciences-Basel (ASB), Proceedings of the Institution of Mechanical En
gineers Part O - Journal of Risk and Reliability (P I MECH ENG O - J RIS), 
and Journal of Marine Science and Engineering (JMSE), each with 4 
papers in these journals. The majority of these journals fall within the 
Engineering and “Operations Research & Management Science” fields, 
although they originate from interdisciplinary fields such as engineer
ing, oceanography, and management science. 

The metric of average publication year serves as an indicator of a 
journal’s acceptance and interest within the literature, revealing the 
development stage of a scientific subject (Cao et al., 2023). An average 
publication year is calculated by averaging the first published online 
dates of all papers, which includes the year and month of publication. 
Only the year and month of these dates are retained. For ease of 
calculation and to retain the accuracy of the results, this study averages 
the published month after dividing them by 12 and adding it to the 
published years. The integer part of the final calculated result is taken as 
the year and the decimal part multiplied by 12 is taken as the month. In 
the case of P I MECH E NG O-J RIS, for example, the first published 
online dates of the four papers are “August 4, 2017″, “July 12, 2021″, " 
October 15, 2021″, “October 26, 2021". They are processed as 2017.67, 
2021.58, 2021.83, 2021.83. The average value is 2020.73. The integer 

part is 2020 and the decimal part is 0.73, which translates to a month of 
8.76, rounded to September. If there is a large difference in the average 
publication year of journals within the same field, it represents that 
journals with an earlier average publication year have not been inter
ested in research in the field in recent years. However, it is undeniable 
that they attracted more researchers’ attention in the early years and 
laid a solid foundation for the development of the field. Meanwhile, in 
contrast, journals with a later average publication year have shown 
more interest in the field. As can be seen in Table 1, all of these journals 
have an average publication year of 2020 or later, indicating that the 
field is developing rapidly and that researchers are increasingly inter
ested in this emerging field. Consequently, it is evident that hazard 
identification and risk analysis of MASS is an interdisciplinary research 
area that is still in the nascent stage of development. 

2.3.2. Distribution by year of publication 
A visual analysis of year of publication is conducted, and the results 

show that from 2015 to 2022, each of six journals published more than 4 
papers in this field cumulatively. Fig. 2 presents the Nop in these six 
journals year by year. As an emerging technology, the research 
achievements of MASS are not as extensive as traditional ships in gen
eral. The earliest literature in this field dates back to 2015 (Wahlstrom 
et al., 2015). Prior to 2017, there was relatively less academic attention 
to this field. However, from 2017 to 2022, the relevant publications 
received significant academic attention and showed significant growth, 
accounting for approximately 90% of the total publications. The burst of 
papers in 2020 is due to the SS’s special issue on autonomous vessel 
safety. In general, the tendency of MASS risk/safety research is 
increasing in the past years. 

2.3.3. Distribution by country/region 
The publications in the final database have been classified based on 

the country or region of authorship. Fig. 3 presents the statistical results 
for the top 13 countries or regions. It is worth noting that some publi
cations may have multiple authors, and these authors may be affiliated 
with different institutions across various countries. Therefore, in the 
statistics, if a publication has multiple authors, their respective countries 
or regions of affiliation are included. If there are repeated countries or 
regions among the authors within a publication, these similar entries are 
consolidated, and only one count is recorded. If an author has multiple 
affiliations across different countries or regions, each affiliation is 
included. Consequently, following the above strategy, the cumulative 
number of publications exceeds 62. The result reveals that researchers 
from Norway, Finland, China, and Poland have contributed the highest 

Table 1 
Top six journals related to risk analysis of MASS.  

No. Name Number of 
publications 
(Nop) 

Average 
publication 
year 

Research Areas 

1 RESS 9 2020 Jul Operations Research & 
Management Science, 
Engineering 

2 SS 9 2020 Nov Operations Research & 
Management Science, 
Engineering 

3 OE 8 2020 Oct Engineering, 
Oceanography 

4 ASB 4 2020 Oct Chemistry, Materials 
Science, Physics, 
Engineering 

5 P I MECH 
ENG O-J 
RIS 

4 2020 Sep Operations Research & 
Management Science, 
Engineering 

6 JMSE 4 2021 May Oceanography, 
Engineering  Fig. 2. Distribution by year of publication.  

J. Tao et al.                                                                                                                                                                                                                                      



Ocean Engineering 307 (2024) 118174

5

number of publications. 

2.3.4. Distribution by institution 
Fig. 4 presents the top seven institutions with the highest number of 

publications in this field. Utilizing the same statistical method, the 
Norwegian University of Science and Technology (NTNU) stands out as 
the most productive institution, have contributed to a total of 15 pub
lications. It is followed by Aalto University (Aalto), Wuhan University of 
Technology (WUT), Gdynia Maritime University (GMU), Satakunta 
University of Applied Sciences (SAMK), University of California, Los 
Angeles (UCLA), and Dalian Maritime University (DLMU). 

3. Risk influential factors in risk analysis of MASS 

This section presents a detailed analysis of studies conducted on 
different RIFs, utilizing the RIFs categories encompassed in the literature 
as classification criteria. The objective is to facilitate a more intuitive 
understanding of the primary research directions and approaches in this 
field. 

In the risk analysis of traditional ships, the four fundamental factors 
utilized to identify risk sources are “human, ship, management, and 
environment” (Fu et al., 2021; Wang et al., 2023). However, upon 
further investigation, this study adopts the RIFs categories of “human 
factors, ship-related factors, management factors, environmental 

factors, and technology factors” as referenced in Luo et al. (2022) and 
“Guide for traffic safety risk assessment of intelligent navigation of 
ships: General rules” published by Chinese Institute of Navigation. 
However, management factors are typically considered a subset of 
human factors, and there is limited literature available concerning the 
analysis of management factors within the existing literature. Conse
quently, in this study, the analysis of management factors is classified 
under human factors. 

The literatures within the final database undergoes a statistical 
analysis based on four classification criteria: “human factors, ship- 
related factors, environmental factors, and technology factors” with 
reference to the classification criteria outlined by Fan et al. (2020) and 
Luo et al. (2022). The classification is applied after macroscopic exam
ination and simplification of the RIFs. The classification criteria, along 
with the extracted RIFs and Nop are presented in Table 2. 

The following classification strategy is utilized to determine the 
distribution of RIFs studies across four categories.  

1). If the review of a paper indicates that it only examined one type of 
RIF, it will be assigned to the corresponding RIF category. 
Additionally, the relevant RIF will be extracted, and one point 
will be attributed to the corresponding RIF. For instance, if a 
paper examined factors affecting condition of operators, it will be 

Fig. 3. The top 13 countries and regions with the most publications to risk 
analysis of MASS. 

Fig. 4. The top institutions participating in the publication of literature.  

Table 2 
List of RIFs of MASS.  

Classification 
criteria 

No. RIFs Nop 

Human factors H1 Situation awareness 22 
H2 Condition of operator(s) 16 
H3 Experience and training 15 
H4 Competence of operator(s) 13 
H5 Human-machine interface (HMI) design 13 
H6 Transitions of control 11 
H7 Hardware or software development defects 11 
H8 Maritime supervision 10 
H9 Automation-induced trust issue 9 
H10 Information overload 7 
H11 Communication 5 
H12 Bridge resource management 4 
H13 Humanitarianism 3 
H14 Manning 2 

Ship-related 
factors 

S1 Reliability of hardware 23 
S2 Maintenance of hardware 14 
S3 Reliability of software and algorithms 13 
S4 fail-to-safe mechanism 7 
S5 Cargo management 7 
S6 Maintenance of software 6 
S7 Maintainability 5 
S8 Ship conditions including Ship stowage, 

Tonnage and age, and Structure and 
performance 

4 

Environmental 
factors 

E1 Natural environment 20 
E2 Traffic environment 16 
E3 Legal Environment 14 
E4 Cyber environment 11 
E5 Security environment 10 
E6 Work environment 6 

Technology 
factors 

T1 Autonomous perception technology 29 
T2 Reliability of Information and Communication 

Technologies (ICT) 
20 

T3 Cybersecurity 18 
T4 Sufficient redundancy 14 
T5 Decision-making technology 13 
T6 Ship-control technology 9 
T7 Autonomous navigation technology 7 
T8 Monitoring technology 6 
T9 Delays of networks 6 
T10 Connectivity of networks 6 
T11 Self-diagnosis technology 4 
T12 Positioning technology 4  
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classified under human factors studies. Simultaneously, one point 
will be added to Criterion H2 in Table 2.  

2). If the review of a paper indicates that it examined multiple types 
of RIFs, it will be assigned to the respective multiple RIF category. 
Additionally, each relevant RIF will be extracted, and one point 
will be allocated to each corresponding RIF. For instance, if a 
paper examined RIFs related to both technology factors and 
human factors, it will be classified under both technology factors 
studies and human factors studies. Likewise, one point will be 
added to each of the corresponding RIFs. 

Since some papers have examined more than one category of RIFs, 
the total count will exceed 62. The classification results demonstrate 
that the technology factors studies comprise the highest number with 
39, followed by human and environmental factors studies with 37 and 
33 respectively, while ship-related factors studies are the least with 23. 

3.1. Human factors 

Will the growing Degree of autonomy (DoA) lead to the elimination 
of the human factor, and can autonomous technology enhance naviga
tion safety? These issues have been the subject of early research inves
tigating the human factors of MASS. In fact, it is evident that human 
factors remain crucial in the overall system (Veitch and Alsos, 2022). 
Human factors persist even in systems widely regarded as reliable (Man 
et al., 2018). Furthermore, there is no guarantee that the influence of 
human factors on navigation safety can be completely eliminated. The 
application of autonomous technology has transformed the role of 
humans in the operational loop as the core of ensuring the system’s 
safety. Humans transit from active operators to passive monitors of the 

autonomous system, are responsible for tasks like monitoring, remote 
controlling, and emergency handling of the vessel. Table 3 presents a 
summary of statistical results of RIFs related to human factors in rele
vant studies, along with an index of the literature sorted by year of 
publication. Among these, human-driven RIFs including situation 
awareness, condition of operator(s), experience and training, and 
competence of operator(s) are frequently mentioned. It is widely 
accepted that human factors of MASS primarily arise from humans 
themselves, Remote Operation Center (ROC), design, and team and 
management issues (Fan et al., 2020). 

