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A B S T R A C T   

Perceiving the future trend of Vessel Traffic Flow (VTF) in advance has great application values in the maritime 
industry. However, using such big data from the Automatic Identification System (AIS) for accurate VTF pre-
diction remains challenging. Deep training networks can learn valuable features from extensive historical data. 
This paper proposes a new learning-based prediction network, improved Convolutional Neural Network (CNN) 
and Long Short-Term Memory (LSTM) with similarity grouping, including three views. To effectively enable the 
training network to capture the temporal and periodic (i.e. a spatial attribute) change characteristics of VTF, the 
CNN and LSTM are employed to compose spatial and temporal views, respectively. Hence, the original one- 
dimensional data is transformed into a matrix (hour of the day ✕ day) to adapt the input of the proposed 
methodology. In practical applications, VTF of multiple adjacent target regions need to be predicted simulta-
neously, and the changes of VTF in different areas may influence each other. To explore their hidden relation-
ships, the similarity grouping view aims to find the target area that exhibits the most similarity with the VTF 
change trend of the current research area. Furthermore, similar information is combined with the features 
generated from the other two views to obtain the prediction results. In summary, the new advantage lies in 
mining the spatiotemporal attributes of data and fusing the similarity information of adjacent regions. 
Comparative experiments with eleven other methods on realistic VTF datasets show that the proposed method 
demonstrates superior prediction accuracy and stability performance.   

1. Introduction 

The ongoing progress of economic globalisation has led to an in-
crease in the frequency of import and export trade between countries (Li 
and Yang, 2023; Xin et al., 2023a). Currently, shipping, air, railway, and 
pipeline transportation are the main modes of transportation for such 
transactions (Xiao et al., 2022). However, railway transportation is only 
feasible between a few countries (Mlepo, 2022). Meanwhile, air and 
pipeline transportation incur high costs and have limited capacity for 
carrying certain types of goods (Hummels, 2007). Facilitated by the low 
transportation cost and a wide variety of goods, the maritime industry 
has received the favour of all nations and accounts for about 80% of the 
total international trade (Li et al., 2022; Li and Lam, 2017; Millefiori 

et al., 2016). Following the frequent maritime trade, a sharp increase in 
the number of vessels in the channel and port waters has exposed po-
tential navigation and surveillance risks (Xin et al., 2023b). Hence, how 
to effectively predict risks and ensure the navigation safety of vessels is 
an imperative issue in water transportation research. 

Vessel Traffic Flow (VTF) provides a quantitative assessment of the 
level of activity in a targeted maritime area, such as a channel or port 
waters. It is defined as the total number of vessels passing through a 
specific location within a given time unit (Xiao et al., 2023). The high 
density of vessels indicates the VTF data of a target area increases sud-
denly or is higher than the traditional historical value, increasing the 
collision risk of vessels or causing channel congestion. Hence, it is urgent 
to carry out research on VTF in the field of water transportation. As an 
increasing number of scholars delve deeper into VTF research and data 
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mining technology continues to advance, the research directions of VTF 
are expanding, mainly including VTF prediction (Liang et al., 2022; 
Zhao et al., 2022a, 2022b), simulation (Rahimikelarijani et al., 2018; H. 
Zhang et al., 2019), time series analysis (i.e. a study of VTF character-
istics) (Yu et al., 2020; Du et al., 2022; Zhang et al., 2019), data feature 
extraction (Gao and Shi, 2019; Rong et al., 2022), etc. VTF prediction 
research can forecast the changes in vessel density within a particular 
water area to judge whether congestion may occur and increase the 
probability of collision risk. Hence, this study will concentrate on VTF 
prediction and establish a methodology with high prediction accuracy 
and stability. The future VTF data is closely linked to the changing 
characteristics of historical data, highlighting the prevalence of 
data-driven prediction methods as the current mainstream research di-
rection. As the automatic identification system (AIS) continues to 
develop and become mandatory, large-scale AIS data from terrestrial, 
satellite, and ad hoc networks can be collected (Li et al., 2023). As 
illustrated in Fig. 1, AIS data (i.e. time stamp, vessel trajectory, course of 
ground, speed of ground, etc.) is transmitted to the ground servers. It can 
aid in gathering statistical VTF data that provides crucial data for pre-
diction research (Kim, 2021). According to the relevant definitions of 
VTF, when a vessel’s trajectory crosses a research area within a certain 
period, the count of VTF in that area increases by one. 

Data-driven VTF prediction methods are mainly divided into two 
categories: modelling-based and learning-based prediction methods. 
Modelling-based prediction methods typically employ traditional ma-
chine learning (ML) techniques (Zhao et al., 2022a, 2022b), while 
learning-based prediction methods basically utilise neural networks 

(NN) (Do et al., 2019) and deep learning (DL) methods (Gao et al., 
2023a,b; Zhou et al., 2020). VTF data is usually non-stationary and 
irregular over time, which can pose challenges for prediction research, 
especially during the period of abnormal change (e.g. COVID-19 
pandemic) (Zhao et al., 2022a, 2022b). Modelling-based methods (i.e. 
traditional ML methods) and traditional learning-based methods (i.e. 
NN methods) are challenging to accurately learn these irregular trans-
formation features. DL methods have shown promise in effectively 
capturing these changes (Chai et al., 2021; Weerakody et al., 2021). VTF 
is a type of time series data, which is why Recurrent Neural Networks 
(RNNs) are commonly used for prediction tasks (Yao et al., 2018). 
However, VTF data also has a time attribute and a period attribute that 
changes over time, meaning that the VTF information in a certain period 
of a day is related to the VTF in the adjacent period and the same period 
of the past day or the coming day. Meanwhile, multiple channels are 
distributed in real areas, which can mutually influence each other, as 
depicted in Fig. 2. The interactive nature of VTF trend variation across 
eight channels is significant. For instance, variations in the VTF of the 
fourth and sixth channels presented in Fig. 2, whether they increase or 
decrease, can have an impact on the VTF dynamics of the eighth one. 
This is primarily due to the fact that the VTF from these two channels is 
directed towards the eighth channel. Similarly, sudden alterations in the 
VTF of the seventh channel can influence the third and fifth ones. This is 
attributed to the fact that vessels departing from the seventh channel 
often need to navigate into either the third or fifth one, highlighting the 
interconnectedness among these three channels. To enhance prediction 
accuracy, the training network’s design should take into account the 

Nomenclature roman letters 

Variable Definition 
AIS Automatic Identification System 
ARIMA Autoregressive Integrated Moving Average Model 
ARIMA-GARCH ARIMA with Generalized Autoregressive 

Conditional Heteroscedasticity 
AFSA-SVM SVM with Artificial Fish Swarm Algorithm 
AOA-SVM SVM with Arithmetic Optimisation Algorithm 
AE Auto Encoder 
BFM Bayesian forecasting model 
BPNN Back Propagation Neural Network 
Bi-LSTM Bidirectional LSTM 
Bi-GRU Bidirectional GRU 
CNN Convolutional Neural Network 
CcatCSAGA Chaotic Cloud-Simulated Annealing Genetic Algorithm 
CJP Chengshan Jiao Promontory 
DL Deep Learning 
DBN Deep Belief Network 
DTW Dynamic Time Warping 
ENN Elman Neural Network 
EMD Empirical Mode Decomposition 
EEMD Ensemble EMD 
FNN Fuzzy Neural Network 
GM Grey Theory-based Models 
GWO-SVM SVM with Grey Wolf Algorithm 
GRNN Generalized Regression Neural Network 
GAN Generative Adversarial Network 
GRU Gate Recurrent Unit 
GCNN Graph Convolution Neural Network 
GANet Graph Attention Network 
GAE Graph Auto-Encoder 
HMM Hidden Markov Model 
ICLSGNet Improved CNN-LSTM Network with A Similarity 

Grouping 

Variable Definition 
IBCM-DL Improved Bayesian Combination Model with Deep 

Learning 
KF Kalman Filtering 
KARIMA Kohonen-ARIMA 
KPCA Kernel Principal Component Analysis 
LSTM Long Short-Term Memory 
ML Machine Learning 
MM Markov Model 
MSP-STTN MultiSize Patched Spatial-Temporal Transformer 

Network 
MSE Mean Square Error 
MAE Mean Absolute Error 
MAPE Mean Absolute Percentage Error 
NN Neural Networks 
OCPB Online Change-Point-Based 
PSO-BP Particle Swarm Optimisation-Back Propagation 
RF Random Forest 
RNNs Recurrent Neural Networks 
RBM Restricted Boltzmann Machine 
RSVR Robust V-Support Vector Regression Model 
RBFNN Radial Basis Function Neural Network 
ReLu Rectified Linear Unit 
REMean Mean Relative Error 
REStd Standard Deviation of The Relative Error 
RMSE Root Mean Square Error 
SVM Support Vector Machine 
SMA-SVM SVM with Slime Mold Algorithm 
Seq2Seq Sequence to Sequence 
TF Traffic Flow 
VTF Vessel Traffic Flow 
WNN Wavelet Neural Network 
WOA-SVM SVM with Whale Optimisation Algorithm  
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interplay of VTF information across various channels. To address this 
problem, a Convolutional Neural Network (CNN) and Long Short-Term 
Memory (LSTM) based interactive spatiotemporal prediction approach, 
named Improved CNN-LSTM network with a Similarity Grouping 
(ICLSGNet), is proposed for VTF prediction in multiple channels. It can 
not only solve the VTF prediction problem with multiple channels in the 
target area, but also measure the information exchange among the 
channels with high similarity. 

Since VTF prediction methods are primarily derived from road traffic 
flow (TF) prediction, section 2 summarises the advanced prediction 
methods of TF, outlines the prediction methods of VTF, and presents the 
relevant contributions of this study. Section 3 details the framework and 
implementation process of the proposed ICLSGNet prediction method. 
Section 4 mainly focuses on verifying and analysing comparative ex-
periments in two parts. The first part examines the impact of different 
network parameters on the prediction performance of ICLSGNet, while 
the second one involves a comparative analysis with other commonly 
used prediction methods. Section 5 concludes this paper with a summary 
of the relevant research and the future sustainable work direction. 

2. Literature review 

Numerous techniques for predicting VTF have been adapted from the 
conventional road TF research methods. This section begins by outlining 
the prediction methods employed in road TF (i.e. Section 2.1) and then 
expands to introduce methods used in VTF prediction research (i.e. 
Section 2.2). The future development trend of TF is closely related to the 
evolving features of historical data, and as a result, the literature review 
is mainly data-driven prediction methods. Section 2.3 highlights the 
research contributions of this paper. 

2.1. Overview of traffic flow prediction methods 

This section mainly divides traditional TF prediction methods into 
modelling-based and learning-based methods. Modelling-based predic-
tion methods refer to the traditional ML methods, while learning-based 
prediction methods are dominated by NN and DL methods. 

