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ABSTRACT Recent research has revealed that using machine learning systems for the analysis of genetic
data could reliably detect Alzheimer’s disease. The interpretability of these models, however, has been a
challenge, as they frequently provided little insight into the features that contribute to their predictions.
Explainable machine learning has been presented as a solution to this problem since it enables the
identification of significant attributes and gives a clearer method of making predictions. In this study,
Genome-Wide Association Studies were used to recognize genetic variants associated with Alzheimer’s
disease, utilizing the Alzheimer’s Disease Neuroimaging Initiative dataset and quality control methods to
ensure the validity and reliability of the findings. The results indicate strong connections between certain
genetic variations and Alzheimer’s disease, highlighting the potential of Genome-Wide Association Studies
as a valuable tool for identifying and predicting this disease. After studying and analyzing the genetic data,
machine learning algorithms are utilized to train a model to detect Alzheimer. The Support Vector Machine
achieved 89% accuracy as the best-performing model. Explainable machine learning has the potential to
increase the accuracy and interpretability of Alzheimer’s disease detection models, giving significant insights
for both academics and physicians. The explanation of the support vector machine model reveals that
rs4821510 is the most important SNP in detecting AD. On top of that, the SHAP method shows that rs429358
is an indication for Alzheimer’s disease and rs4821510 presents in the healthy ones. These findings suggest
that explainable machine learning can play an important role in accurately detecting Alzheimer’s disease
and identifying critical genetic markers associated with the disease.

INDEX TERMS Alzheimer, artificial intelligence, GWAS, quality control, XAI.

I. INTRODUCTION
Alzheimer’s disease is a progressive, neurodegenerative
The associate editor coordinating the review of this manuscript and brain .d.lsorder that affects .memOI:yi Fhlnkmg Skﬂls" and the
approving it for publication was Wei Ni. capability to carry out daily activities [1]. The disease is
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recognized by a gradual loss of memory and basic life
skills such as eating, bathing, and talking [2]. Symptoms
of Alzheimer’s disease include memory loss, paranoia,
depression, anger, aggression, anxiety, apathy, loneliness, and
psychosis [2].

Alzheimer’s disease is the most common cause of demen-
tia, representing around 70% of all cases [3]. The disease
usually affects individuals over the age of 65, with symptoms
appearing in their mid-60s [3]. However, a rare form of
the disease, known as early-onset Alzheimer’s, can occur in
individuals between their 30s and mid-60s [3]. Alzheimer’s
disease affects an estimated 6.5 million Americans aged
65 and older today [4]. Alzheimer’s disease and dementia
cases are on the rise in the United Arab Emirates (UAE)
as well. It is forecasted that the UAE will see a significant
increase in dementia cases, with a predicted 1,795 percent
rise by the year 2050 [5]. This is one of the second-
highest percentage increases in dementia cases globally. The
neighboring Gulf countries, such as Qatar and Bahrain, are
also expected to experience similar trends.

If no medical breakthroughs are made to prevent, cease,
or cure Alzheimer’s disease, this figure might rise to
13.8 million by 2060 [4]. A recent survey conducted by
the American Alzheimer’s Association [6] identified many
impediments to consumers’ awareness of Mild Cognitive
Impairment (MCI), a condition that may raise the chance
of acquiring Alzheimer’s disease. According to the report,
Americans are unaware of MCI and are hesitant to seek
medical help. The report also projects that total expenses
for healthcare, long-term care, and hospice services for
those 65 and older with dementia in 2022 will be $321
billion. As the disease progresses, it can lead to moderate to
severe cognitive impairment, affecting areas of the brain that
control languages, reasoning, conscious thought, and sensory
processing, such as the ability to correctly detect sounds
and smells [7]. Memory loss and confusion also worsen,
and people with Alzheimer’s disease may have difficulty
recognizing family and friends [7].

Understanding the early signs and symptoms of Alzheimer’s
disease can help with early diagnosis and treatment. Ongoing
research is aimed at identifying the underlying causes of
the disease and developing effective therapies to slow or
stop its progression with the aid of Artificial Intelligence
(AI) [8]. Al is used to detect Genetic Alzheimer’s Disease
for a variety of reasons. One important reason is drug
delivery, where AI plays a crucial role in repurposing
existing drugs for AD treatment [9]. It can quickly analyze
large amounts of data, such as transcriptomics, molecular
structures, and clinical databases, to predict drug repurposing.
This offers a fast and cost-effective way to develop
drugs [9]. In addition, Al contributes significantly to genetic
research on AD. It helps with the diagnosis, prognosis,
and analysis of genetic data related to AD. This includes
studying genetic variation, gene expression profiles, gene-
gene interactions, and utilizing knowledge bases for genetic
analysis [10].

For instance, Rs429358 and rs4420638 are two common
polymorphisms located within the APOE gene, which
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encodes apolipoprotein E (APOE), a protein involved in lipid
transport and metabolism in the brain. Numerous studies
have identified these variants as strong genetic risk factors
for AD. Specifically, the €4 allele of rs429358 and the
€y allele of rs4420638 have been consistently associated
with an increased and decreased risk of developing AD,
respectively [11].

Before designing an Al model, the significant variants in
the genome should be known. GWAS stands for Genome-
Wide Association Studies, which is a research approach used
to identify genomic variants related to a certain disease or
a specific trait [12]. GWAS identifies genomic risk loci,
which are sets of correlated single nucleotide polymorphisms
(SNPs) that exhibit a statistically significant association
with the disease or trait under investigation [13]. These
studies have gained tremendous interest in finding specific
genes that predispose individuals to common disease traits,
most of which follow complex inheritance patterns rather
than Mendelian patterns. In order to perform the genome
association analysis, PLINK, a software package used for
GWAS and other types of genetic analyses [14].

