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A B S T R A C T   

Automatic Identification System (AIS) offers a wealth of vessel navigation data, which underpins 
research in maritime data mining, situational awareness, and knowledge discovery within the 
realm of intelligent transportation systems. The flourishing marine industry has prompted AIS 
satellites and base stations to generate massive amounts of vessel trajectory data, escalating both 
data storage and calculation costs. The conventional Douglas-Peucker (DP) algorithm used for 
trajectory compression sets a uniform threshold, which hampers effective compression. Addi
tionally, compressing and accelerating the computation of large datasets poses a significant 
challenge in real-world applications. To address these limitations, this paper aims to develop a 
new Graphics Processing Unit (GPU) parallel computing and compression framework that enables 
the acceleration of the optimal threshold calculation for each trajectory automatically in maritime 
big data mining. It achieves this by incorporating a new Adaptive DP with Speed and Course 
(ADPSC) algorithm, which utilizes the dynamic navigation characteristics of different vessels. It 
can effectively solve the associated computational time cost concern when using the ADPSC al
gorithm to compress vast trajectory datasets in the real world. Additionally, this paper proposes a 
novel evaluation metric for assessing compression efficacy based on the Dynamic Time Warping 
(DTW) method. Comprehensive experiments encompass vessel trajectory datasets from three 
representative research areas: Tianjin Port, Chengshan Jiao Promontory, and Caofeidian Port. The 
experimental results demonstrate that 1) the newly developed ADPSC method outperforms in 
terms of compression, and 2) the designed GPU parallel computing framework can significantly 
shorten the compression time for extensive datasets. The GPU-accelerated compression meth
odology not only minimizes storage and transmission costs for data from both manned and un
manned vessels but also enhances data processing speed, supporting real-time decision-making. 
From a theoretical perspective, it provides the key to the puzzle of realizing the real-time anti- 
collision of manned and unmanned ships, particularly in complex waters. It hence makes sig
nificant contributions to maritime safety in the autonomous shipping era.   

1. Introduction 

The rise of economic globalization has catalyzed frequent import and export trade among countries, spurring the continuous 
growth in the shipping industry (Li et al., 2023a; Tagiltseva et al., 2022). Among various transport sectors enabling international trade, 
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the maritime industry has emerged as the preferred one for global trade transportation. Its dominance is attributed to cost-effective 
shipping and the ability to accommodate a diverse range of goods (Li et al., 2022; Li and Lam, 2017). Vessels are pivotal in the 
maritime industry and can generate massive dynamic data during navigation (Li et al., 2024). This data typically includes details like 
time stamp, longitude, latitude, Speed Over Ground (SOG), and Course Over Ground (COG). Integrated into an Automatic Identifi
cation System (AIS) (Li et al., 2023b; Yang et al., 2019), this data is transmitted to designated servers through base stations and 
satellites, as illustrated in Fig. 1. Once received, AIS data undergoes processing through algorithms such as mathematical statistics, 
visual analysis, and anomaly recognition on the server side, yielding valuable information (e.g., traffic intensity, traffic flow distri
bution characteristics, and collision risk) (Li et al., 2023; Xin et al., 2023). Such information not only aids in monitoring vessel 
navigation dynamics but also provides critical insights for developing intelligent maritime transportation systems. 

The robust growth of the global maritime industry has led to a steady rise in the number of vessels, resulting in a surge of vessel 
navigation (or AIS) data transmitted to servers. This data expansion strains storage capacity, often containing redundant information 
(Sun et al., 2020; Zheng et al., 2020). It is crucial to remove such redundancies for accurate data analysis. For instance, in a vessel’s 
straight-line navigation, merely noting the starting and ending points suffices to understand its trajectory, rendering intermediate 
points unnecessary. 

Trajectory compression technology emerges as an effective solution to these challenges in accurate data analysis. Its core idea is to 
pinpoint feature points in a trajectory to replace the original data, eliminating redundancy and thus reducing storage costs (Liu et al., 
2019b; Tang et al., 2021b). Furthermore, trajectory compression offers computational cost savings (Chen et al., 2020b, 2020a). Since 
the compressed vessel trajectory efficiently captures sailing characteristics while reducing computational time for other research al
gorithms, numerous scholars employ it for future studies, including trajectory clustering (Bai et al., 2023; Tang et al., 2021a), route 
extraction (Karataş et al., 2021; Yan et al., 2020), path planning (Gu et al., 2023; Liu et al., 2019a), trajectory anomaly recognition 
(Dogancay et al., 2021; Liang et al., 2022; Rong et al., 2020), and collision avoidance (Wang et al., 2023, 2024b,a; Xin et al., 2023). It is 
evident that trajectory compression is a pivotal data preprocessing technique and stands as an essential research component in data 
mining (Li et al., 2022). 

The trajectory compression research predominantly encompasses two approaches: batched compression (Li et al., 2019) and online 
compression (Liu et al., 2016). Their essential difference is that online compression methods utilize local points for calculation when 
trajectory data is incomplete, making them suitable for application scenarios that involve compressing during transmission. In 
contrast, batched compression methods leverage the overall distribution of trajectories to identify feature points. Given that the vessel 

Nomenclature 

Roman letters 
AIS Automatic Identification System 
ADP Adaptive Douglas-Peucker 
ADPSC Adaptive Douglas-Peucker with Speed and Course 
ADPS Adaptive Douglas-Peucker with Speed 
COG Course Over Ground 
CPU Central Processing Unit 
CUDA Compute Unified Device Architecture 
CR Compression Ratio 
DP Douglas-Peucker 
DTW Dynamic Time Warping 
DBSCAN Density-Based Spatial Clustering of Applications with Noise 
GPU Graphics Processing Unit 
G-PSQUISH-E GPU-assisted PSQUISH-E 
GPGPU General-Purpose GPU 
MPDP Multi-objective Peak DP 
OW Open Window 
Opening Window Time Ratio OPW-TR 
PSQUISH-E Parallel version of the SQUISH-E 
RLL Rate of Length Loss 
SOG Speed Over Ground 
SW Sliding Window 
SPM Scan-Pick-Move 
SQUISH Spatial QUalIty Simplification Heuristic 
SQUISH-E SQUISH-Extended 
SR Speedup Ratio 
TD-TR Top-Down Time-Ratio 
TP-DTW Trajectory Points-based DTW 
US Uniform Sampling  
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trajectory data acquired in this paper are complete, the focus will be primarily on batched compression techniques. The Douglas- 
Peucker (DP) algorithm (Saalfeld, 1999) stands out as a renowned, widely adopted, and effective batched compression method, 
capable of identifying feature points based on the vessel trajectory distribution, subsequently supplanting the original trajectory data. 
However, the original DP algorithm confronts two notable limitations in handling vessel trajectory compression tasks. First, it man
dates the predetermination of a compression threshold, which is conventionally set manually. An excessively high threshold risks 
omitting vital feature points, considering them redundant, whereas an unduly low threshold may fail to eradicate superfluous data. 
Additionally, it leads to suboptimal compression results for the majority when applying a uniform compression threshold across all 
trajectories. Secondly, the original DP algorithm faces challenges in efficiently compressing large-scale data, diminishing its practical 
applicability. 

To address the above challenges, this paper aims to develop a new Graphics Processing Unit (GPU) parallel computing and 
compression framework, embedding with a novel Adaptive Douglas-Peucker with Speed and Course (ADPSC) algorithm to realize 
massive trajectory data preprocessing and compression. It can automatically calculate compression thresholds rooted in individual 
vessel navigation details, including time stamps, longitude and latitude coordinates, SOG, and COG. Moreover, the newly developed 
ADPSC algorithm has been refined into GPU parallel algorithms (Cheng and Gen, 2019; Kallioras et al., 2015; ́Swirydowicz et al., 2022; 
You et al., 2022), which greatly enhances its capability to handle large-scale trajectory data, leading to a significant reduction in 
algorithm execution time. Finally, a new evaluation index based on the Dynamic Time Warping (DTW) approach is proposed to 
measure trajectory compression performance. From a theoretical standpoint, this paper provides a crucial piece of the puzzle in 
achieving real-time anti-collision capabilities for manned and unmanned ships, especially in complex water environments. Conse
quently, it makes significant contributions to enhancing maritime safety in the era of autonomous shipping. 

This paper proposes an adaptive and accelerated compression framework, which can not only accurately simplify vessel trajectories 
but also process large-scale data quickly to adapt to practical application scenarios in maritime industries. Section 2 provides an 
overview of vessel trajectory compression methods and GPU parallel computing frameworks, revealing the relevant gaps and con
tributions. Section 3 serves as the preparation phase for the study, covering two contents. Firstly, it elucidates essential definitions that 
offer a theoretical overview of this paper. Secondly, it details the preprocessing of experimental data, encompassing tasks such as 
denoising vessel trajectory data and converting geographical coordinates. Section 4 delves into an in-depth exploration of the relevant 
theories behind the original DP, optimized ADPSC, and GPU-based parallel acceleration ADPSC algorithms. In Section 5, a comparative 
experiment is conducted, evaluating the new ADPSC algorithm both qualitatively and quantitatively. The evaluation underscores its 
superior performance over the original DP algorithm in addressing vessel trajectory data compression challenges. Meanwhile, the 

Fig. 1. Visual illustration of satellite and terrestrial AIS networks.  
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speedup ratio is employed to analyze the acceleration benefits of the optimized ADPSC algorithm when compressing large-scale vessel 
trajectory data using the GPU parallel computing framework, as opposed to traditional Central Processing Unit (CPU) serial ap
proaches. Section 6 sheds light on the relevant research conclusions and outlines potential avenues for future sustainable research. 

2. Literature review 

Many scholars have recently investigated trajectory compression to reduce data storage costs. Concurrently, there is a growing 
inclination towards implementing algorithms on GPU parallel computing frameworks to decrease algorithmic computation time. 
Advanced methods specific to vessel trajectory compression will be presented first in Section 2.1. Subsequently, Section 2.2 delves into 
the evolutionary development of GPU parallel computing. Section 2.3 summarizes the research contributions of this paper. 

2.1. Review of studies on maritime trajectory compression methods 

Vessel trajectory refers to how the position of a vessel in space changes over time, with its change function being continuous. Unlike 
simple function curves, trajectory data contains not only position information but also dynamic details such as time, direction, and 
velocity. At its core, trajectory compression seeks to identify an approximate trajectory with fewer data points to substitute for the 
original trajectory. The development of the batched compression methods is elaborated upon in Section 2.1.1, while the evolution of 
the online compression techniques is detailed in Section 2.1.2. 

2.1.1. Batched compression methods 
It is necessary to collect the completed trajectory when performing vessel trajectory compression tasks using batched methods to 

further identify feature points in the data and eliminate redundant information (Arslan et al., 2018; Liu et al., 2019b). This entire 
trajectory is taken into account in the batched methods, making it easier to achieve global optimization during compression. 

The Uniform Sampling (US) and DP algorithms are the fundamental batched compression techniques frequently utilized in tra
jectory data compression. These methods have seen extensive refinement over the years, with the DP algorithm garnering particular 
attention for enhancements. The US algorithm is straightforward, with the core idea of retaining one point out of every W point (Lv 
et al., 2015; Sun et al., 2016). For instance, given a trajectory with 16 points and deploying the US method to keep one point out of 
every 5, the resultant trajectory would be formed by the first, sixth, eleventh, and sixteenth points. While the US approach boasts 
efficiency and reduced computational demand, its shortcoming lies in its inability to effectively conserve crucial trajectory features, 
leading to disparities between the compressed and the original trajectories. 

In contrast, the DP algorithm (Douglas and Peucker, 1973) emerged to address the limitations of the US algorithm. This algorithm, 
essentially recursive, iteratively identifies feature points based on trajectory distributions and point deviations (Huang et al., 2020). 
Over time, researchers have improved the DP algorithm to optimize its compression capabilities. As trajectories encapsulate both 
spatial (longitude and latitude) and temporal (time) aspects, Meratnia and de By (2004) proposed the Top-Down Time-Ratio (TD-TR) 
algorithm. This approach integrates spatial distance with time ratios, generating more accurate compressed trajectories. To expedite 
the compression and boost the compression rate, Hansuddhisuntorn and Horanont (2019) put forward an improved version of the TD- 
TR algorithm called TD-TR Reduce. Liu et al. (2015) utilized data structures like convex hulls to optimize the spatial and temporal 
complexity of the DP algorithm. Their algorithm could achieve the best compression effect for trajectory data with a space complexity 
of O(1) and a time complexity of O(n). Zhao and Shi (2018) merged the directional changes of vessel trajectories with the DP algorithm, 
yielding impressive results under high compression. Zhou et al. (2023) pointed out the shortcomings of the DP algorithm in com
pressing vessel trajectory data, including three specific points: (1) there is a continuous turning phenomenon in the trajectory, and its 
compression effect is poor; (2) it does not take into account the impact of vessel speed and course; (3) there’s a possibility of errors, 
such as the compressed vessel trajectory intersecting obstacles. To address the above issues, they introduced a Multi-objective Peak DP 
algorithm (MPDP), which incorporated a peak sampling strategy. In recent years, scholars identified that universally applying the same 
manually set compression threshold across all trajectories compromises compression accuracy. Therefore, some adaptive compression 
algorithms have been proposed by scholars. Liu et al., (2019b) proposed the Adaptive Douglas-Peucker (ADP) algorithm for com
pressing vessel trajectory data, which employs the average distance from the trajectory point to the baseline (a line linking the starting 
and ending points) to automatically calculate the compression threshold. Tang et al., (2021b) utilized the threshold change rate to 
determine the feature points of each trajectory. Li et al. (2022) developed the compression algorithm proposed by Liu et al., (2019b), 
incorporating not just the distance from the point to the baseline, but also the velocity change rate of each trajectory point when 
determining the compression threshold. Their method, termed Adaptive Douglas-Peucker with Speed (ADPS), efficiently extracts the 
featured points for knowledge discovery. 

The adaptive compression algorithm autonomously determines the compression threshold for each trajectory, guaranteeing tra
jectory accuracy even at elevated compression rates. Unlike some existing adaptive compression algorithms, the newly developed 
ADPSC algorithm takes into account variations in speed and direction for each trajectory point, addressing a longstanding research 
gap. Furthermore, the ADPSC algorithm is redesigned for a parallelized version tailored for GPU computing frameworks, enabling 
rapid compression of extensive vessel trajectory datasets for real-world applications. 

