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A B S T R A C T   

Ship collision risk estimation is an essential component of intelligent maritime surveillance systems. Traditional 
risk estimation approaches, which can only analyze traffic risk in one specific scale, reveal a significant challenge 
in quantifying the collision risk of a traffic scenario from different spatial scales. This is detrimental to under
standing the traffic situations and supporting effective anti-collision decision-making, particularly as maritime 
traffic complexity grows and autonomous ships emerge. In this study, a systematic multi-scale collision risk 
estimation approach is newly developed to capture traffic conflict patterns under different spatial scales. It ex
tends the application of the complex network theory and a node deletion method to quantify the interactions and 
dependencies among multiple ships within encounter scenarios, enabling collision risk to be evaluated at any 
spatial scale. Meanwhile, an advanced graph-based clustering framework is introduced to search for the optimal 
spatial scales for risk evaluation. Extensive numerical experiments based on AIS data in Ningbo_Zhoushan Port 
are implemented to evaluate the model performance. Experimental results reveal that the proposed approach can 
strengthen maritime situational awareness, identify high-risk areas and support strategic maritime safety man
agement. This work therefore sheds light on improving the intelligent levels of maritime surveillance and pro
moting maritime traffic automation.   

1. Introduction 

Maritime transportation management has been gaining considerable 
concern due to its paramount role in reducing accidents, improving 
economy, and protecting the ocean environment. Advanced technolo
gies and policies related to perception, communication, digitization, and 
automation have accelerated the revolutionization of the maritime 
transport industry. Particularly, various modern and intelligent tech
nologies and systems such as Internet of Things (IoT), cloud computing 
technologies, Automatic Identification System (AIS), and navigation 
aids and decision support systems have been deployed and incorporated 
into maritime transportation surveillance [1–3]. They present great 
potential to aid maritime authorities in proactive maritime traffic 
monitoring and surveillance. Meanwhile, large investments are con
ducted in maritime industrial projects to digitize maritime operational 
platforms, reduce manning requirements, and implement autonomous 

technology [4,5]. Following the promising development trend, the 
current maritime industry is evolving from conventional mechanical 
systems to digital systems with autonomous modules moving towards a 
reality [6,7]. Accordingly, further requirements on new situational 
awareness techniques are inevitable and increasingly demanded to 
promote maritime system intelligence and ship navigation automation. 

The quantitative collision risk estimation of a maritime traffic situ
ation is indispensable to Maritime Situational Awareness (MSA). It is of 
great benefit to the safety and efficiency enhancement of maritime 
transportation, such as providing early collision warnings [8,9], facili
tating route planning [1], and evaluating risks in the nautical naviga
tional environment [10]. However, economic globalization, the 
considerable growth in traffic demand, and the emergence of autono
mous ships have incurred more complicated traffic situations, involving 
dynamic traffic movements, uneven traffic spatiotemporal distribution, 
restricted water topography and multiple dependent conflicts, 
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particularly in complex port waters [11,12]. The increasingly complex 
traffic scenarios, where many sophisticated traffic behavior character
istics are incorporated together, raise a new challenge to the applica
bility and effectiveness of the traditional risk estimation methods in the 
literature. Notably, the accuracy and reliability of a risk estimation 
model are key determinants for developing an autonomous shipping 
scheme. More specifically, autonomous systems generally consist of 
perception and control modules, where the former acts as a prerequisite 
to the decision-making design [13]. Therefore, new risk estimation 
models are urgently needed to handle the ever-growing complexity of 
traffic scenarios and to improve the intelligent levels of autonomous 
navigation systems. 

In practice, maritime collision risk estimation in a busy water area 
exhibits significantly distinct properties in different spatial scales. From 
a micro spatial scale, the collision risk of ship pairs can be accurately 
measured, and the local conflict patterns are revealed with fine granu
larity. However, the characterization of global multi-conflict in
teractions on this scale remains a difficulty. On the contrary, the global 
collision risk can be easily recognized from a macro spatial scale, 
whereas the critical details of local conflict patterns are often ignored. 
Intuitively, an appropriate way to solve this issue is to incorporate the 
multi-scale patterns into risk evaluation modeling to interpret the traffic 
situation comprehensively and accurately. Unfortunately, due to the 
high complexity of this type of research, most existing studies [14,15] 
established collision risk models from a single scale. There has not been 
any systematic approach incorporating the multi-scale traffic properties 
into the maritime collision risk estimation in the literature. These 
existing works consequently encounter the difficulties in capturing the 
traffic conflict patterns under different granularity and in offering a 
complete comprehension for a traffic situation. 

This study aims to develop a multi-scale collision risk estimation 
approach to achieve intelligent MSA in complex waters. It requires full 
traffic situation interpretability by extracting the traffic conflict patterns 
under different spatial scales and incorporating multiple dependent in
terrelationships relating to the dynamic co-behavior of multiple 
participating vessels. To address these issues, a holistic framework 
involving a set of designed technical models is built to reveal the actual 
traffic patterns under different spatial scopes and scales. In the frame
work, the near-miss collision risk measurement of ship pairs integrates 
the spatiotemporal dynamics of ship movements and restricted water 
geography by extending the classical Closest Point of Approach (CPA) 
based approach. The complex network theory is applied to support the 
quantification of spatiotemporal dependencies and interactions of 
multiple ships. Furthermore, the constructed framework integrates a 
graph clustering algorithm to adaptively partition the entire ship traffic 
into the optimal scales in terms of the spatiotemporal interrelationships 
among ships. Only by doing so, the traffic interaction analyses under 
different scales can be realised. The successful combination of these 
techniques will facilitate a better understanding of maritime traffic sit
uations and promote maritime safety management in the context of 
developing intelligent and automated maritime traffic. 