2.1.1. Modelling-based traffic flow prediction 
The primary approach taken by most modelling-based methods in TF 

prediction research is to assume that future data change trends are 
similar to historical data and to predict future TF data by fitting the 
characteristics of historical data. Simple linear regression models (Rath 
et al., 2020), such as Least Square Method (Zhang et al., 2020), Ridge 
Regression (Hazarika et al., 2021), and Quantile Regression (K. Wang 
et al., 2022), are the earliest model-based prediction method applied to 
TF. These models assume that the change characteristics of historical 
data can be represented by linear laws. However, TF data is often subject Fig. 2. Schematic diagram of channel distribution (i.e. eight channels C1 to C8) 

in Chengshan Jiao Promontory. 

Fig. 1. The illustration of terrestrial, satellite, and ad hoc AIS networks.  
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to external disturbances and irregular changes, making it challenging to 
fit the change characteristics of historical data by simple linear regres-
sion models accurately. To improve the accuracy of historical data, 
many other modelling-based methods have been studied in the litera-
ture, including Autoregressive Integrated Moving Average Model 
(ARIMA) (Rubi et al., 2022), Kalman Filtering (KF) (Gu et al., 2021), 
Support Vector Machine (SVM) (Yu et al., 2023), Markov Model (MM) 
(Fu et al., 2022), Grey Theory-based Models (GM) (Zhu et al., 2022), 
Bayesian Forecasting Model (BFM) (Chen and Sun, 2022), and Random 
Forest (RF) (Evans et al., 2019). These methods can effectively identify 
periodic changes in TF data and have better accuracy than simple linear 
regression models. SVM is a common and typical ML method that adopts 
the structural risk minimisation principle and performs well in solving 
the learning problem of small samples. ARIMA combines the sliding 
average and the autoregressive models to fit data accurately with peri-
odic solid attributes. KF can continuously update the estimation of state 
variables, thus improving data prediction accuracy (Okutani and Ste-
phanedes, 1984). Hidden Markov Model (HMM) (Vuković et al., 2015) is 
the most basic and classic extended version of MM, a probability model 
about time series, whose model parameters are elementary. The essence 
of GM is to treat the discrete data scattered on the time axis as a set of 
continuously changing sequences. By accumulating and subtracting data 
over time, GM constructs a continuous differential equation that can be 
used for prediction purposes. GM can achieve accurate short-term pre-
dictions with relatively few data samples. However, it is not suitable for 
processing irregular data. In particular, GM (1,1) (Liu et al., 2014) is the 
most commonly used method in GM. BFM is a prediction method based 
on Bayesian statistics. Its biggest feature is that it not only uses data and 
model information, but also can effectively mine prior knowledge in the 
implementation prediction tasks. In recent years, some scholars have 
combined Bayesian statistics with deep learning to solve the problem of 
data prediction and obtain considerable results. For example, Gu et al. 
(2020) proposed an improved Bayesian combination model with deep 
learning (IBCM-DL) to predict short-term TF. The core of this method is 
divided into two steps. Firstly, it involves constructing the IBCM 
framework. Secondly, it utilises correlation analysis to investigate the 
relationship between historical and current TF changes. Similarly, Pang 
et al. (2021) constructed a Bayesian deep learning framework to predict 
aircraft trajectory data, considering the influence of convective weather 
in the training network. RF entails the creation of a forest in a random 
manner. The forest consists of multiple independent decision trees. For 
the sample data to be predicted, it is inputted into all decision trees to 
generate the prediction results for each decision tree. The final predic-
tion result is determined by a majority vote. While this method boasts 
high predictive accuracy and robustness, it may be susceptible to over-
fitting if the data exhibits complex patterns. 

Numerous scholars have explored extensional versions of modelling- 
based methods to enhance the accuracy of predicting future TF data. 
Taking the SVM as a typical example, the primary strategy of the 
improved method is to optimise SVM parameters. Various developed 
algorithms, such as SVM with Whale Optimization Algorithm (WOA- 
SVM) (D. Kong et al., 2020), SVM with Grey Wolf Algorithm 
(GWO-SVM) (Li et al., 2020), SVM with Artificial Fish Swarm Algorithm 
(AFSA-SVM) (Kou et al., 2020), SVM with Slime Mold Algorithm 
(SMA-SVM) (Zhao et al., 2023), SVM with Arithmetic Optimization Al-
gorithm (AOA-SVM) (Chen et al., 2022), have been proposed to limit the 
range of parameters to be optimised and set the fitness function to find 
the best parameters. Furthermore, there are also some improved ver-
sions of the ARIMA method to solve complex data prediction problems, 
such as Kohonen-ARIMA (KARIMA) (Van Der Voort et al., 1996), subset 
ARIMA (Lee and Fambro, 1999), seasonal ARIMA (Williams and Hoel, 
2003), ARIMA with Generalized Autoregressive Conditional Hetero-
scedasticity (ARIMA-GARCH) (Chen et al., 2011), and Online 
Change-Point-Based model (OCPB) (Comert and Bezuglov, 2013). 
Through continuous improvements to the modelling-based method, 
many scholars have successfully enhanced prediction accuracy. 

2.1.2. Learning-based traffic flow prediction 
Modelling-based prediction methods face challenges in accurately 

fitting historical data due to the significant volatility of TF. Conse-
quently, the prediction accuracy is reduced. The emergence of NN 
techniques offers a partial solution by constructing a training network 
that learns the data change characteristics of historical TF. It involves 
iterating through the optimiser to obtain better weight and bias values, 
thereby completing the data prediction task. Back Propagation Neural 
Network (BPNN) (Wu et al., 2023) is a typical representative of NN, 
which comprises three parts (i.e. input, hidden, and output layers). 
Many other NN methods are based on BPNN extension and optimisation, 
such as Wavelet Neural Network (WNN) (Su et al., 2023), Generalized 
Regression Neural Network (GRNN) (Safari, 2019), Fuzzy Neural 
Network (Xu et al., 2021) (FNN) (Fei and Liu, 2022), and Elman Neural 
Network (ENN) (Xu et al., 2021). In particular, the network structure of 
WNN is similar to that of BPNN, which only employs the wavelet basis 
function as the activation function in the hidden unit. 

TF data is susceptible to external factors, making it challenging for 
NN methods to accurately learn historical data changes due to sudden 
increase or decrease in TF. The emergence and development of DL 
technology can excavate the change characteristics of irregular histori-
cal data by building a deep training network, which was first proposed 
by Hinton et al. (2006). Currently, there are three categories of 
commonly used DL methods for time series (i.e. TF and VTF) prediction: 
discriminative, generative, and hybrids-based DL (Han et al., 2021a,b). 
Discriminative methods are centred around feeding a set of sample data 
into a network and obtaining the output value through repeated itera-
tion and optimisation of weight and bias values. The output value is then 
compared to the actual target value to determine the degree of consis-
tency or difference between them. RNN (Zhang et al., 2023) and Auto 
Encoder (AE) (Fu et al., 2021), as two leading representatives of 
discriminative methods, can be used to solve TF prediction problems. 
The generative methods mainly take into account the joint probability 
distribution of observation and target data, including the Restricted 
Boltzmann Machine (RBM) (Hranisavljevic et al., 2020), Deep Belief 
Network (DBN) (Yang et al., 2021), and Generative Adversarial Network 
(GAN) (Zhong et al., 2023). Hybrids-based methods are essentially a 
combination of two or more DLs, such as CNN with LSTM (called 
CNN-LSTM) (Vidya and Sasikumar, 2022) and LSTM-GAN-AE (Liu et al., 
2022). TF is a type of time series data that utilises RNN for prediction 
tasks (Lee and Ku, 2022). However, RNN is susceptible to gradient 
disappearance and explosion during training, which has been addressed 
through the emergence of LSTM (Vatsa and Hati, 2022) and Gate 
Recurrent Unit (GRU) (Yao and Ge, 2023). The network unit of LSTM 
consists of three gate structures: forget, input, and output gates. GRU is 
simplified compared to LSTM in network structure, which only includes 
two gate structures (i.e. reset and update gates). Bidirectional LSTM 
(Bi-LSTM) (Bi et al., 2023) and bidirectional GRU (Bi-GRU) (W. Wang 
et al., 2022) are optimized networks based on LSTM and GRU, respec-
tively. Their networks fuse the forward and reverse information of input 
data based on two hidden states. However, RNN and its variants have a 
drawback: all datasets input into the layer must be of uniform length. 
Fortunately, the advent of Sequence to Sequence (Seq2Seq) offers a 
solution to addressing this issue, leveraging the Encoder-Decoder 
framework. The encoder converts input data into a fixed-length vec-
tor, and then the decoder generates output data from this vector 
(Sutskever et al., 2014). In particular, both encoder and decoder can be 
implemented by using RNN and its advanced versions (i.e. LSTM, GRU, 
Bi-LSTM, and Bi-GRU). Cao et al. (2022) proposed a spatiotemporal 
Seq2Seq method capable of mining heterogeneous and time-varying 
spatial attributes in data and capturing periodic temporal attributes, 
thereby improving TF prediction accuracy. Hao et al. (2019) proposed a 
Seq2Seq method based on an attention mechanism to predict short-term 
subway passenger flow. This method can effectively solve the long de-
pendency problem in network training and can be extended to other 
fields or application scenarios. 
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In recent years, scholars have deeply integrated Seq2Seq and atten-
tion mechanism, giving rise to a novel network architecture known as 
Transformer (Han et al., 2021a,b), which is extensively utilised in TF 
prediction research. For instance, Wen et al. (2023) put forth a new 
prediction method by the Transformer framework called RPConvformer. 
The encoder and decoder in this method are respectively responsible for 
extracting the variation characteristics in historical data and predicting 
future states, mining the temporal features of traffic data through mul-
tiple attention mechanisms. Xie et al. (2022) put forward the MultiSize 
Patched Spatial-Temporal Transformer Network (MSP-STTN) capable of 
simultaneously solving short-term and long-term personnel flow pre-
diction problems. 

In practical application scenarios, many studies go beyond predicting 
TF in a single region, requiring concurrent prediction of TF in multiple 
regions. There may exist certain relationships between the TFs in each 
region, and these internal connections can be reflected based on the graph 
theory. Hence, some scholars combine graph and DL methods to uncover 
hidden relationships between TF in various regions and perform predic-
tion, such as Graph Convolution Neural Network (GCNN) (Pope et al., 
2019), Graph Attention Network (GANet) (Veličković et al., 2018), Graph 
Auto-Encoder (GAE) (Do et al., 2020). These classic graph-related net-
works have been widely used to address TF prediction issues. Djenouri 
et al. (2023) utilised scalable GCNN to predict TF and achieved accurate 
and stable results. Ali et al. (2022) proposed a dynamic deep 
spatio-temporal neural network abbreviated as DHSTNet for predicting 
personnel flow. Moreover, they combined LSTM and GCNN with DHSTNet 
to obtain a new architecture called GCN-DHSTNet, which can effectively 
capture the spatial and short-term temporal characteristics of data. Y. 
Wang et al. (2022) put forward an attention-based spatiotemporal GANet, 
abbreviated as ASTGAT. This new framework can effectively tackle issues 
of excessive smoothing and network degradation, and can deeply explore 
the spatiotemporal attributes of data. X. Kong et al. (2020) explored an 
end-to-end DL dual path method called spatial-temporal GANet. The 
advantage of this method is that it can handle any graph structure, making 
input data more flexible. It can also effectively process long time series and 
solve long-term dependency problems. 