2.1.2. Online compression methods 
The online compression methods employ local features of trajectories to identify critical points (Gao et al., 2019). It is suitable for 

application scenarios where compression occurs simultaneously with transmission. Keogh et al. (2001) introduced two algorithms, 
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namely Sliding Window (SW) and Open Window (OW). The core idea of SW employs an initialized sliding window to gradually search 
for feature points in the trajectory. If no feature points are found in the trajectory segment inside the sliding window, it expands, 
encompassing new trajectory points until the final trajectory point is reached. While OW and SW share similar compression funda
mentals, they differ in their approach to assessing feature points. Gao and Shi (2019) extract key feature points from vessel trajectories 
based on vessel heading angle deviation, position deviation, and spatiotemporal features of AIS data, and then optimize the SW al
gorithm. This new method is called the vessel spatiotemporal key feature point online extraction algorithm. Sun et al. (2020) proposed 
a Scan-Pick-Move (SPM) trajectory data compression algorithm based on SW to address the high compression rate and long processing 
time in existing online trajectory compression algorithms. They used the maximum offset distance reference trajectory point to 
determine whether the current trajectory point can be compressed, aiming to reduce the storage space. Zhu and Ma (2021) used the 
trajectory change rate and velocity change rate in SW as the criteria for simplifying trajectory points. Compared with the DP algorithm, 
SW algorithm, and Opening Window Time Ratio (OPW-TR) algorithm, their method effectively considered vessel behavior patterns 
and compressed vessel trajectory data. Liu and Yang (2023) proposed an improved opening window trajectory simplification algo
rithm, analyzing the impact of distance and velocity thresholds on algorithm performance to determine appropriate simplification 
thresholds. It is worth noting that this algorithm better preserves the position information and spatial features of the original tra
jectory. Potamias et al. (2006) put forward the threshold-guided sampling algorithm, which employs speed and direction to construct 
secure regions and then searches for feature points. Muckell et al. (2011) developed an online compression algorithm called the Spatial 
QUalIty Simplification Heuristic (SQUISH). To compress a trajectory, SQUISH starts by initializing a priority queue, and then pro
gressively adds trajectory points. Once the queue hits its capacity, it removes the point, resulting in the least error. After this, the 
priority of each trajectory point is updated. SQUISH not only maintains the accuracy of compressed trajectories at high compression 
rates, but also boasts a relatively low time complexity. Consequently, it is a popular choice for online trajectory data compression 
research, with several scholars suggesting enhanced versions. For example, Muckell et al. (2014) designed the SQUISH-Extended 
(SQUISH-E) algorithm, which can achieve the best compression rate within a given error threshold. Han et al. (2018) adopted a 
multi-core computing framework to accelerate the SQUISH-E algorithm, introducing a Parallel version of the SQUISH-E algorithm 
called PSQUISH-E. Additionally, they developed the GPU-assisted PSQUISH-E algorithm called G-PSQUISH-E. 

Both batched and online compression methods compress trajectory data in an Euclidean space. However, their primary distinction 
lies in their approach to traversing trajectory points. While batched compression methods extract global feature points from trajectory 
data, online compression techniques rely on local trajectory information to identify these points, which can result in a higher 
compression error. Meanwhile, the average time complexity of batched compression technology is generally higher than that of online 
compression technology. 

2.2. Review of studies on GPU computation 

Given the increased computational complexity of the optimized ADPSC algorithm compared to the DP algorithm and the vast scale 
of trajectory datasets that need compression, there is a significant computational demand for trajectory compression. Traditional CPU 
serial computing frameworks struggle to process optimization algorithms for large-scale dataset compression within a reasonable time 
frame. It would significantly increase computational costs for engineers to upgrade CPU specifications to meet these demands 
continuously. New solutions to these challenges are demanded with urgency. GPU offers robust computational capabilities, positioning 
them as formidable platforms for large-scale data mining (Chen et al., 2018; Heywood et al., 2019; Jurczuk et al., 2021). Currently, 

Fig. 2. Overview of differences between CPU and GPU computing frameworks. (a) CPU architecture, (b) GPU architecture, and (c) conceptual 
architecture of the CUDA parallel computing model. 
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while mainstream CPUs typically include several cores, each corresponding to two threads for simultaneous computing, conventional 
GPUs can run thousands of threads concurrently (Huang et al., 2020; Jeong et al., 2022; Qu and Zhou, 2017). The contrasting 
structures of CPUs and GPUs are illustrated in Figs. 2 (a) and (b). 

The GPU’s capacity to support thousands of threads underscores its superior computing prowess compared to the CPU, as depicted 
in Fig. 2 (c). In the GPU parallel computing architecture, a thread is the foundational calculation unit. One block consists of up to 1,024 
threads, and several blocks combine to form a grid (Lin et al., 2023). Within a block, threads can communicate via shared memory. 
However, inter-block thread communication relies on global memory. Notably, data transfer in shared memory is more efficient than 
that in global memory (Cagigas-Muñiz et al., 2022; Shanbhag et al., 2022). It is challenging to apply the intricate GPU directly in 
conventional parallel computing. To simplify the GPU calculation process, the General-Purpose GPU (GPGPU) was proposed, mapping 
general computing tasks to graphic hardware (Owens et al., 2007). Although GPGPU offers a more accessible entry point than GPU, 
only professional engineers well-versed in graphic APIs can proficiently master it. As a result, Nvidia launched Compute Unified Device 
Architecture (CUDA) in 2006, overcoming the drawbacks of both GPU and GPGPU. CUDA provides a versatile programming interface, 
facilitating data processing and analysis tasks on NVIDIA GPUs (Basnet et al., 2022). 

Parallel algorithms can map data across GPU threads, enabling swift execution of tasks like processing large-scale datasets 
(Manduhu and Jones, 2019; Roberge and Tarbouchi, 2021). Since vessel trajectories consist of distinct points, each being logically 
independent, it is evident that designing parallel algorithms within the GPU computing structure is suitable for processing extensive 
vessel trajectory data in the maritime sector. However, the current literature reveals that very few studies relating to the use of GPU for 
vessel trajectory analysis, and to the authors’ best knowledge, no studies have been undertaken to address the design of parallel al
gorithms in a GPU computing structure in the maritime sector, disclosing the theoretical novelty of this work. 

2.3. Contributions of our study 

To address the aforementioned limitations and research gaps, this paper proposed an ADPSC method, an innovative DP-based 
trajectory compression algorithm, harnessing vessel trajectories’ distribution characteristics and additional dynamic navigation 
data such as time stamps, SOG, and COG to determine the compression threshold for each trajectory autonomously. Consequently, it 
proficiently prunes unnecessary data, addressing the first limitation of the DP algorithm. Furthermore, this paper refines the ADPSC 
algorithm to expedite the compression of massive vessel trajectories within the GPU parallel computing environment, effectively 
tackling the DP algorithm’s second limitation and research gaps in GPU computation. The paper’s core contributions are delineated as 
follows. 

(1) Propose an adaptive compression algorithm based on multiple factors. 
The new ADPSC algorithm leverages the dynamic navigation information of ships, including location, SOG, and COG. This ensures 

a unique compression threshold for each trajectory. The proposed approach primarily resolves the problem of employing a universal 
threshold for all trajectories, which previously led to suboptimal compression outcomes. 

(2) Develop a GPU parallel computing framework that integrates an ADPSC algorithm. 
Given the vast datasets requiring compression in real-world applications, this paper further fine-tunes the ADPSC algorithm, 

constructing parallel computing strategies to facilitate trajectory data compression on GPUs. This enhancement notably boosts 
computational speed, making it apt for real-time data processing in practical settings. 

(3) Design a new index for evaluating compression effectiveness. 
Evaluation metrics offer a quantitative assessment of algorithmic compression performance. The DTW approach serves as a metric 

to gauge the similarity between trajectories pre and post-compression, thereby appraising the algorithm’s compression quality. This 
paper deviates from conventional DTW measurement methods. Instead, it first computes the distance between trajectory points and the 
baseline both before and after compression, generating two vectors. Subsequently, the DTW method measures the similarity between 
these vectors, using the resultant value to evaluate compression efficacy. This improved method proves more apt for assessing the 
compression outcomes of trajectory data. 

(4) Conduct comparative experiments using three substantial and representative datasets. 
To demonstrate the universality of the experiment, this paper collected actual AIS data from three representative regions: Tianjin 

Port, Chengshan Jiao Promontory, and Caofeidian Port. In the comparative analysis of compression performance, a mix of qualitative 
and quantitative methods is employed to evaluate the superior performance of the ADPSC algorithm over the original DP algorithm. 
Additionally, this paper uses the acceleration ratio as a metric to quantitatively gauge the speed-up efficiency of the ADPSC algorithm 
when compressing trajectory data within the GPU parallel computing framework. 

3. Preliminary 

This section provides clear definitions essential for understanding and implementing trajectory compression, as detailed in Section 
3.1. Additionally, vessel trajectory data should undergo processes such as denoising and coordinate conversion before compression. 
The denoising step focuses on identifying and rectifying noisy data, with its specifics elaborated in Section 3.2. Meanwhile, coordinate 
conversion translates trajectory data from the World Geodetic System − 1984 Coordinate System to the Mercator Projection Coor
dinate System, a procedure that will be described in Section 3.3. 
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3.1. Definitions 

This list of notations is presented in Table 1 to enhance clarity throughout the content. Various essential definitions are provided 
below. 

Definition 1. (The original vessel trajectory.) A vessel trajectory Tori with the length O includes a series of points collected by the 
AIS base station. The mathematical expressions are as follows, 

Tori =
{

P1
ori,P

2
ori, ...,P

n
ori,Pn+1

ori , ...,PO
ori

}
, (1)  

Pn
ori =

{
tn
ori, lonn

ori, latn
ori, sogn

ori, cogn
ori

}
, n = 1, 2, ...,O (2)  

where Pn
ori denotes the n-th point in the original vessel trajectory Tori. tnori,lonn

ori,latn
ori,sogn

ori, and cogn
ori represent the timestamp, longitude, 

latitude, SOG, and COG data in the nth trajectory point, respectively. 

Definition 2. (Compressed vessel trajectory.) A sequence of data Tcom with a length C is compressed from the original vessel 
trajectory, whose mathematical expressions are represented in Eqs. (3) and (4), 

Tcom =
{

P1
com,P

2
com, ...,Pm− 1

com ,Pm
com, ...,P

C
com

}
, (3)  

Pm
com =

{
tm
com, lonm

com, latm
com, sogm

com, cogm
com

}
,m = 1, 2, ...,C. (4)  

where Pm
com is the m-th point in the compressed vessel trajectory. tmcom,lonm

com,latm
com,sogm

com, and cogm
com represent the timestamp, longitude, 

latitude, SOG, and COG data in the mth trajectory point, respectively. Specifically, the disparity between O and C indicates the volume 
of redundant data removed by the compression algorithm. 

Definition 3. (AIS data matrix.) A matrix of 5 × O contains a primary dynamic AIS information of a vessel, defined as follows, 

AISM =

⎡

⎢
⎢
⎢
⎢
⎣

t1 t2 ⋯ tn ⋯ tO
lon1 lon2 ⋯ lonn ⋯ lonO
lat1 lat2 ⋯ latn ⋯ latO
sog1 sog2 ⋯ sogn ⋯ sogO
cog1 cog2 ⋯ cogn ⋯ cogO

⎤

⎥
⎥
⎥
⎥
⎦

(5)  

where O denotes the total number of points in all trajectory data, and 5 counts the number of the involved parameters, including t, lon, 
lat, sog, and cog. AISM is used as the input data of the GPU-accelerated ADPSC algorithm to reduce frequent data transmission in this 
paper. 

Table 1 
List of the notations.  

Notations Definition Notations Definition 

Tori The original vessel trajectory data Eps The domain radius when defining density 
Pn

ori The n-th point in the original vessel trajectory Tori Minpt The number of minimum point sets within the cluster 
tnori The timestamp data in the n-th original vessel trajectory point lont-1 The longitude of trajectory points at t - 1 
lonn

ori The longitude data in the n-th original vessel trajectory point latt-1 The latitude of trajectory points at t - 1 
latnori The latitude data in the n-th original vessel trajectory point lont The longitude of trajectory points at t 
sogn

ori The SOG data in the n-th original vessel trajectory point latt The latitude of trajectory points at t 
cogn

ori The COG data in the n-th original vessel trajectory point lont+1 The longitude of trajectory points at t + 1 
O The number of original vessel trajectory points latt+1 The latitude of trajectory points at t + 1 
Tcom The compressed vessel trajectory data R The radius of a parallel circle at the standard latitude 
Pm

com The m-th point in the compressed vessel trajectory Tcom d The long radius of the Earth’s ellipsoid 
tmcom The timestamp data in the m-th compressed vessel trajectory point g The standard latitude in the Mercator projection 
lonm

com The longitude data in the m-th compressed vessel trajectory point e The first eccentricity in the Earth’s ellipsoid 
latmcom The latitude data in the m-th compressed vessel trajectory point S Isometric latitude 
sogm

com The SOG data in the m-th compressed vessel trajectory point lonW The longitude data of the vessel trajectory points in the World 
Geodetic System - 1984 Coordinate System 

cogm
com The COG data in the m-th compressed vessel trajectory point latW The latitude data of the vessel trajectory points in the World 

Geodetic System - 1984 Coordinate System 
C The number of compressed vessel trajectory points lonM The longitude data of the vessel trajectory points in the 

Mercator Projection Coordinate System 
AISM The matrix includes the primary dynamic AIS information (i.e., 

timestamp, longitude, latitude, SOG, and COG) of a vessel 
latM The latitude data of the vessel trajectory points in the 

Mercator Projection Coordinate System  
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3.2. Trajectory data denoising 

During the transmission process of vessel trajectory data between AIS base stations and satellites, there may be noise data, as 
illustrated in Fig. 3 (a). Unprocessed noise data can impede further research. For instance, when analyzing the compressed content of 
trajectory data, algorithms may mistakenly assume that noisy data are feature points and preserve them. Therefore, as a preparatory 
step before conducting specific research in this paper, it is essential to denoise the original trajectory and obtain high-quality trajectory 
data, as shown in Fig. 3 (b). 

The denoising process of original trajectory data mainly includes two aspects: one is to identify noisy data, and the other is to repair 
noisy data. There are many methods for identifying noisy data, and the most commonly used is to separate noisy data based on 
clustering methods. This paper uses Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Bai et al., 2023; Li et al., 
2021), the most representative clustering method, to identify noisy data in the original vessel trajectory. This method has two 
important parameters. One is the domain radius when defining density, abbreviated as Eps. The other refers to the threshold for 
defining core points, which represents the number of minimum point sets within the cluster, abbreviated as Minpt. These two pa
rameters determine which cluster each data in the dataset belongs to. In practical clustering calculations, the DBSCAN method divides 
the trajectory points in the dataset into three categories: core points, boundary points, and noise points. The core point indicates that 
the number of data points within its radius Eps exceeds Minpt. The boundary point means that the number of data points contained in 
its radius Eps is less than Minpt, and the point falls within the area of the core point. The trajectory points in the dataset that are neither 
core nor boundary points are classified as noise points. DBSCAN method can accurately identify the noise data in the trajectory. The 
values of Eps and Minpt are configured as 0.01 and 3, respectively, as demonstrated in the parameter optimization process detailed in 
Appendix A. These values represent the optimal parameters for the DBSCAN algorithm to identify outliers across all vessel trajectories 
within the three study areas. 