From a pure human perspective, although the operators’ tasks may 
differ for MASS with different Degrees of Autonomy (DoAs), their re
sponsibility to ensure the ship’s safety remains constant. Therefore, 
condition of operator(s), competence of operator(s), situation aware
ness, experience and training, automation-induced trust issues, 
communication, and other human-driven RIFs continue to be significant 
in terms of the impact on MASS safety. Wróbel et al. (2021a) utilized a 
Human Factors Analysis and Classification System-Maritime Accidents 
(HFACS-MA) framework to examine the human factors of remotely 
controlled MASS, relying on expert opinions. The study revealed that 
failure to correct known problems and condition of operators were 
potentially critical factors affecting the safety of MASS. Yoshida et al. 
(2021) further emphasized the impact of condition of operator(s), 
indicating that conflicts between navigation safety and efficiency, 
physical situation, lack of human–machine communication, impersonal 
movement, and visibility constraints can lead to excessive mental 
workload for operators. Consequently, these factors have a detrimental 
effect on condition of operator(s), potentially posing safety hazards for 
MASS. Currently, there is limited literature regarding how condition of 
operator(s) affects navigating safety. Nonetheless, extensive research in 

Table 3 
The RIFs related to human factors considered in the selected literature.  

No. References H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 

1 Wahlstrom et al. (2015) ✓ ✓  ✓  ✓    ✓ ✓  ✓  
2 Ahvenjarvi (2016) ✓    ✓  ✓  ✓      
3 Thieme and Utne (2017) ✓  ✓            
4 Wróbel et al. (2017) ✓ ✓  ✓   ✓ ✓  ✓  ✓ ✓  
5 Utne et al. (2017)     ✓          
6 Thieme et al. (2018) ✓ ✓ ✓ ✓ ✓ ✓     ✓   ✓ 
7 Wróbel et al. (2018a) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓       
8 Porathe et al. (2018)  ✓       ✓ ✓     
9 Ramos et al. (2018)      ✓ ✓        
10 Man et al. (2018) ✓       ✓ ✓      
11 Banda et al. (2018)   ✓     ✓       
12 Ramos et al. (2019) ✓  ✓ ✓           
13 Zhang et al. (2019) ✓         ✓     
14 Li et al. (2019)    ✓           
15 Mallam et al. (2020)   ✓ ✓     ✓      
16 Fan et al. (2020) ✓ ✓ ✓ ✓  ✓ ✓  ✓ ✓     
17 Zhang et al. (2020) ✓ ✓  ✓ ✓    ✓ ✓     
18 Goerlandt (2020) ✓  ✓  ✓ ✓   ✓      
19 Yoshida et al. (2020) ✓   ✓        ✓   
20 Chae et al. (2020) ✓ ✓  ✓      ✓     
21 Wu et al. (2020)       ✓        
22 Zhou et al. (2020) ✓    ✓ ✓         
23 Ramos et al. (2020a) ✓    ✓ ✓         
24 Chaal et al. (2020)       ✓ ✓       
25 Zhou et al. (2021) ✓     ✓         
26 Chang et al. (2021)     ✓  ✓        
27 Yoshida et al. (2021)  ✓             
28 Wróbel et al. (2021a)  ✓   ✓  ✓ ✓       
29 Storkersen (2021) ✓ ✓   ✓ ✓      ✓   
30 Dittmann et al. (2021)        ✓       
31 Liu et al. (2022b)  ✓ ✓   ✓     ✓    
32 Zhang et al. (2022b) ✓ ✓ ✓ ✓    ✓       
33 Zhang et al. (2022a) ✓ ✓ ✓    ✓    ✓   ✓ 
34 Luo et al. (2022)  ✓ ✓        ✓  ✓  
35 Lynch et al. (2022) ✓  ✓  ✓          
36 Fan et al. (2022)  ✓ ✓    ✓ ✓ ✓   ✓   
37 Veitch and Alsos (2022) ✓  ✓ ✓ ✓   ✓ ✓       
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the fields of aviation, unmanned vehicles, driverless trains, and remotely 
piloted vehicles has delved into condition of operator(s), encompassing 
aspects such as situational awareness, fatigue, emotion, concentration, 
and work intensity (Fonseca et al., 2022; Neubauer et al., 2011; Saf
farian et al., 2012; Useche et al., 2017). Although not obviously appli
cable, these findings hold relevance for research on condition of 
operators in the context of MASS. Additionally, it has been suggested 
that remote operators should possess a broader knowledge base as well 
as superior learning abilities in comparison to traditional ship operators 
(Mallam et al., 2020; Thieme and Utne, 2017), imposing heightened 
requirement on the competence and training of remote operators. 
Yoshida et al. (2020) expanded upon the existing human behaviour 
model and constructed a Goal-Based Gap Analysis (GBGA) model to 
assess the operators’ competence. A regulatory framework for remote 
operators has been developed based on the existing regulatory pro
visions of STCW, combined with the distinct characteristics of remote 
operators. Li et al. (2019) examined the operational differences between 
MASS and traditional ships, presenting a fuzzy comprehensive evalua
tion method for evaluating the competence of operators. 

In the applications of remotely controlled ship with seafarers on 
board (DoA2) and remotely controlled ship without seafarers on board 
(DoA3) MASS, the personnel responsible for monitoring and ship oper
ations on ships are moved ashore in part or full in the form of ROC and 
remote operation technologies. However, humans retain their roles as 
real-time supervisors and emergency decision-makers for the ships. 
Wrobel et al. (2016) pointed that the impact of human errors also hinges 
on the ship system designer’s capacity to identify and anticipate po
tential accident scenarios caused by human error. In the context of 
remote operations, the HMI system serves as a vital component of DoA2 
and DoA3 MASS, bridging the connection between the two unknown 
forms of human-human and human-machine interactions. It functions as 
an intermediary for human involvement. Therefore, the HMI system 
plays a critical role in human factors research. Man et al. (2018) 
demonstrated that the bridge design of traditional ships cannot be 
directly applied for MASS. Accordingly, they recommended the redesign 
of ROC to align with the specific characteristics of MASS and remote 
operators. The design of HMI system will significantly affect the oper
ators’ performance, and a subpar design can lead to unpredictable and 
severe consequences. Liu et al. (2022b) quantified human errors in HMI, 
revealing that condition of operator(s), such as stress, task complexity, 
training, environmental factors, communication, and fatigue, signifi
cantly contribute to human error. 

Autonomous systems are pre-programmed computer systems with a 
certain degree of autonomous decision-making capability. However, 
they are limited in their ability to cope with abnormal and unexpected 
situations. The pre-programmed software cannot anticipate scenarios 
beyond those considered in the software system’s design, such as 
hardware failures, multiple sensor failures, and communication device 
failures. The onboard crew and remote operators of DoA2 and DoA3 
MASS serve as the last line of defense to ensure the ship’s safety. In the 
event of system failure or unforeseen circumstances, they undertake 
necessary actions and make appropriate decisions to avoid accidents or 
mitigate the severity of accident consequences. The significance of 
human involvement in the operational loop becomes even more 
apparent. In order to ensure the effectiveness of human as “the last line 
of defense” (Ramos et al., 2019), it is essential to design the HMI, ROC, 
and emergency operations processes. This encompasses, considering the 
tasks to be performed by remote operators, the prerequisites for suc
cessful task execution, and the potential errors that may arise during 
task execution. The prerequisite for that is to ensure the smooth 
execution of remote operator’s core tasks, encompassing the transition 
between operating modes such as active continuous monitoring, passive 
takeovers, and backup to autonomous system. In the event of a node 
failure while ROC is overseeing multiple ships, the resulting malfunc
tions may affect not only the failed ship but also other ships under its 
control or other ships in the domain. In this case, personnel such as 

designers, operators, and maritime supervisors are required to perform 
appropriate hazard mitigation functions (Kari et al., 2018). Zhang et al. 
(2020) demonstrated that the probability of human error by remote 
operators of DoA3 MASS during emergency processes is greater than 
that of traditional ships. This aligns with the findings of Ramos et al. 
(2018), who identified three human error events that could potentially 
result in accidents during the navigation phase of MASS. These events 
encompassed that failure to respond to alarms promptly, inability to 
handle the ship remotely, and failure to take over the ship promptly 
when necessary. The operations examined in these studies primarily 
involved emergency situations. However, it is important to recognize 
that human error is a consequence of events or incidents. Identifying 
human error and human error scenarios is not the end of the risk analysis 
process. 

In the limited studies that refer to management factors, Goerlandt 
(2020) conducted an exploration and prediction of the risk character
istics of different levels of MASS based on International Risk Governance 
Council Risk Governance Framework (IRGC-RGF). These characteristics 
served as a basis for elaborating stakeholder responsibilities and 
developing risk governance strategies from a macro perspective. How
ever, management factors encompass not only the maritime supervision 
of one or multiple MASS in service but also the management and staffing 
of ROC’s bridge resources. From a human error prevention perspective, 
an effective safety management system plays a crucial role in mini
mizing the occurrence of human errors. Banda et al. (2018) developed a 
safety management strategy for the conceptual design phase of MASS, 
addressing challenges that need resolution before the operation. 
Through a literature review, Storkersen (2021) investigated safety 
management in future remote control ship operations. The study high
lighted that safety management practices effective on traditional ships 
can enhance the safety of remotely controlled ships. However, it also 
noted that these practices might contribute to an increase in operator 
workload, and traditional safety management methods may lead to 
personnel imbalance. Therefore, remote control and HMI are not the 
only factors leading to information overload and increased workload for 
operators. Burdensome workflows can also contribute to increased 
personnel workload, resulting in human error scenarios. It is worth 
noting that, at this stage, the relevant studies related to management 
factors primarily concentrate on formulating risk management strate
gies and providing safety control measures for the conceptual design 
phase of MASS from a macro perspective. In contrast, human resource 
management aspects of MASS operation have not received sufficient 
attention from academics, particularly in term of the safety management 
of personnel associated with ROC. 

3.2. Ship-related factors 

It is necessary to establish a clear definition of the MASS system 
before analysing risks related to ship systems (Mai et al., 2019). As a 
complex system, ship systems, subsystems, and interactions among them 
are more intensive, multiple, and interconnected. However, the software 
and hardware facilities of MASS lack specific forms and uniform design 
standards, making it uncertain whether the risk analysis method used for 
traditional ships can be applied to MASS. Further research is necessary 
to determine the applicability of such methods. 