2.2. Overview of vessel traffic flow prediction methods 

VTF prediction involves applying the general concept of TF predic-
tion, commonly used in road traffic, to maritime transportation. VTF 
prediction methods mostly draw from road traffic and can be cat-
egorised as either modelling-based or learning-based methods. For 
example, He et al. (2019) proposed a new short-term Kalman model 
combining regression analysis and KF to predict VTF in China’s inland 
rivers (i.e. Wuhan Yangtze River Bridge and the Second Yangtze River 
Bridge in Wuhan). Tang et al. (2019) proposed a combined method 
based on RF and Bayesian networks to predict the level of vessel colli-
sion accidents. The core idea of this method is to use RF to identify 
factors that affect the prediction of vessel collision accident levels. The 
identified results serve as nodes in the Bayesian network. Yu et al. 
(2018) discussed the prediction effect of vessel arrivals based on three 
standard data mining methods (i.e. BPNN, classification and regression 
tree, and random forest). Liu et al. (2017) restructured the original 
one-dimensional VTF data into a two-dimensional matrix (month ✕ 
year) and applied the non-convex low-rank plus sparse decomposition 
method to the matrix, resulting in low-rank and sparse matrices. Spe-
cifically, a low-rank matrix is defined as a trend term reflecting consis-
tent data changes, while a sparse matrix represents a volatility term, 
which frequently undergoes significant fluctuations due to sudden im-
pacts on VTF. These two matrices were then converted into 
one-dimensional sequence data, with ARIMA and WNN used for their 
respective predictions. The final prediction was produced by summing 
the predicted low-rank and sparse components. Li et al. (2015) opti-
mised the parameters of a robust v-support vector regression model 
(RSVR) based on their proposed chaotic cloud-simulated annealing 

genetic algorithm (CcatCSAGA). Then, the kernel principal component 
analysis (KPCA) method determines the final input vector based on the 
candidate input variables. Haiyan and Youzhen (2015) combined Radial 
Basis Function Neural Network (RBFNN), grey prediction model, and 
autoregressive model with SVM to predict VTF data in the Yangtze River 
basin. The advantage of this combined prediction method is to avoid the 
uncertainty of a single method that affects prediction accuracy and 
stability. With the emergence of NN and DL, scholars have begun to 
investigate learning-based prediction methods. Xiao et al. (2023) pro-
posed a hierarchical prediction method that considers weather factors, 
and then utilised GRU and Seq2Seq for prediction. Li et al. (2023) 
introduced a spatiotemporal GNN strategy. This approach excels in 
extracting the spatiotemporal fluctuations of VTF across distinct port 
areas by utilising the graph attention network along with an extended 
causal convolution framework, thereby enhancing prediction accuracy. 
Li and Ren (2022) proposed an Encoder-Decoder multi-step prediction 
method, abbreviated as LSTM-ED, based on the LSTM framework. Liang 
et al. (2022) extracted the traffic network based on AIS data and used a 
spatiotemporal multigraph convolutional network to predict the VTF of 
essential nodes. Zhao et al., (2022a, 2022b) put forward a spatiotem-
poral dynamic graph neural network method that can effectively capture 
the spatiotemporal attributes of VTF data. Xu and Zhang (2022) input a 
constructed spatiotemporal correlation feature matrix into GRU for the 
VTF prediction task. Zhou et al. (2020) employed CNN, LSTM, and a 
hybrid of Bi-LSTM and CNN for VTF data prediction. By conducting 
comparative experiments based on real-world data from Singapore 
waters, they demonstrated that the combined CNN and Bi-LSTM 
network exhibited superior prediction performance. Z. Zhang et al. 
(2019) proposed an improved Particle Swarm Optimisation-Back Prop-
agation (PSO-BP) method to predict VTF data in port areas. Li et al. 
(2019) explored the predictive performance of VTF using five popular 
and effective NN methods, namely WNN, ENN, FNN, BPNN, and GRNN. 
They also leveraged sequence data decomposition techniques, such as 
Empirical Mode Decomposition (EMD) and Ensemble EMD (EEMD), and 
similarity measurement algorithms in combination with these NNs to 
create a three-step hierarchical prediction method. The primary strength 
of this new approach is its ability to identify the self-similarity within 
VTF series data, leading to high accuracy of the prediction results. 
However, existing learning-based prediction methods have limitations 
in addressing collaborative prediction of VTF in multiple target regions 
and incorporating time development and period change attributes of 
VTF data into the training network simultaneously. Therefore, this paper 
proposes ICLSGNet, a solution to these problems, which is suitable for 
completing the VTF collaborative prediction task of multi-target waters 
(referring to the channel in this paper). 

2.3. Contributions of our study 

The literature review of VTF prediction research has revealed that DL 
methods suffer from practical deficiencies, highlighting the need for new 
research to address two key weaknesses. (1) The time-varying charac-
teristics and periodic attributes of VTF data in network training can not 
fully capture. (2) The realization of information exchange between two 
channels with high similarity in data changes is challenging when 
multiple channels need to complete VTF prediction tasks 
simultaneously. 

To tackle these weaknesses, this paper proposes a new learning- 
based prediction methodology, called ICLSGNet, consisting of three 
views: spatial view (using CNN), temporal view (using LSTM), and 
similarity grouping view (using LSTM). In particular, spatial and tem-
poral views can perfectly address the first weakness mentioned above, 
while the similarity grouping view is used to solve the second disad-
vantage by facilitating information exchange between highly similar 
data changes across multiple channels. The main contributions are 
described below. 
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(1) Spatial and Temporal Views. CNN is used to learn periodic change 
characteristics (i.e. spatial features). Subsequency, LSTM is uti-
lised to mine VTF changing information over time (i.e. temporal 
relationship) through the received feature vectors by CNN from 
each neighbourhood matrix of multiple continuous time nodes. 

(2) Similarity Grouping View. The similarity grouping view is intro-
duced to identify channels with similar VTF characteristics based 
on Dynamic Time Warping (DTW) method and learn their in-
formation through LSTM for collaborative prediction tasks.  

(3) Multi-views Information Fusion. The outputs from the three views 
(i.e. spatial, temporal, and similarity grouping views) are fused 
into a vector and then input into a fully connected network to 
obtain the prediction results of the next time node.  

(4) Comparative Experiments with Realistic VTF Datasets. The paper 
uses realistic AIS data to count VTF data of all channels and 
conducts a comparative analysis with eleven other advanced 
prediction methods in the study area. The comparative experi-
ments are conducted on realistic VTF datasets, evaluating the 

Fig. 3. The flowchart of the ICLSGNet prediction method. Spatial and Temporal views use CNN and LSTM to mine the spatial (essentially a periodic change) and 
temporal attributes of VTF, respectively. Similarity grouping view calculates the similarity between the historical VTF change trend of the current predicted 
channel C5 and other channels, finds the channel C7 with the greatest similarity with C5, and then learns the VTF historical change information of the channel based 
on LSTM. Finally, the knowledge of the three views is fused and input into a fully connected network to get the prediction result. 
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ICLSGNet method from fine-grained and coarse-grained 
perspectives. 

3. Methodology 

A new learning-based prediction method is developed based on the 
spatiotemporal characteristics of VTF and the interaction between 
multiple channels. This section introduces the training principle of the 
proposed ICLSGNet method in detail. Section 3.1 briefly describes the 
technical framework of the training network. The ICLSGNet method 
consists of three views, including spatial, temporal, and similarity 
grouping views. Hence, section 3.2 explains the role of the above three 
views and the training process. Section 3.3 summarises a suitable loss 
function for ICLSGNet to complete VTF prediction tasks. 

3.1. Overview of the whole framework 

This section outlines a new learning-based VTF prediction method, 
including three views. The spatial view takes the VTF data of a certain 
time node as the centre and forms a neighbourhood matrix with its 
surrounding data (i.e. data of adjacent time nodes, data of the same 
period in the past or future days) as input to CNN to learn periodic at-
tributes (i.e. spatial features). Similarly, the local VTF matrices of mul-
tiple continuous time nodes are input to CNN to obtain different 
eigenvectors. Then the outputs are entered into the temporal view (using 
LSTM) to learn the time change attribute of VTF data. To realise the 
interaction of VTF information between two channels with high simi-
larity in the study area, the similarity grouping view selects a channel 
with high similarity with the target channel based on similarity weight 
and uses LSTM to learn its VTF information over time. The output results 

of the spatiotemporal view and the similarity grouping view are fused 
into a new vector, which is input into a fully connected network to 
obtain the prediction data of the next time node. The framework of our 
proposed ICLSGNet is shown in Fig. 3. 

In this paper, a day is divided into 12 time periods, and the VTF data 
of 92 days are calculated. Then the original one-dimensional VTF data in 
92 days is converted into a two-dimensional matrix with a size of 12 ✕ 
92 in actual network training. The ordinate of the matrix (i.e. 1-12) 
represents the data in each period of the day. The abscissa (i.e. 1-92) 
indicates how many days of data have been counted. The data of 
several consecutive days under a certain period is taken as the training 
set to predict the VTF data of the next day. 

3.2. Details of our proposed methodology 

This section describes the implementation principle of the three 
views in the proposed ICLSGNet method in detail. It is important to first 
introduce a data preprocessing step: normalizing the VTF data prior to 
input into the training network. Normalization involves limiting the 
preprocessed data to a specific range, which helps eliminates any 
negative effects caused by singular sample data and accelerates the 
speed of gradient descent to find the optimal solution. Additionally, 
normalizing the data can improve the accuracy of network training. The 
method used in this paper is Min-Max Normalization (Islam et al., 2022), 
which maps the raw data into an interval of 0–1. The specific function 
expression is shown below. 

lv′
j =

lvj − min(lv)
max(lv) − min(lv)

(1)  

where lv represents the original VTF sequence data, lvj denotes the jth 

Fig. 4. The working mechanism of the CNN module. Especially, m is the size of each neighbourhood matrix, and p represents the number of convolution kernels.  