The next step is to remove these noise data and repair them with the linear interpolation method (Blu et al., 2004). This paper 
assumes that the trajectory points (lont, latt) at time t are noise data. The detailed calculation process of using the trajectory coordinates 
at t - 1 and t + 1 to repair the longitude and latitude data of the noise point is shown in Eqs. (6) and (7), respectively, 

Fig. 3. Visual illustration of vessel trajectory data denoising, (a) trajectory data with noise, and (b) trajectory data after noise removal. In particular, 
the green dots represent noisy data. 

Fig. 4. Visualisation of noisy trajectory data in three research areas: (a) Tianjin Port, (b) Chengshan Jiao Promontory, and (c) Caofeidian Port. In 
particular, the orange boxes indicate noisy data. 
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lont = lont− 1 +(t − (t − 1) ) ×
(

lont+1 − lont− 1

(t + 1) − (t − 1)

)

(6)  

latt = latt− 1 +(t − (t − 1) ) ×
(

latt+1 − latt− 1

(t + 1) − (t − 1)

)

(7)  

where lont-1 and lont+1 represent the longitude of trajectory points at t - 1 and t + 1, respectively. latt-1 and latt+1 denote the latitude of 
trajectory points at t - 1 and t + 1, respectively. 

Eqs. (6) and (7) take the time information of the noise point and adjacent points as the baseline, and use the coordinates of adjacent 
points to interpolate the longitude and latitude data of the noise point separately. Figs. 4 and 5 show the distribution of noisy tra
jectories and preprocessed trajectories in the three study areas on the map, respectively. In summary, DBSCAN and linear interpolation 
methods can accurately detect and repair noise data, thereby obtaining high-quality trajectory data for subsequent compression 
research. 

3.3. Conversion of geographical coordinates 

Calculating the spherical distance between two consecutive points in a trajectory based on the World Geodetic System − 1984 
Coordinate System is challenging, potentially leading to significant errors (Huang et al., 2020). Hence, it is not advisable to analyze 
raw vessel trajectory data directly with compression algorithms. To address the issue, this paper proposes converting the trajectory 
data coordinates using the Mercator Projection Coordinate System instead of retaining the original system. Meanwhile, the World 
Geodetic System − 1984 Coordinate System exhibits significant deformation in high latitude areas in two-dimensional space, unlike 
the Mercator Projection Coordinate System, which does not have this issue. Suppose (lonW, latW) and (lonM, latM) denote the longitude 
and latitude data of the vessel trajectory points in the original and transformed coordinate systems, respectively. The calculation 
process of coordinate conversion is as follows: 

R =
d

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − e2sin2g

√ × cosg, (8)  

S = lntan
(

π
4
+

latW

2

)

+
e
2

ln
1 − esinlatW

1 + esinlatW
, (9)  

lonM = lonW × R, (10)  

latM = S × R. (11)  

where R denotes the radius of a parallel circle at the standard latitude, and d represents the long radius of the Earth’s ellipsoid. g 
denotes the standard latitude in the Mercator projection, while e represents the first eccentricity in the Earth’s ellipsoid. S denotes 
isometric latitude. 

Table 2 displays the representation of a single point’s information from vessel trajectory data in two different coordinate systems. 

Fig. 5. The distribution of vessel trajectories after denoising in three research areas: (a) Tianjin Port, (b) Chengshan Jiao Promontory, and (c) 
Caofeidian Port. 

Table 2 
An example of vessel trajectory points (i.e., longitude and latitude) in two coordinate systems.  

World Geodetic System - 1984 Coordinate System Mercator Projection Coordinate System 

Longitude (o) Latitude (o) Longitude (m) Latitude (m) 

118.5658 38.7555 13198682.0677 4686713.5946  
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Fig. 6. The whole framework.  
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The unit of latitude and longitude coordinates has changed from degrees to meters. 

4. Methodology 

4.1. A GPU-accelerated compression framework 

The entire framework of this paper is illustrated in Fig. 6, encompassing AIS data collection, data preprocessing, GPU-accelerated 
adaptive compression technique, compression evaluation criteria, and experimental analysis. Embedded within this methodology are 
the innovative ADPSC approach and its GPU-accelerated counterpart. In particular, AIS data collection and preprocessing are the 

Table 3 
List of the notations.  

Notations Definition Notations Definition 

threshold The compression threshold for each 
trajectory 

α The angle between the baseline and the x-axis of the coordinate 
system 

lt The total number of trajectory points SOG The speed over ground 
disi The distance from the i-th trajectory point 

to the baseline. 
COG The course over ground 

lonS Longitude of the starting point of vessel 
trajectory 

SOGYi The velocity component of the i-th trajectory point along the y- 
axis in a new coordinate system with the trajectory baseline as 
the x-axis 

latS Latitude of the starting point of vessel 
trajectory 

SOGYV = {SOGY1, 
SOGY2, …, SOGYlt} 

The vector is composed of velocity components along the y-axis 
for all trajectory points 

lonE Longitude of the ending point of vessel 
trajectory 

TV = {t1, t2, …, tlt} The vector is composed of timestamps for each trajectory point 

latE Latitude of the ending point of vessel 
trajectory 

dataH The hour in the timestamp 

loni Longitude of the i-th intermediate point in 
the vessel trajectory 

dataM The minute in the timestamp 

lati Latitude of the i-th intermediate point in 
the vessel trajectory 

dataS The second in the timestamp 

DV = {dis2, dis3, 
…, dislt-1} 

The vector consisting of the distance from 
each intermediate point to the baseline 

sogyCi The velocity component rate of change of the i-th intermediate 
point along the y-axis 

Dis The cumulative distance from the i-th 
trajectory point to the baseline 

SOGYCV = {sogyC2, 
sogyC3, …, sogyClt-1} 

The vector composed of the sogyC of each intermediate point 

ratei The offset weight of the i-th intermediate 
point relative to the baseline. 

sogyCRi The weight change of the i-th trajectory point along the y-axis 
SOG component 

RV = {rate2, rate3, 
…, ratelt-1} 

The vector consisting of the offset weight 
from each intermediate point to the 
baseline 

SOGYCRV = {sogyCR2, 
sogyCR3, …, sogyCRlt-1} 

The vector composed of the sogyCR of each intermediate point  

Fig. 7. The schematic of the original DP compression algorithm, (a) an original vessel trajectory, (b) feature points selection based on the threshold, 
(c) trajectory segmentation and feature points searching within different trajectory segments, (d) identify new feature points iteratively, and (e) the 
compressed vessel trajectory. 
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preparatory work of the new methodology, aimed at obtaining high-quality vessel trajectory data to avoid the compression algorithm 
capturing feature points incorrectly. These contents are elaborated in Section 3.2. Sections 4.2 and 4.3 provide comprehensive ex
planations of the novel ADPSC algorithm and the GPU-accelerated ADPSC method, respectively. They constitute the core content and 
main contributions of this paper. To verify the effectiveness of the newly proposed algorithms, Sections 5.2, 5.3, and 5.4 introduce 
evaluation metrics, compression effect, and acceleration performance, respectively. This section introduces new notations for 
describing the methodology listed in Table 3. 

4.2. The proposed ADPSC-based vessel trajectory compression method 

The essence of the DP algorithm is to find the feature points in the vessel trajectory data by setting a threshold, illustrated in Fig. 7. 
These feature points can accurately reflect the features of the original trajectory. A compilation of these features then takes the place of 
the original trajectory data, achieving the compression objective (Li et al., 2016). Owing to its straightforwardness and efficacy in 
maritime transportation contexts, it has garnered considerable interest. 

The specific steps of the DP algorithm in executing trajectory data compression tasks are as follows: 
(1) The starting and ending points of the trajectory serve as feature points and are generated as the baseline, such as points P1 

(PBegin) and P16 (PEnd) in Fig. 7 (b). Using the DP algorithm, the distance from intermediate points (i.e., P2 to P15) to the baseline is 
calculated and compared with the threshold. If the distance exceeds the threshold, the point becomes a new feature point, like point P10 
(PFeature) in Fig. 7 (b). 

(2) In Fig. 7 (c), the new feature point P10 divides the original trajectory into two segments. Subsequently, the feature points P5 and 
P12 in these segments can be obtained by repeating the calculation process in step (1). Notably, the distance from point P12 to the 
baseline of the second trajectory segment is below the threshold, resulting in only point P5 becoming a new feature point and splitting 
the first segment trajectory into two subsets, as depicted in Fig 7 (d). 

(3) Although P3 and P8 are the farthest from the baseline in new segments, their distances remain below the threshold. 
In summary, only points P1, P5, P10, and P16 are retained as feature points, replacing the original trajectory in Fig. 7 (e). The DP 

algorithm continues to search for feature points until the maximum distance from any segment point to the baseline is less than the 
threshold. 

The traditional DP algorithm relies on manually establishing a threshold for all trajectory data, typically based on experience rather 
than theoretical principles. However, this approach results in varied compression thresholds across various vessel trajectories, posing 
challenges. Utilizing a uniform threshold for all trajectories leads to difficulties in handling redundant data and the potential loss of 
crucial trajectory feature points. Consequently, the development of adaptive compression algorithms emerges as a crucial research 
avenue. 

Determining a compression threshold is quantifying the extent of deviation (essentially the distance) between trajectory points and 
the baseline, progressively pinpointing feature points. A trajectory point with a substantial offset from the baseline is more likely to be 
a feature point. In line with this approach, some researchers compute the average distance from all intermediary points in the tra
jectory to the baseline, forming a threshold (Li et al., 2022; Liu et al., 2019b). The functional expressions for this threshold are as 
follows, 

threshold =
1

lt − 2
∑lt− 1

i=2
disi (12)  

disi =
|(lonS − loni) × (latE − lati) − (lonE − loni) × (latS − lati) |

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(lonS − lonE)
2
+ (latS − latE)

2
√ (13)  

where lt represents the total number of trajectory points, and disi denotes the distance from the i-th trajectory point to the baseline. 
(lonS, latS) and (lonE, latE) are the coordinates of the starting and ending points of the trajectory point, respectively. (loni, lati) represents 
the longitude and latitude coordinates of the i-th trajectory point. In particular, the denominator in Eq. (13) can not be 0 due to the 
distinct positions of the collected vessel trajectory data’s starting and ending points. Furthermore, the initialization feature points 
exclude the trajectory’s starting and ending points from the calculation, so the value of i is between 2 and lt-1. 

Fig. 8. Visual illustration of trajectory points’ offset and SOG decomposition relative to the baseline: (a) and (b) reflect the distance distribution 
between the midpoint and the baseline for two trajectories, respectively, and (c) displays the SOG decomposition process of trajectory points based 
on the coordinate system with baseline as the x-axis. 
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The average calculation method has a limitation, potentially obscuring critical information. As depicted in Fig. 8 (a), the distance 
from P6 to the baseline is the largest, implying that its contribution to the threshold calculation is more significant than distances from 
other trajectory points. Hence, a weighted average calculation method is proposed. 

Let a vector DV = {dis2, dis3, …, dislt-1} is used to store the distances from all intermediate trajectory points to the baseline. Another 
vector RV = {rate2, rate3, …, ratelt-1} denotes the proportion of each distance to the total. The calculation process for each proportional 
value is outlined as follows, 

Dis =
∑lt− 1

i=2
disi,

ratei =
disi

Dis
, i = 2, 3, ..., lt − 1

(14)  

where Dis represents the cumulative distance from the i-th trajectory point to the baseline. disi and ratei represent the distance and 
proportional weight of the i-th trajectory point to the baseline, respectively. 

The threshold calculation based on the weighted average can be expressed by, 

Fig. 9. The scheme of compression threshold calculation: (a) offset weight, (b) SOG variation weight, and (c) weight fusion.  
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threshold =
∑lt− 1

i=2
disi × ratei, i = 2, 3, ..., lt − 1 (15) 

The weighted average calculation method effectively addresses the issue of direct average calculation. However, it also exposes 
another limitation. This arises when the distance from consecutive n (n ≥ 3) points to the baseline is identical, and the proportion is the 
largest. This scenario is exemplified in Fig. 8 (b) by points P6, P7, and P8. These points form a line segment, and according to the 
compression principle of the DP algorithm, point P7 becomes redundant and can be removed. If the weighted average calculation 
method is employed, the distance from P7 to the baseline also needs to be included, carrying a substantial weight. Consequently, this 
could result in significant errors in the calculated threshold. To effectively address these issues, this paper incorporates SOG and COG 
in threshold calculation. 

When a vessel navigates in a straight line, even if the SOG changes, retaining the starting and ending points is sufficient to 
accurately capture the distribution characteristics of the trajectory during compression tasks. Conversely, if a trajectory point quickly 
deviates from the baseline in a short period, it is highly likely to be a feature point. To address this, the approach taken in this paper 
involves establishing a coordinate system using the trajectory baseline as the x-axis. This system decomposes the velocity of each 
trajectory point, as depicted visually in Fig. 8 (c). A substantial change rate of the SOG component perpendicular to the x-axis between 
two points suggests a rapid deviation from the baseline. It is worth noting that COG assists SOG in its decomposition within this novel 
coordinate system. 

According to the above analysis, the deviation of each intermediate trajectory point from the baseline and the change rate of SOG 
along the y-axis in the new coordinate system jointly determine whether it qualifies as a feature point. Thus, this paper combines these 
two aspects of information to calculate the compression threshold, as illustrated in Fig. 9. The core concept involves determining the 
distance ratio from each intermediate point to the baseline concerning the sum of all distances. Concurrently, the proportion of the 
change rate of SOG along the y-axis component for each intermediate point is calculated based on the overall change rate. The 
contribution value of the point to the compression threshold can be obtained by fusing the above two proportional weights and 
multiplying them with the distance to the baseline. The specific steps of the compression threshold computation are outlined as 
follows, 

Step 1. Offset weight calculation. As shown in Fig. 9 (a), this step utilizes Eq. (13) to calculate the distance between each intermediate 
point and the baseline, which is then stored in vector DV. Furthermore, Eq. (14) is used to obtain a vector RV containing the proportion 
of each intermediate point’s distance to the baseline in relation to the total. 