The new contributions of this paper are summarized as follows.  

(1) A multi-scale collision risk estimation framework is proposed for 
the first time by synergizing a sequence of modeling techniques. 
Different from the traditional models that process collision risk in 
a single scale, it can capture the conflict patterns under different 
spatiotemporal granularity. 

(2) An improved CPA-based method is developed to precisely quan
tify the collision risk of ship pairs in complex waters. It in
corporates the influence of ship motion dynamics and restricted 
water topography on collision risk measurement, enabling it to be 
adaptive to various encountering scenarios in complex traffic 
waters.  

(3) This study develops a regional/global collision risk evaluation 
model to characterize the topological characteristics associated 

with the interaction structures of entire ship traffic in a complex 
water. It also pioneers the application of a node deletion method 
in revealing the aggregation effect of multi-ship risk interactions 
on the entire traffic situation.  

(4) To extract the traffic conflict patterns under different spatial 
scales, a competitive graph clustering technique is embedded to 
perform maritime traffic partition. It accounts for the spatio
temporal dependencies among multiple ships, making it desirable 
to adaptively select the optimal scopes for risk evaluation. 

The remaining parts of this paper are organized as follows. Section 2 
reviews the literature associated with maritime collision risk evaluation 
and estimation. Section 3 describes the new methodology and elaborates 
on the details of the multi-scale collision risk estimation approach. In 
Section 4, the application implementation and performance of the 
methodology are illustrated and discussed. Conclusions and future di
rections are outlined in Section 5. 

2. Literature review 

Maritime collision risk estimation is an integral component of safety 
management. It makes significant contributions to enhancing maritime 
navigation safety and avoiding potential collisions. Thanks to the 
accessibility of a large amount of AIS-based trajectory data and the 
improvement in data quality, the practical applications of AIS data in 
navigation safety-relevant research have drawn extensive concerns from 
academic circles, as reviewed in [16,17]. Similarly, many efforts have 
been placed on constructing highly reliable and scalable risk evaluation 
models (e.g., a probabilistic conflict detection model [18], a 
time-varying collision risk model [19], and an improved rule-aware 
time-varying collision risk measurement model [20]) and developing 
new risk measure concepts (e.g., collision candidate [21] and near-miss 
[22]). A comprehensive survey and overview are documented in [14, 
15]. Broadly speaking, the relevant works fall into two categories: use of 
a micro-level approach and a macro-level modeling approach. 

There is an abundance of works related to micro-level collision risk 
analysis and evaluation. Dependent on the applied models, they are 
categorized into ship domain-based and CPA-based methods. The former 
characterizes the collision risk based on the violation or overlapping 
levels of safety zones of encountering ships. Various ship domains have 
been proposed to identify the relationships between the ship attributes 
and the spatiotemporal proximity risk (e.g., see the review in [23]). 
Advanced domain models can improve the risk evaluation accuracy but 
the high model complexity impedes their practical usefulness in 
real-time when considering the computational overhead [6]. Addition
ally, the applications of a domain model for collision estimation require 
its combination with the trajectory prediction approaches because of its 
technical incompetence in motion prediction. The latter quantifies when 
and how close the encounter ships will be during the look-ahead horizon 
based on the assumption that ships are sailing linearly. It generally 
synthesizes the parameters, including Distance to CPA (DCPA), Time to 
CPA (TCPA) and other essential factors (e.g., relative bearing, Bow 
Crossing Range, environmental disruption, and ship maneuverability 
[24–28]), to calculate the Collision Risk Index (CRI). Currently, most 
commercial systems adopt this type of approach to detect potential 
collisions due to its simple implementation and reliable performance 
when vessels keep a linear motion [29]. However, its accuracy becomes 
questionable when a vessel changes its course or speed. Therefore, 
further improvements are necessary for its practical use by incorpo
rating the spatiotemporal dynamics of vessel movements. 

Compared with the micro-level risk modeling, there is much less 
literature on macro-level collision risk evaluation and measurement. 
Only a few research studies have built regional/global risk models by 
taking density complexity into consideration [30], incorporating the 
collision risk and contribution of each vessel [31], integrating the 
unpredictability and irregularity of maritime traffic time sequences 
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[32], and taking into account the evolutionary and structure properties 
of ship traffic networks [33]. Indeed, the main challenge for region
al/global maritime risk analysis is on how to explicitly reveal the 
complexity of a scenario associated with the dependent conflict relations 
among multiple ships. In a heavy-traffic and complex water, the be
haviours of ship traffic are spatially correlated with the structure of 
traffic conflicts. For instance, a single ship is not only influenced by its 
nearby conflicts, but also will be involved in the conflicts with far vessels 
as time goes by. Within this context, there has been a growing trend 
toward applying the complex network theory to unveil the topological 
properties of traffic interactions, especially in the air transportation field 
[34–37]. It has a rational and reliable performance in investigating the 
interrelations among different elements in a system and capturing the 
co-behavior features relating to the element interactions. In other words, 
the success of the complex network theory as an appropriate solution to 
describe the global traffic complexity stimulates this novel investigation 
of dynamic interactions of ship traffic in maritime transportation. 