Fig. 5. The working mechanism of the LSTM module.  
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value in the sequence data, and lv′
j is the result of normalization. max (lv) 

and min (lv) are the maximum and minimum values of the original 
sequence, respectively. Despite its effectiveness, the normalization 
method mentioned above has a drawback. Specifically, the predicted 
result may exceed the maximum value or fall below the minimum value 
of the original sequence data. In other words, while Eq. (1) normalises 
the VTF data, it also limits the predicted result to some extent within the 
range of the maximum and minimum values of the original series data. It 
can ultimately decrease prediction accuracy. In summary, this paper 
improves Eq. (1), defined as follows, 

lv′
j =

lvj −
1
2 × min(lv)

2 × max(lv) − 1
2 × min(lv)

(2) 

The new function Eq. (2) expands the range between the maximum 
and minimum values in VTF series data, avoiding potential interference 
with the predicted values due to normalization operations. 

3.2.1. Spatial view 
The spatial view uses CNN to mine the spatial characteristics of VTF 

data at a particular time node. As shown in Fig. 3 (a), a training set Y =

{yi, yi+1,⋯, yi+n} is formed by selecting the VTF data for several 
consecutive days within a certain period. Each VTF data in the training 
set and its surrounding data are then used to create a neighbourhood 
matrix, resulting in a local matrix training set LM = {lmi,lmi+1,⋯,lmi+n}. 
Finally, each local matrix lm is input to CNN for training to obtain cor-
responding eigenvectors. Taking the local matrix lmi (m ✕ m local ma-
trix in Fig. 3 (a)) of the ith time node as an example, the specific process 
of CNN training is explored. If the central data of the local matrix is 
located at the edge of the entire VTF matrix, this paper uses 0 to fill the 

local matrix. Since CNN requires input data in the form of a three- 
dimensional tensor, the two-dimensional neighbourhood matrix needs 
to be converted into a tensor lti ∈ Rm×m×1 for each time node. The tensor 
lti is then input into CNN to extract the spatial features of VTF through a 
multi-layer convolution operation. The specific operation process is as 
follows, 

ltq
i = fq

(
ltq− 1

i ∗ Wq
i + bq

i
)

(3)  

where Wq
i and bq

i express the weight and bias tensors of the qth convo-
lution layer, respectively. fq( ⋅) denotes the activation function (using 
Rectified Linear Unit (ReLu) (Hara et al., 2015)) of the qth convolution 
layer, * is the convolutional operation. ltq− 1

i and ltq+1
i represent the input 

and output tensors of the convolution layer, respectively. q represents 
the qth layer of convolution. When the value of q is 1, lt0

i (which 
essentially is lti) indicates the local VTF tensor of the original input. This 
paper uses four convolution layers to construct CNN in Fig. 4, and then 
the value of q is from 1 to 4. Meanwhile, the size of the convolution core 
used for each layer is 3 ✕ 3. 

After calculating four convolution layers, the output tensor ltOut
i ∈

Rm×m×2p is transformed into a two-dimensional matrix MOut
i ∈ R(m×m)×2p 

that is input into a fully connected network to obtain the final eigen-
vector lvOut

i ∈ R1×2p. The mathematical expression is as follows, 

lvOut
i = f

(
MOut

i Wi + bi
)

(4)  

where f( ⋅) represents a linear function in the fully connected network. 
Wi and bi are the weight and bias values in the network, respectively. 
The process of CNN extracting the characteristic vector of the neigh-

Fig. 6. Visual illustration of similarity matrix of 8 channels in different time periods. From (a) to (l) represent 12 time periods.  
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bourhood matrix is illustrated in Fig. 4. In particular, m and p are 
hyperparameters in network training and will be further discussed in 
Section 4.3. 

3.2.2. Temporal view 
Based on the spatial view, the eigenvectors of each neighbourhood 

matrix are obtained, which can form a sequence LV = {lvi,lvi+1,⋯,lvi+n}. 
In the temporal view, the above series is input into LSTM to extract the 
temporal variation characteristics of VTF. The core network structure of 
LSTM is similar to the original RNN, which adds a memory state (C) 
based on a hidden state (h). LSTM has three gate structures: forget, 
input, and output gates. The forget gate decides how much information 
from the previous time Ci-1 can be discarded and how much information 
can be retained when it is transferred to the current time Ci. The input 
gate determines how much information from the input data (lvi) at the 
current time step can be saved to Ci. The input and forget gates in the 
network jointly determine the memory state. The output gate controls 
how much information from Ci can be transmitted to hi. The structure of 
LSTM and the data chain transmission mode of data are illustrated in 
Fig. 5. 

To better illustrate the training process of data in the LSTM unit, this 
paper provides an example using the eigenvector lvi of the ith time node. 
Firstly, the hi-1 at time i-1 and the input sequence lvi at time i undergo 
linear transformations by a linear layer. Meanwhile, the results from 
linear transformations are mapped to the interval [0,1] using an acti-
vation function. This process can be expressed as follow, 

fi = σ
(
Wf [hi− 1, lvi] + bf

)
(5)  

where σ is an activation function (using Sigmoid). Wf and bf represent 
the weight matrix and bias value, respectively. When the output result of 
fi is 0, all information of Ci-1 is discarded. If the output result of ft is 1, all 
information of Ct-1 will be retained and transferred to Ct. 

Secondly, the hi-1 at time i-1 and the input sequence lvi at the time i 

undergo linear transformations, and their results are passed through 
different activation functions to obtain ini and zi. The function expres-
sions are as follows, 

ini = σ(Win[hi− 1, lvi] + bin) (6)  

zi = tanh(Wz[hi− 1, lvi] + bz) (7)  

where Win and Wz represent weight matrices, bin and bz denote bias 
values. 

Thirdly, the Ci at the moment i can be obtained based on the fi, Ci-1, 
ini, and zi, whose function expression is as follows, 

Ci = fi × Ci− 1 + ini × zi (8) 

The final output state of hi at the current time node is determined by 
not only the hi-1 at the previous time node and the input data lvi at the 
current time node but also the Ci at the current time node. The functional 
expression for calculating hi is as follows, 

oi = σ(Wo[hi− 1, lvi] + bo) (9)  

hi = oi × tanh(Ci) (10)  

where Wo and bo are the weight matrix and bias value, respectively. 
According to Fig. 3 (b), the output vector of the temporal view (i.e. hi) 
and similarity grouping view are fused into a new vector that is input 
into a fully connected network to get the prediction results. 

3.2.3. Similarity grouping view 
To address VTF prediction tasks for multiple channels in real-world 

scenarios, it is often necessary to take into account the correlation be-
tween VTF variation patterns across different channels. For instance, as 
illustrated in Fig. 3 (c), the VTF changes in channel C7 during a specific 
period show high similarity with those in channel C5, which performs 
the prediction task. Hence, the similarity grouping view searches for a 
channel with high similarity weights to the target channel based on VTF 
variation rules, and learns the VTF information of this channel over time 
through LSTM. 

As described in Section 3.1, this paper uses each time period as a 
reference and input data from consecutive days within that time period 
to train the model for predicting VTF data for the next day. To assess the 
similarity of VTF series data between two channels in different periods, 
this paper employs the DTW method (Li et al., 2019, 2020) and expo-
nential function. The expression is represented in Eq. (11). 

ωAB = e− DTW(A,B) (11)  

where A = {a1, a2, …, ag} and B = {b1, b2, …, bh} are the VTF series data 
of the target channel and the other channel, respectively. 

The DTW method often yields a relatively large similarity measure 
between two sequences. It could potentially lead to issues such as 
gradient vanishing or exploding if the similarity results are applied 
directly to network training. Hence, this paper maps DTW measures and 
weight values one-to-one using the exponential function. Given the 

Fig. 7. The visual illustration of three different loss functions, (a) MSE, (b) MAE, and (c) Huber loss.  

Fig. 8. The visualizing boxplots of VTF data in 8 different experi-
mental datasets. 
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characteristics of the exponential function, the result lies between 0 and 
1 when the independent variable is negative. Ultimately, the mathe-
matical meaning of Eq. (11) is to express the similarity between two VTF 
sequences quantitatively, with transformations applied to suit the 
training network. If the VTF variations of the two channels are identical, 
the weight value is 1. Conversely, if the VTF variation characteristics 
largely differ, the weight value tends towards 0. 

As a simple and effective measurement method, DTW is often applied 
to calculate the similarity between two sequence data. The length of two 
sequence data can be the same or different. In this paper, sequences A 
and B are equal in length (g = h). Before conducting similarity calcula-
tions, a g ✕ g patch matrix is constructed. In this matrix, the element 
position p, q = 1,⋯, g represents the weighted Euclidean distance d (ap, 
bq) between the two values, ap and bq. The best match between se-
quences A and B is the shortest path distance after aligning these two 
sequences. Hence, the optimum warping patch is given by 

DTW(A,B)= χ(p, q), (12)  

where the minimum cumulative distance d (ap, bq) is represented in Eq. 
(13). 

χ(p, q) = d
(
ap, bq

)
+

min{χ(p − 1, q − 1), χ(p − 1, q), χ(p, q − 1) }
(13) 

This paper calculates the VTF similarity weight matrix among the 
eight channels in 12 different time periods in a day, as shown in Fig. 6. 

Suppose that the current VTF prediction task is undertaken on channel 
C1 during the first time period (00:00–02:00). According to Fig. 6 (a), the 
similarity weight of channels C1 and C3 is the largest, with a weight value 
is 0.677. The similarity grouping view leverages LSTM to capture the VTF 
variation characteristics of channel C3, and calculated as 

hSim
i =LSTM

(
hSim

i− 1,CSim
i− 1, vSim

i ;WSim, bSim), (14)  

where vSim
i is the VTF data of the ith time node. hSim

i− 1 and CSim
i− 1 represent 

the hidden state and memory state of the previous time node i− 1 , 
respectively. WSim and bSim indicate the weight and bias values of LSTM 
during network training, respectively. LSTM( ⋅) contains the contents of 
Eqs. (5)–(10). hSim

i is the output vector of the network, which is fused 
with the output vector of the spatial and temporal views. 

3.2.4. Information fusion 
The output vector hi of the spatial and temporal views accurately 

captures the spatial and temporal attributes of VTF data. Meanwhile, hSim
i 

is a feature vector that has a high similarity in the VTF variation pattern 
between a certain channel and the target channel currently undergoing 
the prediction task, calculated using the similarity grouping view. The 

two vectors hi and hSim
i are merged into a vector and then input into a fully 

connected network to obtain the prediction results of the next time node. 
The functional expressions are represented in Eqs. (15) and (16). 

hNew
i = hi ⊕ hSim

i , (15)  

vpre = f
(
WfchNew

i + bfc
)
. (16)  

where ⊕ indicates tandem operation, which can merge two vectors (hi 

and hSim
i ) into a new vector (hNew

i ). Wfc and bfc are the weights and bias 
values for fully connected networks, respectively. f( ⋅) denotes a linear 
function in the fully connected network. vpre expresses the predicted 
value of the final output, which is the result based on Min-Max 
Normalization (Eq. (2)). Therefore, the final prediction result needs to 
be subjected to inverse normalization processing, defined as follows, 

vfinal
pre = vpre ×

(

2×max(lv) −
1
2
×min(lv)

)

+
1
2
× min(lv) (17)  

where max (lv) and min (lv) represent the maximum and minimum 
values of the original sequence, respectively. lv is the original VTF 
sequence data. vpre and vfinal

pre denote the predicted values before and after 
normalization, respectively. 