Table 4 presents the statistical results of RIFs related to ship-related 
factors identified in the selected literatures. Reliability of hardware is 
the most emphasized RIF. As a large-volume transport vehicle, MASS 
will suffer from unacceptable potential consequences of accidents 
resulting from failures in the propulsion system, power system, and 
other hardware systems (Zhang et al., 2022a). The consequences of such 
failures have the potential to encompass vast areas of the ocean, mul
tiple maritime routes, and coastal regions, with lasting, possibly per
manent, adverse effects on the marine environment. Moreover, 
increased remediation costs for corrective maintenance for MASS at sea 
lead to higher temporal expense in restoring operational capabilities 
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(Eriksen et al., 2021). The upper limit of the severity of such conse
quences is further exacerbated by the loss of maneuverability of MASS at 
sea. The design of ship systems for large-scale MASS operation neces
sitates ensuring the hardware system’s utmost reliability, especially in 
exceptional and unexpected situations. Redundancy stands out as one of 
the effective ways to mitigate such hardware system failures in the 
design phase (Fan et al., 2020). In addition, software system is the core 
of a ship system, and the design of the ship system also needs to ensure 
the correctness, completeness, and adherence to standards of the soft
ware program code. Software system failures primarily stem from de
fects in the software design and development phases, potentially 
persisting throughout the product’s life cycle. Thus, a thorough under
standing of highly autonomous systems and a systematic hazard analysis 
before the design of MASS will contribute to the development of risk 
management strategies and the establishment of redundancies to miti
gate such unidentified risks. Eriksen et al. (2021) examined the appli
cability of the Reliability Centered Maintenance (RCM) method to MASS 
and revealed that not only hardware design affects the mechanical 
reliability of MASS, but also the maintenance of ship plays an equally 
crucial role. However, due to the current lack of experimental data on 
software and hardware failures of MASS, there are fewer risk analyses 
related to software and hardware reliability. It is recommended to 
conduct trials on actual ships under real traffic conditions to obtain 
precise simulation data, supporting risk analysis and aiding in the 
development of effective risk strategies (Felski and Zwolak, 2020). 

In the existing research literature, ship-related RIFs, encompassing 
loading, tonnage and age, structure, and maneuverability, are 
commonly identified from the risk analysis of MASS in specific naviga
tion scenarios, such as inland waterways (Zhang et al., 2019), navigation 
scenarios (Luo et al., 2022), and different operational modes (OMs) (Fan 
et al., 2022). Moreover, RIFs related to cargo management are mainly 
identified from previous literature and accident reports. 

Compared to the studies on human factors, ship-related one lacks 
available data, making associated risks more challenging to quantify. 
This type of analysis contains more uncertainties due to the unknown 
nature of MASS systems and the inherent unpredictability in their in
terconnections. Consequently, current ship-related factors studies aim to 
provide valuable insights during the conceptual design phase of MASS 
while minimizing the costs associated with trial and error in the future. 

3.3. Environmental factors 

Table 5 presents both the frequency of extracted RIFs related to 
environmental factors in the selected literatures and an index of the 
literature sorted by year of publication. The physical environment, 
encompassing natural environment, traffic environment, and work 
environment, constantly undergoes changes with time and space, 
directly or indirectly affecting the safety of ship navigation. Among 
these factors, natural environment and traffic environment are the most 
frequently appeared environmental factors in the field. For traditional 
ships, humans and ships form sets with stable reliability in complex 
navigational environments (Xue et al., 2019). The physical environment 
negatively impacts the safety of ship navigation mainly by interfering 
with the decision-making of human and reducing the ship’s maneuver
ability. With an increasing DoA, the physical environment also interferes 
with collision avoidance decisions, navigation planning, and other 
autonomous system functions (Zaccone and Martelli, 2020). The journey 
towards full autonomy for MASS is a lengthy process. For the foreseeable 
future, onboard crew, remote operators, or a combination of both will 
remain responsible for the ship’s operation. They will be required to take 
over in response to unforeseen events that exceed the capabilities of the 
autonomous system. The transfer of risk manifestations caused by the 
reduction or transfer of personnel is a gradual process. Consequently, 
the navigational risks caused by physical environment disturbance will 
manifest through factors such as the decision and perception perfor
mance of autonomous system, the decision of operators, the reliability of 
hardware and software, and redundancy, depending on the DoA. These 
complex traffic situations, which may surpass the performance limits of 
autonomous systems, can result in accidents. For instance, there are 
multiple ships or obstacles in the MASS domain (Ramos et al., 2018), 
navigation in inland waters may be influenced by factors such as 
berthing conditions and interference (Zhang et al., 2019). Failure paths 
related to the physical environment will not be confined to following 

Table 4 
The RIFs related to ship-related factors considered in the selected literature.  

No. References S1 S2 S3 S4 S5 S6 S7 S8 

1 Wróbel et al. (2017) ✓ ✓   ✓    
2 Thieme et al. (2018) ✓ ✓ ✓ ✓  ✓   
3 Wróbel et al. (2018b) ✓ ✓ ✓ ✓   ✓  
4 Wróbel et al. (2018a) ✓ ✓ ✓ ✓  ✓   
5 Banda et al. (2019) ✓ ✓ ✓   ✓   
6 Zhang et al. (2019) ✓ ✓   ✓  ✓ ✓ 
7 Felski and Zwolak (2020) ✓    ✓    
8 Fan et al. (2020) ✓ ✓ ✓ ✓ ✓    
9 Utne et al. (2020) ✓      ✓  
10 Wu et al. (2020) ✓  ✓      
11 Zhou et al. (2020) ✓ ✓ ✓   ✓   
12 Ventikos et al. (2020) ✓ ✓ ✓ ✓  ✓   
13 Dittmann et al. (2021) ✓  ✓ ✓     
14 Eriksen et al. (2021) ✓ ✓     ✓  
15 Chae et al. (2020) ✓ ✓ ✓  ✓ ✓ ✓  
16 Chang et al. (2021) ✓  ✓      
17 Bolbot et al. (2021) ✓ ✓ ✓ ✓     
18 Zhang et al. (2022b) ✓ ✓      ✓ 
19 Chou et al. (2022) ✓        
20 Zhang et al. (2022a) ✓       ✓ 
21 Tusher et al. (2022) ✓  ✓      
22 Luo et al. (2022) ✓ ✓   ✓   ✓ 
23 Fan et al. (2022) ✓    ✓     

Table 5 
The RIFs related to environmental factors considered in the selected literature.  

No. References E1 E2 E3 E4 E5 E6 

1 Wahlstrom et al. (2015)      ✓ 
2 Wróbel et al. (2017) ✓ ✓ ✓    
3 Hoyhtya et al. (2017) ✓ ✓ ✓ ✓ ✓  
4 Wróbel et al. (2018b) ✓  ✓  ✓  
5 Wróbel et al. (2018a) ✓ ✓ ✓ ✓   
6 Thieme et al. (2018) ✓ ✓ ✓    
7 Ramos et al. (2018)  ✓     
8 Man et al. (2018)   ✓   ✓ 
9 Shipunov et al. (2019)   ✓ ✓ ✓  
10 Banda et al. (2019) ✓      
11 Zhang et al. (2019) ✓ ✓ ✓ ✓ ✓  
12 Fan et al. (2020) ✓ ✓ ✓  ✓ ✓ 
13 Utne et al. (2020) ✓ ✓     
14 Wu et al. (2020) ✓      
15 Zhou et al. (2020)    ✓ ✓  
16 Ventikos et al. (2020)    ✓ ✓  
17 Bolbot et al. (2020)    ✓   
18 Felski and Zwolak (2020)   ✓ ✓   
19 Yoshida et al. (2020)   ✓   ✓ 
20 Yoshida et al. (2021)   ✓   ✓ 
21 Wróbel et al. (2021a) ✓ ✓     
22 Zhou et al. (2021)    ✓ ✓  
23 Chang et al. (2021) ✓ ✓     
24 Bolbot et al. (2021)    ✓ ✓  
25 Guo et al. (2021) ✓ ✓     
26 Zhang et al. (2022b) ✓ ✓     
27 Chou et al. (2022) ✓    ✓  
28 Johansen and Utne (2022) ✓ ✓     
29 Zhang et al. (2022a) ✓ ✓     
30 Luo et al. (2022) ✓ ✓ ✓    
31 Veitch and Alsos (2022)  ✓ ✓    
32 Lynch et al. (2022) ✓     ✓ 
33 Fan et al. (2022) ✓   ✓    
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specific situations. ROC cannot fully replicate the actual console envi
ronment. As physical limitations deprive the “implicit experience” of 
physical perception, leading to decision faults caused by a lack of sense 
and confidence (Lynch et al., 2022; Wahlstrom et al., 2015; Yoshida 
et al., 2021). These faults can also be attributed to decision-making 
delays and a decline in situational awareness due to the work environ
ment, such as HMI design (Man et al., 2018), and loss of control due to 
network connectivity failures caused by changes in the geographical 
conditions, such as nearshore, port area, deep sea, and Arctic (Hoyhtya 
et al., 2017). 

The security and cyber environment during the navigation stage of 
MASS are likewise hotspots in current research on environmental fac
tors. For traditional ships, the security environment, considered a 
physical realm, encompasses issues such as pirate attacks, political 
instability in certain regions, and other threats. In the era of information 
technology, the frequency of cyber-attacks is on the rise. When consid
ering network risk sources, the security of data exchange channels be
comes the primary concern in the network security system of MASS 
(Hassani et al., 2017). This type of risk can be classified as “external” or 
“internal”, referring to security issues in cyber environment and the 
safety issues in technology factor. 

The “external” security issues in the cyber environment are typically 
non-intentional and malicious cyber-attacks. Since the system of MASS 
is under continuously monitoring and can be directly controlled by ROC 
at any time, the onboard system has the function of receiving opera
tional commands unconditionally. As a result, pirates or terrorists may 
be more inclined to exploit high-value, low-cost cyber-attacks to get 
control over ships. Data exchange channels that are prone to serious 
consequences, such as ship control systems, functional and inter-system 
interfaces, and data flows, are the vulnerabilities of the system against 
cyber-attacks (Felski and Zwolak, 2020). Studies have demonstrated 
that sensor-based systems, automated docking systems, global naviga
tion satellite systems (GNSS), and automatic identification system (AIS) 
may have exploitable cyber vulnerabilities (Shipunov et al., 2019), 
making them potential targets for cyber intrusions. Some researchers 
have also proposed that ROC is the most likely target in a cyber-attack, 
followed by the collision avoidance and situational awareness systems of 
MASS (Bolbot et al., 2020). Cyber-attacks from “external” sources have 
multiple and unknown intrusion paths, with sources not limited to in
dividuals or organizations such as pirates, criminals, and business 
competitors. These attacks may have various unknown purposes and 
motivations, making them challenging to detect and prevent. 