Although showing some attractiveness, the aforementioned methods 
can only process the collision risk in one specific spatial scale, which is 
inadequate to reveal the collision risk patterns under different spatial 
granularity. A systematic approach that can extract both the micro and 
macro spatial features enables the traffic situation to be described more 
precisely and completely. This is crucial to the intellectualization and 
automation of future maritime surveillance systems, especially consid
ering its role in improving traffic pattern interpretability. Hence, much 
effort should be placed in analysing the correlation between the micro 
and macro collision risk to realize a proper combination of the multi- 
scale risk patterns. In the field of network analysis, many practices 
have shown that a node deletion method is a useful technique to char
acterize the relations between the whole system and its individual units. 
Notably, it has been successfully adopted to capture the crucial airports 
and ports in the whole traffic networks [38,39]. Inspired by these works, 
this study extends the application of the node deletion method to 
investigate the aggregation risk criticality of single/multiple ships to a 
regional/global traffic situation, thereby achieving a desired collision 
risk evaluation for any single/multiple ships in a busy water area of 
interest. 

Another difficulty with multi-scale collision risk evaluation is 
extracting the optimal multi-ship clusters at different scales for risk 
assessment. Empirically, a gridding method is a commonly used tool to 
discretize the target maritime traffic zone into a grid-decomposed 
geographical space, where the size of each cell is usually predefined 

and unified. This method is adaptive to the batch analysis of historical 
traffic data by conducting the necessary traffic feature statistics within 
each cell (e.g., average speed, course change, and risk levels) to support 
maritime traffic visualization and collision avoidance [40–42]. Unfor
tunately, it cannot incorporate the complicated interactions relating to 
the real-time multiple dependent conflicts among ships when imple
menting the discretization. Generally, the spatial distribution of mari
time traffic is unevenly spread over the water area, and the spatial 
dependencies among multiple conflicts may experience high dynamics 
over time. As a result, the issue concerning how to adaptively recognize 
the optimal traffic cluster scopes based on the real-time multi-ship de
pendencies becomes fundamental and requires much further investiga
tion. Recently, the detection methods for encountering ship traffic 
clusters based on their spatial distance have attracted significant 
research interest [31,43,44]. What these studies have adopted is a 
density-based clustering technique, e.g., Density-Based Spatial Clus
tering of Applications with Noise (DBSCAN). This type of clustering 
technique focuses on the traffic density properties but reveals some 
drawbacks when incorporating other attribute-based interactions (e.g., 
collision risk) among ships. The graph clustering approach, which has 
been successfully used to capture congested road traffic regions [45–48], 
shows much attractiveness in integrating various interrelationships 
among the investigated objects during the clustering process. It is 
therefore adopted to partition the regional ship traffic into compact, 
scalable and interpretable traffic clusters. 

In summary, the multi-scale collision risk qualification for ship 
traffic in complex waters is a very high-valued but complex work. The 
existing research remains challenging in identifying the correlation be
tween the local and global collision risk, automatically capturing the 
optimal scales of risk analysis, and incorporating the complicated traffic 
characteristics in complex waters jointly. A system-level solution that 
makes effective synergies of various advanced techniques to perform 
multi-scale collision risk assessment is missing in the reported literature. 
Therefore, this study aims to develop a holistic framework to cope with 
these needs to allow the traffic patterns under different granularity to be 
extracted and evaluated. It brings new insights that have yet been 
revealed in the current literature from both theoretical and applied 
perspectives, hence making significant contributions to the formulation 
of operation services for intelligent maritime safety management and 
anti-collision solutions to autonomous ships. 

Fig. 1. Methodological framework of multi-scale collision risk estimation.  
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3. Methodology: Multi-scale collision risk estimation 

Fig. 1 presents a systematic framework of the proposed multi-scale 
collision risk estimation scheme. It involves a set of techniques which 
work holistically to explore the correlation between the collision risk 
under different types of spatial granularity. These techniques are effec
tively integrated with a series of interrelated steps, characterized by the 
following modules. Firstly, an improved CPA-based model incorporating 
the spatiotemporal dynamics of ship movements and restricted water 
topography is introduced to estimate the collision risk between ship 
pairs. Subsequently, a ship traffic network is established to evaluate the 
collision risk of the entire ship traffic in a given water area. It consists of 
nodes representing ships and links representing the collision risk of ship 
pairs which connect the nodes. In this stage of the research, five network 
indices from the complex network theory are used to quantify the 
regional traffic risk, which concerns traffic density, collision risk 
severity, and topological structure related to multi-ship interactions. In 
the meantime, a Fuzzy Clustering Iterative (FCI) method is applied to 
support a hierarchical and fine-grained assessment of multiple index 
synthesis. After these two steps, a node deletion method is utilized to 
examine the risk criticality of single or multiple ships to the traffic sit
uation as a whole, to quantitatively estimate the ship traffic risk under 
any spatial scale. Additionally, the graph clustering model partitions the 
regional/global maritime traffic in terms of the spatiotemporal in
terrelationships among ships, and the collision risk assessment is con
ducted for the generated traffic clusters accordingly. This step addresses 
the problem of adaptive identification of the optimal spatial scales. By 
doing so, the multi-scale patterns of collision risk embedded into the 
complete maritime traffic situation can be extracted and evaluated, 
thereby achieving a comprehensive evaluation of the traffic scenarios. 
The technical details of relevant steps are highlighted in the following 
subsections. 