3.3. Loss function 

The loss function serves as a crucial indicator for evaluating the 
training quality of a network model. It essentially measures the error 

Fig. 9. Visualisation of the CJP water area, (a) visual illustration of vessel trajectories, (b) visual display of vessel trajectories density, and (c) schematic diagram of 8 
VTF datasets from C1 to C8 in VTF intercepting surface. 

Table 1 
The statistical and geometric information of 8 channels in the CJP water area. In 
particular, each node’s longitude and latitude data are obtained under World 
Geodetic System-1984 Coordinate System.  

Channel Node Longitude(o) Latitude(o) 

C1 N1 122.7042 37.4955 
N2 122.7393 37.5111 

C2 N3 122.7746 37.5277 
N4 122.8107 37.5444 

C3 N5 122.9429 37.1942 
N6 122.9851 37.1945 

C4 N7 123.0266 37.1948 
N8 123.0689 37.1942 

C5 N9 123.0692 37.5176 
N10 123.0905 37.5474 

C6 N11 123.1111 37.5758 
N12 123.1320 37.6053 

C7 N13 122.8498 37.6212 
N14 122.8708 37.6501 

C8 N15 122.8910 37.6788 
N16 122.9123 37.7088  
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between the observed value and the predicted value. During network 
training, the network parameters (i.e. weight and bias values) rely on 
the loss function value to be back-propagated, allowing for iterative 
optimisation. There are generally two categories of loss functions: 
regression and classification. The loss function utilised in this paper falls 
under regression and primarily contains two common functions: Mean 
Square Error (MSE) (Allen, 1971), which has a smooth and continuous 
curve, and Mean Absolute Error (MAE), whose curve is V-shaped. Their 
function images are shown in Fig. 7 (a) and (b), respectively. Mean-
while, their function expressions are as follows, 

MSE =
1
k
∑k

i=1
(̃yi − yi)

2
, (18)  

MAE=
1
k
∑k

i=1
|̃yi − yi|. (19)  

where k indicates the total number of time nodes. ̃yi and yi represent the 
predicted and actual values of the ith time node, respectively. In real 
network training, this paper predicts the data of the next time node by 
VTF data over a period of time, meaning that the value of k is 1. As the 

Fig. 10. The change trends of VTF data in 8 different datasets from July 1, 2020 to September 30, 2020, (a) dataset C1, (b) dataset C2, (c) dataset C3, (d) dataset C4, 
(e) dataset C5, (f) dataset C6, (g) dataset C7, and (h) dataset C8. 

Fig. 11. Visual illustration of VTF matrix (i.e. the size is 12 ✕ 92) in 8 different datasets, (a) dataset C1, (b) dataset C2, (c) dataset C3, (d) dataset C4, (e) dataset C5, (f) 
dataset C6, (g) dataset C7, and (h) dataset C8. 
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error decreases, MSE results in a decrease in the gradient, promoting the 
convergence of the function. In contrast, the gradient of MAE remains 
constant in most cases, even for small loss values. This can hinder the 
convergence of the function. While MAE has more disadvantages than 
MSE as a loss function, it is less sensitive to outliers in sample data due to 
the absence of a square term in its function. This means that the pro-
cessing power of any sample data is the same. The Huber loss (Meyer, 
2021) integrates the advantages of MSE and MAE and is the chosen loss 
function in this paper, as shown in Eq. (20). 

L(θ)=

⎧
⎪⎪⎨

⎪⎪⎩

1
2
(̃y − y)2

, |̃y − y| ≤ σ

σ|̃y − y| −
1
2
σ2, |̃y − y| > σ

(20)  

where θ represents learnable parameters based on the training network 
and σ denotes a hyperparameter. ̃y and y are predicted and actual values, 
respectively. As σ is close to 0, the loss function tends to MAE, while σ 
approaches infinity, it tends towards MSE. Its function image is visually 
illustrated in Fig. 7 (c). The purple and blue curves represent the func-
tion with parameter σ values of 1 and 0.1, respectively. The VTF data 
used in this paper has almost no outliers and exhibits excellent volatility. 
As shown in Fig. 8, the VTF data in each dataset used in the comparison 
experiment are between the lower and upper whiskers in the boxplot, 
indicating no outlier in the data. Thus, σ is set to 1 in this paper, making 
the effect of the loss function similar to MSE. 

4. Experimental results and discussion 

To thoroughly verify the prediction performance of the proposed 
ICLSGNet method, the experiments in this paper are carried out from 
two perspectives. One is to demonstrate the prediction performance of 
the ICLSGNet method under different network parameters. The other is a 
comparative experiment with eleven other classical prediction methods. 

4.1. Dataset description 

The proposed ICLSGNet method is particularly designed to handle 
multi-objective regional VTF collaborative predictions. Consequently, 
it’s essential to have an experimental water area that comprises multiple 
channels, such as the CJP water area, to evaluate this new method’s 
ability to predict VTF data across all channels simultaneously. This 
paper calculates the VTF data of 8 channels in Chengshan Jiao Prom-
ontory (CJP) based on realistic AIS data, as shown in Fig. 9. The dis-
tribution of vessel trajectories and the density of vessel trajectories in 
each channel in CJP waters are presented in Fig. 9 (a) and (b), 

respectively. The red arrows in Fig. 9 (c) indicate the vessels’ sailing 
direction in the channel. 

The VTF data refers to the cumulative count of all vessels passing 
through a specific place per unit of time. Thus, the VTF count is deter-
mined by the formation of a brown edge between two blue nodes, as 
depicted in Fig. 9 (c). For instance, if a vessel’s trajectory crosses edge 
E1, which is formed by points N1 and N2, within a specific period, then 
the VTF count for channel C1 is incremented by one. Similarly, the VTF 
data of all channels (i.e. channels C1–C8) is computed from the longitude 
and latitude information available in the AIS data. The specific longitude 
and latitude of all nodes (i.e. N1–N16) are provided in Table 1 to aid in 
the generation of VTF data. 

Traditional learning-based prediction methods, such as BPNN, WNN, 
RNN, LSTM, GRU, Seq2Seq, and Transformer, input the original one- 
dimensional sequence data directly into the training network. In 
contrast, the ICLSGNet method proposed in this study utilises CNN and 
LSTM for spatial and temporal views, respectively, thereby mining 
temporal evolution characteristics and periodic change attributes of 
VTF. Consequently, the original one-dimensional VTF sequence data is 
transformed into a two-dimensional matrix (hour of the day × day). The 
continuous local VTF matrix periods are then captured and input into 
the spatial view’s CNN. Feature vectors, derived from each local VTF 
matrix via CNN, are subsequently input into the LSTM within the tem-
poral view. Moreover, the similarity grouping view involves inputting 
the one-dimensional VTF sequence data from a channel with similarity 
to the current prediction task. To ensure enough data for network 
training, this paper has utilised the VTF data in a 3-month period from 
July 1, 2020 to September 30, 2020. The day has been divided into 12 

Table 2 
Network parameter settings.   

Parameter Name Parameter Value Parameter Name Parameter Value 

Spatial View Size of Each 
Neighbourhood Matrix 

* – – 

Temporal View Input Size * Hidden Size 2 ✕ Input Size 
Number of Hidden Layers 1 Sequence Length 6 

Similarity Grouping View Input Size 1 Hidden Size 6 
Number of Hidden Layers 1 Sequence Length 6 

General Parameters Learning Rate * Iteration * 
Optimiser Adamax – –  

Table 3 
Different parameter settings for the size of each neighbourhood matrix, learning rates, and iterations. 

Table 4 
The ConvNet configurations and the input size for different neighbourhood 
matrix sizes from the temporal view.  

Size of Each Neighbourhood Matrix 3 ✕ 3 5 ✕ 5 7 ✕ 7 

conv1 conv3-16 conv3-32 conv3-64 
conv2 conv3-16 conv3-32 conv3-64 
conv3 conv3-32 conv3-64 conv3-128 
conv4 conv3-32 conv3-64 conv3-128 
Input Size 32 64 128  

Table 5 
The experimental environment configuration.  

Hardware Model Software Version 

CPU i7-12700KF 
Dodeca Core 

Python 3.8.3 

Host Memory 32 GB Pytorch 1.12.1  
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periods with a 2-h interval, resulting in 12 VTF data nodes per day. Each 
dataset comprises 1104 VTF datasets, which show their growing trends 
as displayed in Fig. 10. Since the proposed ICLSGNet needs input data in 
the form of a matrix, this paper converts the original one-dimensional 
data into a VTF matrix based on the hour of the day and the day itself, 
visually illustrated in Fig. 11. 

4.2. Evaluation metrics 

To quantitatively evaluate the accuracy and stability of prediction 
results of ICLSGNet and eleven other methods in predicting VTF in each 
period, this paper employs two metrics: the mean relative error 
(REMean) and the standard deviation of the relative error (REStd). The 

Fig. 12. Visual illustration of REMean for three different sizes of neighbourhood matrix (i.e. 3 ✕ 3, 5 ✕ 5, and 7 ✕ 7) based on the proposed ICLSGNet at 12 periods 
in 8 different VTF datasets. From (a) to (h) represent datasets from C1 to C8, respectively. 

Fig. 13. The display of the REStd for three different sizes of neighbourhood matrix (i.e. 3 ✕ 3, 5 ✕ 5, and 7 ✕ 7) based on the proposed ICLSGNet at 12 periods in 8 
different VTF datasets. From (a) to (h) represent datasets from C1 to C8, respectively. 
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two indexes can be expressed as follows, 

REMean=
1
k

∑k

i=1

|̃yi − y|
y

, (21)  

REStd =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
k
∑k

i=1

(
|̃yi − y|

y
− REMean

)2
√
√
√
√ . (22)  

with k indicates each method’s running times when performing the 
prediction task. To mitigate the possibility of a particular operational 
result, each prediction method is executed ten times under different 
conditions in this paper. Hence, the value of k in the experiment is 10. ̃yi 
and y represent ith predicted and actual value. The minimum REMean 
and REStd, the better the prediction performance. 