Al is transforming the healthcare industry due to the
rising availability of unstructured and structured data and the
rapid development of analytical methodologies [15]. As Al
becomes more important in healthcare, there are growing
worries about a lack of transparency and explainability,
as well as potential bias in model projections. Al can
be used to improve Alzheimer’s detection and diagnosis
while also minimizing overtreatment. However, merging
Al with Machine Learning (ML) techniques allows for
predictions and more precise decision-making. Harvard
University researchers [16] have built a deep learning model
that can predict Alzheimer’s disease from brain scans with
excellent accuracy, even in cases of the early start. The Al
model was trained on a massive dataset of MRI scans and
genetic data from Alzheimer’s sufferers and healthy controls.
The study showed that Al has the potential to improve early
identification and diagnosis of Alzheimer’s disease.

This work aims to contribute to AD research by integrating
ML systems with GWAS to reliably detect and predict the
disease. It addresses the challenge of interpretability in ML
models by employing explainable ML techniques, shedding
light on the features contributing to predictions. Using
the Alzheimer’s Disease Neuroimaging Initiative dataset
and rigorous quality control methods, the study identifies
strong connections between specific genetic variants and AD,
highlighting the potential of GWAS in disease detection.

The remainder of this report is structured as follows:
Section II represents the related works of using Al to detect
Alzheimer’s. AD GWAS dataset is described in Section IV.
Sections V and VI discuss the genome-wide association
studies and quality control procedure, respectively. The
concept of XAl is discussed in Section VII. The methodology
for achieving the aim of the work is described in Section VIII.
The results of performing quality control procedures, GWAS,
and ML-model evaluation are presented in Section IX.
Finally, conclusions and future work are summarized in
Section X.
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II. LITERATURE REVIEW

In this section, some related works of Alzheimer’s detection
using ML are discussed. Alatrany et al. [16] tried to identify
biomarkers-related AD SNPs in order to design a deep
learning-based model for AD classification. They trained
convolutional neural networks (CNNs) on a GWAS dataset
obtained from the AD neuroimaging initiative. Subsequently,
deep transfer learning was applied to further train the CNN
as a base model on a separate AD GWAS dataset, leading
to the extraction of a final set of features. These extracted
features were then utilized as inputs for a Support Vector
Machine (SVM) to classify AD. Extensive experiments were
conducted using multiple datasets and different experimental
setups. The statistical analysis revealed an accuracy of 89%
for the classification of AD.

Menagadevi [17] proposed an Alzheimer’s disease detec-
tion method that combines multiscale pooling residual
autoencoder and Support Vector Machine (SVM) for analy-
sis. It utilizes image datasets from Kaggle and ADNI, enhanc-
ing images through modified optimal curvelet thresholding
and Octagon histogram equalization with black-and-white
stretching. The multi-scale pooling residual autoencoder
extracts relevant white matter features. For classification,
Support Vector Machine (SVM), Extreme Learning Machine
(ELM), and K-nearest neighbors algorithm (KNN) are
employed. Notably, SVM demonstrates outstanding perfor-
mance with an impressive accuracy rate of 99.77% for
the Kaggle dataset and 98.21% for ADNI, highlighting its
efficacy in Alzheimer’s disease classification.

Abd El Hamid et al. [18] utilized Naive Bayes, K2
learning algorithms, and tree-augmented Naive Bayes. for
the early detection of Alzheimer’s disease. Based on genetic
data from the Alzheimer’s disease neuroimaging initiative
phase 1 dataset, 500 SNPs were used to achieve the highest
classification accuracy according to the p-value requirement,
which equals 0.05. Overall accuracy for the Naive Bayes and
K2 learning algorithms was 98% and 98.4%, respectively.
Alatrany et al. [19] developed and assessed a deep learning
model for Alzheimer’s prediction using genetic information
from 188 controls and 176 AD patients. The model achieved
an area under the curve (AUC) of 0.93 and 0.09 using
multilayer perceptron and convolutional neural networks,
respectively. The same authors concentrated on using a
layered Machine Learning (ML) based model to categorize
Alzheimer’s patients. The model was evaluated using all of
the AD genetic data from ADNI-1 which is the first part of
the neuroimaging experiment. With an overall accuracy of
93.7%, the authors claim that the stacked model performed
better than conventional machine learning techniques. They
indicated that stacking methods are successful in identifying
Alzheimer’s disease.

In order to forecast a patient’s probability of developing
AD, Araujo et al. [20] proposed the use of physiologically
motivated SNP selection as a data point in RF. Their research
indicates that SNPs can be effective as data points in RF
for predicting AD risk. Importantly, the authors found that
these selected SNPs, even if they are not directly linked to
the disease, perform better than SNPs that are associated with
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AD. To identify SNPs associated with AD in a GWAS data
set of 550 healthy and 861 diseased, two unique approaches
were developed by Briones and Dinu [21]. In the first method,
the authors utilized logistic regression to filter the data
by applying a predetermined p-value threshold, producing
a block of SNPs that were then used in a multi-locus
study using random forest, while using biological data and
logistic regression analysis to pre-select loci for input into
the RF classifier in the second technique. The first method
yielded 199 SNPs. These SNPs, along with other SNPs
linked to AD, were used to create a predictive subgroup for
AD prediction. Utilizing 10-fold cross-validation in random
forest (RF) modeling, the average error rate for AD prediction
was determined to be 9.8%.