The competence of operators, or their extent in controlling ship ca
pabilities, may also contribute to cybersecurity vulnerabilities. For 
instance, operators’ unfamiliarity with the simulated console could lead 
to failure in detecting cyber intrusions, operators’ lack of information 
technology skills could result in a failure to defend against cyber in
trusions, and operators’ inexperience could lead to situations where the 
ship cannot be extricated. Nevertheless, several studies have identified it 
as a less important aspect of cyber environment (Shipunov et al., 2019; 
Tam and Jones, 2018). These researchers have pointed out that in
truders may take forms not restricted to cyber-attacks to take control of 
the ship. Since MASS can be unmanned or have very few crew members 
on board, external intruders might resort to physical attacks, such as 
forced boarding and multi-ship sieges, to disrupt the ship’s systems and 
take control over the ship to exert pressure on relevant governments or 
ship owners. On the other hand, according to Simola and Poyhonen 
(2022), factors such as personnel from “inside” the system, operational 
flows, and related technologies are key factors that lead to vulnerabil
ities in the cyber environment. However, the common perspective of 
these studies is that it is not enough to detect network vulnerabilities and 
cyber-attacks only through passively monitoring the flow of information 
across the screen. Active and continuous cyber situational awareness 
techniques are necessary and applications of new technologies such as 
blockchains to increase the trustworthiness between the entities in the 
MASS networks are insightful (Wang et al., 2022). Consequently, 

MASS’s network and system-related security technologies must possess 
sufficient capacity to address these issues. This is the reason why tech
nology factors are chosen as the fourth category of risk factors in this 
study, in addition to human, ship-related, and environmental factors in 
the classification criteria. 

The current view of researchers on the legal environment stems 
mainly from the legislative gaps in cargo transportation, onshore 
infrastructure, insurance, and collision avoidance (Fan et al., 2020; Man 
et al., 2018; Shipunov et al., 2019; Thieme et al., 2018; Wróbel et al., 
2017), etc., which contribute to the design and regulation of relevant 
pre-operational preparations. Further elaboration on the legal environ
ment is omitted, as the actual operation of MASS must be based on a 
comprehensive set of laws and regulations. 

3.4. Technology factors 

Currently, the shipping industry is in the transitional phase between 
the design and operation of MASS. Research related to human, ship- 
related, and environmental factors focuses on investigating “known 
unknowns”, as most of the hazardous scenarios faced by MASS in the 
studies mentioned above are predictable. Nevertheless, the precise 
definition of the MASS system remains unknown. At this stage, the 
butterfly effect is the most appropriate description for fault propagation, 
where a minor failure can trigger a series of chain reactions. Therefore, 
hazard identification and risk analysis related to technology factors need 
to incorporate such dimensions of uncertainty, ambiguity, and knowl
edge into the assessment metrics (Porathe et al., 2018). This includes 
identifying known hazards that can be mitigated by applying new 
technologies, assessing potential unknown hazards arising from the 
applications of new technologies, and predicting the acceptable level of 
unknown hazards in situations exceeding redundancy. 

Table 6 describes both the frequency of extracted RIFs related to 
technology factors in the selected literatures and an index of the liter
ature sorted by year of publication. Among the most frequently 
considered technology factors are RIFs related to autonomous systems, 
such as autonomous perception technology, decision-making technol
ogy, ship-control technology, and monitoring technology. More specif
ically, autonomous perception technology, decision-making technology, 
and ship-control technology form the foundation of MASS system, 
especially the collision avoidance technology in decision-making tech
nology (Chae et al., 2020). The systems of MASS are highly integrated, 
software-intensive, and susceptible to environmental influences. The 
autonomous perception system collects information on the physical 
environment surrounding the ship, the ship’s condition, cyber envi
ronment information, traffic flow information, etc., through sensors. 
The decision-making system analyses the above information, assists the 
ship itself or ROC in decision-making, and controls the movement of the 
ship through the ship-control system. Existing studies on how technol
ogy affects ship safety have predominantly focused on functional fail
ures caused by software and hardware malfunctions. However, the 
deeper propagation and potential risk factors of these failures have not 
been extensively examined. 

In addition to this, even extremely advanced technologies may have 
unforeseen failures that cannot be resolved. Such failures might only 
become apparent under certain conditions during actual operation, 
necessitating more costly remedial measures for mitigation (Banda 
et al., 2019). Most relevant studies suggest incorporating redundancy or 
enhancing the reliability of software and hardware in the design phase 
to mitigate this hazard (Eriksen et al., 2021; Martelli et al., 2021; Wróbel 
et al., 2018a). Complex systems like autonomous systems, software al
gorithms, and data interaction systems require more redundancy 
compared to mechanical systems such as ship-control and power sys
tems. The stability of information and communication technologies and 
cybersecurity are also hotspots in current studies on technological fac
tors. As a complex safety-critical cyber-physical system (CPS), MASS 
exhibits the following characteristics: highly dynamic and unstable 
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connections, high mobility, and massive bi-directional data exchange. 
Compared to traditional ships, the operation and decision-making of 
MASS heavily rely on information exchange between ships and ROC, 
ships and nearby ships, and ships and shore-based support, making these 
exchanges vulnerable to cyber-attacks with unpredictable conse
quences, encompassing human casualties, environmental pollution, and 
economic damage (Gu et al., 2021). Furthermore, the frequent 
human-system and system-system interactions, as well as the data ex
change of various control, communication, and perception systems, 
contribute to an increasing number of non-reciprocal data exchange 
interfaces. Ensuring the availability, reliability, and integrity of 
exchanged data is especially important. The most widely used method 
for cybersecurity risk analysis is the Maritime Cyber Risk Assessment 
(MaCRA) model (Tam and Jones, 2019). Shipunov et al. (2019); Tam 
and Jones (2018) extended the MaCRA model and generated cyber risk 
lists of MASS based on historical cyber-attack data of traditional ships in 
their investigations of Advanced Autonomous Waterborne Applications 
(AAWA), Mayflower Autonomous Ship (MAS), and YARA unmanned 
ship projects, respectively. This pattern has influenced subsequent 
research on cyber risk analysis. Bolbot et al. (2020) utilized historical 
literature and existing vulnerability databases as data sources to develop 
the CYber-Risk Assessment for Marine Systems (CYRA-MS) based on 
Cyber Preliminary Hazard Analysis (CPHA). They identified and ranked 
scenarios where inland MASS navigation and propulsion control systems 
may be subject to cyber-attacks. The management and system design 
suggestions for specific scenarios were presented, namely: adding fire
walls at interfaces between controlling systems, increasing communi
cation redundancy between controlling systems, installing intrusion 

detection systems and eliminating external network links. Tusher et al. 
(2022) utilized a multi-criteria decision making (MCDM) framework to 
analyse the ability of MASS devices and systems to resist cyber in
trusions. The results indicated that navigation systems are the most 
vulnerable to cyber intrusions, followed by ROC, while propulsion 
control system is the least vulnerable. Besides trust management within 
the network poses another risk within the system. Wang et al. (2022) 
stated that lacking identity authentication, message authentication, and 
trust censorship are the major reasons for data loss and spoofing. In 
response, an architectural framework for assessing trustworthiness in 
communication loops was developed based on blockchain technology. 

The operation of MASS poses greater challenges than initially 
anticipated. It relies not only on various systems onboard but also on 
complete shore-based supervision facilities. However, few studies 
currently focus on the impact of shore-based equipment on the safety of 
MASS navigation. At the same time, ships with DoA encounter situations 
that will be increasingly common in the future. As a result, the shift in 
operation modes and the inclusion of autonomous systems also pose 
challenges to the regulation of various stakeholders. The development of 
more advanced vessel traffic management technologies is necessitated 
to address these situations. 

4. Systematic risk analysis of MASS 

The previous section classified and summarized RIFs in the selected 
literatures, analysing RIFs in the design, construction, regulation, and 
operation phases of MASS from a microscopic perspective. However, 
examining hazards and factors at the micro level can hardly capture the 

Table 6 
The RIFs related to technology factors considered in the selected literature.  

No. References T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 

1 Hoyhtya et al. (2017)   ✓      ✓ ✓   
2 Utne et al. (2017) ✓    ✓      ✓  
3 Thieme et al. (2018) ✓ ✓  ✓ ✓   ✓     
4 Porathe et al. (2018)      ✓ ✓ ✓     
5 Tam and Jones (2018)   ✓      ✓    
6 Wróbel et al. (2018b) ✓ ✓  ✓ ✓ ✓     ✓  
7 Wróbel et al. (2018a) ✓ ✓  ✓ ✓  ✓   ✓   
8 Shipunov et al. (2019) ✓  ✓          
9 Vander Maelen et al. (2019) ✓    ✓ ✓  ✓     
10 Banda et al. (2019) ✓   ✓        ✓ 
11 Zhang et al. (2019)  ✓ ✓ ✓     ✓    
12 Fan et al. (2020)  ✓ ✓ ✓     ✓    
13 Utne et al. (2020) ✓    ✓ ✓  ✓     
14 Chae et al. (2020) ✓  ✓  ✓        
15 Bolbot et al. (2020)   ✓   ✓       
16 Felski and Zwolak (2020)  ✓ ✓ ✓  ✓     ✓ ✓ 
17 Goerlandt (2020)  ✓           
18 Wu et al. (2020) ✓ ✓   ✓        
19 Zhou et al. (2020) ✓ ✓ ✓ ✓         
20 Ventikos et al. (2020) ✓   ✓  ✓  ✓   ✓  
21 Ramos et al. (2020a) ✓ ✓   ✓     ✓   
22 Chaal et al. (2020) ✓    ✓  ✓      
23 Zhou et al. (2021) ✓ ✓ ✓    ✓   ✓   
24 Chang et al. (2021) ✓ ✓ ✓  ✓ ✓       
25 Fan et al. (2021) ✓ ✓ ✓ ✓         
26 Bolbot et al. (2021) ✓  ✓ ✓   ✓      
27 Guo et al. (2021) ✓  ✓          
28 Dittmann et al. (2021)  ✓ ✓      ✓    
29 Martelli et al. (2021) ✓ ✓   ✓   ✓     
30 Zhang et al. (2022b) ✓ ✓           
31 Simola and Poyhonen (2022) ✓ ✓ ✓       ✓   
32 Chou et al. (2022) ✓ ✓           
33 Wang et al. (2022) ✓            
34 Johansen and Utne (2022) ✓    ✓  ✓     ✓ 
35 Zhang et al. (2022a) ✓ ✓  ✓ ✓        
36 Tusher et al. (2022)   ✓ ✓         
37 Luo et al. (2022) ✓ ✓        ✓   
38 Veitch and Alsos (2022) ✓      ✓      
39 Fan et al. (2022) ✓  ✓ ✓     ✓   ✓  
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overall safety impact resulting from a single risk or a combination of 
risks at the causal level. 