Step 2. SOG variation weight calculation. Following Fig. 9 (b), the SOG of each trajectory point is decomposed in a new coordinate 
system, which is established with the trajectory baseline as the x-axis. In particular, this paper exclusively selects the SOG component 
along the y-axis to compute the compression threshold because the speed at which a trajectory point deviates from the baseline to some 
extent determines whether the point is a feature point. The decomposition of SOG requires the assistance of COG. However, it is 
unfeasible to employ the original COG directly because COG needs to be converted into the new coordinate system. The new coor
dinate system can be obtained by rotating the old coordinate system clockwise or counterclockwise by a certain degree α (0⩽α⩽180)
around the trajectory point. The original COG add or subtract α can get the heading value in the new coordinate system. Hence, it is a 
pivotal step to calculate the angle between the trajectory baseline and the x-axis of the original coordinate system. The details of the 
calculation process are thoroughly outlined in Algorithm 1.  

Algorithm 1: Calculation of included angle 

Input: lonS, latS, lonE, latE // (lonS, latS) and (lonE, latE) are the coordinates of the starting and ending points for the trajectory, respectively. 
Output:α 
1. if lonE == lonS then α = 90; 
2. else if latE == latS then α = 0; 
3. else 

4. α = arctan
( latE − latS

lonE − lonS

)

×
180

π ; 

5. if α < 0 then α = 180 + α; 
6. end if 
7. end if  

For ease of calculation, this paper uniformly establishes that the new coordinate system is achieved by rotating the existing coordinate 
system counterclockwise by α degrees. The components of SOG along the y-axis in the new coordinate system can be derived based on 
Algorithm 2.  

Algorithm 2: Calculation of SOG components along the y-axis 

Input: SOG, COG, α // The definition of COG in the original coordinate system is the angle between it and the positive half-axis of the y-axis, and its value range is [0,
360). 

Output: SOGY 
1. if 0⩽α⩽90 then 

2. if COG == 0 then SOGY = SOG× sin
(
|90 − α| × π

180

)
; 

(continued on next page) 

Y. Li et al.                                                                                                                                                                                                               



Transportation Research Part C 163 (2024) 104648

15

(continued ) 

Algorithm 2: Calculation of SOG components along the y-axis 

3. else if 0 < COG ≤ 90 then SOGY = SOG× sin
(
((90 − COG) − α ) ×

π
180

)
; 

4. else if 90 < COG ≤ 180 then SOGY = − SOG× sin
(
((COG − 90) + α ) ×

π
180

)
; 

5. else if 180 < COG < 270 then 
6. cogConvert = 270 – COG; 
7. if cogConvert == α then SOGY = 0; 
8. else if cogConvert > α then 

9. SOGY = − SOG× sin
(
(cogConvert − α) × π

180

)
; 

10. else if cogConvert < α then 

11. SOGY = SOG× sin
(
(α − cogConvert) ×

π
180

)
; 

12. end if 

13. else if COG == 270 then SOGY = SOG× sin
(
α ×

π
180

)
; 

14. else if 270 < COG < 360 then SOGY = SOG× sin
(
((COG − 270) + α ) ×

π
180

)
; 

15. end if 
16. else if 90 < α < 180 then 

17. if COG == 0 then SOGY = SOG× sin
(
(90 − (180 − α)) × π

180

)
; 

18. else if 0 < COG ≤ 90 then 

19. SOGY = SOG× sin
(
((90 − COG) + (180 − α) ) × π

180

)
; 

20. else if 90 < COG ≤ 180 then 
21. cogConvert = COG − 90; 
22. if cogConvert == (180 − α) then 
23. SOGY = 0; 
24. else if cogConvert < (180 − α) then 

25. SOGY = SOG× sin
(
((180 − α) − cogConvert ) ×

π
180

)
; 

26. else if cogConvert > (180 − α) then 

27. SOGY = − SOG× sin
(
(cogConvert − (180 − α) ) × π

180

)
; 

28. end if 
29. else if 180 < COG < 270 then 

30. SOGY = − SOG× sin
(
((180 − α) + (90 − (270 − COG) ) ) ×

π
180

)
; 

31. else if COG == 270 then SOGY = − SOG× sin
(
(180 − α) × π

180

)
; 

32. else if 270 < COG < 360 then 
33. cogConvert =COG − 270; 
34. if cogConvert == (180 − α) then 
35. SOGY = 0; 
36. else if cogConvert < (180 − α) then 

37. SOGY = − SOG× sin
(
((180 − α) − cogConvert ) ×

π
180

)
; 

38. else if cogConvert > (180 − α) then 

39. SOGY = SOG× sin
(
(cogConvert − (180 − α) ) × π

180

)
; 

40. end if 
41. end if 
42. end if  

According to Algorithm 2, the SOG component along the y-axis for each trajectory point can be computed and stored in the vector 
SOGYV = {SOGY1, SOGY2, …, SOGYlt}. To determine the SOG change rate of each trajectory point along the y-axis, the timestamp of 
each trajectory point is retained in vector TV = {t1, t2, …, tlt}. In particular, the time information in AIS data is expressed in hours, 
minutes, and seconds. To facilitate calculation, this paper adopts Eq. (16) to convert time into seconds uniformly as follows, 

t = 3600 × dataH + 60 × dataM + dataS (16)  

where dataH, dataM, and dataS represent the hour, minute, and second in the timestamp, respectively. The velocity change rate along 
the y-axis at each intermediate point can be obtained based on vectors SOGYV and TV below. 

sogyCi+1 =
SOGYi+1 − SOGYi

ti+1 − ti
, i = 1, 2, ..., lt − 2 (17)  

where i represents the i-th value in two vectors. lt denotes the total number of points in the trajectory. The velocity change rate 
component at each intermediate point is stored in the vector SOGYCV = {sogyC2, sogyC3, …, sogyClt-1}. 

In addition, the proportion of the change rate of SOG along the y-axis component for each intermediate point to the total change 
rate is determined by Eq. (18) and expressed as a vector SOGYCRV = {sogyCR2, sogyCR3, …, sogyCRlt-1}. 
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Fig. 10. The flowchart of the proposed GPU-based ADPSC parallel implementation framework: (a) threshold parallel computing process; (b) 
compression parallel computing processes. 
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Sum =
∑lt− 1

2
sogyCi,

sogyCRi =
sogyCi

Sum
, i = 2, 3, ..., lt − 1

(18) 

Step 3. Weight fusion calculation. The objective is to integrate the offset weights calculated in Steps 1 and 2 with the SOG change 
weights. The contribution value of each intermediate point to the threshold, essentially a weighted result, is determined by multiplying 
its fusion weight with the distance from the baseline. In particular, if a certain intermediate point significantly contributes to the 
threshold, the calculated fusion weight value will be higher. The final threshold is achieved by summing the contribution values of all 
intermediate points, as expressed by the following function. 

threshold =
∑lt− 1

i=2
disi × sogyCRi × ratei (19)  

where disi denotes the distance from the i-th trajectory point to the baseline. sogyCRi is the change weight of the i-th trajectory point 
along the y-axis SOG component. ratei represents the offset weight of the i-th trajectory point relative to the baseline. 

The purpose of multiplying two weights is to exclude the contribution of a factor if it evaluates to zero during threshold calculation. 
In such cases, the distance from that particular point to the baseline does not play a role in the threshold calculation. The ADPSC 
algorithm employs this calculated threshold in iterative searching for feature points, thereby realizing the trajectory compression task. 

Table 4 
The list of notations.  

Notations Definition 

Ltpr A vector is used to match the relationship between points and trajectories. 
Lntp A vector is used to store the number of points in each trajectory. 
sogDecL A vector stores the SOG decomposition results of each trajectory point. 
thd The thread number. 
posS The starting position of the trajectory where the current point being processed by the current thread is located. 
posE The ending position of the trajectory where the current point being processed by the current thread is located. 
lonS Longitude of the starting point. 
latS Latitude of the starting point. 
lonE Longitude of the ending point. 
latE Latitude of the ending point. 
lonData Longitude of the current point. 
latData Latitude of the current point. 
sogData SOG of the current point. 
cogData COG of the current point. 
DisL A vector stores the distance from each trajectory point to the baseline. 
disData The distance from the intermediate point to the trajectory baseline. 
posData Calculate where the disData is stored in the vector DisL. 
length The length of the vector DisL. 
poNum The total number of trajectory points in the dataset. 
traNum The number of vessel trajectories in the dataset. 
sogyCL A vector stores the speed change rate along the y-axis at the intermediate point of each trajectory. 
timeP Time of the previous trajectory point. 
timeC Time of the current trajectory point. 
sogyP SOG component of the previous trajectory point. 
sogyC SOG component of the current trajectory point. 
changeR The rate of change of SOG components. 
sumDisL A vector stores the sum of the distances from all intermediate points of each trajectory to the baseline. 
sumSogyCL A vector stores the sum of the SOG change rates of all intermediate points of each trajectory along the y-axis. 
posDataS Two variables are used to calculate the boundary positions of two vectors (i.e., DisL and sogyCL) to match the relationship between the data and the 

trajectory. posDataE 
thrL A vector stores the compression threshold for each trajectory. 
Lfp A vector is used to determine which points are the feature points calculated by the ADPSC algorithm. 
leftPos The positions of the starting and ending points of a certain trajectory segment in AISM. 
rightPos 
labelData Calculate the value corresponding to the trajectory point in the vector Lfp. 
lntpData A variable is used to determine whether a certain trajectory has completed the compression task. 
ifFeature A variable is used to determine whether new feature points are generated in an iterative search. Its initial value is zero. When it becomes one during 

the calculation process, it indicates that new feature points have been generated in the iterative search. 
threshold The compression threshold for vessel trajectory. 
num A variable is used to assist in searching for feature points in trajectory segments. 
begin Two variables are used to define the positions of the starting and ending points for trajectory segments, respectively. 
end 
maxDisData A variable is defined as the maximum value from a point to the baseline of a trajectory segment.  
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4.3. GPU-accelerated ADPSC compression method 

The ADPSC algorithm proposed in this paper entails an extended compression threshold calculation process compared to the 
original DP algorithm. It means that compressing massive vessel trajectory data demands more time. To align with real-world ap
plications, this paper enhances the ADPSC algorithm for large-scale trajectory data compression within the GPU parallel computing 
framework, substantially diminishing execution time. The ADPSC algorithm predominantly encompasses two calculation processes 
during trajectory data compression: threshold and compression calculation. Accordingly, the designed parallel algorithm is structured 
around these two calculation components, as illustrated in Fig. 10. The threshold and compression calculation in the parallel ADPSC 
algorithm consists of multiple different functional functions, respectively. In the programming framework of CUDA, each function is 
encapsulated into a kernel, constituting a CUDA parallel computing function executed on the GPU. Each thread within the GPU 
conducts the kernel function in parallel to process the trajectory points to accomplish compression. Specifically, the operational logic 
of the kernel functions numbered 1 to 7 in Fig. 10 follows a progressive rather than a random execution order. The necessary notations 
are listed in Table 4. 

When executing parallel algorithms on a GPU, it cannot directly obtain data from memory and needs to transfer the data from 
memory to video memory. This transfer process is time-consuming. If vessel trajectories in the dataset are compressed one by one in 
sequence, although it might simplify the design of parallel algorithms, it would still demand substantial computational time. To tackle 
this challenge, this paper uniformly stores all trajectory data (i.e., time stamp, longitude, latitude, SOG, and COG) in a matrix as 
represented in Eq. (5). This approach allows copying all necessary data from memory to video memory in a single operation, as 
displayed in Fig. 11. This helps avoid frequent data copying between memory and video memory, thereby reducing computational 
costs. In practical parallel computing, it is necessary to set a label vector to determine whether a trajectory point belongs to a specific 
vessel. Sections 4.3.1 and 4.3.2 explain the threshold and compression parallel computing processes within the ADPSC algorithm, 
respectively. 

Fig. 11. Coalesced global memory access of AIS data.  

Fig. 12. Visual comparison of trajectory data (or vector) and images (or matrix) in parallel computing framework design. (a) and (b) depict the 
thread distribution architecture for parallel computing in image and trajectory data, respectively. 
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4.3.1. Parallelization of the threshold calculation 
Each point in the vessel trajectory is discretely distributed, and they exhibit independence from one another. This feature provides 

convenience for processing each trajectory point by using parallel compression algorithms. Each trajectory point can be systematically 
linked to threads within the GPU, with each thread executing the compression task by activating the kernel function. GPUs are 
renowned for their potent computational capabilities, often employed in image processing (or matrix calculation). Parallel algorithms 
devised for image processing adapt the distribution of threads in GPUs based on the matrix size, as depicted in Fig. 12 (a). The thread 
arrangement in the parallel algorithm of trajectory data differs from that of image processing, assuming a vector-oriented layout 
illustrated in Fig. 12 (b). In particular, the total thread count equals the sum of all points in the vessel trajectory dataset. 

According to Fig. 10 (a), the parallel calculation of the threshold mainly consists of five functions, which are encapsulated within 
five kernels. Each thread executes these five kernel functions in turn to obtain the compression threshold of each vessel trajectory. The 
parallel computing process of these five kernel functions in each thread is as follows: 

(1) Kernel1. Its purpose is to calculate the SOG components decomposed along the y-axis for each trajectory point in the new co
ordinate system. While all trajectory points are distributed in each thread of the GPU for parallel computing tasks, this presents two 
challenges. One is the inability to discern the relationship between trajectories and their respective points. Another issue is the inability 
to match the starting and ending points of trajectories. 

To address these two challenges, this paper sets up two label vectors, Ltpr and Lntp. They are designed to determine the relationship 
between points and trajectories and identify the starting and ending points in trajectories. For illustration, suppose there are three 
vessel trajectories in a dataset with track point counts of 4, 5, and 6, respectively. The values of vectors Ltpr and Lntp would be [1, 1, 1, 
1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3] and [0, 4, 9, 15], respectively. The length of vector Ltpr is the total number of all trajectory points in the 
dataset, with each value indicating the specific trajectory to which a point belongs. The value in vector Lntp is the accumulation of the 
number of points in each trajectory. According to the above example analysis, the starting and ending points of the first trajectory are 
in the 0th and (4–1)th threads. 

Based on Algorithm 3, the parallel calculation results of SOG decomposition along the y-axis for each trajectory point can be 
obtained. In particular, the function ‘cauSogDecompose’ integrates the abilities of Algorithm 1 and Algorithm 2.  

Algorithm 3: Parallel computing of SOG decomposition 

Input: AISM, Ltpr, Lntp, sogDecL // According to Eq. (5), the first to fifth rows of the AISM matrix represent time, longitude, latitude, SOG, and COG, respectively. 
sogDecL is the initialization vector, whose length equals the total number of trajectory points in the dataset. All values in the vector sogDecL are 0. 