3.1. Collision risk estimation of ship pairs 

For the encounter situation analysis, the widely used CPA-based 
method is applied to evaluate whether the ship pairs have collision 
risk during the look-ahead horizon. Specifically speaking, this method 
calculates the DCPA and TCPA indicators relying on the hypothesis that 
the encountering ships will sail with a linear speed over a finite look- 
ahead horizon. However, the ships might have to take turning maneu
vers in some cases due to various perturbations such as restricted 
waterway topography, environmental disturbances, and uncertain 
navigation intention, especially in complex port waters. Hence, it is 
necessary to describe ship pairs’ relative spatiotemporal proximity 
relationship by incorporating their potential movement dynamics. In the 
meantime, it is crucial to consider the influence of intricate water 
topography on the measurement of collision risk. For instance, in com
plex waters, the presence of landmasses or islands may obstruct two 
spatially adjacent ships. In such scenarios, there is no collision risk be
tween them. 

Given the aforementioned research needs, an improved CPA-based 
model is employed to accurately quantify the collision risk between 
ships in complex waters. Firstly, a dynamic CPA calculation method is 

utilized to determine the actual DPCA and TPCA under ship motion 
dynamics. As illustrated in Fig. 2, the two ships involved in the 
encounter may change their course multiple times. Consequently, the 
dynamic trajectories of the ships can be represented by a sequence of 
waypoints, where the lines connecting consecutive waypoints depict the 
navigation route. The dynamic CPA-based model computes the CPAs 
between all pairs of successive waypoints. The minimum CPA between 
the two ships engaged in the encounter is then identified. The detailed 
explanation of the dynamic CPA computation is found in [49]. 

After obtaining the actual CPA values, it is necessary to determine 
whether the ships are obstructed by obstacles at the closest point of 
approach. To make this judgement, a sufficient number of sample points 
need to be evenly extracted from the line connecting the positions of the 
two ships at the closest approaching point. If at least one sample point 
falls into the unnavigable water areas, it indicates the presence of ob
stacles between them. Note that the navigable and unnavigable water 
areas in the investigated waters can be identified based on the grid- 
based methods [50]. To be specific, the entire water area can be 
divided into grids, in which the spatial density distribution of ship traffic 
in each grid can be further analysed based on historical AIS data [51,52]. 
If the obstacles are present between the ships, the collision risk between 
them is disregarded due to the constraint imposed by the water topog
raphy. Otherwise, the collision risk between ships can be assessed based 
on the obtained CPA values. 

It should be noted that both DCPA and TCPA are fundamental to 
collision warning in maritime navigation. The former reveals the 
severity of a potential collision, whereas the latter reflects the time 
duration available for the collision resolution. In light of this, an expo
nential function that refers to work in [53] is adopted to synthesize the 
two indicators, as shown in Eq. (1): 

CRij =

⎧
⎪⎪⎨

⎪⎪⎩

(
γDCPA − DCPAij

γDCPA

)1+
TCPAij
γTCPA

, if 0≤DCPAij ≤γDCPA,0≤TCPAij ≤γTCPA

0, otherwise
(1)  

where DCPAij and TCPAij represent the two indicators between ships i 
and j obtained by the dynamic CPA computation method, γDCPA and 
γTCPA denote the prescribed threshold values for collision detection, 
which are dependent on the application environment. Here, γDCPA is set 
to be two nautical miles in terms of the possible accepted safety dis
tances given in [54,55]. Simultaneously, γTCPA is denoted as 15 min since 
this study performs collision detection at the medium-term time range 
with reference to the work in [6]. Overall, Eq. (1) conforms to the safety 
requirement in maritime transportation, i.e., an encounter scenario with 
smaller DCPA and TCPA values is more dangerous than the one with 
larger values, which effectively characterizes the ship-pairs’ spatial and 
temporal proximity. 

3.2. Regional/global collision risk evaluation 

Once the proximity relationships of all ship pairs are measured, the 
ship traffic network can be constructed. A graph G(VN, EL) is adopted to 
describe the ship traffic network, where VN denotes N ship nodes con
nected by L links EL. The ship pairs with collision risk larger than 0 are 
connected by an edge. Each edge weight is equal to the collision risk of 
the connected ship pairs. On this basis, the regional/global traffic 
collision risk can be evaluated from the perspective of complexity based 
on the complex network theory. It consists of two important compo
nents: one is the selection of network metrics, which requires the full 
characterization of a regional traffic situation; the other is the compre
hensive evaluation of multiple metric measures, which concerns the 
adopted techniques and approaches with which the chosen metrics can 
be effectively combined to quantify the entire network collision risk. The 
relevant network metrics and index synthesis technique are elaborated 

Fig. 2. An example of two encountering ships with dynamic movements.  
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in the following sub-sections. 