GenEpi, a computational tool that uses L1-regularized
regression to identify epistasis associated with phenotypes,
was introduced by Chang et al. [22]. For the purpose
of determining both within-gene and cross-gene epistasis,
GenEpi employs a two-stage modeling methodology. On the
basis of 364 people’s genetic information, the ML model was
trained and assessed. The final model made use of 24 SNPs
overall, spread across 12 genes. The model demonstrates
a leave-one-out cross-validation accuracy of 0.83 and a 2-
fold cross-validation accuracy of 0.83. Cooper et al. [23]
evaluated the anticipated performance and efficacy of a
Bayesian approach to several conventional ML techniques
using a GWAS dataset of AD that consists of 312,318
SNPs of 1411 participants. The findings indicate that the
Bayesian algorithm achieves comparable prediction results
to conventional methods while exhibiting a reduced training
time requirement.

Oriol et al. [24] used FRESA.CAD (Feature Selection
Algorithms for Computer Aided Diagnosis) to predict the
hereditary risk of developing AD. It is a benchmarking
tool that works by building and assessing a number of ML
models, such as Least Absolute Shrinkage and Selection
Operator (LASSO), Bootstrap Stage-Wise Model Selection
(BSWiMS), and Recursive partitioning and regression trees
(RPART). The range of the AUC value was from 0.6 to 0.7.
The ensemble of techniques performed best, with a receiving
operation curve (ROC) score of 0.719, and was competitive
with the BSWiMS, LASSO, and RPART.

Based on a selection of the 21 variants most closely
associated with AD, in [25], SVM classifiers of multiple
kernels were applied to the ADNI data using the correlation-
based and chi-squared approaches. The findings demonstrate
that an RBF kernel-based SVM-trained model has a maxi-
mum accuracy of 76.70%. To determine if the data used to
describe one dataset could be successfully used to categorize
a completely other patient group dataset, the authors [26]
conducted two different types of experiments. In the first
experiment, the authors used features chosen from the initial
dataset to train a random forest classifier. The second dataset
is used to assess the model results. Subsequently, the authors
employed the selected SNPs locations to construct a novel
random forest model using the second dataset. The feature
selection process for the second dataset was conducted based
on the training subset of the first dataset, focusing on relevant
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features. Patients from the second dataset, who had not
been used in training the tested, classifier were used in
both tests to assess the performance of the final classifier.
In comparison to the results obtained from using a single
dataset, both experiments demonstrated a slight reduction
in the AUC values. However, the AUC values remained
significantly above 0.5, implying that all the models retained
valuable information regarding genetic distinctions between
Alzheimer’s disease cases and controls.

In order to choose a subset of SNPs for GWAS,
Nguyen et al. [27] suggest a new two-stage random forest
technique called ts-RF. It has been discovered that the
suggested technique is effective at locating educational sets
of SNPs that may be connected to illnesses. Other works [28]
demonstrated a novel technique for the analysis of AD using
GWAS that combines both enrichment analysis and random
forests to identify new genetic variants or biomarkers based
on data from 527 controls and 117 cases. Romero et al.

The study in [29] proposed a deep-learning model that can
find interactions between SNPs. The Deep Mixed Model is
made up of two parts: the first part uses a CNN to account
for confounding factors, while the second part uses an
LSTM to pick genetic variations. Romero-Rosales et al. [30]
compared three ML models: genetic algorithm, stepwise,
and LI1- regularization techniques (LASSO) for building
models for predicting Alzheimer’s disease based on data from
813 diseased and 1,017 healthy. LASSO models fared better
than the other two methods in predicting whether the patients
have AD or not.

Sherif et al. [31] devised a framework for comparing
various Bayesian network methods (naive Bayes, Markov
Blanket (MB), tree-augmented naive Bayes, and minimal
augmented Markov blanket). For naive and tree-augmented
naive networks, a total of 435 were regarded as predictors.
However, using only 11 and 13 SNPs for the minimum
augmented MB and Markov blanket training and testing,
respectively, demonstrated improved accuracy. AD was
predicted using the model-averaged naive Bayes (MANB)
approach by Wei et al. [32]. On the basis of 1411 people’s
genetic data, the models were trained and tested. The model
outputs were compared with the results obtained from a naive
Bayes classifier. Despite having a similar training time, the
model achieved a significantly higher AUC of 0.72, whereas
the naive Bayes classifier yielded an AUC of 0.59.

Stokes et al. [33] evaluated the effectiveness of label
propagation (LP), a multivariate graph-based method in order
to efficiently rank SNPs in genome-wide data. The top-ranked
SNPs were assessed based on classification accuracy and
prior evidence linking them to AD. Compared to other control
approaches, LP scored significantly better at categorization.
Among the 25 top-ranked SNPs discovered by LP, 14 were
found in one dataset and had evidence in linking them to AD.

lill. ADNI

The data utilized in this article were sourced from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database, hosted at adni.loni.usc.edu. Established in
2003 under the leadership of Principal Investigator Michael
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W. Weiner, MD, ADNI operates as a collaborative effort
between public and private entities. Its primary objective
is to evaluate the feasibility of utilizing serial magnetic
resonance imaging (MRI), and positron emission tomography
(PET), alongside other biomarkers, as well as clinical
and neuropsychological assessments, for monitoring the
progression of mild cognitive impairment (MCI) and early-
stage AD. Please refer to www.adni-info.org for the most
current updates.