Output: sogDecL // A vector stores the SOG decomposition results of each trajectory point. 
1. thd = blockIdx.x × blockDim.x + threadIdx.x; // thread number. 
2. posS = Lntp[Ltpr[thd] – 1]; // The starting position of the trajectory where the current point being processed by the current thread is located. 
3. posE = Lntp[Ltpr[thd]] – 1; // The ending position of the trajectory where the current point being processed by the current thread is located. 
4. lonS = AISM[1,:][posS]; // Longitude of starting point. 
5. latS = AISM[2,:][posS]; // Latitude of starting point. 
6. lonE = AISM[1,:][posE]; // Longitude of ending point. 
7. latE = AISM[2,:][posE]; // Latitude of ending point. 
8. sogData = AISM[3,:][thd]; 
9. cogData = AISM[4,:][thd]; 
10. sogDecL[thd] = cauSogDecompose(lonS, latS, lonE, latE, sogData, cogData);  

(2) Kernel2. This kernel function is used to calculate the distance between each trajectory point and the baseline. During the execution 
of parallel computing, vectors Ltpr and Lntp remain essential to determine the relationship between points and trajectories, as well as to 
identify the starting and ending points. The parallel calculation process is described in Algorithm 4.  

Algorithm 4: Parallel computing of distance from trajectory point to baseline 

Input: AISM, Ltpr, Lntp, DisL // DisL is the initialization vector whose all values are 0. 
Output: DisL // A vector stores the distance from each trajectory point to the baseline. 
1. thd = blockIdx.x × blockDim.x + threadIdx.x; 
2. posS = Lntp[Ltpr[thd] – 1]; 
3. posE = Lntp[Ltpr[thd]] – 1; 
4. if thd!= posS && thd!= posE then // The starting and ending points in each trajectory do not participate in the calculation. 
5. lonS = AISM[1,:][posS]; 
6. latS = AISM[2,:][posS]; 
7. lonE = AISM[1,:][posE]; 
8. latE = AISM[2,:][posE]; 
9. lonData = AISM[1,:][thd]; // Longitude of current trajectory point. 
10. latData = AISM[2,:][thd]; // Latitude of current trajectory point. 
11. disData = cauDistance(lonS, latS, lonE, latE, lonData, latData); 
12. posData = thd – (Ltpr[thd] × 2 – 1); // Calculate where the data (or distance) is stored in the vector DisL. 
13. DisL[posData] = disData; 
14. end if  

Algorithm 4 reflects the parallel calculation process of the point-to-baseline distance for each trajectory. The function ‘cauDistance’ 
integrates the ability of Eq. (13). The length of the vector DisL is not equal to the total number of all trajectory points in the dataset. This 
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discrepancy arises primarily because the distance calculation from the trajectory point to the baseline excludes both the starting and 
ending points. The formula for calculating the length of the vector DisL is, 

length = poNum − 2 × traNum (20)  

where poNum represents the total number of trajectory points in the dataset, and traNum denotes the number of trajectories. 
(3) Kernel3. Its core idea is to calculate the SOG change rate of the intermediate point of each trajectory in the y-axis direction. The 

results of the first kernel function (sogDecL) are utilized in the calculation process. A detailed description of the parallel computing 
method is shown in Algorithm 5.  

Algorithm 5: SOG change rate along the y-axis component 

Input: AISM, Ltpr, Lntp, sogDecL, sogyCL // sogyCL is the initialization vector whose all values are 0. 
Output: sogyCL // A vector stores the speed change rate along the y-axis at the intermediate point of each trajectory. 
1. thd = blockIdx.x  × blockDim.x + threadIdx.x; 
2. posS = Lntp[Ltpr[thd] – 1]; 
3. posE = Lntp[Ltpr[thd]] – 1; 
4. if thd!= posS && thd!= posE then // The starting and ending points in each trajectory do not participate in the calculation. 
5. timeP = AISM[0,:][thd – 1]; // Time of the previous trajectory point. 
6. timeC = AISM[0,:][thd]; // Time of the current trajectory point. 
7. sogyP = sogDecL[thd – 1]; // SOG component of the previous trajectory point. 
8. sogyC = sogDecL[thd]; // SOG component of the current trajectory point. 

9. changeR =
|sogyC − sogyP|
timeC − timeP

; 

10. posData = thd – (Ltpr[thd] ×2 – 1); // Calculate where the data (or SOG component change rate) is stored in the vector sogyCL. 
11. sogyCL[posData] = changeR; 
12. end if  

Based on Algorithm 5, the SOG change rate along the y-axis at all intermediate points of each trajectory can be quickly calculated. Each 
trajectory’s starting and ending points do not participate in calculating the SOG change rate, so the length of vector sogyCL is the same 
as that of vector DisL. 

(4) Kernel4. This kernel serves two primary purposes. Firstly, it calculates the cumulative distance of all intermediate points of each 
trajectory from the baseline. Secondly, it determines the collective SOG change rates along the y-axis for all intermediate points within 
each trajectory. Unlike previous kernel functions, where the focus was individual points, this kernel targets entire trajectories, with 
each trajectory in the dataset being sequentially mapped to the GPU threads. The parallel computation methodology is detailed in 
Algorithm 6.  

Algorithm 6: Calculate the sum of distance and SOG component change rate separately 

Input: DisL, sogyCL, Lntp, sumDisL, sumSogyCL // sumDisL and sumSogyCL are the initialization vectors whose all values are 0. 
Output: sumDisL, sumSogyCL // Two vectors store the sum of the distances from all intermediate points of each trajectory to the baseline and the sum of the SOG 

change rates of all intermediate points along the y-axis, respectively. 
1. thd = blockIdx.x  × blockDim.x + threadIdx.x; 
2. posDataS = Lntp[thd] – 2  × thd; 
3. posDataE = Lntp[thd + 1] – (2  × thd + 2); // Steps 2 and 3 calculate the boundary positions of two vectors (i,e., DisL and sogyCL) to match the relationship 

between the data and the trajectory. 
4. for i = posDataS: posDataE do 
5. sumDisL[thd] = sumDisL[thd] + DisL[i]; 
6. sumSogyCL[thd] = sumSogyCL[thd] + sogyCL[i]; 
7. end for  

Algorithm 6 performs parallel computing tasks based on trajectories. Therefore, the lengths of vectors sumDisL and sumSogyCL equal 
the total number of vessel trajectories in the dataset. 

(5) Kernel5. This kernel function calculates the offset weight and SOG component variation rate weight of trajectory points ac
cording to Eqs. (14) and (18), respectively. It then integrates these two weights, using Eq. (19), to determine the weighted distance of 
each trajectory point from the baseline, yielding the threshold. This kernel is the same as the fourth kernel because the object processed 
by each thread is the vessel trajectory. The detailed calculation process is presented in Algorithm 7.  

Algorithm 7: Parallel computing of compression threshold 

Input: DisL, sogyCL, Lntp, sumDisL, sumSogyCL, thrL // thrL is the initialization vector whose all values are 0. 
Output: thrL // A vector stores the compression threshold for each trajectory. 
1. thd = blockIdx.x  × blockDim.x + threadIdx.x; 
2. posDataS = Lntp[thd] – 2  × thd; 
3. posDataE = Lntp[thd + 1] – (2  × thd + 2); // The functions of steps 2 and 3 are consistent with those in Algorithm 6. 
4. for i = posDataS: posDataE do 

(continued on next page) 
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(continued ) 

Algorithm 7: Parallel computing of compression threshold 

5. thrL[thd] = thrL[thd] + DisL[i] ×
sogyCL[i]

sumSogyCL[thd]
×

DisL[i]
sumDisL[thd]

; // Refer to Eq. (19). 

6. end for  

Algorithm 7, similar to Algorithm 6, executes parallel computing tasks based on vessel trajectories. As a result, the size of vector thrL 
corresponds to the total number of trajectories in the dataset. Following the parallel computing process mentioned above, the 
compression threshold for each vessel trajectory is determined. This underpins the parallel compression task for vessel trajectory data 
discussed in Section 4.3.2. 

4.3.2. Parallelization of compression calculation 
The ADPSC algorithm utilizes the calculated compression threshold to iteratively search for trajectory feature points. It uses these 

feature points to form a new data sequence to replace the original trajectory, thereby completing the compression task. According to 
the execution principle of the compression algorithm, the parallel process of compressed computing mainly consists of two parts, 
shown in Fig. 10 (b). On the one hand, it calculates the distance from each trajectory point to the baseline of the matching trajectory 
segment. This calculation process is dynamic, as the newly generated feature points will repartition the trajectory. On the other hand, it 
compares the threshold with the distance from the trajectory point to the baseline to determine the feature points. Meanwhile, a 
condition must be set to terminate the calculation process to represent that the trajectory has been compressed. The reason is that the 
compression algorithm is a recursive process requiring a constraint to end the operation. According to Fig. 10 (b), the parallel 
calculation of the compression mainly consists of two kernel functions. Each thread executes these two kernel functions in sequence to 
obtain compressed trajectories. The parallel computing process of these two kernel functions in each thread is as follows, 

(1) Kernel6. Its purpose is to calculate the distance from each trajectory point to the baseline of the matching trajectory segment and 
store the results in the vector DisL. The length of this vector is equal to the total number of all trajectory points in the dataset, whose all 
values are 0 as the initialization state. During each iteration of searching for new feature points, a portion of the values in DisL is 
constantly changing. The reason is that each trajectory generates new feature points that divide it into multiple different trajectory 
segments. 

In the specific parallel computing process, four problems must be addressed to complete parallel computing tasks successfully. The 
initial challenge concerns matching the relationship between points and trajectories. In the parallel algorithm, each trajectory point is 
assigned to a separate thread for operation, yet the GPU cannot identify which trajectory a point belongs to. This paper solves this issue 
by setting a label vector Lfp, where each value in the vector can match the logical relationship between each point and the trajectory. 
For example, suppose there are three trajectories in the dataset. Each trajectory has 4, 5, and 6 points, respectively. The values of vector 
Lfp are [1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3]. The second issue is to determine which points are the feature points calculated by the 
algorithm. The vector Lfp is utilized to solve this issue. If a point is a feature point of the corresponding trajectory, then its corre
sponding value in vector Lfp is negative. Before the compression algorithm executes each trajectory, the starting and ending points are 
their initialization feature points. Hence, the values of label vector Lfp are [-1, 1, 1, -1, -2, 2, 2, 2, -2, -3, 3, 3, 3, 3, -3] as an initial state. 
The third issue is to pinpoint the position of each trajectory’s starting and ending points in AISM. To address the problem effectively, 
this paper sets up another label vector Lntp, whose value accumulates the number of points in each trajectory. Based on the above 
example, the values of vector Lntp is [0, 4, 9, 15]. The fourth issue is to identify whether a certain trajectory has completed the 
compression task and does not need to execute this kernel function. The vector Lntp will also assist in solving this problem. For 
instance, if the second trajectory mentioned above has already completed the compression task, and the other two trajectories still 
need to continue searching for new feature points. The values of vector Lntp is [0, 4, -9, 15]. The detailed calculation process will be 
introduced in the seventh kernel function. In summary, these four vectors will aid parallel algorithms in calculating the distance from 
the trajectory point to the baseline and then comparing it with the threshold to search for feature points iteratively. 

Each trajectory will generate new feature points during continuous iteration, which will repartition the trajectory and form 
different trajectory segments. Different trajectory segments in each trajectory have their corresponding starting and ending points, 
which cannot be identified using the vector Lntp. The reason is that the vector Lntp can only recognize the positions of the starting and 
ending points in a trajectory and assist in determining whether the trajectory has completed the compression task. To calculate the 
baseline distance from each point to the corresponding trajectory segment, this paper uses double pointers to find the starting and 
ending points of the trajectory segment corresponding to each point, as shown in Algorithm 8.  

Algorithm 8: Double-pointer search for starting and ending points 

Input: Lfp, thd // thd denotes the thread number and also represents the thd-th trajectory point in the dataset that the current thread is processing. 
Output: leftPos, rightPos // leftPos and rightPos, respectively, represent the positions of the starting and ending points of a certain trajectory segment in AISM. 
1. leftPos = thd – 1; 
2. rightPos = thd + 1; // leftPos and rightPos initialization. 
3. labelData = Lfp[thd]; // Calculate the value corresponding to the trajectory point in the vector Lfp. 
4. while Lfp[leftPos]!= − labelData || Lfp[rightPos]!= − labelData do // When labelData is negative, it indicates that the position of the pointer is at the boundary of 

the trajectory segment (starting or ending point). 
5. if Lfp[leftPos]!= − labelData then leftPos = leftPos – 1; 

(continued on next page) 
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(continued ) 

Algorithm 8: Double-pointer search for starting and ending points 

6. end if 
7. if Lfp[rightPos]!= − labelData then rightPos = rightPos – 1; 
8. end if 
9. end while  

According to the results of Algorithm 8, this paper can continue to calculate the distance from each trajectory point to the corre
sponding trajectory segment baseline in parallel, as shown in Algorithm 9.  

Algorithm 9: Computing of distance from points to the trajectory segment baseline 

Input: AISM, Lfp, Lntp, DisL 
Output: DisL 
1. thd = blockIdx.x  × blockDim.x + threadIdx.x; 
2. lntpData = Lntp[abs(Lfp[thd])]; 
3. if lntpData > 0 then // When lntpData is a positive number, it indicates that there are still feature points in the current trajectory, and it is necessary to continue 

calculating the distance between the intermediate point and the corresponding trajectory segment baseline. 
4. labelData = Lfp[thd]; 
5. if labelData > 0 then 
6. leftPos, rightPos = cauStartEndPos(Lfp, thd); 
7. lonS = AISM[1,:][leftPos]; // Longitude of starting point. 
8. latS = AISM[2,:][leftPos]; // Latitude of starting point. 
9. lonE = AISM[1,:][rightPos]; // Longitude of ending point. 
10. latE = AISM[2,:][rightPos]; // Latitude of ending point. 
11. lonData = AISM[1,:][thd]; // Longitude of current trajectory point. 
12. latData = AISM[2,:][thd]; // Latitude of current trajectory point. 
13. DisL[thd] = cauDistance(lonS, latS, lonE, latE, lonData, latData); 
14. else if labelData < 0 then 
15. DisL[thd] = 0; // When labelData is negative, it indicates that the current point is a feature point and the distance from the baseline is zero. 
16. end if 
17. end if  

Algorithm 9 reflects the detailed process of computing the distance between each trajectory point and the baseline of the corresponding 
trajectory segment in parallel. In particular, the functions ‘cauStartEndPos’ and ‘cauDistance’ respectively integrate the capabilities of 
Eq. (13) and Algorithm 8. 