Systematic risk analysis of MASS takes a holistic approach, consid
ering the entire system and utilizing a systematic methodology to assess 
associated risks. These studies aim to establish a comprehensive, precise, 
and systematic risk analysis process. Specifically, the analysis process 
should be applicable to most MASS systems (comprehensiveness), pro
vide detailed insights into the nature of identified risks and confirm the 
level of risk (precision), and follow a structured, systematic flow (sys
tematicity). As depicted in Figs. 1 and 23 papers related to systematic 
risk analysis of MASS are extracted from the final database through 
manual paper-by-paper analysis. This section will thoroughly discuss 
these papers from the perspective of data sources and risk analysis 
methods. 

4.1. Data sources for systematic risk analysis of MASS 

In order to gain a clear understanding of the data sources required for 
systematic risk analysis of MASS, a statistical analysis is conducted on 
the data sources utilized in these papers. The statistical results are pre
sented in Fig. 5. Literature and expert opinions have consistently served 
as the primary data sources for systematic risk analysis of MASS. In 
addition, experimental data has never been utilized before 2022. 
Overall, there is a significant increase in publications utilizing historical 
data and expert opinions as data inputs in recent years. 

Table 7 presents the statistical results of data sources utilized in 
systematic risk analysis studies. The statistical results show that out of 
23 papers, 10 papers utilized historical data of traditional ships as input, 
including marine accident investigation reports and regional ship acci
dent statistics, etc. Only Wu et al. (2020) utilized historical data as a 
single data input. Wróbel et al. (2017) utilized historical data and 
literature as inputs. Additionally, the remaining 8 papers utilized a 
dataset combining expert opinions as inputs. 

Out of 23 papers, 15 papers sourced information from previous 
literature, with only 2 papers (Wróbel et al., 2020; Ventikos et al., 2020) 
utilizing literature as a single data source. They utilized the safety 
control structure developed by Wróbel et al. (2018b) as the basis of their 
studies. The remaining 13 papers utilized a dataset combining expert 
opinions or historical data as inputs. Notably, subjective expert opinions 
are the most frequently utilized input data, supported by 19 papers. 

Furthermore, 4 papers utilized a combination of three data sources to 
construct a dataset. Zhang et al. (2022a) utilized historical data for 
qualitative analysis of ship systems that were still in the conceptual 

design stage, such as ship mechanical systems, and experimental data for 
quantitative analysis of the systems that were already in the experi
mental stage, such as autonomous navigation systems. In addition, 
expert opinions were utilized for the prioritization of indicators and 
hazard scenarios, and for the setting of node weights in the model. 
Zhang et al. (2019) combined historical data, literature review results, 
and expert opinions to determine the prior probabilities of a Bayesian 
network (BN) and establish a risk indicator framework. Banda et al. 
(2019) utilized marine accident statistics to identify common accident 
scenarios for autonomous ferries in a case study. Expert opinions from 
different industry fields and historical literatures are utilized to propose 
safety management strategies. Chaal et al. (2020) utilized existing lit
eratures on MASS and its systems, currently available information from 
the maritime field, and the empirical knowledge of active seafarers to 
construct a hierarchical control structure framework applicable to 
MASS. 

4.2. Methodology of systematic risk analysis of MASS 

In this section, 23 papers are classified based on the primary risk 
analysis methods used. Since 17 of these papers utilized two or more risk 
analysis methods, the total count exceeds 23. Table 8 presents the 
classification results, including the names of risk analysis methods, brief 
descriptions, and a list of literatures utilizing these methods. As seen 
from Table 8, STPA is the most frequent risk analysis method among the 
existing studies related to systematic risk analysis of MASS. There are 8 
papers utilizing STPA for qualitative risk analysis of MASS, followed by 
BN, Delphi method, and literature review. Both the Delphi method and 
brainstorming can support qualitative and quantitative risk analysis of 
MASS, but the analysis process often involve subjectivity. Besides, 
Failure Modes and Effects Analysis (FMEA), Hybrid Causal Logic (HCL) 
methodology, and Hierarchical Holographic Modelling-Risk Filtering, 
Ranking, and Management (HHM-RFRM) frameworks have also been 
used for both qualitative and quantitative risk analysis of MASS. 

In order to track the distribution of academic enthusiasm for the 
major existing risk analysis methods and their introduction timeline to 
the field, a statistical analysis is conducted based on year of publication 
of these publications. As depicted in Fig. 6, STPA is the first risk analysis 
method applied to this field and still maintains a high level of academic 
interest as of the search data. BN gained increasing attention from re
searchers in this field after 2020. Similarly, FMEA, an established risk 
analysis method emerging in this field, has drawn attention from the 
academic community after 2021. 

Fig. 7 depicts the combined use of risk analysis methods in the 
selected literatures. Among these methods, BN, STPA, Delphi, and 
literature review are most frequently utilized in combination with other 
risk analysis methods. While STPA is the most common method utilized 
for risk analysis of MASS, many studies solely utilized it for qualitative 
analyses. However, Chaal et al. (2022) employed STPA in combination 
with BN and utilized the results of STPA as input to BN, achieving Su
pervisory Risk Control (SRC) through online risk models. It is worth 
noting that methods like HCL and H-SIA incorporate multiple risk 
analysis methods, such as ESD, FTA, CoTA, BBN, and others. In 
conjunction with Tables 8, it becomes apparent that using a combination 
of qualitative and quantitative analysis methods is the predominant 
approach in this field. 

4.3. Evaluation in risk analysis of MASS 

The analysis of the methodology in the selected literature indicates 
that these methods represent different understandings of the risk anal
ysis of MASS. Chen et al. (2021) classified risk analysis methods into 
three stages: qualitative analysis, semi-quantitative analysis, and 
quantitative analysis. Building upon this classification scheme, this 
study classifies the existing studies on systematic risk analysis of MASS 
into the following three stages. 

Fig. 5. Trends in data sources for systematic risk analysis of MASS by year of 
publication. 
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1) Qualitative analysis conducted through hazard identification that 
may exhibit some degree of subjective bias.  

2) Qualitative analysis conducted through risk analysis methods.  
3) Quantitative analysis conducted through the combination of hazard 

identification or risk analysis methods with risk assessment models. 

These three stages are identified after the search. It should be noted 
that these stages are not mutually exclusive, as some studies may fall 
into more than one category. The classification here aims to cluster lit
eratures with similar characteristics, providing a more straightforward 
overview of the various academic perspectives on systematic risk anal
ysis of MASS. 

4.3.1. Qualitative analysis with focus on hazard identification 
The initial task of risk analysis is to determine the specific vital 

components included in the system, influencing new risks and potential 
consequences associated with the operation of MASS (Aven, 2016). Six 
out of seven studies that utilized either the Delphi method or literature 
review identified and prioritized hazards, establishing risk index 
systems. 

As one of the pioneering studies in the final database to include a 
complete MASS risk index system, Wróbel et al. (2017) performed a 
quantitative hypothesis analysis based on existing accident reports of 
traditional ship to identify factors leading to MASS accidents and create 
a risk list. The study identified 21 causal factors, which were further 
refined and classified into five levels: external factors, organizational 
influences, unsafe supervision, preconditions, and unsafe acts. Similarly, 
based on accident reports and expert opinions, Wrobel et al. (2016) 
established a BBN structure, identified potential RIFs and events that 
may lead to accidents, and causal propagation relationships between 
them. Luo et al. (2022) constructed a risk assessment index framework 
for the navigation of smart ships by complementing and eliminating 
common risk factors of traditional ships through the Delphi method and 
brainstorming. Chou et al. (2022) combined experts’ subjective evalu
ations of large MASS and objective accident data of large traditional 
merchant ships to assess the risk level of MASS accidents in terms of 
accident probability and damage. The study revealed that mechanical 
malfunction accidents pose the highest risk when sailing on the high 
seas, while collision accidents pose the highest risk when entering and 
departing from ports. Although the factors in the resulting risk index 
framework have a strong causal relationship with the occurrence of 
accidents, these studies lack the analysis of the causal relationship with 

factors at higher levels. Establishing causal relationships between 
different layers is crucial in transitioning from a flat risk list to a 
dimensional framework of risk indexes, helping designers recognize the 
source paths of potential risk factors in the initial design phase. 

The primary challenge faced by most researchers in conducting 
ground-breaking qualitative risk analysis of MASS is the lack of available 
data. To overcome this, researchers initially utilized historical data of 
traditional ships combined with expert opinions to construct a risk list or 
framework applicable to MASS. Alternatively, some studies solely relied 
on expert opinions to modify and broaden the risk list of traditional 
ships. Although the Delphi method and literature review are convenient 
ways to understand the composition of MASS, relying solely on subjec
tive data sources will lead to limitations and unpredictable incom
pleteness when conducting risk analysis on “unknown unknowns”. This 
could ultimately lead to doubtful credibility of the risk list or framework. 

4.3.2. Qualitative analysis with focus on risk analysis 
In addition to qualitative analysis, which examines the causal rela

tionship of RIFs, hazard analysis is another commonly utilized risk 
analysis method in the field. It helps identify hazardous actions or sce
narios in a MASS system and provide risk control measures. 

Several studies (Chae et al., 2020; Stringfellow et al., 2010; Zhou 
et al., 2020) have pointed out that increased system complexity results 
in the failure paths that are densely interleaved. Traditional hazard 
analysis methods, such as Hazard and Operability (HAZOP), FMEA, and 
FTA, are not directly applicable for the safety assessment of MASS. As 
the hazard analysis method that has received the most attention in 
systematic risk analysis of MASS, STPA was initially introduced by re
searchers (Wróbel et al., 2018a, 2018b). It has been applied to the risk 
analysis of autonomous merchant ships and remotely controlled mer
chant ships. Through adopting the top-down strategy, a safety control 
structure was constructed to describe the potential interactions between 
systems. A list of hazards that MASS may encounter and the likelihood 
that unsafe control actions may lead to hazards were provided. Ventikos 
et al. (2020); Wróbel et al. (2020) provided an in-depth analysis of the 
safety control structure developed in the study of Wróbel et al. (2018a). 
Wróbel et al. (2020) utilized STPA to obtain safety control actions cor
responding to the safety control structure and provided a literature re
view of safety control actions that interacted in the structure. They 
summarized the existing research results and highlighted relatively 
scarce research directions, particularly concerning DoA3 MASS. The 
results revealed that most of the existing studies focus on the technical 

Table 7 
The statistical results of systematic risk analysis dataset by year of publication.  