IV. AD GWAS DATASET

The inclusion criteria for participants in this study consisted
of the following factors: a) self-reported European ethnicity,
b) adherence to the standards set by the National Alzheimer’s
Coordinating Centre, and c) confirmation of late-onset
Alzheimer’s disease (AD) by board-certified neuropatholo-
gists for cases, while controls exhibited no neuropathology.
Moreover, participants aged 65 years and above were
selected for inclusion. All cases and controls underwent
plaque and tangle assessment, which are distinctive structures
affecting brain cells and potentially contributing to the
pathophysiology of the disease. Samples with a history of
stroke, Lewy bodies, or any other neurological disorder were
excluded from the analysis.

The final dataset comprised 191 males and 173 females,
with a total of 176 cases and 188 controls, each possess-
ing genotyping information for 502,627 single-nucleotide
polymorphisms (SNPs). Genotyping was performed on the
DNA of participants using the Affymetrix GeneChip Human
Mapping 500K Array Set. The onset of AD can be early or
late and every type has its own genes. For instance, early-
onset AD is caused by mutations in Presenilin 1 (PS1),
Presenilin 2 (PS2), and Amyloid precursor protein (APP).
On the other hand, late-onset AD results due to changes in
the APOE gene, microtubule-associated protein tau (MAPT)
gene, and tumor necrosis factor (TNF) gene. The APOE gene
has 3 forms including APOE2, APOE3, and APOE4. The
significant SNPs that cause the variation in the APOE gene
are rs429358 and rs7412, which have the T or C allele. The
AD GWAS dataset is mainly focused on late-onset AD.

V. GENOME-WIDE ASSOCIATION ANALYSIS

SNP studies, a type of GWAS, examine the phenotypic
impact of tiny genetic variants. While some approaches for
GWAS analysis concentrate on phenotypic risk prediction
based on the available genetic data [34], [35], others attempt
to interpret these risk effects by highlighting which SNPs
are influencing a particular trait [30]. In order to find
SNPs connected to the phenotype under research, this
study combines both of these objectives and applies a
deep learning-based prediction algorithm in conjunction with
statistical analysis. GWAS is a study design used to identify
genetic variants associated with common human diseases and
traits, such as heart disease, type 2 diabetes, and psychiatric
disorders [36]. The experimental procedure of a GWAS
encompasses collecting DNA and phenotypic information
from a cohort of individuals, including information on disease
status and demographic characteristics [37]. GWAS analyzes
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hundreds of thousands to millions of SNPs across the genome
to identify genetic variants associated with a trait [37].

A variety of applications can make use of the GWAS
results. In order to address potential confounding genetic
group differences, it is common practice in epidemiological
studies to incorporate trait-associated genetic variants as
control variables. This helps to account for any potential
biases that may arise from these genetic differences [38].
Additionally, based on a person’s genetic profile, the results
can be used to predict their risk for contracting physical
and mental diseases. In fact, a recent study demonstrated
that the prediction methods of the monogenic risk based on
uncommon, highly penetrant mutations are just as effective
at predicting disease risk. Genomic risk prediction methods
make use of genome-wide polygenic risk scores (PRSs)
for various conditions, including atrial fibrillation, coronary
artery disease, inflammatory bowel disease, type 2 diabetes,
and breast cancer. These PRSs are calculated based on
comprehensive genetic information obtained from across
the genome and are employed to estimate an individual’s
predisposition or susceptibility to these specific diseases.

A. GWAS CONDUCTING

a: SELECTING STUDY POPULATIONS

To uncover replicable genome-wide significant associations,
GWAS may require very high sample sizes and the desired
sample size can be computed using power estimates in
software programs such as CaTS14 or GPC15. When the
characteristic of interest is dichotomous, different study
designs can be employed. One approach involves including
both cases and controls, allowing for a comparison between
individuals with and without the trait. Alternatively, in cases
where the trait is quantitative, quantitative measures can be
collected for the entire study population to assess variations
and associations with the characteristic of interest. Fur-
thermore, there are other approaches including population-
based and family-based designs. The desired size of the
sample, the experimental topic, and the availability of pre-
existing data or the feasibility with which new data can
be obtained all influence the selection of data resources
and research design for conducting the GWAS. GWAS
can be carried out utilizing diverse data sources such as
biobanks, disease-focused cohorts, population-based cohorts,
or direct-to-consumer surveys. Recruitment tactics must be
carefully evaluated for all study designs because they can
cause collider bias and other types of bias in the resulting
data [39]. One example of a widely used study cohort is
the UK Biobank, which adopts a volunteer-based recruitment
strategy. As a result, participants in the UK Biobank cohort
tend to exhibit better health, higher socioeconomic status,
and higher educational attainment compared to the general
population.

b: GENOTYPING

Individuals are often genotyped using microarrays for com-
mon variations or next-generation sequencing technologies
such as WES (whole-exome sequencing) or WGS (whole-
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genome sequencing) for rare variants. Due to the current
expense of next-generation sequencing, microarray-based
genotyping is the most often utilized approach for acquiring
genotypes for GWAS. However, the choice of genotyping
platform is influenced by a variety of criteria, including the
objective of the GWAS; for instance, WGS, which determines
nearly every genotype of a whole genome, is favored above
WES and microarrays and is projected to become the method
of choice in the coming years as low-cost WGS technology
becomes more widely available [40].