(2) Kernel7. This kernel function plays two essential roles in parallel computing. One is to judge whether each trajectory segment 
has new feature points according to the results of the sixth kernel function. If a new feature point is generated, the value matching the 
point with the vector Lfp is changed from a positive number to a negative number. Another function is determining whether a certain 
trajectory has completed the compression task. When a certain trajectory has completed the compression task, the corresponding value 
in vector Lntp changes from positive to negative. Since the object of this kernel function is a trajectory, the threads in the GPU are 
mapped to each trajectory in the dataset one by one, which is different from the sixth kernel function. The parallel calculation process 
is shown in Algorithm 10.  

Algorithm 10: Iterative search for feature points 

Input: Lfp, Lntp, DisL, thrL // Vector thrL stores the compression threshold for each vessel trajectory. 
Output: Lfp, Lntp 
1. thd = blockIdx.x  × blockDim.x + threadIdx.x; 
2. lntpData = Lntp[thd + 1]; 
3. if lntpData > 0 then // When lntpData is a positive number, it indicates that there are still feature points in the current trajectory which require further iterative 

search. 
4. ifFeature = 0; // A variable used to determine whether new feature points are generated in iterative search. Its initial value is zero. When it becomes one during 

the calculation process, it indicates that new feature points have been generated in the iterative search. 
5. threshold = thrL[thd]; // The compression threshold of the current trajectory. 
6. num = 0; // It assists in searching for feature points in trajectory segments with an initial value of zero. 
7. begin = 0; 
8. end = 0; // begin and end are used to define the positions of the starting and ending points for trajectory segments, respectively. Their initial values are zero. 
9. maxDisData = 0; // This variable defines the maximum value from a point to the baseline of a trajectory segment. Its initial value is zero. 
10. for (i = Lntp[thd + 1] – 1; i > abs(Lntp[thd]) – 1; i–) do // Traverse search for feature points for each trajectory segment. 
11. disData = DisL[i]; 
12. if disData == 0 && num == 0 then // Locate the position of the ending point for a trajectory segment. 
13. num = num + 1; 
14. end = i; 
15. else if disData!= 0 && num == 1 then // Calculate the maximum distance from all intermediate points to the baseline of the trajectory segment. 
16. if disData > maxDisData || disData == maxDisData then 

(continued on next page) 
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(continued ) 

Algorithm 10: Iterative search for feature points 

17. maxDisData = disData; 
18. end if 
19. else if disData == 0 && num == 1 then // Locate the position of the starting point for a trajectory segment. 
20. if maxDisData > threshold || maxDisData == threshold then // Compare the maximum distance value with the threshold to determine if there are new 

feature points and update the variable ifFeature. 
21. ifFeature = 1; 
22. begin = i; 
23. for (j = begin + 1; j < end; j++) do // Determine the position of feature points and change the value corresponding to vector Lfp from positive to 

negative. 
24. if DisL[j] == maxDisData then 
25. labelData = Lfp[j]; 
26. Lfp[j] = -labelData; 
27. end if 
28. end for 
29. end if 
30. num = 0; 
31. if disData == 0 && num == 0 then // After completing the feature point search task of the current trajectory segment, redefine the variables num, 

maxDisData and end to search for the feature point of the next trajectory segment. 
32. num = num + 1; 
33. maxDisData = 0; 
34. end = i; 
35. end if 
36. end if 
37. end for 
38. if ifFeature == 0 then Lntp[thd + 1] = -lntpData; // No new feature points are generated in the iterative search, indicating that the trajectory has completed the 

compression task. Meanwhile, the value in the vector Lntp that matches the current trajectory changes from positive to negative. 
39. end if 
40. end if  

In executing parallel algorithms, each thread performs the sixth and seventh kernel functions repeatedly, which reflects that the al
gorithm is essentially a recursive process. The condition for recursive termination is that all values in the vector Lntp are negative. DisL, 
Lfp, and Lntp are three important vectors that assist parallel algorithms in finding feature points of trajectories through continuous 
iterations. The vectors DisL and Lfp length equal the total number of trajectory points. The size of vector Lntp is the total number of 
trajectories plus one. Before executing parallel compression tasks, three vectors need to be assigned initialization values, as illustrated 
in Fig. 13 (a). The sixth kernel function calculates the distance from all intermediate points to the baseline in parallel and updates the 
value in the vector DisL to store the distance, as shown in Fig. 13 (b). Figs. 13 (c), (d), and (e) reflect the process of two kernel functions 
iteratively searching for feature points and the changes of all values in the three vectors. When the vessel trajectories meet the 
termination conditions of the iteration, the final compression result is obtained, as illustrated in Fig. 13 (f). In particular, the trajectory 
points corresponding to negative values in vector Lfp are feature points. The changes of all values in the two label vectors before and 
after trajectories compression are shown in Figs. 14 (a) and (b), respectively. 

5. Experimental results and analysis 

To verify the effectiveness of the proposed adaptive and accelerated compression framework, this paper conducts experiments from 
two perspectives. First, it showcases the superior performance of the ADPSC algorithm in addressing vessel trajectory compression 
issues compared to the original DP algorithm, considering both qualitative and quantitative perspectives. Second, the acceleration 
ratio is employed to quantitatively evaluate the enhanced speed of the optimized parallel compression algorithm compared to the 
original serial algorithm. Concurrently, a GPU parallel computing framework is established as a requisite experimental environment. 
The required notations are offered in Table 5. Table 6 provides a detailed overview of the hardware and software environments. 

5.1. Datasets description 

This paper collects AIS data from three different research areas: Tianjin Port, Chengshan Jiao Promontory, and Caofeidian Port. The 
datasets are used to verify the efficacy of the proposed ADPSC compression algorithm and cover the period from 1 July 2020 to 30 
September 2022. The distribution and density visualization effects of vessel trajectories in the three regions are illustrated in Figs. 15 
(a), (b), and (c), respectively. Meanwhile, the statistical information related to the above research areas is shown in Table 7. It is well 
known that vessel trajectory data can be affected during transmission through base stations and satellites, resulting in noisy data. Thus, 
high-quality trajectory data can be obtained from the newly collected original data after preprocessing in Section 3.3, which can be 
used for subsequent comparative experiments. 
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5.2. Compression evaluation metrics 

To provide a quantitative assessment of the proposed ADPSC algorithm in performing vessel trajectory data compression tasks 
compared to the original DP algorithm, this paper selects Compression Ratio (CR), Rate of Length Loss (RLL), and DTW as key per
formance evaluation metrics. In particular, when the CR is high, and both the RLL and DTW are low, it signifies optimal compression 
performance. Concurrently, the Speedup Ratio (SR) is employed to quantitatively evaluate the acceleration efficiency of the ADPSC 
algorithm when compressing extensive vessel trajectory data in the GPU parallel computing framework. 

5.2.1. Compression ratio 
CR is a universal and standard indicator to measure compression efficacy, particularly in illustrating variations in the number of 

Fig. 13. Procedures of the proposed GPU-based ADPSC parallel compression of vessel trajectory. (a) original vessel trajectory marked with labels 
DisL, Lfp, and Lntp, (b) parallel computation of dis, (c) searching for the maximal dis to count the feature trajectory points, (d) segmenting trajectory 
and updating the new feature points, (e) iteratively finding the feature trajectory points, and (f) obtaining the final compressed vessel trajectory. 
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trajectory points. A higher CR value signifies removing a larger number of trajectory points. Its formula is defined as, 

CR =

(

1 −
Ncom

Nori

)

× 100% (21)  

where Ncom and Nori represent the number of points in all compressed and original trajectories, respectively. 

5.2.2. Rate of length loss 
RLL can reflect the length loss of the vessel’s trajectory before and after compression. A lower RLL value suggests minimal distortion 

in the compressed trajectory, ensuring optimal compression results. The formula for RLL is given by 

RLL =

∑I
i=1

⃒
⃒Ti

ori

⃒
⃒ −

∑I
i=1

⃒
⃒Ti

com

⃒
⃒

∑I
i=1

⃒
⃒Ti

ori

⃒
⃒

(22)  

where I represents the total number of vessel trajectories in the dataset. 
⃒
⃒Ti

ori
⃒
⃒ and 

⃒
⃒Ti

com
⃒
⃒ are the lengths of the i-th original and 

compressed trajectories, respectively. 

Fig. 14. Visual illustration of changes in two critical labels (i.e., Lfp and Lntp) before and after performing compression tasks. (a) initialization status 
of labels Lfp and Lntp before compression, and (b) data changes in labels Lfp and Lntp after completing the compression task. 

Fig. 15. Density visualisation of realistic vessel trajectory datasets: (a) Tianjin Port, (b) Chengshan Jiao Promontory, and (c) Caofeidian Port.  
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5.2.3. Dynamic time warping 
DTW is a prevalent measurement technique adept at calculating the similarity (inversely proportional to distance) between two 

sequential data (Lahreche and Boucheham, 2021). Its core idea is to find the minimum distance between two sequence data using the 
dynamic programming method. In this paper, DTW serves as a quantitative evaluation method to assess the similarity between original 
and compressed trajectory data (Li et al., 2020). Huang et al. (2020) also used DTW as an evaluation indicator when investigating 
compression algorithms for vessel trajectories. A smaller DTW value between two trajectories suggests that the compression algorithm 
introduces minimal distortion post-processing, indicating commendable compression efficacy. 

A matrix M of size O × C is created, where each element Ma,b along the warping path refers to the cumulative distance between the 
a-th point Pa

ori in the original trajectory and the b-th point Pb
com in the compressed trajectory. Meanwhile, let Q represent the warping 

path between Tori and Tcom, essentially a sequence Q = {q1, q2, q3,⋯, qL} with ql = (Ol,Cl) ∈ [1 : O] × [1 : C]. The set of all potential 
warping paths can be represented by WOC. The warping cost dQ(Tori,Tcom) of the Q can be defined as follows, 

Table 5 
List of the notations.  

Notations Definition Notations Definition 

CR The compression ratio WOC The set of all potential warping paths 
Ncom The number of points in all original vessel 

trajectories 
dQ(Tori,Tcom) The warping cost of the Q 

Nori The number of points in all compressed 
vessel trajectories 

d(⋅, ⋅) The squared Euclidean distance 

RLL The rate of length loss DTW(Tori,Tcom) The minimum result of the warping path based on the DTW algorithm 
I The total number of vessel trajectories in the 

dataset 
Q∗ The minimum warping cost 

⃒
⃒Ti

ori
⃒
⃒ The lengths of the i-th original vessel 

trajectories 
Vori The vector of the distance from each intermediate point in the original 

trajectory to the baseline 
⃒
⃒Ti

com
⃒
⃒ The lengths of the i-th compressed vessel 

trajectories 
Vcom The vector of the distance from each intermediate point in the 

compressed trajectory to the baseline 
M The patch matrix k The slope of the baseline for vessel trajectory 
O The number of original vessel trajectory 

points 
b The intercept of the baseline for vessel trajectory 

C The number of compressed vessel trajectory 
points 

lon Longitude of the intermediate point of vessel trajectory 

O× C The size of matrix M lat Latitude of the intermediate point of vessel trajectory 
Ma,b The a-th and b-th values in matrix M lonS Longitude of the starting point of vessel trajectory 
Pa

ori The a-th point in the original trajectory latS Latitude of the starting point of vessel trajectory 
Pb

com The b-th point in the compressed trajectory lonE Longitude of the ending point of vessel trajectory 
Tori The original vessel trajectory data latE Latitude of the ending point of vessel trajectory 
Tcom The compressed vessel trajectory data SR The speedup ratio 

Q =

{q1, q2, q3, ..., qL}

The warping path between Tori and Tcom TCPU The execution time of the ADPSC algorithm in the CPU serial computing 
framework 

L The length of sequence Q TGPU The execution time of the ADPSC algorithm in the GPU parallel 
computing framework  

Table 6 
Hardware and software environments.  

Hardware Model Software Version 

CPU i7-12700KF 
Dodeca Core 

Python 3.8.3 

Host Memory 32GB CUDA 11.7 
GPU GTX 3080 MySQL 8.0 
Global Memory 12GB - -  

Table 7 
Statistical information related to three different regions.  

Water Areas Number of Vessel Trajectories Number of Timestamped Points Boundary Points Longitude(o) Latitude(o) 

Tianjin Port 15720 10056186 Left Top 117.5640 39.0661 
Right Bottom 118.2451 38.6356 

Chengshan Jiao Promontory 27738 18501815 Left Top 122.4399 37.8054 
Right Bottom 123.3408 37.1461 

Caofeidian Port 63705 26933727 Left Top 118.2795 39.0213 
Right Bottom 118.8295 38.7187  
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dQ(Tori, Tcom) =
∑L

l=1
d
(
POl

ori,P
Cl
com

)
(23)  

where L represents the length of sequence Q, and its range is max(O,C)⩽L⩽O + C. d(⋅, ⋅) is the squared Euclidean distance. The DTW 
metric between Tori and Tcom related to the minimum warping cost is given as follows: 

DTW(Tori,Tcom) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

dQ∗(Tori, Tcom)

√

= min
{ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

dQ(Tori,Tcom)

√

|Q ∈ WOC

}

(24)  

where Q∗ is the minimum warping cost. Meanwhile, each element in M can be calculated as 

Ma,b = d
(
Pa

ori,Pb
com

)
+min

{
Ma− 1,b− 1,Ma− 1,b,Ma,b− 1

}
(25) 

The original DTW method attempts to match all points in the original trajectory with those in the compressed trajectory to 
determine the best warping path and calculate the similarity value. However, this approach introduces significant errors and inac
curacies in assessing the similarity between the original and compressed trajectories due to the considerable difference in the number 
of points between them. For example, if a vessel’s trajectory forms a straight line and the compressed result only retains the starting 
and ending points, as illustrated in Fig. 16 (a), the compressed trajectory effectively reflects the original trajectory’s distribution 
characteristics. Consequently, one might expect the similarity measure between these two trajectories to be zero. However, due to the 
reduction in the number of compressed trajectory points compared to the original trajectory, the similarity measure is not zero, as 
indicated by the DTW calculation process described earlier. 

To address this issue, further optimization of the DTW measurement approach is proposed. The essence of this optimization lies in 
gauging the compression quality by examining the similarity in distances of each point in the original and compressed trajectories to 
the baseline. This baseline represents a line connecting the trajectory’s starting and ending points, as shown in Fig. 16 (b). 

To further elaborate on the computational process of the newly proposed measurement method, this paper breaks it down into 
three steps. 

(1) Distance calculation. Eq. (13) is employed to calculate the distance from each point in the original and compressed trajectories to 
the baseline, respectively. This process yields two distinct distance vectors: Vori for the original and Vcom for the compressed trajectory. 