3.2.1. Network metrics 
The complex network theory covers a variety of network metrics to 

characterize the structure-property of a network. In this study, five 
network metrics, including Number of Nodes (NN), Number of Edges 
(NE), Vertex Strength (VS), K-Shell Decomposition (KS) and Clustering 
Coefficient (CC), are used together to comprehensively reveal the global 
risk of a traffic scenario in a given water area. These metrics can capture 
distinct aspects of a ship traffic network, in which NN measures the 
traffic density in a given region, NE reflects the number of ship pairs that 
are at collision risk, VS quantifies the total collision risk, and CC and KS 
unveil the traffic network’s topological characteristics related to the 
resolving difficulty of collisions. Their definitions are given as follows:  

(1) Number of Nodes (NN) is treated as the basic feature of a network. 
It generally serves as a practical reference for the maritime op
erators to issue instructions. The higher the value of NN, the 
busier the traffic situation is.  

(2) Number of Edges (NE) refers to the number of links connecting the 
node pairs. It reflects the number of ship pairs with the potential 
collision in the maritime traffic network. A larger NE corresponds 
to a riskier and more complex traffic situation, and vice versa.  

(3) Vertex Strength (VS) represents the sum of edge weights correlated 
with one node. It integrates the characteristics of both the node 
degree and the associated edge weight, where the node degree 
refers to the number of nodes connecting with one specific node. 
Here the sum of all vertex strengths is used to unveil the total 
collision risk of a traffic scenario as shown in Eq. (2): 

VS =
∑N

i=1
VSi =

∑N

i=1

∑Di

j=1
wij (2)  

where N represents the number of nodes, wij denotes the edge 
weight between nodes i and j, and Di is the number of adjacent 
nodes to node i. A high VS means that maritime traffic is more 
likely encountering a hazardous situation.  

(4) K-Shell Decomposition (KS) is a typical technique that concerns the 
network structure. It partitions the network into several layers 
based on the coreness of the nodes. This metric works well in 
revealing how the nodes are grouped together and identifying the 
node’s global important level. The nodes with dense connections 
are assigned with high KSi values and the nodes in the same layer 
have identical KSi indexes. The relevant details about k-shell 
calculation can be found in [56].This study adopts the maximum 
KSi to reflect the difficulty level of conflict resolution caused by 
the traffic network topology. A larger KS means that lots of ships 
are spatially closer together with complicated interactions, and 
consequently, the surveillance controllers will encounter 
increased risk management pressure.  

(5) Clustering coefficient (CC) quantifies the aggregation/clustering 
degree of the nodes in a graph. It can reveal how close the nodes’ 
neighbours are to being a clique. The local CC of a node is 
denoted in Eq. (3): 

CCi =
NΔ(i)

di(di − 1)/2
(3)  

where NΔ(i) denotes the real number of edges between the nodes 
that have connections with node i, and di(di − 1)/2 reflects the 
theoretical maximum number of edges between these nearby 
nodes. However, this metric cannot coincide with the basic 
principle of the global collision risk modeling, i.e., the increase of 
nodes or edges should not lead to the decline of the global risk. 
The example in Fig. 3 well justifies this. It is seen that the CCA 
decreases when a new node and edge are embedded into the 
graph. Hence, an improved metric CC′

i that removes the denom
inator in Eq. (3) is developed. This new metric can quantify the 
complex interactions among the neighbours of one node while 
simultaneously meeting the global risk modeling principles. 
Furthermore, the sum of CC′

i is used to describe the global cross- 
conflict degree among ships, which is expressed using Eq. (4): 

CC =
∑N

i=1
CC′

i =
∑N

i=1
NΔ(i) (4)  

A larger CC is usually associated with more complex multiple 
dependent conflict-based interrelationships among ships and the 
corresponding conflicts within the traffic situation are harder to 
resolve. 

3.2.2. Comprehensive evaluation of regional collision risk 
FCI is in nature a typical multi-index evaluation method. It has 

gained the widespread concerns of scholars due to its success in various 
research fields [57–59]. Unlike other index integration techniques (e.g., 
entropy weight method, gray relational analysis, and analytic hierarchy 
process) that strongly rely on the evaluation standards and criteria, FCI 
focuses on the characteristics of the evaluated dataset and can deal with 
the fuzziness and uncertainty of the dataset [57,60]. Additionally, it 
allows the assessment objects to be evaluated in a hierarchical way. 
Hence, this study adopts it to support a comprehensive and fine-grained 
description of the regional collision risk. 

In essence, FCI represents a class of data-driven techniques. It designs 
an iterative procedure to optimize the objective function continuously 
until it finds the optimal weight vector w, clustering center matrix S and 
membership matrix U [60]. The implementation details of this model 
can be found in Appendix A. 