NO. Reference Year of publication Historical data Literatures Expert opinions Experimental data 

1 Wróbel et al. (2017) 2017 ✓ ✓   
2 Wróbel et al. (2018b) 2018  ✓ ✓  
3 Wróbel et al. (2018a) 2018  ✓ ✓  
4 Zhang et al. (2019) 2019 ✓ ✓ ✓  
5 Banda et al. (2019) 2019 ✓ ✓ ✓  
6 Fan et al. (2020) 2020  ✓ ✓  
7 Wu et al. (2020) 2020 ✓    
8 Wróbel et al. (2020) 2020  ✓   
9 Chaal et al. (2020) 2020 ✓ ✓ ✓  
10 Ventikos et al. (2020) 2020  ✓   
11 Ramos et al. (2020b) 2020   ✓  
12 Ramos et al. (2020a) 2020   ✓  
13 Chang et al. (2021) 2021  ✓ ✓  
14 Zhou et al. (2021) 2021  ✓ ✓  
15 Fan et al. (2021) 2021 ✓  ✓  
16 Bolbot et al. (2021) 2021  ✓ ✓  
17 Guo et al. (2021) 2021  ✓ ✓  
18 Zhang et al. (2022b) 2022  ✓ ✓  
19 Chou et al. (2022) 2022 ✓  ✓  
20 Zhang et al. (2022a) 2022 ✓  ✓ ✓ 
21 Chaal et al. (2022) 2022 ✓  ✓  
22 Luo et al. (2022) 2022  ✓ ✓  
23 Fan et al. (2022) 2022 ✓  ✓   
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aspects of the operation and design of MASS. Few studies provided 
detailed analysis of communication and data transmission, while orga
nizational and social factors are difficult to analyse in-depth due to the 
uncertainty of autonomous ships. Ventikos et al. (2020) further refined 
the classification criteria of DoA based on the IMO guidelines and 
identified the potential RIFs of different DoAs of MASS through STPA. 
The analytical results of STPA were classified according to the mitigable 
potential of risk, resulting in a list of mitigation measures for MASS with 
different DoAs. The results indicated that with an increase in DoA, there 
was a corresponding increase of the mitigation measures that may 
reduce risk. Zhou et al. (2021) improved STPA from a safety and security 
perspective and proposed a novel STPA-based methodology that syn
thesizes safety and security (STPA-SynSS). This approach aimed to 

identify a higher number of unsafe/unsecure control actions (UCA) and 
loss scenarios, generating more targeted hazard control strategies. Bol
bot et al. (2021) developed a hybrid, semi-structured risk assessment 
process for the initial design phase of MASS, integrating safety, security, 
and cybersecurity concerns. This process identified and ranked haz
ardous scenarios while proposing risk control measures. 

While most of the studies utilized STPA to analyse the failure events 
of interactions in systems, there are also some studies that used the re
sults as guiding recommendations for the design and management of 
MASS. Utne et al. (2020) utilized STPA to identify real-time dynamic 
risks during the voyage of MASS. The results were utilized as the basis 
for BBN modelling to provide decision support for real-time ship oper
ations. They proposed a theoretical framework for developing a ship 

Table 8 
The statistical result of the risk analysis method in relative studies.  

Methods Description Qualitative 
analysis 

Quantitative 
analysis 

Reference Nop 

STPA STPA has gained popularity as a hazard analysis method in recent 
years and is widely utilized for hazard identification during the 
early development stages of complex systems. It adopts a top-down 
approach based on established system interaction structures and 
hazard lists to proactively identify unsafe control behaviours in the 
interaction processes among complex system components. STPA is 
an efficient approach for risk analysis of complex systems when 
available data is insufficient. 

✓  (Banda et al., 2019; Chaal et al., 2020, 
2022; Ventikos et al., 2020; Wróbel et al., 
2018a, 2018b, 2020; Zhou et al., 2021) 

8 

BN BN is an effective tool for uncertainty knowledge representation and 
inference. Both BN and STPA do not rely on a large amount of 
historical data (Veitch and Alsos, 2022). BN has rarely been utilized 
as a stand-alone method in the risk analysis of MASS. It is usually 
combined with other risk analysis methods and applied in the 
quantitative analysis process.  

✓ (Chaal et al., 2022; Chang et al., 2021; Guo 
et al., 2021; Wu et al., 2020; Zhang et al., 
2019, 2022a) 

6 

Delphi method Delphi method draws on the knowledge and experience of domain 
experts to provide a structured and systematic understanding of 
rare, unimaginable, and unexperienced issues in the form of 
questionnaires. In related studies on risk analysis of MASS, the 
Delphi method is commonly used in the process of hazard 
identification and indicators prioritization. 

✓ ✓ (Bolbot et al., 2021; Chou et al., 2022; Fan 
et al., 2020, 2022; Luo et al., 2022; Zhang 
et al., 2019) 

6 

Literature 
review 

Literature review is a retrospective analysis of previous research, a 
comprehensive analysis of avoidable information, and extracts 
available information in the field or similar fields. 

✓  (Bolbot et al., 2021; Fan et al., 2020; Luo 
et al., 2022; Wróbel et al., 2020; Zhang 
et al., 2019) 

5 

FMEA FMEA is a bottom-up risk analysis method widely applied in 
offshore safety and reliability analysis. FMEA evaluates a single 
potential failure mode in terms of Occurrence (O), Severity (S), and 
Detection (D) of potential failures in the system. 

✓ ✓ (Chang et al., 2021; Fan et al., 2021, 2022) 3 

Brain-storming Brain-storming is an innovative discussion method designed to get 
participants to develop more creative ideas. In related studies on 
risk analysis of MASS, brain-storming is often applied in the process 
of developing a risk system or risk list for MASS. 

✓ ✓ (Chaal et al., 2020; Guo et al., 2021; Luo 
et al., 2022; Zhou et al., 2021) 

4 

24 model The 24 model, derived from Heinrich’s Accident Causation Theory 
and the Swiss Cheese Theory, is based on behavioural safety theory 
and identifies the causes of accidents at both the organizational and 
individual levels. In related studies, the 24 model has been applied 
to analyse the direct and external causes of a given accident. 

✓  (Fan et al., 2021, 2022) 2 

H-SIA The method Human-System Interaction in Autonomy (H-SIA) 
consists of two main methods, namely, Event Sequence Diagram 
(ESD) and Concurrent Task Analysis (CoTA). H-SIA considers MASS 
as a whole and analyses failure events in specific MASS scenarios, 
which are used to develop risk management measures. 

✓  (Ramos et al., 2020a, 2020b) 2 

HCL HCL combines ESD, Fault Tree Analysis (FTA), and Bayesian Belief 
Network (BBN) to provide a comprehensive risk analysis of MASS. 
The framework of HCL is a three-layer model with ESD at the top 
layer, FTA in the middle layer, and BBN at the bottom layer. 

✓ ✓ (Wu et al., 2020; Zhang et al., 2022a) 2 

HFACS The Human Factors Analysis and Classification System (HFACS) 
method was derived from Reason’s Swiss Cheese model and focuses 
on the classification of four levels of active failures and potential 
conditions, such as unsafe acts, preconditions for unsafe acts, unsafe 
supervision, and organizational influences (Chen et al., 2013). 

✓  Wróbel et al. (2017) 1 

HHM-RFRM In related studies, HHM is used for identifying risk factors, and 
RFRM is used for screening and assessing risk factors. 

✓ ✓ Zhang et al. (2022b) 1 

Hierarchical 
analysis 

In related studies, Hierarchical Analysis (HA) is applied to predict 
navigational risk. The researchers have established a hierarchical 
structure containing the entire navigational risk for MASS, the 
category of marine accidents, the probability of an accident, and the 
damage and loss in one marine accident. 

✓  Chou et al. (2022) 1  
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control system towards supervisory risk control, which addressed the 
inability of STPA to quantify risk in the process of risk analysis. Johansen 
and Utne (2022) further improved this framework by incorporating the 
quantified results as input to a supervisory risk controller (SRC), thereby 
implementing a ship control system integrated with an online risk 
model. Nonetheless, such hazard analysis methods focusing on real-time 
effects, such as traffic and weather conditions around the ship, are not 
directly applicable to the systematic risk analysis of MASS. 

4.3.3. Quantitative analysis with focus on modelling 
Most of the studies mentioned above primarily focus on identifying 

RIFs and establishing risk index frameworks for MASS, with the ultimate 
goal of providing risk control recommendations. However, these studies 
are primarily qualitative, focusing mainly on hazard identification 
rather than risk quantification. This section summarises the analysis of 
all quantitative risk analysis of MASS. 

Firstly, some studies have investigated whether the risk models of 
traditional ships can be directly applied to the risk analysis of MASS. 
Thieme et al. (2018) conducted a review of existing collision and 
grounding risk models of traditional ship. They found that these models 

typically utilize accident analysis data, expert opinions, or a combina
tion of both as inputs. However, the scarcity of accident data and his
torical data for MASS makes it difficult to use these inputs for the risk 
model of MASS. Additionally, the risk models of traditional ships and 
some of the risk models that have already been implemented on MASS 
lack the analysis of subjective hazard actions and ship-shore and 
ship-ship communication. In many cases, these models assume no 
communication between ship-shore and ship-ship to simplify the anal
ysis. Precisely these reasons make it infeasible to apply traditional ship 
risk models directly to MASS. However, some of these risk models and 
frameworks developed for traditional ships can serve as a foundation for 
developing risk models for MASS. 