c: DATA PROCESSING

Individual ID numbers, sex, coded family relations between
individuals, covariates, phenotype information, genotype
calls for all called variants, and genotyping batch infor-
mation are all included in GWAS input files. Following
data input, producing accurate GWAS results necessitates
precise quality control procedures. Testing for associations:
The biometrical model explains the genetic association
theory (for further information, see Supplementary Note).
In GWAS, associations are often tested using linear or logistic
regression models, depending on the nature of the phenotype
being investigated. Linear regression models are commonly
employed for continuous phenotypes such as height, blood
pressure, or body mass index. On the other hand, logistic
regression models are utilized for binary phenotypes, such
as determining the presence or absence of disease [40].
In order to address stratification and mitigate potential
biases stemming from demographic factors, adjustments are
made by including covariates like age, gender, and ancestry.
However, it’s important to note this may reduce the statistical
strength when dealing with binary traits in selected study
samples [40].

d: ACCOUNTING FOR FALSE DISCOVERY

To avoid false positives, examining millions of connections
between individual genetic variations and a phenotype of
interest necessitates a strict multiple-testing threshold [40].

VI. GWAS QUALITY CONTROL
Quality control (QC) [41] is a critical step in any genetic study
that involves collecting, processing, and analyzing biological
samples. It is the process of verifying and ensuring the
quality and integrity of the data obtained from these samples.
In genetic studies, quality control involves a series of steps
that are performed to identify and remove low-quality or
unreliable data points. This includes detecting and correcting
errors in genotyping data, identifying, and removing outliers,
checking for sample contamination, and ensuring that the
data conforms to standard quality metrics. Common quality
control procedures in genetic studies may include:
« Removing samples with a low genotyping rate or high
missing data rates.
« Removing samples with unexpected genetic ancestry or
relatedness.
« Removing SNPs with low call rate or high missing data
rates.
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« Removing SNPs with significant deviation from Hardy-
Weinberg equilibrium (HWE).

o Checking for and removing duplicates or samples with

low DNA quantity or quality.

o Removing SNPs with batch effects or systematic

technical errors.

« Performing population stratification analysis to detect

and remove outliers.

In [42], the authors detail a comprehensive description of
the steps involved in data quality assessment and control
during case-control association studies. The steps described
involve the identification and elimination of DNA samples
and markers that may introduce bias. Before statistically
testing for the association, these crucial procedures are
important for successfully conducting the case-control study.
They explained how to make assessments of failure rate per
individual and per SNP as well as how to gauge the degree
of relatedness between individuals using PLINK, a program
for managing SNP data. They also go through other quality-
control techniques, such as the use of SMARTPCA software
to find ancestor outliers. The aim of quality control in genetic
studies is to ensure that the data is reliable, consistent,
and unbiased and that the results obtained from the data
are valid and accurate. Proper QC procedures can improve
the statistical power of the study, minimize false positives
and false negatives, and increase the reproducibility of the
findings. In summary, quality control is a crucial step in
genetic studies to ensure that the data is of high quality and to
minimize the risk of bias or errors that can affect the results
of the analysis.

In this work, we performed population stratification
analysis to identify and remove outliers, ensuring that our
dataset accurately represented the genetic ancestry of the
study population. Additionally, we checked for and removed
duplicates or samples with low DNA quantity or quality,
further enhancing the reliability of our dataset.

Importantly, each QC step had a direct impact on the size
of the final dataset. By removing low-quality samples or
SNPs, we ensured that only high-quality data points were
retained for downstream analysis. While these QC procedures
resulted in a reduction in dataset size, they were essential for
maintaining data integrity and minimizing the risk of bias or
errors that could affect the validity of our findings.

VII. EXPLAINABLE ARTIFICIAL INTELLIGENCE
Explainable artificial intelligence (XAI) [43] is a set of
approaches and strategies for explaining the consequences of
ML model building in a way that humans can understand.
The question is why explainable Machine learning is needed
and why it is so important [44]. The response to ‘“What is
the accuracy” could be useless without the addition of “why
we get this accuracy”, therefore this is the interpretation of
how the model produces the results. Three main applications
of machine learning models that often involve prediction
and require interpretability are model debugging, model
validation, and knowledge discovery.

XAI has 2 main approaches including the intrinsic
approach and the model agnostic one. In the intrinsic
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technique the internal parameters of the model are utilized
to get explanations. On the other hand, the model agnostic
approach is mainly for black box models and the internal
parameters are unkown. There are various types of expla-
nations such as intrinsic or post hoc, model-specific or
model-agnostic, and global or local explanations. Model-
agnostic methods [45] are powerful techniques for generating
explanations without relying on the internal workings of
machine learning (ML) models, which can often be opaque or
difficult to interpret. One key advantage of these methods is
their ability to be applied to any ML model, irrespective of its
architecture or complexity. This versatility allows researchers
and practitioners to employ model-agnostic methods across
a wide range of ML models, enhancing transparency and
interpretability in the decision-making process. One example
of a model-agnostic approach [46] is feature importance
analysis.

Feature importance refers to the process of identifying the
most significant features or variables that contribute to the
performance of a model. There are many different methods
for feature importance analysis, such as permutation feature
importance, mean decrease impurity, and SHAP values and
these techniques can be applied to any model regardless of
the specific algorithm used. Permutation importance allows
the identification of the most important features [44]. It is
based on shuffling the values of a feature and repeating the
prediction while monitoring the error. If the error worsens,
this means that this feature is important and highly impacts
the prediction. Hence, the more important the specific feature,
the more the predictions will worsen because of the shuffling.
Hence, this method ranks the SNPs in our data from the most
important one to the least important.