REMean and REStd are utilised to assess the prediction performance 
based on fine granularity. However, this study selects the Root Mean 
Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) as 
quantitative evaluation indicators to further gauge the performance of 
each method to predict VTF data in all periods of the day. The quanti-
tative evaluation indexes of coarse granularity are defined as follows, 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
l

∑l

j=1

(
xj − xj

)2

√
√
√
√ , (23)  

MAPE=
1
l
∑l

j=1

⃒
⃒
⃒
⃒
xj − xj

xj

⃒
⃒
⃒
⃒. (24)  

where xj and xj represent the jth average predicted value and the factual 
VTF data, respectively. j refers to the jth period of the day. l is the 
number of periods in a day, indicating the overall number of VTF pre-
diction data. In this paper, the day is divided into 12 time periods, each 
with an interval of 2 h. Hence, the value of l in the experiment is 12. In 
summary, REMean and REStd are used to evaluate the accuracy and 
stability of each prediction method in predicting VTF data at different 
time nodes. RMSE and MAPE, as two comprehensive indicators, can 
quantitatively assess the accuracy of each method in predicting VTF data 
for the upcoming day. Essentially, the prediction results of 12 time nodes 
are collectively assessed for effectiveness. 

4.3. Network parameter settings 

The proposed ICLSGNet prediction method is optimised based on 
CNN and LSTM. The network needs to set relevant parameters when 
training historical data. The proposed ICLSGNet method integrates the 
spatial, temporal, and similarity grouping view by CNN and LSTM. 
Hence, parameters are selected based on three different perspectives. 
The types of parameters are primarily from CNN and LSTM, such as 
learning rate, iteration, and optimiser, as shown in Table 2. 

The parameter ‘sequence length’ in Table 2 refers to the number of 

Table 6 
The prediction results (i.e. RMSE and MAPE) on September 30, 2020 for three 
different sizes of neighbourhood matrix (i.e. 3 ✕ 3, 5 ✕ 5, and 7 ✕ 7) based on 
the ICLSGNet in 8 VTF datasets.  

Dataset Evaluation Metrics Size of Each Neighbourhood Matrix 

3 ✕ 3 5 ✕ 5 7 ✕ 7 

C1 RMSE 0.4517 0.6309 0.9465 
MAPE 0.0200 0.0309 0.0384 

C2 RMSE 0.4753 0.9516 1.2619 
MAPE 0.0309 0.0644 0.0849 

C3 RMSE 0.9264 1.1680 1.2121 
MAPE 0.0355 0.0461 0.0474 

C4 RMSE 0.4066 0.6791 0.9240 
MAPE 0.0198 0.0262 0.0394 

C5 RMSE 0.7611 1.0795 1.3145 
MAPE 0.0305 0.0394 0.0602 

C6 RMSE 0.4959 0.5233 0.5138 
MAPE 0.0190 0.0245 0.0205 

C7 RMSE 0.4631 0.6740 0.7479 
MAPE 0.0185 0.0291 0.0314 

C8 RMSE 0.4111 0.4741 0.6865 
MAPE 0.0185 0.0213 0.0348  

Fig. 14. Visual illustration of mean relative error (REMean) for five different learning rates (i.e. 0.0001, 0.0005, 0.001, 0.005, 0.01) based on our proposed ICLSGNet 
at 12 periods in 8 different VTF datasets. From (a) to (h) represent datasets from C1 to C8, respectively. 
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nodes’ data that are input into the training network simultaneously, 
which also determines the number of LSTM units connected in the 
network. Different parameter values may affect the accuracy of the 
network in learning historical data characteristics, such as the parame-
ters marked with asterisks in Table 2. Therefore, this paper conducts a 
comparative experiment under different network parameters in section 
4.5.1, including the size of each neighbourhood matrix, learning rate, 
and iteration, as presented in Table 3. 

The size of the local matrix input in a CNN network is closely linked 
to the input sizes in the spatial view, as it determines the size of each 
neighbourhood matrix. Through four-layer convolution, the CNN 
network learns the features of the neighbourhood matrix in the spatial 
view. When the neighbourhood matrix size changes, the number of 

convolution cores in each layer also changes, resulting in a different size 
of the eigenvector output in the fully connected network of the CNN. 
Thus, the parameter ‘input size’ in spatial view is also marked with an 
asterisk. The convolution layer setting parameters and input size of the 
temporal view under the local VTF input matrix of different sizes are 
shown in Table 4. Notably, the term “conva-b” indicates that the size of 
the convolutional kernel is a ✕ a and b refers to the depth of the con-
volutional layer. 

4.4. Comparison with other prediction methods 

This paper compares eleven standard and classic VTF prediction 
methods to verify the excellent performance of the proposed ICLSGNet 
method. The details of the comparative methods are as follows.  

(a) HMM (Vuković et al., 2015): It is a probability model for time 
series that utilises elementary model parameters. Despite exten-
sive training data, it is more operationally efficient than NN and 
DL models. However, it is difficult for HMM to learn the irregular 
and non-stationary data characteristics, thus significantly 
reducing prediction accuracy.  

(b) ARIMA (Li and Hu, 2012): This model is a hybrid of the sliding 
average and the autoregressive models. Its concept involves 
learning from historical data that changes with time and using 
this knowledge to predict the future.  

(c) SVM (Jose et al., 2021): As a common and typical ML method, it 
adopts the structural risk minimisation principle, solves the 
learning problem of small samples well, and has a globally unique 
optimal solution. In the VTF prediction task, future data devel-
opment can be estimated by fitting the change characteristics of 
historical data.  

(d) BPNN (Hecht-nielsen, 1992): It is a multilayer feedforward NN 
trained according to the error backpropagation algorithm. Its 
network structure mainly comprises input, hidden, and output 
layers. 

Fig. 15. The standard deviation of relative error (REStd) display for five different learning rates (i.e. 0.0001, 0.0005, 0.001, 0.005, 0.01) based on our proposed 
ICLSGNet at 12 periods in 8 different VTF datasets. From (a) to (h) represent datasets from C1 to C8, respectively. 

Table 7 
The prediction results (i.e. RMSE and MAPE) on September 30, 2020 for five 
different learning rates (i.e. 0.0001, 0.0005, 0.001, 0.005, 0.01) based on our 
proposed ICLSGNet in 8 VTF datasets.  

Dataset Evaluation 
Metrics 

Learning Rate 

0.0001 0.0005 0.001 0.005 0.01 

C1 RMSE 0.8699 0.5598 0.4517 0.8363 1.0821 
MAPE 0.0396 0.0220 0.0200 0.0335 0.0460 

C2 RMSE 0.7008 0.7305 0.4753 0.9516 1.1555 
MAPE 0.0409 0.0440 0.0309 0.0644 0.0818 

C3 RMSE 1.3134 0.9059 0.9264 0.9571 1.2659 
MAPE 0.0515 0.0347 0.0355 0.0400 0.0485 

C4 RMSE 1.2267 0.6167 0.4066 0.7155 1.1894 
MAPE 0.0535 0.0276 0.0198 0.0373 0.0459 

C5 RMSE 1.0816 0.7343 0.7611 0.9555 1.2171 
MAPE 0.0423 0.0291 0.0305 0.0376 0.0489 

C6 RMSE 0.7278 0.5812 0.4959 0.7521 0.9131 
MAPE 0.0292 0.0212 0.0190 0.0296 0.0341 

C7 RMSE 0.7723 0.5604 0.4631 0.7856 0.9608 
MAPE 0.0310 0.0282 0.0185 0.0351 0.0352 

C8 RMSE 0.7671 0.6829 0.4111 0.7321 0.8853 
MAPE 0.0371 0.0307 0.0185 0.0333 0.0398  
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Fig. 16. Visual illustration of REMean for five different iterations (i.e. 200, 400, 600, 800, and 1000) based on our proposed ICLSGNet at 12 periods in 8 different 
VTF datasets. From (a) to (h) represent datasets from C1 to C8, respectively. 

Fig. 17. The REStd result display for five different iterations (i.e. 200, 400, 600, 800, and 1000) based on our proposed ICLSGNet at 12 periods in 8 different VTF 
datasets. From (a) to (h) represent datasets from C1 to C8, respectively. 
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(e) WNN (Zhang et al., 1995): It is improved based on BPNN, 
replacing the original sigmoid activation function of the hidden 
layer with a wavelet function.  

(f) RNN (Sherstinsky, 2020): It is a feedforward model with a 
memory function whose network structure can transmit historical 
information to the current moment and integrate it. Hence, it is 
widely used to predict time series data (i.e. TF and VTF).  

(g) LSTM (Graves, 2012): The model optimises the network structure 
of RNN to address the issue of exploding or vanishing gradients 
during training.  

(h) GRU (Dey and Salem, 2017): This model is improved based on 
LSTM with the aim of reducing the model complexity by reducing 
the construction of LSTM units. Unlike LSTMs, which feature 
three gates (i.e. forget, input, and output gates), GRU employs 
gated recurrent units (GRUs), which comprise only two gates (i.e. 
update and reset gates).  

(i) Seq2Seq (Sutskever et al., 2014): It is based on the framework of 
Encoder-Decoder, which can solve the problem that the length of 
each group data in the input layer of RNNs must be consistent. In 
particular, the encoder and decoder can be implemented based on 
RNN and its upgraded versions, such as LSTM and GRU.  

(j) Transformer (Han et al., 2021a,b): It is similar to Seq2Seq and 
based on the Encoder-Decoder framework to construct a training 
network. Compared to Seq2Seq, its most significant advantage is 
the effective utilisation of attention mechanisms to improve the 
ability of training networks to capture data changes and features. 
Moreover, this method is suitable for parallel computing, 
improving training efficiency to a certain extent.  

(k) CNN-LSTM (Kim and Cho, 2019): The network can effectively 
learn the spatiotemporal characteristics of time series data (i.e. 
TF and VTF). The proposed prediction method’s spatial and 
temporal views are created based on CNN and LSTM. 

In particular, HMM, ARIMA and SVM are traditional ML methods. 
BPNN and WNN belong to NN methods. RNN, LSTM, GRU, CNN-LSTM, 
Seq2Seq, and Transformer are among the DL methods. 

4.5. Prediction results analysis 

In this paper, all comparative experiments are conducted under the 
same hardware and software platforms to ensure fairness, whose infor-
mation is listed in Table 5. 

4.5.1. Prediction results of different network parameters 
This section focuses on the impact of ICLSGNet on the accuracy and 

stability of VTF prediction under different values of three important 
network parameters, including the size of each neighbourhood matrix, 
learning rate, and iteration. Comparative experiments are conducted to 
evaluate the influence of different neighbourhood matrix sizes (i.e. 3 
✕3, 5 ✕ 5, and 7 ✕ 7) on the prediction results. Meanwhile, the learning 
rate and iteration parameters are set to 0.001 and 600, respectively. 

Quantitative evaluations show that of fine granularity, the pro-
portions of getting the minimum REMean value are 54.16%, 32.29%, 
and 13.55% for neighbourhood matrix sizes 3 ✕ 3, 5 ✕ 5, 7 ✕ 7, 
respectively, as shown in Fig. 12. Additionally, the proportions of 
obtaining the minimum REStd value are 41.67%, 40.63%, and 17.70% 
for sizes 3 ✕ 3, 5 ✕ 5, 7 ✕ 7, respectively, as shown in Fig. 13. The results 
in Figs. 12 and 13 show that the ICLSGNet prediction method performs 
better in most cases when the size of the neighbourhood matrix is 3 ✕ 3. 