After obtaining the optimal w, U and S, the mapping relationships 
between the assessment samples and the different risk classes/grades 
can be calibrated. Assume that the regional collision risk is classified as c 
levels, and ukj represents the membership degree of the jth regional 
traffic scenario belonging to the kth risk level, where k = 1, 2, … c. Then 
two comprehensive indicators can be used to evaluate the regional 
collision risk, as shown by Eq. (5) and Eq. (6): 

RCR1
j = argmax{k=1,2,⋯,c}ukj (5)  

RCR2
j = Rj⋅w (6)  

where Rj = (r1j, r2j, …, rmj) is the normalized value of the adopted 
network metrics associated with the jth traffic scenario, and w = (w1, w2, 
…, wm) denotes the influence weight of each metric in which m repre
sents the number of network indices. The former indicator reveals the 
regional collision risk level/class based on each traffic scenario’s 
maximum membership. By contrast, the latter reflects a single assess
ment value through the weighted sum of selected network indices. 

3.3. Risk criticality of single/multiple ships 

In addition to the collision risk evaluation for ship pairs and 

Fig. 3. An example of clustering coefficient calculation.  
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regional/global ship traffic, the issue as to how the risk assessment 
under any spatial scale is realised is a remaining crucial question to 
answer. The node deletion method, as an effective system analytical 
tool, works well in quantifying the correlation between the whole 
network system and the single node [61]. Its essence is to measure each 
node’s relative contribution by identifying the drops in the network 
performance resulting from the deletion of different nodes from the 
network. In this study, further extension and improvement are 

conducted for the node deletion method to explore both the risk 
contribution of any single and multiple dependent ships to a regional 
traffic situation. The contribution of the single/multiple ships to the 
regional collision risk can be interpreted as their risk criticality. The 
implementation process comprises two phases:  

(1) Risk criticality of single ship: In this phase, the drops in the regional 
collision risk are calculated when each ship is removed from the 

Fig. 4. Illustration of multi-scale collision risk of ship traffic at one time moment. (a) Visualization of ship traffic network; (b) visualization of risk criticality of any 
single ship to a regional traffic situation; (c) risk criticality distribution of single ships; (d)-(g) visualization of ship optimal traffic partition and collision risk of 
generated traffic clusters when NS = 15 and 20. Note that the generated traffic clusters with a number of ships less than three are not labelled. 
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full traffic network separately. Suppose the regional collision risk 
associated with the full traffic network is given as RCR2, and the 
regional collision risk when deleting the qth ship (q = 1, 2, … ns, 
where ns is the real-time number of ships in the entire network) 
from the full traffic network is computed as RCR2

q . Then the 
margin of RCR2

q against RCR2 can be calculated, denoted by SCR2
q 

= RCR2 − RCR2
q . Accordingly, the risk criticality of each indi

vidual ship to the regional traffic can be estimated based on the 
value of SCR2

q . Additionally, the set of SCR2
{q = 1, 2, …, ns} can be 

ranked in a descending order, so that the ships with high-risk 
criticality values can be captured.  

(2) Risk criticality of multiple ships: In this phase, the coupling risk 
contribution of multiple ships on a regional traffic situation is 
analysed. It investigates the aggregation risk criticality of multi- 
ships by removing them simultaneously from the full traffic 
network. It is noteworthy that this step should be combined with 
a maritime traffic partition approach since the latter helps detect 
multi-ship clusters with high spatiotemporal dependencies. The 
detailed procedure for maritime traffic partition is given in Sec
tion 3.4. 

3.4. Regional maritime traffic partition 

Maritime traffic partition is a crucial component for multi-scale 
collision risk analysis. It can recognize the optimal spatial scopes for 
risk evaluation, facilitating traffic pattern exploration under different 
granularity. In this study, a graph clustering technique called Symmetric 
Nonnegative Matrix Factorization (SNMF) is used for optimal ship traffic 
partition. It is a classical clustering algorithm used to address graph cut 
problems, facilitating the formation of clusters with high intra-cluster 
interactions and low inter-cluster interactions. Unlike other clustering 
algorithms like density-based and prototype-based clustering, SNMF 
focuses more on the interactions between pairs of samples rather than 
the attributes of each data sample. It takes a nonnegative similarity 
matrix as an input and approximates the similarity matrix with sym
metric nonnegative low-rank matrices. According to a comprehensive 
survey in [62], SNMF can achieve higher accuracy and quality in 
addressing specific graph partition issues and demonstrates better per
formance than other graph clustering algorithms. These properties make 
it appealing for maritime traffic partition. 

Many graph clustering approaches have consistent objective func
tions, which can be transformed into a trace maximization form as 
shown in Eq. (7): 

max
H≥0,HT H=I

Tr
(
HT WH

)
(7)  

where W ∈ RN×N denotes the similarity matrix; H ∈ RN×NS represents 
the clustering assignment matrix, satisfying H ≥ 0 and HTH = I; Tr is the 
trace of a matrix; and N and NS are the number of samples and clusters, 
respectively. Based on the constraints on H, Eq. (7) can be further 
mathematically equivalent to the following expressions: 

min
H≥0,HT H=I

Tr
(
WTW

)
− 2Tr

(
HT WH

)
+ Tr

(
HT H

)

⇔ min
H≥0,HT H=I

‖ W − HHT ‖2 (8) 

Since the optimization of Eq. (8) is an NP-hard issue considering the 
two constraints on H, SNMF seeks to relax the orthogonality constraint 
to make the formulation tractable. In [63], it has been verified that 
keeping the nonnegativity constraint can contribute to HTH ≈ I, which 
shows the feasibility and practicality of SNMF for an optimal graph 
partition. 