A partial dependence plot (PDP) offers insights into how
specific features influence predictions. It is a graphical
representation illustrating the relationship between one or
more input variables and the output target. By examining
a PDP, we can discern how alterations in predictions
are influenced by the most significant features. From the
PDP plots, we can know if there is a linear relationship
between the predicted AD and any one of the SNP genotype
values. In addition, interact PDP helps in this framework
by investigating the interaction between two SNPs and their
effect on the model prediction.

Furthermore, Two widely used methods for model inter-
pretability and explainability in machine learning are SHAP
(Shapley Additive explanations) and LIME (Local Inter-
pretable Model-agnostic Explanations) [47]. The way LIME
works is to first pick a sample to interpret. The objective is
to repeatedly test the model to understand how it generates
the prediction for the selected example [47]. LIME produces
local explanations by locally approximating the model using a
simpler model (such as a linear model) and manipulating the
input data to observe how the output changes. This method
can be applied to any model because it is model-agnostic.
The global behavior of the model or interaction between
characteristics is not taken into account by LIME, which only
offers local explanations, unlike SHAP which provides global
explanations. SHAP explanations are a popular feature-
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ML model

FIGURE 1. Simple workflow for developing an Al model.

attribution technique for explainable Al. They quantify the
impact of specific features on the forecast of a machine-
learning model using ideas from game theory [48].

By incorporating SHAP and LIME methods into our
framework, we aim to provide both global and local insights
into the predictions of our ML model for Alzheimer’s disease
detection. These explanations can enhance the interpretability
of the model’s decisions, foster trust in its predictions, and
facilitate further research into the underlying genetic factors
contributing to the disease. Fig 1 depicts the complete process
of building the ML model starting from training the model
followed by the evaluation of the model and ending with
the interpretation of the results This framework serves as a
valuable guide for researchers and practitioners in the field
of ML to build robust and accurate models.

VIIl. METHODOLOGY

The methodology for detecting Alzheimer’s disease using
ML based on genetic data can be summarized in the following
steps:

1) Data Collection: The first step is to collect genetic
data of individuals that includes their DNA sequencing,
Single Nucleotide Polymorphism (SNP) data, and
clinical information of Alzheimer’s disease.

2) Quality Control: The raw genetic data undergoes a
series of QC checks to ensure that the data is reliable and
accurate. QC steps may include filtering out SNPs with
low call rates, removing individuals with high rates of
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missing genotype data, checking for population stratifi-
cation, performing identity-by-descent (IBD) analysis to
identify cryptic relatedness, and calculating the Hardy-
Weinberg Equilibrium (HWE).

Genome-wide Association Study (GWAS): GWAS
analysis is performed to identify genetic variants
that are associated with Alzheimer’s disease. GWAS
analysis involves testing millions of SNPs across the
genome for association with the disease. SNPs that
reach genome-wide significance are then considered for
further analysis.

Data Preprocessing: Preprocessing the data includes
cleaning, normalization, and transformation of genetic
data. The QC data needs to be preprocessed and
formatted to remove errors, and inconsistencies and
reduce noise. This step is critical as the quality of the
data directly impacts the performance of the ML model.
Feature Selection: The next step is to select the
relevant features from the genetic data that can help in
the detection of Alzheimer’s disease. Feature selection
can be performed using statistical methods or domain
knowledge. This process helps in reducing the dimen-
sionality of the data, which improves the efficiency
and accuracy of the ML algorithm. In this work, the
Top 25 SNPs are selected to train our ML model.
By focusing on these SNPs, we prioritize the inclusion
of features that have shown the strongest evidence of
association with AD risk. Then, we ended up with
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FIGURE 2. Complete process of building alzheimer predictive Al based-model.
. 6) ML Model Selection: The next step is to select the
20 appropriate ML algorithm that can effectively classify
: individuals with or without Alzheimer’s disease based
15 on genetic data. Commonly used ML algorithms for
disease detection include SVM, Random Forest, and

~logio(p)

10 Neural Networks.

7) Model Training: In this step, the ML algorithm
is trained using the preprocessed data with selected
features. The training process involves feeding the data
to the algorithm, and the algorithm learns the patterns

Tt 2 3 kR aETES W WIWE A and relationships between the features and the output
Cheomasome (Alzheimer’s or non-Alzheimer’s).

FIGURE 3. Manhatten plot. 8) Model Evaluation: The performance of the trained
ML model is evaluated using various performance
metrics such as accuracy, precision, recall, and F1-score.

364 patients with 25 SNPs as features. Out of the This step helps in determining the effectiveness of the
364, 190 are control (without AD) and 174 are cases model in detecting Alzheimer’s disease based on genetic
(with AD). data.
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FIGURE 4. Correlation matrix for the dataset.

9) Model explanation: The model is interpreted using
model-agnostic methods to better understand the model
behavior.

10) Model Deployment: Finally, the trained ML model is
deployed for use in real-world scenarios. The model is
aimed to be integrated with clinical diagnostic tools to
provide early diagnosis of Alzheimer’s disease and aid
in personalized treatment plans.

Predicting Alzheimer’s disease using ML based on genetic
data involves collecting and preprocessing the data, per-
forming QC checks, selecting relevant features, performing
GWAS analysis, choosing an appropriate ML algorithm,
training the model, evaluating and interpreting its perfor-
mance, and deploying the model for use in clinical settings.
Fig 2 shows the flow chart for predicting AD based on genetic
data.