According to the comparative analysis of coarse granularity, the size 
of 3 ✕ 3 yields the minimum RMSE and MAPE in all experimental 
datasets, as shown in Table 6. Hence, using a neighbourhood matrix of 
size 3 ✕ 3 enables ICLSGNet to effectively learn the spatiotemporal 

Table 8 
The prediction results (i.e. RMSE and MAPE) of VTF on September 30, 2020 for 
five different iterations (i.e. 200, 400, 600, 800, and 1000) based on our pro-
posed ICLSGNet in 8 VTF datasets.  

Dataset Evaluation 
Metrics 

Iteration 

200 400 600 800 1000 

C1 RMSE 0.7776 0.5214 0.4517 0.8475 0.9178 
MAPE 0.0282 0.0212 0.0200 0.0332 0.0410 

C2 RMSE 0.7687 0.6260 0.4753 1.2300 1.3075 
MAPE 0.0433 0.0431 0.0309 0.0809 0.0815 

C3 RMSE 1.4787 1.3640 0.9264 1.0780 1.0666 
MAPE 0.0520 0.0481 0.0355 0.0421 0.0381 

C4 RMSE 0.6481 0.3872 0.4066 0.6537 0.8750 
MAPE 0.0281 0.0197 0.0198 0.0298 0.0323 

C5 RMSE 1.0251 0.8691 0.7611 1.0627 1.0370 
MAPE 0.0370 0.0362 0.0305 0.0473 0.0438 

C6 RMSE 0.7558 0.6031 0.4959 0.5509 0.5507 
MAPE 0.0266 0.0242 0.0190 0.0240 0.0208 

C7 RMSE 0.6215 0.4434 0.4631 0.4701 0.5892 
MAPE 0.0274 0.0181 0.0185 0.0225 0.0241 

C8 RMSE 0.5027 0.4186 0.4111 0.5403 0.6987 
MAPE 0.0232 0.0201 0.0185 0.0252 0.0348  

Table 9 
Network parameter settings for different other learning-based comparison methods.  

Method Parameter Name Parameter Value Parameter Name Parameter Value 

BPNN, WNN Input Size 6 Hidden Size 2 ✕ Input Size 
Learning Rate 0.001 Iteration 600 
Optimiser Adamax Output Size 1 

RNN, LSTM, GRU, Input Size 1 Hidden Size 6 
Learning Rate 0.001 Iteration 600 
Sequence Length 6 Optimiser Adamax 
Output Size 1 – – 

Seq2Seq Encoder Input Size 1 Hidden Size 6 
Sequence Length 6 Output Size 6 

Decoder Input Size 6 Hidden Size 2 ✕ Input Size 
Sequence Length 1 Output Size 1 

General Parameters Learning Rate 0.001 Iteration 600 
Optimiser Adamax – – 

Transformer Input Size 1 Hidden Size 6 
Sequence Length 6 Output Size 1 
Learning Rate 0.001 Iteration 600 
Optimiser Adamax – – 

CNN-LSTM Size of Each Neighbourhood Matrix 3 ✕ 3 Input Size 32 
Hidden Size 2 ✕ Input Size Sequence Length 6 
Learning Rate 0.001 Iteration 600 
Optimiser Adamax Output Size 1  
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attribute of VTF and obtain accurate and stable prediction results. The 
size of each neighbourhood matrix is primarily derived from the spatial 
view in the ICLSGNet method, indicating the influence of periodic var-
iations on VTF data at a specific time node. A larger value for this 
parameter would suggest a more extended period of influence. However, 
in real-world application scenarios, the fluctuation pattern of VTF data is 
predominantly exhibited within shorter cycles. Consequently, a larger 
parameter might lead to less desirable prediction outcomes. 

Furthermore, the impact of varying learning rates (i.e. 0.0001, 
0.0005, 0.001, 0.005, and 0.01) on the prediction accuracy of VTF data 
is compared. The size of each neighbourhood matrix and iteration 

parameters are fixed at 3 ✕ 3 and 600. Based on the fine granularity 
prediction results, the percentages of achieving the minimum REMean 
value are 20.83% (0.0001), 26.04% (0.0005), 30.21% (0.001), 11.46% 
(0.005), and 11.46% (0.01), as displayed in Fig. 14. Similarly, the pro-
portions of getting the minimum REStd value are 12.50% (0.0001), 
29.17% (0.0005), 34.36% (0.001), 14.58% (0.005), and 9.39% (0.01), 
as shown in Fig. 15. 

The coarse granularity prediction results reveal that while the 
learning rate of 0.0005 yields the highest prediction accuracy in datasets 
C3 and C5, a learning rate of 0.001 results in the lowest RMSE and MAPE 
across most VTF datasets, as demonstrated in Table 7. This experimental 

Fig. 18. The VTF prediction results (average value ± standard deviation) for 12 different periods from time point 1093 (00:00–02:00) to 1104 (22:00–24:00) on 
September 30, 2020 in dataset C1. 

Fig. 19. The VTF prediction results (average value ± standard deviation) for 12 different periods from time point 1093 (00:00–02:00) to 1104 (22:00–24:00) on 
September 30, 2020 in dataset C2. 
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finding can be attributed to the fact that the cost function becomes 
challenging to minimise when the learning rate is too high or low. 

Finally, this experiment analyses how iteration affects VTF predic-
tion performance at the values of 200, 400, 600, 800, and 1000. The size 
of each neighbourhood matrix and learning rate parameters are set to 3 
✕ 3 and 0.001. Based on the fine granularity experimental results, the 
proportions of obtaining the minimum REMean value are 16.67% (200), 
25.00% (400), 26.42% (600), 21.49% (800), and 10.42% (1000), 
respectively, as shown in Fig. 16. Additionally, the proportions of get-
ting the minimum REStd value are 17.71% (200), 19.79% (400), 23.96% 
(600), 22.92% (800), and 15.62% (1000), respectively, as shown in 

Fig. 17. The error visualisation results in Figs. 16 and 17 show that the 
best iteration parameter is 600. 

To further determine the best iteration parameter, the results of 
RMSE and MAPE in five different iterations (i.e. 200, 400, 600, 800, and 
1000) on September 30, 2020 based on our proposed ICLSGNet in 8 VTF 
datasets are clearly listed in Table 8. According to the experimental 
results at a coarse granularity, it is found that the prediction accuracy is 
the highest when the iteration is set at 400 in datasets C4 and C7. The 
iteration at 600 obtains the minimum RMSE and MAPE in most VTF 
datasets, as indicated in Table 8. The effect of iteration on the cost 
function during network training is comparable to that of the learning 

Fig. 20. The VTF prediction results (average value ± standard deviation) for 12 different periods from time point 1093 (00:00–02:00) to 1104 (22:00–24:00) on 
September 30, 2020 in dataset C3. 

Fig. 21. The VTF prediction results (average value ± standard deviation) for 12 different periods from time point 1093 (00:00–02:00) to 1104 (22:00–24:00) on 
September 30, 2020 in dataset C4. 
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rate. If the iteration value is set too large, the gradient may drop below 
the lowest point, reducing training accuracy. Conversely, if the iteration 
value is too small, the cost function cannot reach the optimal local value 
in training. 

The above comparative experiment demonstrates how three essen-
tial network parameters affect prediction accuracy and stability at 
various values. According to fine-grained evaluation results from 
Figs. 12–17, when the size of each neighbourhood matrix is set to 3, the 
accuracy and stability of the prediction results for the majority of time 
nodes reach the optimal level. Meanwhile, when the learning rate and 
the number of iterations are fixed at 0.001 and 600, respectively, the 

gradient in the training network can coverage to the lowest point in most 
scenarios, thus yielding prediction results of high-precision and stable 
prediction results. Furthermore, the quantitative evaluation results for 
coarse granularity (Tables 6–8) indicate that the optimal parameters of 
the size of each neighbourhood matrix, learning rate, and iteration are 3 
× 3, 0.001, and 600, respectively. To ensure a fair comparison with 
other prediction methods in section 4.5.2, the values of general network 
parameters for the proposed ICLSGNet and eight other learning-based 
comparison methods should be kept consistent, listed in Table 9. 

The Encoder-Decoder framework in Seq2Seq is constructed based on 
LSTM. Hence, its main parameters come from LSTM. The network 

Fig. 22. The VTF prediction results (average value ± standard deviation) for 12 different periods from time point 1093 (00:00–02:00) to 1104 (22:00–24:00) on 
September 30, 2020 in dataset C5. 

Fig. 23. The VTF prediction results (average value ± standard deviation) for 12 different periods from time point 1093 (00:00–02:00) to 1104 (22:00–24:00) on 
September 30, 2020 in dataset C6. 
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parameters of CNN-LSTM are entirely the same as the spatial and tem-
poral views of our proposed ICLSGNet method. The parameter ‘Input 
Size’ in BPNN and WNN corresponds to the ‘Sequence Length’ parameter 
in RNNs, Encoder for Seq2Seq, Transformer, and CNN-LSTM, which 
specifies the number of VTF data nodes that are inputted into the 
training network. The ‘Input Size’ parameter in RNNs, Encoder for 
Seq2Seq, and Transformer signify that each network unit receives 1 VTF 
data. The ‘Output Size’ parameter in BPNN, WNN, RNNs, Decoder for 
Seq2Seq, Transformer, and CNN-LSTM represents the predicted data at 
one time node in the future. Additionally, the loss function of all the 
above comparison methods is the same as that of the proposed ICLSGNet 

method, as outlined in 3.2.4. 

4.5.2. Prediction results of different methods 
According to the design logic of the comparative experiments in 

section 4.4, this section compares the proposed ICLSGNet method with 
eleven other classical methods to analyse the predicted performance of 
VTF. Firstly, this experiment evaluates the prediction accuracy of each 
method at different time nodes and datasets by comparing the average 
expected and actual values (as shown in Figs. 18–25) as well as REMean 
(i.e. Fig. 26). Secondly, the stability of the twelve prediction models is 
quantitatively assessed by the standard deviation of the predicted 

Fig. 24. The VTF prediction results (average value ± standard deviation) for 12 different periods from time point 1093 (00:00–02:00) to 1104 (22:00–24:00) on 
September 30, 2020 in dataset C7. 