(2) Distance symbol judgment. The core of this step lies in discerning the sign (positive or negative) of values within the two distance 
vectors, Vori and Vcom. As illustrated in Fig. 16 (b), this paper characterizes the positional relationship of trajectory points relative to the 
baseline by allocating a positive value to the distance of points above the baseline and a negative value to those below. Concurrently, if 
a trajectory point coincides with the baseline, it is assigned a value of zero within the vector. In specific judgments, the coordinates of 
the starting and ending points of the trajectory are used to generate the equation of the baseline as y = kx + b. The calculation method 
for k (slope) and b (intercept) is shown in Eqs. (26) and (27), 

k =
latE − latS

lonE − lonS
(26)  

b = latE −
latE − latS

lonE − lonS
× lonE (27) 

Subsequently, the intermediate trajectory point coordinates (lon, lat) are brought into the linear equation. If inequality 
lat − k × lon − b > 0 is satisfied, the distance between the trajectory point and the baseline is denoted as positive. In contrast, if 
inequality lat − k × lon − b < 0 prevails, the distance value is considered negative. An exception arises when lonE and lonS are equal, 

Fig. 16. The display of a new index for evaluating compression effectiveness, (a) shows the morphology of the original (Tori) and compressed (Tcom) 
trajectories, respectively; (b) reflects the process of using the optimized measurement method to calculate the similarity values of two trajectories 
before and after compression. 
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Fig. 17. Visual illustration of the compression threshold distribution calculated by the ADPSC algorithm in three research areas: (a) Tianjin Port, (b) 
Chengshan Jiao Promontory, and (c) Caofeidian Port. 

Table 8 
The average and standard deviation results of the ADPSC algorithm for calculating compression threshold in three 
water areas.  

Water Areas Threshold (m) 

The Average Value Standard Deviation 

Tianjin Port 9.8550 10.4623 
Chengshan Jiao Promontory 12.9139 10.8510 
Caofeidian Port 11.8067 10.8123  

Fig. 18. Visualisation of original and compressed (using ADPSC algorithm) vessel trajectories in three different water areas: (a) Tianjin Port, (b) 
Chengshan Jiao Promontory, and (c) Caofeidian Port. 
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implying the non-existence of k. For instance, the distance value is categorized as positive when the inequality lon < lonE(lonS) holds 
true. Conversely, it is designated as negative. 

(3) Measurement results. Based on the calculation results in step (2), the DTW method is used to compute the similarity between the 
newly obtained vectors, Vori and Vcom, resulting in the final measurement result. 

This new measurement method is called Trajectory Points-based DTW (TP-DTW). The conventional similarity calculation is rooted 
in direct measurements between two trajectories. This original method is designated as DTW herein. Section 5.3 delves deeper into the 
distinctions between DTW and TP-DTW in assessing compression efficacy. 

5.2.4. Speedup ratio 
SR quantifies the acceleration capabilities of the proposed ADPSC algorithm in performing compression tasks under the GPU 

parallel computing framework compared to traditional computing methods. A notably higher SR value suggests a more enhanced 
acceleration yielded by this new computational framework. The underlying equation for SR is as follows, 

SR =
TCPU

TGPU
(28)  

where TCPU and TGPU represent the execution time of the ADPSC algorithm when performing the same task under the CPU serial and 
GPU parallel computing framework, respectively. 

In this paper, an essential aspect to take into account is that the computational expense of the CPU serial framework solely 
comprises the runtime of the ADPSC algorithm when compressing vessel trajectory data. On the other hand, the computing cost of the 
GPU parallel framework includes not only the running time of the algorithm but also the time of original data transmission from 
memory to video memory and the transmission of compressed data from video memory back to memory. If parallel algorithms lack 
optimal design, they will consume more computational time, especially when dealing with large-scale datasets. Therefore, in designing 
the GPU parallel algorithms, this paper accounts for the implications of data transfer on computation time, ensuring a more effective 
integration with the real-world application environment. 

Table 9 
The evaluation results of all trajectories data compressed based on original DP (i.e., 0.1m, 0.5m, 1.0m, 5.0m, 10.0m, 20.0m, 50.0m, and 100.0m), 
other adaptive DP (i.e., ADP and ADPS) and our proposed ADPSC algorithms in Tianjin Port.  

Method Threshold (m) CR (↑%) RLL (↓%) DTW (↓) TP-DTW (↓) 

The Average Value Standard Deviation The Average Value Standard Deviation 

DP 0.1 14.1551 0.0001 0.0488 0.0621 0.0098 0.0171 
0.5 43.7300 0.0010 0.2089 0.2299 0.0406 0.0614 
1.0 60.0844 0.0045 0.3927 0.4280 0.0756 0.1144 
5.0 86.3768 0.0485 1.9654 2.1648 0.3563 0.5801 
10.0 91.7044 0.0913 3.5302 3.8370 0.6184 1.0226 
20.0 95.1449 0.1423 5.5132 5.8175 0.9391 1.5116 
50.0 97.0713 0.4168 8.7089 9.1329 1.4280 2.3826 
100.0 97.9406 0.6533 12.0523 12.8849 1.8978 3.3687 

ADP - 94.9625 0.1396 5.3419 5.6474 0.9123 1.4722 
ADPS - 93.2642 0.1142 4.2447 4.5781 0.7346 1.2006 
ADPSC - 83.4765 0.0311 1.1309 1.4074 0.1577 0.3864 

Note: ↑ indicates that a larger CR value corresponds to better compression performance. ↓ denotes that smaller values of RLL, DTW, and TP-DTW 
result in better compression performance. 

Table 10 
The evaluation results of all trajectories data compressed based on original DP (i.e., 0.1m, 0.5m, 1.0m, 5.0m, 10.0m, 20.0m, 50.0m, and 100.0m), 
other adaptive DP (i.e., ADP and ADPS) and our proposed ADPSC algorithms in Chengshan Jiao Promontory.  

Method Threshold (m) CR (↑%) RLL (↓%) DTW (↓) TP-DTW (↓) 

The Average Value Standard Deviation The Average Value Standard Deviation 

DP 0.1 14.9252 0.0001 0.0604 0.1173 0.0219 0.0553 
0.5 43.9705 0.0009 0.2258 0.2036 0.0796 0.0910 
1.0 60.9943 0.0033 0.4233 0.3459 0.1484 0.1520 
5.0 87.7554 0.0262 2.0797 1.6448 0.7267 0.7192 
10.0 93.1014 0.0455 3.8698 2.9062 1.3465 1.2849 
20.0 96.2251 0.0688 6.3799 4.4978 2.2100 2.0178 
50.0 97.8037 0.0876 10.3528 7.2076 3.5614 3.2201 
100.0 98.4310 0.1110 14.0456 9.9410 4.8001 4.3469 

ADP - 96.0748 0.0675 6.1725 4.3656 2.1396 1.9581 
ADPS - 94.5261 0.0598 5.7395 5.4885 1.9481 1.7544 
ADPSC - 89.8047 0.0434 2.9050 2.5750 1.0577 1.0149  
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5.3. Compression performance of the ADPSC method 

The primary advantage of the proposed ADPSC algorithm in this paper lies in its ability to calculate compression thresholds based 
on the characteristics of different trajectory data automatically. Fig. 17 reflects the distribution of compression thresholds calculated 
based on the ADPSC algorithm for all vessel trajectories in the three research areas. The threshold distribution of the three regions 
mainly falls within the 1 m to 50 m range. In particular, the trajectory threshold distribution of Tianjin Port is between 1 m and 5 m, 
which accounts for the most significant proportion. According to the results in Figs. 17 (b) and (c), the threshold distribution of 
Chengshan Jiao Promontory and Caofeidian Port appear closely assigned, with the most common range being 10 m to 20 m. 
Concurrently, Table 8 shows the average and standard deviation of all trajectory compression thresholds in three regions. The standard 
deviations across the regions are consistent. Among them, Chengshan Jiao Promontory has the highest average, Tianjin Port is the 
lowest, and Caofeidian Port’s average is close to that of Chengshan Jiao Promontory. 

To provide a clear visual representation of the ADPSC algorithm, this paper projected the original and compressed trajectories of 

Table 11 
The evaluation results of all trajectories data compressed based on original DP (i.e., 0.1m, 0.5m, 1.0m, 5.0m, 10.0m, 20.0m, 50.0m, and 100.0m), 
other adaptive DP (i.e., ADP and ADPS) and our proposed ADPSC algorithms in Caofeidian Port.  

Method Threshold (m) CR (↑%) RLL (↓%) DTW (↓) TP-DTW (↓) 

The Average Value Standard Deviation The Average Value Standard Deviation 

DP 0.1 14.6540 0.0001 0.0562 0.1010 0.0176 0.0458 
0.5 43.8858 0.0010 0.2197 0.2136 0.0655 0.0837 
1.0 60.6739 0.0037 0.4123 0.3779 0.1221 0.1439 
5.0 87.2700 0.0336 2.0383 1.8507 0.5927 0.6954 
10.0 92.6095 0.0606 3.7470 3.2777 1.0831 1.2468 
20.0 95.8447 0.0930 6.0664 5.0327 1.7503 1.9489 
50.0 97.5458 0.1963 9.7582 7.9970 2.7897 3.1181 
100.0 98.2583 0.2900 13.3246 11.1376 3.7502 4.2556 

ADP - 93.9579 0.0842 5.3059 5.2612 1.4036 1.1356 
ADPS - 92.9724 0.0792 4.2278 4.0239 1.3474 1.2902 
ADPSC - 87.5761 0.0393 2.9470 2.8563 0.8595 0.7847  

Fig. 19. Visual comparison of compression performance of four representative trajectories based on original DP (i.e., 0.1m and 100m), other 
adaptive DP (i.e., ADP and ADPS), and the proposed ADPSC algorithms in Tianjin Port. 
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three regions onto the map, as shown in Fig. 18. At a macro level, this visual comparison effectively illustrates that the distribution of 
compressed trajectories closely mirrors that of the original ones. 

To further quantitatively evaluate the overall effectiveness of the new ADPSC compression algorithm on all trajectory data in each 
study area, this paper conducts comparative experiments with the original DP and two other classic adaptive compression algorithms, 
namely ADP (Liu et al., 2019b) and ADPS (Li et al., 2022). Notably, the ADP and ADPS algorithms, along with the ADPSC algorithm 
proposed in this paper, are essentially optimized based on the original DP algorithm. The advantage of the ADPSC algorithm compared 
to ADP and ADPS algorithms lies in simultaneous consideration of the SOG and COG of trajectory points, enabling more accurate 
preservation of feature points. Therefore, the comparative experiment between ADPSC and these two adaptive compression algorithms 
is highly valuable. This experiment accumulates the CR and RLL values of each trajectory to obtain the consolidated results in Tables 9, 
10, and 11. Additionally, the DTW and TP-DTW values of each trajectory are calculated to determine their average value and standard 
deviation. According to the results in Tables 9, 10, and 11, setting a small threshold (e.g., 0.1 m and 0.5 m) in the DP algorithm yields 
high similarity between the compressed and original trajectories; however, the CR remains low, retaining redundant data. Conversely, 
an excessively large threshold (e.g., 50.0 m and 100.0 m) might result in a high CR, but the compressed trajectory will deviate 
significantly from the original distribution. Conclusively, the three adaptive compression algorithms overcome the conventional DP 
algorithm’s limitations by effectively eliminating redundant data and mirroring the original trajectory’s distribution characteristic. 

Further examination of the compression effects between ADP, ADPS, and ADPSC reveals that while ADP and ADPS can compress 
more trajectory points compared to ADPSC, the trade-off is the destruction of the original trajectory’s data structure. According to the 

Fig. 20. Visual comparison of compression performance of four representative trajectories based on original DP (i.e., 0.1m and 100m), other 
adaptive DP (i.e., ADP and ADPS), and the proposed ADPSC algorithms in Chengshan Jiao Promontory. 
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results in Tables 9, 10, and 11, compared to ADPSC, ADP compresses trajectory data from three water areas, increasing CR by 13.7595 
%, 6.9819 %, and 7.2871 %, respectively. Meanwhile, the growth rates of indicator RLL in three different water areas are 348.8745 %, 
55.5300 %, and 114.2494 %, respectively. The growth rates of average DTW in three different water areas are 372.3583 %, 112.4785 
%, and 80.0441 %, respectively. The growth rates of average TP-DTW in three different water areas are 478.5035 %, 102.2880 %, and 
63.3042 %, respectively. Additionally, compared with ADPSC, ADPS compresses vessel trajectory data from three water areas, 

Fig. 21. Visual comparison of compression performance of four representative trajectories based on original DP (i.e., 0.1m and 100m), other 
adaptive DP (i.e., ADP and ADPS) and the proposed ADPSC algorithms in Caofeidian Port. 

Table 12 
The comparative evaluation of compression results of four representative trajectories data based on original DP (i.e., 0.1m and 100m), other adaptive 
DP (i.e., ADP and ADPS), and the proposed ADPSC algorithms in Tianjin Port.  

MMSI Method Threshold (m) CR (↑%) RLL (↓%) DTW (↓) TP-DTW (↓) 

210274000 DP 0.1 58.0071 0.0054 0.4077 0.0796 
100.0 99.5552 0.6530 59.8126 9.0797 

ADPSC 2.6906 96.6192 0.0448 6.3684 1.1626 
ADP 24.0951 97.1530 0.2713 15.9862 4.6692 
ADPS 19.8884 96.8971 0.1044 9.9219 3.2283 

219857000 DP 0.1 55.9546 0.0014 0.2388 0.0337 
100.0 99.2439 0.8604 37.1240 2.8048 

ADPSC 4.1081 93.1947 0.0173 3.5966 0.5122 
ADP 29.6453 94.7069 0.4234 12.2387 1.8768 
ADPS 20.9182 94.2508 0.3065 10.7851 1.2408 

229380000 DP 0.1 56.5744 0.0044 0.2317 0.0535 
100.0 99.4810 1.4623 27.2048 4.0459 

ADPSC 3.5157 95.3287 0.0341 2.5681 0.4840 
ADP 33.2375 97.2318 0.7988 13.3371 2.6791 
ADPS 16.2609 96.0207 0.1252 8.0259 1.4536 

235011580 DP 0.1 78.5064 0.0017 0.6200 0.1440 
100.0 99.4536 1.7858 28.0332 4.0019 

ADPSC 6.0255 94.8998 0.0183 3.0053 0.7501 
ADP 31.3695 96.3570 0.9607 10.9447 2.1926 
ADPS 20.2482 95.9927 0.1246 7.0329 1.5877  
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increasing CR by 11.7251 %, 5.2574 %, and 6.1618 %, respectively. Regarding the three indicators of evaluating trajectory quality, the 
growth rates of indicator RLL in three different water areas are 267.2026 %, 37.7880 %, and 101.5267 %, respectively. The growth 
rates of average DTW in three different water areas are 275.5338 %, 97.5731 %, and 43.4611 %, respectively. The growth rates of 
average TP-DTW in three different water areas are 365.8212 %, 84.1827 %, and 56.7656 %, respectively. 