IX. SIMULATION RESULTS

This section presents the results obtained from the three
processes including quality control, genome-wide association
studies, and machine learning. The quality control and GWAS
procedures were performed using R software while Python
software was utilized to train and evaluate the ML model.

A. QC AND GWAS RESULTS

The results of the first step in the QC indicated that
4804 variants were removed due to missing genotype data
and 375353 variants for 364 people passed the filter. Then,
33338 variants were removed due to the HWE test as well
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FIGURE 5. Permutation importance plot.

as 84025 variants because they have a minor allele frequency
which is less than 10%. Hence, 257990 SNPs for 364 people
remained. The step of checking the sex discrepancy revealed
that there are 5392 SNPs on the X chromosome and 0 SNP
on the Y chromosome which ensures that the data has both
men and women. On top of that, the other variants or SNPs
which are about 252490 are on autosomal chromosomes. The
final step in the QC is to remove the related variants and the
results showed that there are no related variants. Therefore,
the number of SNPs that will come under the association
test is 252490 SNPs. Next, an association test was conducted
to assess each SNP and assign a p-value. In this work,
a basic allele-based chi-squared association test was utilized
to find the association between the SNPs and Alzheimer’s
disease. In order to figure out the most significant SNPs,
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TABLE 1. Classification results of AD recognition.

Models Hyper - Parameters Precision Fl-score Computational time
SVM KemalZlinear 89.00% 0.8 0.016's
RF No.of estimators =100 g7 50 g8 0.103 s
criterion = Gini
No. layers =4
MLP Activation = ReL.U 85% 0.85 0.0737
solver="lbfgs
Learning rate = le-5,
No. neighbours = 5
KNN metric = Minkowski 97% 0.775 0.0009 s
LighGBM - of threads =0 88 % 0.88 0.042's
objective = binary
Adaboost  T\0- Of estimators = 100 g 50 0.85 0.1013 s

algorithm = SAMME

PDP for feature "rs4821510"

Number of unique grid points: 3

0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00
rs4821510

FIGURE 6. PDP for rs4821510 SNP.

the Manhattan plot was graphed to recognize the important
SNPs. Fig 3 shows the Manhattan plot and it reveals that two
SNPs pass the red line which means they passed the GWAS
significant threshold hence, these two SNPs, rs429358 and
rs4420638, are associated with AD. GWAS results show that
there is a linkage between these two SNPs, indicating a higher
likelihood of being inherited together.

B. ML MODEL PERFORMANCE

The top 25 SNPs were selected for the 346 people to train
an ML model to predict AD. First, a correlation matrix is
performed to find the correlation between the SNPs. From
Fig 4, rs658024 is highly correlated with rs507667, and
rs780416 is highly correlated with rs12236440 as well. In our
study, the training and test data ratio was 80:20. Despite
the small dataset size, we believe this split ratio allowed us
to effectively train and evaluate our models while ensuring
sufficient data for testing. Furthermore, we conducted
multiple experiments to ensure the robustness of our results
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PDP interact for "rs4420638" and "rs429358"
Number of unique grid points: (rs4420638: 3, rs429358: 3)
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FIGURE 7. Interaction PDP plot for rs429358 and rs4420638 SNPs.

and verified the consistency of our findings across different
runs, and the results shown are not overfitted. Hence, Various
ML algorithms were used to train the model including
SVM, Random Forest, KNN, and XG-boost. The best-
performing model was SVM which achieved 89% accuracy.
Table 1 summarizes the performance, hyperparameters, and
computational time for all the used models.

The values for precision and Fl-score suggest that the
SVM classification model is performing reasonably well for
both classes, with a relatively balanced performance between
precision and recall, as confirmed by the similar F1-score for

VOLUME 12, 2024



T. Khater et al.: Explainable ML Model for Alzheimer Detection Using Genetic Data I E EEACCGSS

0.0 0.1 0.2 03 04 05 0.6 0.7 0.8 [0X-) 1.0 11

IR

rs1842565 = 1.0 rs1155331 = 1.0 rs11165373 = 0.0 rs4821510 = 0.0 rs3780416 = 0.0 rs1588635 = 2.0 ’T7173308 =0.0s429358 = 1.0 rs12236440 = 0.0

FIGURE 8. SHAP plot for the healthy (control) class.

 mmseem e ——

‘ rs1155331 = 1.0 rs11165373 = 0.0 (rs4821510 =0.0 rs1588635 = 2.0 rs3780416 = 0.0 rs7173308 = 0.0 rsL29358 =1.0 ‘ rs12236440 = 0.0

FIGURE 9. SHAP plot for the cases class.

High

rs429358 . .. . fenee o o vl

rs4821510 Qw ot cerrnnn . ..

rs3780416 framss e bige AN .
rs11654125 - - $ove-. B .

rs7173308 Weeors s q Gee e m tee

rs7043927 . '\v crandw . . s

rs4420638 w  em e ’.. ey

rs1155331 o e Pwere q* e ee e
rs12236440 . v, " cudff o
rs1842565 o ee o Uleo .‘ . E

rs507667 s ase camtela %

rs658024 —— n cameta £
rs9309095 e | aw el

rs1588635 ote 2o S .'“ . .

rs1522949 « e ews .‘ ..

rs8030415 N I

rs7847449 - $ -
rs11165373 . e ase g‘ . voae

rs1393404 - [ .‘ tore &

rs7518523 o | en .-

. ‘ T T T Low
-0.3 -0.2 -0.1 0.0 0.1 0.2

SHAP value (impact on model output)