Subsequently, researchers had utilized a combination of multiple 
methods to quantitatively analyse the risk of MASS, including the Delphi 
method, literature review, and BN. BN is a commonly utilized risk model 
in existing studies, as presented in Table 8. Based on an existing ship 
collision model, Guo et al. (2021) utilized BBN to quantify the naviga
tional risk of an autonomous ferry in a collision scenario. They explored 
changes in collision risk compared to traditional ferries, examined the 
form of change in accident type, and the shift in accident rates. Wu et al. 
(2020) demonstrated complete HCL modelling for MASS safety by 
extending the collision scenario for traditional ships. The experimental 
results proved that the introduction of MASS will reduce the risk of ship 
collision. However, this doesn’t imply that RIFs show a subtraction 
trend, like disappearing from the risk list. It is possible that new RIFs that 
have not appeared in traditional ship collision scenarios may emerge. 
Zhang et al. (2019) identified the RIFs of traditional ships through a 
literature review. They constructed a navigation safety assessing model 
for unmanned ships in inland waters utilizing expert opinions and a 
fuzzy BN. Chang et al. (2021) established the MASS operational risk 
index framework through a literature review and expert questionnaire. 
They further assessed MASS operational risks by combining FMEA, 
Evidence-based Reasoning (ER), and Rule-based Bayesian Network 
(RBN). The results of MASS operational risk prioritization were ob
tained, namely “interaction with manned vessels and detection of ob
jects”, “cyber-attacks”, “human error”, and “equipment failure". 

The above studies aim to analyse risks across all DoAs of MASS. 
Considering the differences in the composition and priority of the risk 
for different DoAs of MASS, the Operational Modes (OMs) of MASS 
determines its DoA. On the one hand, changes of the OMs result in 
changes among different DoAs, and new risks arise in association with 
such changes. As the autonomy level of the system changes dynamically, 
the responsibilities of humans in the “loop” also change, as highlighted 
by Ramos et al. (2020a). They conducted a risk analysis of complex 
systems from a holistic perspective, focusing on qualitative risk analysis 
between different system interactions. Following the HCL modelling 
approach, the Fault Tree (FT) was integrated into the improved H-SIA 
method to obtain the failure path of MASS. Ramos et al. (2020b) pro
posed an H-SIA approach for collision scenarios using ESD and CoTA. 
Additionally, Fan et al. (2021) established a generic four-step ris
k-informed framework applicable to the three OMs of MASS, applicable 
to manual control, remote control, and autonomous control. In the 
study, the 24 model was utilized to identify failures, and the risk priority 
number (RPN) concept in FMEA and expert scoring was utilized to 
define and quantify risks with the MASS model-bank allision as the input 
source. Then, Fan et al. (2022) also improved this framework by 
extending the fault identification scope of the 24 model for a 
decision-transparent traceability process. On the other hand, researchers 
have quantified the risk of MASS with different DoAs in different navi
gation phases. The four-layer risk index framework established by Fan 
et al. (2020) was applicable to four operational phases of DoA3 MASS, 
including voyage planning, berthing and unberthing, port approaching, 
and departing. Zhang et al. (2022b) utilized HHM to identify the main 
risk scenarios for DoA3 and fully autonomous ship (DoA4) MASS navi
gation phases, namely sailing plan decision, berthing and unberthing, 
port entrance and departure, and open water navigation. The RFRM 

Fig. 6. Trend of Top 5 Risk Analysis Methods by year of publication.  

Fig. 7. Combined use chart for risk analysis methods.  
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model was utilized to prioritize RIFs, and the seven most crucial RIFs 
were identified, namely traffic flow, navigation environment under
standing, ship-shore interaction capabilities, ship target identification 
capabilities, reliability of communication, professional skills, and situ
ational judgment. Zhang et al. (2022a) conducted a qualitative and 
quantitative assessment of the overall risk of DoA3 MASS utilizing HCL, 
which was a combination of various risk analysis methods. Among them, 
ESD was utilized to establish a hazard scenario framework for MASS; FT 
was utilized to analyse non-human related mechanical events in hazard 
scenarios; BBN was utilized to analyse human factors-related events 
with strong uncertainty. 

5. Discussion 

5.1. The main findings of this study 

The first five sub-sections below present the main findings in terms of 
hazard identification, and the last two present the main findings in terms 
of research methodology. 

5.1.1. Unveiling statistical insights of publications 
The systematic analysis of the literature indicates a growing aca

demic interest in hazard identification and risk analysis of MASS since 
2017, with two notable increases in 2018 and 2020. The journals with 
the most publications in this field are RESS, SS, and OE. RESS has 
continued to publish highly relevant literatures in this field from 2017 to 
2022 and is currently on an upward trend. Among the active institutions 
in this field are NTNU, Aalto, and WUT, while the countries with the 
highest number of publications are Norway, Finland, China, Poland, and 
the UK. This distribution aligns with the geographic distribution feature 
that most autonomous shipping projects are concentrated in the EU, 
Norway, China, and Japan (Liu et al., 2022a). 

5.1.2. Evolving perspectives on human factors 
From the perspective of research content, the impact of human as a 

part of the “loop” on MASS safety is the main focus of RIFs research. 
Most existing literature has examined RIFs originating from humans 
themselves, including situation awareness, condition of operator(s), 
experience and training, competence of operator(s), automation- 
induced trust issue, information overload, and communication. How
ever, it is generally accepted that there has been a shift in the experts’ 
view of human factors (Chang et al., 2021), i.e., human factors have 
transitioned from human-oriented RIFs to design-induced defects. This 
shift becomes more significant as the DoA increases. Although the 
impact of pure human RIFs on safety is undeniable, as the DoA increases, 
they may not be the most critical factor in the operations of MASS. 
Instead, timely prevention and correction of hardware or software 
development defects can significantly aid in reducing the costs of cor
recting such errors during actual operation. Nonetheless, relevant 
studies for such RIFs are deficient in the existing literatures. Another 
emerging RIF is humanitarianism, as expert opinions shift. Only 3 papers 
mentioned this, with Luo et al. (2022) categorizing it as a 
social-environmental factor and Wahlstrom et al. (2015) identifying 
humanitarianism from the military field without specifying its 
classification. 

This study further identifies maritime supervision, bridge resource 
management, and manning are the management-related RIFs. Maritime 
supervision is particularly noteworthy, appearing in 10 studies related 
to management factors, underscoring its importance. In contrast to the 
RIFs related to management factors listed in Table 2, emergency man
agement mechanisms were not identified in the literatures, with only 
one similar RIF identified, which is system emergency mechanisms. 
Describing the emergency management mechanism as the uncertain 
form of MASS is a challenging task. Though its importance is recognized, 
the definition of emergency and the specific content of management still 
remain unclear, leading academic research demands more on ship 

software, hardware systems, and autonomous technology (Wróbel et al., 
2020). 

5.1.3. Ship-related factors: reliability takes center stage 
Reliability of hardware is examined in all ship-related studies, with 

more than half of the literatures also examining maintainability of 
hardware and reliability of software and algorithms. As a result, reli
ability and maintainability of software and hardware are considered the 
most significant RIFs in ship-related factors. It is worth noting that MASS 
necessitates testing and validation before actual operation to minimize 
unforeseen potential risks and ensure the stability of software and 
hardware. However, current research on the risks associated with testing 
and validation of ship software and hardware systems is insufficient. 
Furthermore, there is limited research on RIFs related to reliability and 
maintenance of software and algorithms, compared to those related to 
ship hardware. Contemporary researchers tend to overlook the impact of 
software failures on safety, possibly due to the reliance on historical 
data, which often omits ship software and algorithm-related aspects. 

5.1.4. Bridging gaps in environmental and ship-related studies 
Only 4 studies mentioned ship conditions, and all of them conducted 

systematic risk analyses of MASS. Despite incorporating more advanced 
systems and technologies, MASS shares physical properties with tradi
tional ships. Consequently, the physical properties of MASS do not 
change significantly compared to traditional ships, as well as similarities 
in physical environment, management factors, and other risk factors. 
However, the failure paths of accidents stemming from ship conditions 
remain unknown, possibly explaining the scarcity of research related to 
the risk analysis of ship conditions at this stage. 

For the same reason, research on the risk analysis of environmental 
factors remains inadequate. Most studies examined two or more RIFs 
related to environmental factors, 9 studies examined three or more RIFs, 
and only 3 studies examined five or more RIFs. Among these RIFs, 
natural environment and traffic environment were mostly examined in 
the form of textual narratives, with limited quantitative assessment of 
their influence on ship safety. The current quantitative analysis of 
environmental factors primarily focuses on the impact of remote oper
ators’ work environment. 

5.1.5. Navigating the technological landscape 
The highest number of relevant studies examining technology factors 

is 39. Among these, 20 studies examined four or more RIFs related to 
technology factors. However, the distribution of RIFs related to tech
nology factors in these studies is relatively scattered. Associated with the 
discussion of technology factors in the previous section, it can be 
deduced that the research directions of technology factors in the final 
database are also relatively scattered. Notably, autonomous perception 
technology, reliability of ICT, decision-making technology, and ship- 
control technology tend to appear in groups, representing the founda
tion of MASS navigation. Ensuring cybersecurity in the data trans
mission system and providing sufficient redundancy are crucial for the 
proper operation of the fundamental functions of MASS. While 18 and 
14 studies examine these two RIFs, respectively, none quantified the 
specific amount of redundancy required. 

5.1.6. Data source credibility challenges 
From the perspective of research methodology, the risk analysis of 

MASS faces the challenge concerning the credibility of data sources. Five 
studies relied solely on historical data or expert opinions as their input 
source, and all of these studies were published before 2020. Conducting 
a comprehensive and systematic quantitative analysis of MASS safety 
utilizing just one data source proves difficult. However, the form of the 
dataset could help mitigate this limitation. According to Table 7, data
sets incorporating expert opinions have become the prevailing trend in 
this field since 2020. Out of 19 studies that utilized expert opinions as 
input, 17 also integrated other objective data into the analysis. 
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Furthermore, there were no publications on WOS Core Collection 
applying experimental data to hazard identification and risk analysis of 
MASS before 2022. However, along with the disclosure of MASS real- 
ship trials data or part of the technical experimental data, some re
searchers have applied such data to the risk analysis of MASS (Zhang 
et al., 2022a). 

5.1.7. General practice for quantitative risk analysis of MASS 
The findings reveal that literature review, ESD, and the 24 model are 

the primary hazard identification methods. For systematic risk analysis 
of MASS, the most frequently utilized risk analysis methods are STPA 
and HFACS. While STPA, lacking a quantitative risk analysis process, 
typically relies on existing control structures and hazard lists. In-depth 
analysis shows that 12 studies conducted quantitative risk analysis of 
MASS, utilizing methods such as BN, FT, FMEA, Delphi method, and 
brain-storming as the primary risk quantification methods. Among these 
methods, BN stands out as the most frequently utilized modelling 
method, utilized in 6 studies. In summary, combining the above hazard 
identification methods and risk quantification methods is a common 
practice in quantitative risk analysis of MASS. However, from the 
perspective of research content, only five studies have developed com
plete risk models, and most of them lack a detailed analysis of tech
nology factors. 