To generate the traffic clusters with a good balance in size, the 
Normalized Cut objective function (Ncut) [64] is adopted to strike a 
balance between the sizes of different clusters. It minimizes the 
inter-cluster similarity but maximizes the intra-cluster similarity by 

using Eq. (9): 

Ncut(C1,C2,⋯,CNS) =
∑NS

i=1

cut(Ci,Ci)

cut(Ci,C)
(9)  

where Ci denotes the subset of the ith cluster, Ci represents the com
plement of Ci, C represents the entire data samples, Cut(Ci, Ci) =
∑

u∈Ci ,v∈Ci

Wuv, and Wuv is the similarity between samples u and v. Indeed, 

the minimization of Ncut is equivalent to replacing the W in Eq. (8) using 
a normalized similarity matrix W̃ = D− 1/2WD− 1/2. Accordingly, given 
the similarity matrix W̃ and the desired number of clusters NS, the SNMF 
framework for maritime traffic partition can be given as follows: 

min
H≥0

‖ W̃ − HHT ‖2 (10)  

where W̃ ∈ RN×N
+ and H ∈ RN×NS

+ are two matrices in which all the ele
ments are enforced to be non-negative. 

Note that each row in the lower rank matrix approximation H in
dicates the membership values of each sample belonging to different 
clusters. Hence, once obtaining the optimal H, one can identify the as
signments of the clustered ships in terms of the largest element in each 
row in H. The detailed algorithmic steps for the traffic partition are 
depicted in Appendix B. 

4. Case study: Implementation and results 

To evaluate the effectiveness and feasibility of the proposed multi- 
scale collision risk methodology, the Ningbo-Zhoushan Port, as the 
world largest port in terms of throughput, is considered as the test site 
(see Fig. 4(a)). It presents one of the densest areas of maritime traffic in 
the world. More concretely, its restricted geographical waters, the high 
percentage of large-scale vessels, the dynamic ship motion behavior, and 
the uneven distribution of ship traffic expose it as a complicated and 
challenging scenario for maritime traffic risk analysis. These attributes 
jointly pose great challenges for maritime supervisors in effective MSA. 
Therefore, it is highly desirable to make use of this complex water area 
to validate the proposed methodology. 

The AIS-based vessel trajectory data in the Ningbo-Zhoushan Port is 
deployed to constitute the input to maritime traffic analysis. It is a 
reliable source of information to be applied to various topics in the 
maritime traffic domain, including but not limited to vessel anomaly 
detection [65,66], marine traffic characteristics statistics [67–69], ship 
collision avoidance [70], vessel motion prediction [71,86], and trajec
tory behavior pattern extraction [72–74,85]. This study collected one 
month of AIS messages from 01/11/2018 to 30/11/2018, with the re
gion under analysis bounded between latitudes 29◦43′N-30◦02′N and 
longitudes 121◦52′E-122◦22′E. Given that the AIS information errors are 
inevitable because of various technical issues, the AIS data 
pre-processing procedure presented in [75,76] is employed to recon
struct clean and accurate traffic trajectory. Additionally, a linear inter
polation method proposed by [77] is adopted to capture the snapshot of 
the maritime traffic situation since the trajectory messages of different 
vessels are transmitted at varying frequencies. In this way, the reliable 
and complete information involved in a traffic scenario at any time 
moment can be extracted for traffic situation analysis and evaluation; 
that is, the AIS data pre-processing is the prerequisite of the real-time 
traffic situation analysis. 

The rest of this section is organized as follows. Section 4.1 starts with 
a real application case to demonstrate how the proposed methodology is 
applied to evaluate the collision risk under different spatial scales. In 
Section 4.2, the collision risk distributions of regional traffic, single 
ships, and multiple ships are investigated, to assist in the identification 
and monitoring of critical high-risk traffic clusters. Section 4.3 describes 
the performance of a few statistics analyses of the traffic collision risk 
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evolution, to shed light on the future collision risk estimation and con
trol. Furthermore, the model validation and comparison analysis are 
conducted in Section 4.4. 

4.1. Application performance analysis 

Fig. 4 provides the multi-scale collision risk analytical results for a 
specific traffic scenario within the research area. In Fig. 4(a), the visu
alization of the constructed traffic network is exhibited, where the red 
points stand for the spatial distribution of ship traffic, and the blue lines 
represent that the connected ship pairs have potential collision risk. It is 
found that there are complicated dependent interrelationships among 
ships. This phenomenon highlights the necessity of incorporating the 
topological indices (e.g., KS and CC) to describe the multi-ship in
teractions rather than merely concerning the ship-pair interactions 
when conducting a regional collision risk assessment. Based on the 
Equations in Section 3.2.1, the values of the adopted five network in
dicators for this scenario are 119, 567, 236, 4041, and 10, respectively. 
The regional collision risk is divided into six levels in terms of the FCI 
model, which are very low, low, slightly low, slightly high, high, and 
very high. The detailed training process for the FCI model is presented in 
Appendix C. The memberships belonging to different regional risk levels 
are then calculated as 0.01, 0.01, 0.02, 0.03, 0.07, and 0.87 in terms of 
Eq. (A.4) and the optimal weight vector (w) and class center matrix (U) 
in Appendix C. These membership results show a hierarchical descrip
tion of the regional collision risk. The regional risk level and value (i.e., 
RCR1 and RCR2 in Eqs. (5) and (6)) are further obtained as 6 and 0.665, 
respectively, implying the complex situation of the analysed traffic 
scenario. These evaluation indicators work together to facilitate the 
interpretation of the regional/global traffic situations. 