Fig. 25. The VTF prediction results (average value ± standard deviation) for 12 different periods from time point 1093 (00:00–02:00) to 1104 (22:00–24:00) on 
September 30, 2020 in dataset C8. 
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values, visually illustrated in Figs. 18–25. The statistical analysis of these 
fine-grained evaluation results in this experiment can generate several 
conclusions. The ICLSGNet method shows superior performance in 
dataset C5, achieving the most accurate VTF prediction results for 
33.34% of time nodes. The total proportion of the other eight learning- 
based methods yielding the best prediction results is 33.33%, while the 
modelling-based method receives the most precise prediction results for 
33.33% of all cases in dataset C5. In datasets C4, C6, and C7, the 
ICLSGNet method surpasses the other 11 comparative methods, yielding 
the optimal prediction outcome in nearly 25% of the time nodes. 
Regarding datasets C1, C2, and C8, the proposed ICLSGNet method ob-
tains the optimal prediction results in approximately 17% of time nodes. 
It is worth mentioning that the new ICLSGNet method, alongside SVM 
and CNN-LSTM methods, exhibits excellent performance in executing 
VTF prediction tasks in these three datasets. In contrast, in dataset C3, 
the precision of the proposed ICLSGNet method falls behind that of 
LSTM, GRU, Seq2Seq, Transformer and CNN-LSTM in predicting VTF for 
the third to ninth time nodes. In summary, the ICLSGNet method pre-
sents the best performance in predicting VTF data at different time nodes 
across eight datasets, with roughly 20% of the results exhibiting optimal 
performance. This ratio verifies that the new ICLSGNet is better than the 
other 11 comparative methods. 

To provide a more intuitive comparison, this paper utilises coarse- 
grained evaluation indicators (i.e. RMSE and MAPE) to evaluate the 

VTF prediction accuracy of each dataset in one day, comprehensively 
taking into account the prediction results of 12 time nodes, as shown in 
Table 10. The importance of coarse-grained evaluation lies in its ability 
to prevent a method’s exceptional or subpar performance at a specific 
time node from influencing the comprehensive evaluation results. After 
conducting a coarse granularity comparative analysis, it is found that 
the proposed ICLSGNet method exhibits the best prediction performance 
among the twelve methods in 8 datasets with the bold font from 
Table 10. Furthermore, it can be observed that LSTM has slightly better 
performance than GRU in most of the datasets (i.e. C1, C2, C3, C5, and 
C7). Therefore, the encoder and decoder in the Seq2Seq method are both 
constructed using LSTM. Based on the evaluation results in Table 10, the 
Seq2Seq method outperforms LSTM only in datasets C1, C3 and C8. The 
prediction performance of the Transformer is similar to LSTM, show-
casing accurate results in datasets C2, C3, C6 and C8. Despite the opti-
misation in the network training structure of the Seq2Seq method, its 
execution of VTF prediction tasks falls slightly behind LSTM. The 
Transformer leverages a deep attention mechanism to optimise training 
networks based on Seq2Seq, and its predictive performance is close to 
that of LSTM. To simplify the network structure of the new method, this 
paper ultimately chose LSTM to construct the temporal and similarity 
grouping views of the ICLSGNet method. 

To address the VTF prediction problem, modelling-based methods 
such as HMM, ARIMA, and SVM rely on historical data fitting to predict 

Fig. 26. Visual illustration of REMean for twelve different prediction methods at 12 periods on September 30, 2020 in 8 different VTF datasets. From (a) to (h) 
represent datasets from C1 to C8, respectively. 

Table 10 
The prediction results (i.e. RMSE and MAPE) of VTF on September 30, 2020 for twelve different methods in 8 VTF datasets.  

Dataset Evaluation Metrics Methods 

HMM ARIMA SVM BPNN WNN RNN LSTM GRU Seq2Seq Transformer CNN-LSTM ICLSGNet 

C1 RMSE 6.0357 4.3445 3.0894 2.9107 2.2439 1.4739 1.4429 1.4639 1.3482 1.5884 0.8791 0.4517 
MAPE 0.3123 0.2130 0.1625 0.1291 0.1027 0.0802 0.0752 0.0785 0.0692 0.0799 0.0263 0.0200 

C2 RMSE 4.8401 4.6372 2.5890 3.4410 2.5639 1.4946 1.3895 1.4530 1.4503 0.9039 1.3935 0.4753 
MAPE 0.4134 0.3343 0.1860 0.2487 0.1730 0.1115 0.0773 0.1113 0.1102 0.0675 0.1055 0.0309 

C3 RMSE 6.9641 4.7755 3.3625 3.3461 2.1123 1.3362 1.2639 1.4583 0.9919 0.9482 1.3824 0.9264 
MAPE 0.2641 0.1877 0.1387 0.1362 0.0812 0.0569 0.0479 0.0695 0.0452 0.0407 0.0601 0.0355 

C4 RMSE 5.5702 3.4271 2.1884 2.1065 1.6504 1.6493 1.6707 1.5549 1.7226 1.7432 0.8789 0.4066 
MAPE 0.3337 0.1791 0.1407 0.1336 0.1067 0.1031 0.1096 0.1010 0.1164 0.1142 0.0345 0.0198 

C5 RMSE 6.4789 4.3815 2.9631 2.9024 2.4621 2.3137 2.1588 2.2778 2.3968 2.3410 1.0443 0.7611 
MAPE 0.2691 0.1781 0.1287 0.1232 0.1207 0.1148 0.1033 0.1112 0.1211 0.1194 0.0436 0.0305 

C6 RMSE 5.9080 3.8437 1.9130 1.8477 1.5390 1.3618 1.3398 1.2560 1.4687 1.2469 1.1880 0.4959 
MAPE 0.2577 0.1586 0.0860 0.0848 0.0692 0.0674 0.0660 0.0624 0.0697 0.0604 0.0433 0.0190 

C7 RMSE 5.0452 3.3625 2.2010 1.9685 1.8763 1.5783 1.3941 1.5633 1.4820 1.4673 1.0060 0.4631 
MAPE 0.2789 0.1734 0.0981 0.0976 0.0841 0.0797 0.0694 0.0795 0.0729 0.0722 0.0444 0.0185 

C8 RMSE 4.1631 3.3160 2.9654 2.7482 2.1919 1.4351 1.3578 1.3075 1.1348 1.3198 0.8213 0.4111 
MAPE 0.2285 0.1615 0.1555 0.1431 0.1158 0.0776 0.0767 0.0650 0.0634 0.0686 0.0353 0.0185  

Y. Li et al.                                                                                                                                                                                                                                        



Engineering Applications of Artificial Intelligence 126 (2023) 107012

23

future data. However, they may fail to accurately predict VTF data if it 
fluctuates significantly over time. Traditional NN methods like BPNN 
and WNN can better capture the change characteristics of historical data 
by building a training network and iteratively optimising it based on the 
loss function. They usually have better prediction performance than 
HMM, ARIMA and SVM methods. DL can learn irregular data features 
more effectively by building a deep training network. RNN, as the most 
classical DL method, can predict time series data (i.e. TF and VTF). 
However, the gradient of the RNN training network can disappear or 
explode during the continuous transmission of historical information, 
affecting the prediction results. LSTM and GRU are effective solutions to 
this problem, with LSTM containing three gates and GRU containing two 
gates. Hence, RNN predicts VTF data better than BPNN and WNN. LSTM 
and GRU perform better than RNN in completing prediction tasks. 
Seq2Seq, based on the Encoder-Decoder mechanism, can address the 
issue of maintaining consistency in the size of each group of data 
inputted into RNNs. Compared to Seq2Seq, the Transformer’s most 
significant advantage is its flexible utilisation of attention mechanisms 
in training networks to enhance the ability to capture data feature 
changes. As a result, the Transformer typically outperforms Seq2Seq in 
predicting sequence data across most application scenarios. For the VTF 
prediction research conducted in this paper, the prediction capabilities 
of LSTM, Seq2Seq, and Transformer methods are relatively similar. 

Since VTF has temporal and period attributes, RNNs, Seq2Seq, and 
Transformer cannot effectively learn the spatial attribute of VTF data. 
This issue can be addressed by transforming the original one- 
dimensional VTF into matrix data and inputting it into the CNN-LSTM 
training network. Thus, CNN-LSTM is more appropriate for predicting 
VTF data with spatiotemporal characteristics than RNNs. In real-world 
scenarios, multiple channels may exist in the study area, and they 
need to perform VTF prediction tasks simultaneously. Our proposed 
prediction method, ICLSGNet, can learn the temporal and spatial attri-
butes of VTF data and interact with other channels with high similarity. 
Overall, ICLSGNet is well-suited to solve the VTF prediction problem of a 
water area consisting of multiple channels, and it exhibits good per-
formance in terms of prediction accuracy and stability. 

5. Conclusions and future research 

VTF prediction is an important research direction of the maritime 
intelligent transportation system as it has numerous practical applica-
tions in the marine industry. For instance, regulatory authorities can use 
the VTF prediction results to determine the possibility of vessel 
congestion and potential collision risks in the future. Thus, accurate and 
reliable VTF prediction is crucial in theoretical research and practical 
applications. This paper proposes a new learning-based ICLSGNet 
method for VTF prediction, which has three views (i.e. spatial, temporal, 
and similarity grouping) and two primary advantages. Firstly, spatial 
and temporal views capture the cyclical and time development charac-
teristics of VTF data, including the periodic property of VTF in the 
adjacent period. To effectively reflect the period attribute of VTF, this 
paper converts the original one-dimensional data into a two- 
dimensional matrix (hour of the day ✕ day). The spatial view employs 
CNN to capture the spatial characteristics (i.e. period attribute) of the 
area (i.e. a time area) near a certain point in time, while the temporal 
view uses LSTM to extract the change characteristics of VTF data over 
time. Secondly, the similarity grouping view calculates the similarity 
between the historical VTF trends of the current predicted channel and 
other channels, finds the most similar channel, and learns the VTF his-
torical change information based on LSTM. 

Our proposed learning-based VTF prediction method, the ICLSGNet, 
fuses the learning information from spatial, temporal, and similarity 
grouping views into a fully connected network to obtain the final pre-
diction result. It is particularly suited for areas with numerous channels, 
as it allows for interacting VTF information between channels that 
exhibit high similarity. The experiments with realistic VTF data from 

eight channels in the CJP water area compare the proposed ICLSGNet 
with modelling-based methods (i.e. HMM, ARIMA, and SVM) and 
learning-based methods (i.e. BPNN, WNN, RNN, LSTM, GRU, Seq2Seq, 
Transformer, and CNN-LSTM). The comparative experimental results 
demonstrate that the proposed ICLSGNet method has significant po-
tential for VTF prediction in multiple channel water areas, with high 
accuracy and stability. Overall, the ICLSGNet could provide valuable 
theoretical support to regulatory authorities in predicting and analyzing 
VTF data across all channels in a target area. 

To align the proposed VTF prediction method in this paper more 
closely with the real-world scenarios in the maritime industry, future 
research can incorporate qualitative factors that impact VTF changes 
into the training network. These factors could include vessel accidents 
and weather conditions such as fog, thunderstorms, and typhoons, 
which may affect the traffic flow of the channel in the future. Therefore, 
it is crucial to convert these qualitative factors into quantitative in-
dicators and integrate them into the network training process. This 
optimised network can improve the accuracy of predicting future VTF 
changes in case of emergencies. 
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