FIGURE 10. SHAP summary plot for the class 1 (Control).

both classes. It is important to know that the performance of a C. XAl RESULTS

machine learning algorithm is affected by a variety of factors,
such as data quality, feature selection, hyperparameter tuning,
and the evaluation measure utilized.
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To complete the cycle of machine learning, after getting the
ML results, explaining and interpreting the results should
be the final step. Model-agnostic methods including the
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FIGURE 11. SHAP summary plot for the class 2 (Case).

permutation importance method, LIME, and SHAP have been
used to provide explanations for the model outcomes. The
Permutation Importance Method offers a coarse measure of
feature importance, making it relatively easy to interpret
but lacking the detail provided by LIME and SHAP. LIME
focuses on local interpretations, making it suitable for
understanding individual predictions, while SHAP offers
both local and global explanations, providing a more compre-
hensive view of model behavior. However, SHAP’s insights,
grounded in game theory, may require additional expertise
to interpret. In terms of computational cost, the Permutation
Importance Method is computationally lightweight, while
LIME and SHAP may require more resources, especially
for large datasets or complex models. Thus, the choice of
method depends on the specific goals of the analysis and
the desired level of detail and interpretability. Combining
multiple methods can offer complementary insights and
enhance the understanding of model behavior.

Fig 5 shows that according to the shuffling of the values of
the features (genotype values) of the SNPS, rs4821510 is the
most important SNP for the SVM classifier in detecting AD.
In order to demonstrate the impact of the rs4821510 SNP on
the model behavior, a PDP is presented in Fig 6 which shows
that when the genotype varies from O to 2, the likelihood of
the model predicting the diseased class decreases.

As mentioned earlier, the analysis indicates that the
SNPs rs429358 and rs4420638 are likely inherited together,
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hence a PDP interaction plot can show the results of such
interaction. Fig 7 depicts that when the genotype value of
154420638 and rs429358 is 2, representing the TT allele,
the probability of the model predicting the diseased class
increases. Furthermore, the plot demonstrates that even when
rs429358 is TT, the ML model tends to predict AD cases
regardless of the genotype value of the rs4420638 SNP.

SHAP can produce local explanations for the ML results.
Therefore, we selected a single instance from the dataset with
a health class as a target as shown in Fig 8. It is clear that when
rs429358 SNP has a 0 genotyping value, the model tends to
predict the healthy class.

In Fig 9, the SHAP plot depicts that when rs429358 SNP
has a 1 genotype value, the model is likely to predict the
diseased class. SHAP produces global explanations for the
ML results using kernel explainer. The SHAP plot summary
in Fig 10 shows that rs4821510 SNP affects positively the
model detection of class 1 which is the health cases, unlike
the rs429358 SNP which affects negatively. This indicates
that if the rs4821510 genetic variant is present, the model will
likely predict health cases. On the other hand, the presence of
15429358 SNP relates to the diseased cases which is shown in
Fig 11.

As a result of this, we can identify genetic markers linked
to Alzheimer’s disease and utilize them to train the ML
model by applying GWAS and quality control. Considering
the results and interpretations included in this study, this
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approach is shown promising for enhancing Alzheimer’s
identification and may help in designing earlier therapies to
enhance patient outcomes.

While Permutation Importance Method provides valuable
insights into feature importance, multiple iterations may
increase runtime, presenting a limitation, especially for large
datasets [49]. Additionally, LIME’s applicability is restricted
to supervised Machine Learning and Deep Learning models,
limiting its versatility. On the other hand, global SHAP
methods like KernelSHAP can be computationally slow
due to the need to compute Shapley values for numerous
instances, posing a challenge, particularly for complex
models or extensive datasets [50]. These limitations under-
score the importance of considering computational efficiency
and model compatibility when selecting interpretation tech-
niques, ensuring that the chosen method aligns with the
specific requirements and constraints of the analysis.

X. CONCLUSION

AI and GWAS can be considered effective combination for
the prediction of AD. This paper presented the results of
a study that used quality control measures to improve the
ADNI dataset and GWAS techniques to identify genetic
variants associated with Alzheimer’s disease. The findings
of this study suggest that these methods can be used to
identify new genetic targets for the development of treatments
for Alzheimer’s disease. The application of ML algorithms
on the dataset provided a method for identifying patients
with Alzheimer’s disease with high accuracy.An ML model
was trained to classify patients with Alzheimer’s disease
and healthy controls based on their genetic data. The best-
performing model was SVM, achieving 89% accuracy. The
results of applying XAI showed that rs4821510 SNP and
rs429358 SNP play an important role in the detection of AD.
A partial dependence plot demonstrates that as the genotype
ranges from O to 2, the probability of the model predicting
the diseased class diminishes. Additionally, the interaction
PDP plot indicates that when rs429358 is TT, the ML
model tends to predict AD cases irrespective of the genotype
value of the rs4420638 SNP. Moreover, the SHAP method
reveals that the presence of the rs4821510 genetic variant
strongly suggests that the model will predict healthy cases,
while the presence of the rs429358 SNP is associated with
diseased cases. These findings suggest that the combination
of quality control, GWAS, and ML techniques can be
considered as powerful approach for detecting and predicting
Alzheimer’s disease, providing a potential avenue for earlier
diagnosis and treatment. However, future research should
focus on validating the findings across diverse populations
and integrating additional data sources to enhance predictive
accuracy. Prospective clinical studies are needed to assess the
real-world performance and feasibility of implementing the
model in clinical practice.
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