5.2. The research directions of risk analysis of MASS 

5.2.1. Shifting focus and emerging challenges 
Firstly, due to the current scarcity of available data, academic 

attention still focuses on human-driven RIFs in the context of MASS. 
However, experts’ revised views on human factors and the progress of 
real-ship trials have led to a shift in attention towards the manning of 
ROC, management of operators, training of operators, and procedures of 
operating in future human factors research. Secondly, for autonomous 
onboard systems, even though software errors can be rectified in the 
form of system upgrades, addressing hardware defects is challenging 
during actual operation. Therefore, it is crucial to prevent development 
defects in the design phase, and conducting thorough testing and veri
fication of systems can effectively address such potential risks. However, 
research in this field is currently lacking. As autonomous technology 
advances and real-ship trials keep improving, studies on software reli
ability and maintenance will obtain available data for risk analysis. 
Thirdly, security and cybersecurity are critical issues that require 
attention before operation. A great range of attack instruments, both 
traditional and emerging, in information technology, such as boarding, 
hijacking, and network intrusions, may occur collectively. Network in
trusions to ROC may cause multiple ships to lose control simultaneously. 
Real-ship trials should focus on scenarios where traditional and 
emerging intrusions could occur in different combined forms to obtain 
comprehensive data. Fourthly, autonomous technologies form the 
foundation for MASS operation, but the RIFs related to these technolo
gies often lack a specific form and are challenging to quantify. Conse
quently, redundancy is one of the critical technology factors that 
necessitate in-depth analysis at the design stage. Quantifying redun
dancy poses a pressing challenge that requires urgent resolution. 

In general, the aforementioned studies related to these RIFs represent 
a step-by-step exploration of the specific form of MASS in current 
academia, with the common goal of facilitating the introduction of 
MASS. Meanwhile, these studies serve as the basis for developing well- 
established safety management systems for maritime administrations. 

5.2.2. Advancements in methodology for risk analysis of MASS 
The qualitative analysis process is no longer adequate for meeting 

the demands of risk analysis in the initial design phase of complex sys
tems due to its subjective nature. Moreover, relying on single data 
sources, such as historical data with inapplicability and expert opinions 
with subjectivity, lacks wide applicability to support the quantitative 

analysis of RIFs. Researchers currently tend to use combined datasets 
and combined risk analysis methods. Additionally, the study identified a 
total of 12 studies on quantitative risk analysis of MASS, with 10 of them 
published between 2021 and 2022. Quantitative risk analysis of MASS is 
a major research direction in this field for the future as if MASS risk 
cannot be assessed quantitatively, the established safety management 
system does not motivate industrial professionals for its implementa
tion. This is potentially due to their effects being invisible in a state-of- 
the-art risk assessment (Yang et al., 2014). Currently, BN stands as the 
most common method for building models in quantitative risk analysis 
of MASS. 

5.2.3. Unresolved challenges and opportunities on research methodology 
There remain several unresolved issues. On the one hand, both STPA 

and BN share the advantage of being accommodative to both subjective 
and objective data, making them suitable for risk analysis scenarios with 
limited available historical data for MASS. However, the combination of 
STPA with risk models for quantitative analysis is rarely observed in 
quantitative risk studies. This could be attributed to several reasons: 
STPA relies on a well-established systematic interaction framework and 
hazard list while lacking a systematic approach to identifying hazards 
and establishing such a framework during the analysis process (Bolbot 
et al., 2021). 

On the other hand, data with subjectivity and inapplicability 
continue to serve as primary sources of input datasets, often leading to 
biased analysis outcomes. One solution being explored to address this 
issue is the use of datasets that include real-life ship trial data. Conse
quently, future risk analyses of MASS are expected to rely on outputs 
derived from real-ship trials. Moreover, statistical results indicate that 
the distribution of countries or regions of authorship is similar to the 
distribution of autonomous shipping projects. Researchers from these 
countries or regions at the forefront of MASS development may be one 
step ahead in adopting real-ship trial data for risk quantification analysis 
of MASS. 

5.2.4. Quest for acceptable criteria 
The acceptable criteria in quantitative risk analysis are currently 

lacking. On the one hand, establishing acceptable criteria for risk can 
enhance the scientific and applicability of quantitative risk analysis. 
Reasonable acceptable criteria for risk are fundamental to risk quanti
fication analysis, which, in turn, serves as the crucial foundation for 
proposing risk control measures. Divergences in the inter-individual 
understanding of risk lead to differences in individual standards of 
risk acceptability. Therefore, developing reasonable acceptability 
criteria for risk is a prerequisite to proposing practical risk control 
measures. In this context, Fan et al. (2022) provided a new perspective 
on this issue, selecting the operation mode with the lowest risk and 
uncertainty by comparing the quantitative risk under different operation 
modes. On the other hand, acceptable risk levels are intrinsically linked 
to the capacity of risk control measures. The available resources for 
controlling risks are often limited in practical risk management. 
Fischhoff (1981) contended that the issue of acceptable risk is inherently 
a decision-making problem, where the selection of acceptable risk is 
contingent on the outcome of decision-making rather than the inherent 
level of risk present. Currently, a limited amount of information is 
available regarding the acceptable risk criteria for MASS. Rødseth and 
Burmeister (2015) defined an acceptable risk level for MASS as being no 
higher than that from a traditional ship. However, this definition is not a 
general standard that can be used for MASS risk management. At this 
point, risk matrix serves as a more suitable representation of acceptable 
risk standards. Fan et al. (2024) proposed a framework for designing risk 
matrices based on fuzzy Analytic Hierarchy Process (AHP). The pro
posed framework comprehensively considers the uncertainty in MASS 
risk analysis, filling the existing gap in the creation process of MASS risk 
matrices. 
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5.3. Biases and limitations 

This research is subject to certain limitations. Firstly, there is a de
gree of subjectivity involved in the search process. Although the litera
ture selected from the WOS core collection encompasses representative 
studies in the field of hazard identification and risk analysis of MASS, the 
chosen keywords may not be exhaustive in retrieving all relevant liter
atures due to the diversity and richness of linguistic expressions. 
Furthermore, manual screening is utilized to exclude low-relevance lit
eratures, which inevitably brings a degree of subjectivity. Future studies 
can improve the quality of literature retrieval, screening, and classifi
cation by expanding the search database and adopting diverse keyword 
collocation or bibliometric methods. 

Secondly, to ensure the validity and forward-looking nature of the 
established risk list, this study manually refines the RIFs and takes a 
relatively macroscopic approach. Uncertainty is one of the key concepts 
in risk analysis (Aven, 2016) and has been present throughout the pro
cess of MASS hazard identification and risk analysis. The study adopts a 
manual, paper-by-paper reading approach to extract RIFs that may 
impact the safety of MASS from narrative text, study objects, and dia
grams in the selected literatures, from which a risk list is constructed. 
However, this process is subjective and may result in some omissions. To 
address this, future studies could incorporate text mining techniques to 
extract RIFs from the selected literature. Additionally, most studies tend 
to rely on the experience and knowledge of domain experts and 
front-line crew members for hazard identification. Since real-ship trials 
for MASS are currently in a small-scale experimental stage, experience in 
real-ship trials and MASS is relatively limited and not sufficiently 
comprehensive. Therefore, the data sources for extracting RIFs in this 
study also entail a certain degree of subjectivity and uncertainty. In 
general, the risk list presented in this study is not a comprehensive 
catalog of risks. It attempts to explain the potential “unknown un
knowns” and “known unknowns” that may arise in the design, opera
tion, and regulation of MASS. 

6. Conclusions 

This study presents a comprehensive review and summary of hazard 
identification and risk analysis of maritime autonomous surface ships 
based on 62 selected literatures spanning from 2015 to 2022. Key 
metrics in terms of journal, year of publication, countries or regions of 
authorship, and institution are provided, revealing a discernible in
crease in academic interest since 2017, with significant peaks in 2018 
and 2020. Journals such as Reliability Engineering & System Safety, 
Safety Science, and Ocean Engineering have emerged as key contribu
tors to this evolving discourse. 

The risk influential factors are classified into human factors, ship- 
related factors, environmental factors, and technology factors. Both 
the prominent factors and the relatively overlooked factors in the 
existing literature on hazard identification and risk analysis of maritime 
autonomous surface ships are explored to reveal a growing academic 
interest, geographic trends, and shifts in focus. The study highlights a 
shift in focus within human factors research, transitioning from tradi
tional human-oriented risk influential factors to a heightened awareness 
of design-induced defects. Humanitarianism emerged as a novel 
consideration in the safety context of maritime autonomous surface 
ships. Maritime supervision, bridge resource management, and manning 
are identified as crucial management-related risk influential factors, 
underlining their significance in ensuring the safe operation of maritime 
autonomous surface ships. While the study identifies technology factors 
as a significant research area, the lack of a specific form for risk influ
ential factors in this domain and the challenge of quantifying redun
dancy are emphasized. Autonomous perception technology, reliability 
of Information and Communication Technologies, decision-making 
technology, and ship-control technology are identified as foundational 
elements requiring focused analysis. 

Statistical analysis of systematic risk analysis studies focused on data 
sources and methodologies, revealing a positive trend in incorporating 
real-ship trials data, enhancing analysis credibility. Firstly, the transi
tion of utilized datasets from reliance on historical data and expert 
opinions to that incorporating expert opinions since 2020 signifies a 
positive shift in research methodology. Secondly, with the first appli
cation of experimental data in 2022, the utilization of experimental data 
has proven crucial in overcoming the challenges associated with sub
jective and historical data sets. Finally, quantitative risk analysis, 
particularly through methods like Bayesian Network, has emerged as a 
major focus for future research. 

The future developments in this field have been proposed in associ
ation with the statistical results, including human-driven risk influential 
factors and manning, addressing hardware defects, security and cyber
security, redundancy in technology factors, and quantitative risk anal
ysis. Attention on human factors research reflects evolving expert views, 
stressing the critical importance of preventing hardware defects through 
testing and verification of systems in the design phase. In-depth analysis 
of redundancy in technology factors is identified as a pressing challenge 
that requires urgent resolution to ensure the stability and proper oper
ation of maritime autonomous surface ships. The study advocates for an 
increased focus on quantitative risk analysis, emphasizing the necessity 
of assessing risk quantitatively to motivate the implementation of safety 
management systems. 
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