Based on the comparison of the growth rates of the above four indicators in different compression algorithms, although ADP can 
compress more trajectory points than ADPS, it deletes more key feature points, thus altering the trajectory structure. This result is 
because ADP represents the compression threshold by calculating the average distance from each trajectory point to the baseline, 
which may blur key information, as analyzed in Section 4.2. Furthermore, the ADPSC algorithm proposed in this paper has a slightly 
lower CR value compared to the ADPS algorithm, but it offers the highest compressed data quality. In practical application scenarios, 
the compression quality of vessel trajectory data is paramount. Hence, the ADPSC algorithm outperforms other classic adaptive 
compression algorithms, such as DP, ADP, and ADPS, in vessel trajectory data compression tasks. 

Further deepening the exploration, four representative trajectories with multiple feature points from each region are selected. 
These trajectories undergo compression using the original DP, two other adaptive compression algorithms (i.e., ADP and ADPS), and 
the optimized ADPSC algorithm. This allows for a direct comparison of their efficiency in handling trajectory compression. The chosen 
trajectories are specifically selected for their multiple feature points, providing a comprehensive representation of the predominant 

Table 13 
The comparative evaluation of compression results of four representative trajectories based on original DP (i.e., 0.1m and 100m), other adaptive DP 
(i.e., ADP and ADPS), and the proposed ADPSC algorithms in Chengshan Jiao Promontory.  

MMSI Method Threshold (m) CR (↑%) RLL (↓%) DTW (↓) TP-DTW (↓) 

210616000 DP 0.1 71.4286 0.0009 0.3089 0.0281 
100.0 99.3031 0.6484 18.5550 1.3611 

ADPSC 5.1938 95.8188 0.0070 2.6893 0.2236 
ADP 31.8505 96.8641 0.3154 8.2064 0.8598 
ADPS 14.8402 96.0818 0.0956 4.9892 0.6235 

229980000 DP 0.1 74.0343 0.0008 0.4389 0.0746 
100.0 99.1416 0.4224 16.2348 1.9550 

ADPSC 4.5186 93.9914 0.0137 2.1256 0.3463 
ADP 63.5849 98.2643 0.3958 13.2674 1.4606 
ADPS 28.2039 96.2060 0.1962 8.1285 1.0667 

312369000 DP 0.1 58.2103 0.0042 0.3916 0.1784 
100.0 99.3918 2.6520 30.4369 11.9079 

ADPSC 4.2388 94.9609 0.0394 5.1327 2.0871 
ADP 34.2432 96.1772 1.0636 13.4103 5.0986 
ADPS 17.2732 95.0477 0.4021 9.1531 3.9059 

312454000 DP 0.1 59.4354 0.0025 0.2511 0.0605 
100.0 99.4056 0.7918 25.9335 4.6652 

ADPSC 7.7530 96.2853 0.0381 5.5157 1.4210 
ADP 35.2794 97.6225 0.5727 11.6736 2.8836 
ADPS 15.2307 96.4338 0.1187 9.5250 2.1216  

Table 14 
The comparative evaluation of compression results of four representative trajectories based on original DP (i.e., 0.1m and 100m), other adaptive DP 
(i.e., ADP and ADPS), and the proposed ADPSC algorithms in Caofeidian Port.  

MMSI Method Threshold (m) CR (↑%) RLL (↓%) DTW (↓) TP-DTW (↓) 

229287000 DP 0.1 67.8010 0.0034 0.1867 0.0571 
100.0 99.2147 1.0223 8.8133 2.3111 

ADPSC 5.9086 95.0262 0.0254 3.7757 0.9178 
ADP 30.1356 97.1204 0.6328 6.0392 1.8809 
ADPS 17.2888 96.8586 0.2077 5.2924 1.3695 

232005278 DP 0.1 67.0103 0.0011 0.3815 0.0635 
100.0 99.1753 0.5117 16.6808 2.4856 

ADPSC 5.2300 94.0206 0.0128 3.2106 0.5697 
ADP 26.6493 95.0515 0.3638 9.8157 1.5739 
ADPS 18.6996 94.6391 0.1004 5.2332 1.1697 

232008054 DP 0.1 51.6049 0.0014 0.1822 0.0223 
100.0 99.2593 0.3730 25.0586 2.7437 

ADPSC 4.4573 95.0617 0.0193 3.7387 0.3759 
ADP 31.3096 96.5432 0.1566 10.5689 1.7813 
ADPS 15.5434 95.3086 0.0998 6.7399 1.0741 

249331000 DP 0.1 24.0132 0.9274 0.0490 0.0261 
100.0 99.3421 6.6100 11.3299 6.2540 

ADPSC 4.6332 90.4605 2.4995 1.0457 0.6063 
ADP 29.9813 95.0657 5.2677 6.8873 4.0763 
ADPS 19.7861 93.2565 4.5958 4.7501 2.3035  
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distribution characteristics found in most trajectories. The compression effects of deploying the DP, ADP, ADPS, and proposed ADPSC 
algorithms on these select trajectories within the three areas are illustrated in Figs. 19, 20, and 21. Unlike the broader overview 
presented in Fig. 18, these figures offer a more detailed, micro-level assessment of compression performance. 

When the four representative trajectories of each research area are compressed using the DP algorithm, thresholds of 0.1 m and 100 
m are selected and used for comparative experiments. As depicted in Figs. 19, 20, and 21, a larger threshold set by the DP algorithm for 
trajectory compression leads to a more distorted trajectory compared to its original version, failing to accurately reflect its inherent 
distribution characteristics. At a compression threshold of 0.1 m with the DP method, the trajectory retains features almost identical to 
the original, but as shown in Tables 12, 13, and 14, the CR value is notably low, indicating the presence of redundant data. In summary, 
developing adaptive compression algorithms to automatically calculate the compression threshold for each trajectory has practical 
application and research value. 

On the contrary, the ADPSC algorithm is designed to automatically determine suitable thresholds based on the unique distribution 
attributes of each trajectory and its dynamic navigation details. This approach ensures that significant features from the original 
trajectory are retained while eliminating redundant data. Although ADP and ADPS algorithms can also automatically calculate the 
compression threshold for each trajectory and compress more trajectory points compared to the ADPSC algorithm, they incur the cost 
of losing the original structure of the trajectory, which is not advisable in practical applications. The visual representations in Figs 19, 
20, and 21 qualitatively indicate that the ADP and ADPS algorithms sometimes fail to accurately preserve the feature points of vessels 
turning slightly, while the new ADPSC algorithm can achieve this. This implies that the trajectory compressed using the ADPSC al
gorithm is consistent with the original spatial distribution on the map. Additionally, Tables 12, 13, and 14 show that all the trajectories 
compressed via the ADPSC method achieve lower RLL and similarity metrics (either DTW or TP-DTW) while maintaining a superior CR 
value. 

Tables 12, 13, and 14 preliminarily reflect the disparities between DTW and TP-DTW in evaluating compression performance. To 

Fig. 22. Comparison of two similarity measurement methods (i.e., DTW and TP-DTW) for evaluating compression performance: (a) Tianjin Port, (b) 
Chengshan Jiao Promontory, and (c) Caofeidian Port. 

Table 15 
Comparison of storage space occupied before and after data compression. In particular, the stored data mainly includes timestamps, longitude and 
latitude coordinates, SOG, and COG.  

Water areas Storage size without compression (MB) Storage size with compression (MB) 

Tianjin Port 938.3889 154.0128 
Chengshan Jiao Promontory 1735.2518 175.6007 
Caofeidian Port 2673.6407 329.6135  
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further explore the differences in assessing the compression performance of each trajectory using these two measurement methods, this 
experiment randomly selected 2000 trajectories from each study area. At the same time, the DTW and TP-DTW metrics of each tra
jectory after compression are drawn into a line chart, depicted in Fig. 22. 

According to the results displayed in the line chart, it becomes apparent that the novel TP-DTW metric consistently produces lower 
values than its DTW counterpart when calculating the similarity between the original and compressed trajectories. This is largely 
because traditional DTW when assessing the similarity between the two trajectories, tends to record enhanced measurements even 
with minor trajectory alterations (such as a reduction in trajectory points). In contrast, the TP-DTW approach focuses on assessing 
similarity by evaluating the deviations of points in both trajectories from a baseline. The advantage of the TP-DTW method over DTW is 
that it measures compression quality by checking the similarity between the distance from each point in the original trajectory and the 
baseline in the compressed trajectory. Specifically, the baseline represents a line connecting the trajectory’s starting and ending points. 
In summary, if a compression algorithm retains all pivotal points in the compressed trajectory, the value derived from TP-DTW will be 
considerably lower than that from DTW. For instance, the trajectory depicted in Fig. 16 (a) retains all key points after compression, 
mirroring the original distribution characteristics. Theoretically, their similarity metric should stand at zero. While TP-DTW aligns 
with this theoretical estimate, DTW offers a different result. Conclusively, the newly proposed TP-DTW metric emerges as a more 
fitting tool for assessing compression efficacy. 

The above analysis demonstrates the effectiveness of the ADPSC algorithm in compressing vessel trajectory data and its ability to 
eliminate redundant information in the dataset. To further quantitatively illustrate how these compression algorithms can economize a 
storage space, this experiment counted the storage size of three regional datasets before and after compression, with the specifics 
displayed in Table 15. The trajectory data from Tianjin Port, Chengshan Jiao Promontory, and Caofeidian Port, when compressed using 
the ADPSC algorithm, led to savings of 784.3761 MB, 1559.6511 MB, and 2344.0272 MB, respectively. In summary, the newly 
proposed ADPSC algorithm in this paper excels in removing redundant data from trajectories, thereby substantially curtailing storage 
costs. 

5.4. Acceleration performance of GPU-based ADPSC method 

To verify the enhanced efficiency of the accelerated ADPSC compression algorithm in processing vast vessel trajectory data, this 
paper tests the ADPSC algorithm on trajectory data from three experimental areas by both CPU serial and GPU parallel computing 
frameworks. The execution time results are displayed in Figs. 23 (a) and (b), respectively. Moreover, each experimental scenario is 
executed ten times, and the average is calculated to minimize random variations. Fig. 23 (c) employs the indicator SR to visually 
demonstrate the significant speed advantage of the ADPSC algorithm under the GPU parallel computing framework compared with 
traditional CPUs. According to the statistical results in Table 7, Caofeidian Port has 35,967 more vessel trajectories than Chengshan 
Jiao Promontory, with a discrepancy of 8,431,912 in the count of trajectory points. On the other hand, Tianjin Port records the least 
data compared to the other two zones, trailing Chengshan Jiao Promontory by 12,018 trajectories and 8,445,629 trajectory points. The 
SR of the accelerated ADPSC algorithm, when processing data in the Caofeidian Port region, stands at 51.4988. This is 11.4 and 2.2 
points higher than the rates for Chengshan Jiao Promontory and Tianjin Port, respectively. Conclusively, the ADPSC algorithm’s 
acceleration under the GPU parallel framework becomes more evident as the scale of the vessel trajectory dataset increases. 

6. Conclusion and future perspectives 

This paper enhances the conventional DP algorithm by developing an adaptive ADPSC method. This innovative compression 
approach autonomously determines compression thresholds for individual trajectories, relying on the distribution characteristics of 
vessel trajectories and navigational data, encompassing time stamps, SOG, and COG. Unlike applying a universal compression 
threshold to all trajectories, this method ensures optimal compression outcomes. Additionally, a GPU parallel computing framework is 

Fig. 23. Accelerated effect of the proposed ADPSC compression algorithm based on GPU parallel computing framework, (a) the CPU (serial) 
execution times (average value + standard deviation), (b) GPU (parallel) execution times (average value + standard deviation), and (c) the speedup 
ratio between CPU and GPU. Specifically, the calculation time across ten iterations for each experimental scenario shows minimal variation, 
resulting in a very low standard deviation. 
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proposed to expedite the ADPSC algorithm’s data compression processes. This optimization framework divides the algorithm into two 
segments: parallel threshold calculation and parallel compression. This customized methodology is better suited for managing large- 
scale datasets than conventional CPU-based systems. 

Furthermore, this paper introduces the TP-DTW method, which calculates the similarity between trajectory point distributions on 
the baseline before and after compression to evaluate the compression effectiveness. Compared with the traditional DTW method, the 
novel TP-DTW method is based on the different distributions of the trajectory points, enhancing the compression analysis capability of 
the algorithm. Experimental datasets from three research areas, Tianjin Port, Chengshan Jiao Promontory, and Caofeidian Port, 
demonstrate that the ADPSC algorithm outperforms the DP counterpart by delivering better compression rates while minimizing data 
distortion. Simultaneously, leveraging the GPU parallel computing framework accelerates the ADPSC algorithm, especially when 
handling massive trajectory data. In essence, the proposed framework offers efficient and rapid trajectory compression that eliminates 
redundant data, making it crucial for intelligent maritime transportation systems. The GPU-accelerated adaptive compression 
methodology serves a multifaceted function by reducing data size while preserving accuracy and essential information. This enables 
efficient data storage, faster transmission over networks, cost savings in storage and bandwidth, improved data analysis, and enhanced 
safety and reliability in applications in maritime operations. Overall, it optimizes data management, enhancing cost-effectiveness and 
efficiency without compromising critical data integrity. 

Nevertheless, future research directions could use multiple GPUs to construct new parallel computing frameworks, enhancing 
accelerated ADPSC compression algorithms. While the single GPU parallel compression algorithm highlighted in this paper already 
showcases promising acceleration outcomes, subsequent investigations could leverage multiple GPUs to either shorten execution times 
even further or process even larger data volumes more efficiently. It remains crucial to determine different thresholds for each vessel 
trajectory during compression tasks. Yet, trajectories exhibiting significant similarities could potentially be compressed using a shared 
threshold without compromising compression quality. Hence, an intriguing future research direction lies in accurately clustering 
vessel trajectories, followed by tailored threshold calculations for different trajectory clusters, which holds the promise of substantial 
computational savings. 
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Appendix A 

Clustering evaluation metrics, including the Silhouette Coefficient (SC), Calinski-Harabasz Score (CHS), and Davies-Bouldin Index 
(DBI), assess clustering effectiveness by examining point density within clusters and separation between clusters (Li et al., 2022; Li and 
Yang, 2023). After performing the DBSCAN clustering task, each trajectory obtains SC, CHS, and DBI values. Additionally, the average 
values of these metrics across all trajectories in the three study areas are calculated. The experimental results showing the average SC, 
CHS, and DBI values for varying Eps and Minpt parameters are displayed in Fig. 24. According to the experimental findings, when Eps is 
0.01 and Minpt is 3, the three study areas achieve the maximum SC, CHS, and minimum DBI. Therefore, these values are optimal for the 
DBSCAN algorithm to identify outliers in all vessel trajectories within these study areas. 
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