Fig. 4(b) displays the visualization of the single ship criticality to the 
regional collision risk. According to Fig. 4(b), the ships with higher 
criticality values can be easily captured based on their color indices. For 
instance, the ships with SCR2

i > 0.03 are highlighted with red circles. 

This can provide valuable guidelines for ship navigators to notice po
tential collision risks. Besides, the value distribution of single ship risk 
criticality is exhibited in Fig. 4(c). It is observed that the criticality of 
these ships is obviously heterogeneous and the key influential ships (The 
ships with SCR2

i > 0.03) account for a smaller percentage. Hence, the 
recognition of key influential ships can provide vital support in risk 
management from a global surveillance perspective. More specifically, 
the precise guidance and maneuvering instructions for these few critical 
ships can effectively aid to quickly mitigate the regional traffic 
complexity and consequently obtain the maximum regional collision 
risk reduction. 

Furthermore, Fig. 4(d) and (f) illustrate visualization of ship optimal 
traffic partition when NS = 15 and NS = 20. In these figures, the ships in 
the same traffic cluster are spatially compact and have highly dependent 
conflict-related interrelationships. This indicates the good properties of 
the proposed traffic partition approach in searching for the optimal 
spatial scopes for risk evaluation. In practice, the traffic partition 
approach also aids to decrease the difficulty of situational awareness by 
decomposing the whole traffic situation into several compact and 
interpretable sub-clusters. Additionally, the aggregation risk criticality 
and the number of ships of each traffic cluster are presented in Fig. 4(e) 
and (g). The identified multi-ship aggregation effect of each cluster on 
the regional traffic risk can provide a practical reference for capturing 
the critical traffic clusters and resolving traffic conflicts in terms of the 
joint guidance of the multiple ships. Therefore, the combination of 
maritime traffic partition and multiple node deletion methods enables to 
extract and reveal the collision risk pattern under different granularity. 
Overall, the proposed multi-scale collision risk methodology supports a 
full comprehension of a specific navigation scenario. 

4.2. Statistical analysis of traffic collision risk characteristics 

It is important to note that the traffic clusters with larger numbers of 
ships generally correspond to higher collision risk. This is due to the fact 
that a larger traffic cluster usually has a more significant aggregation 
risk criticality to regional traffic. Therefore, the collision risk of traffic 
clusters should be compared in the same order, so that the key influ
ential ships or traffic clusters with high risk can be more reasonably 
recognized and monitored. In light of this, the collision risk distributions 
of regional traffic, single, and multiple ships are statistically analysed 
separately. Fig. 5 illustrates the cumulative probability distributions of 
collision risk for ship pairs, regional traffic, and single ships. For 
example, the collision risk values corresponding to a 95% cumulative 
probability are chosen for a risk alert application. As a result, 0.93, 0.52, 
and 0.022 are the high-risk lines for the above three cases. Similarly, the 
collision risk criticality distributions of traffic clusters with different 
numbers of ships are displayed in Fig. 6. These analytical results offer a 
quantitative reference to trigger an earlier alert under different spatial 
granularity. 

Built on the determined collision alert thresholds, Fig. 7 presents the 

Fig. 5. (a) Cumulative probability distribution of collision risk of ship pairs; (b) cumulative probability distribution of regional collision risk; (c) cumulative 
probability distribution of single ship risk criticality. 

Fig. 6. Boxplot of risk criticality of traffic clusters with different numbers 
of ships. 
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multi-view collision risk analysis results for a traffic scenario. In Fig. 7 
(a), the multi-scale traffic patterns are revealed, including both small- 
scale (e.g., Cluster 3) and large-scale (e.g., Cluster 10) patterns. Fig. 7 
(b) further exhibits the collision risk criticality and numbers of ships of 
different traffic clusters. It is seen that the risk criticality of Clusters 1 
and 2 is close to the associated high-risk lines. Hence, much attention 
should be paid to these two clusters. In the meantime, Fig. 7(c)–(e) 
display the detailed information of Clusters 1, 7, and 9 to help better 
understand the generated clusters’ multi-resolution features. The results 
reveal that the proposed methodology can proactively capture the high- 
risk areas under any spatial scale by integrating the determined collision 
alert thresholds. 

4.3. Traffic collision risk evolution 

A maritime traffic situation is inherently a dynamic evolving process; 
hence, multi-scale collision risk patterns commonly vary with time. To 
fully understand the evolutionary mechanism of the traffic situation, the 
time-dependent characteristics of collision risk are explored from three 
scales: regional, individual, and multiple ships. 

Fig. 8 provides the evolutionary characteristics of regional collision 
risk. In Fig. 8(a) and (b), the transition probabilities between different 
regional collision risk levels are illustrated. Two insightful phenomena 
can be drawn. First, the cases that maintain the same risk levels (see the 
red bar in Fig. 8(a)) or transfer to their nearest risk levels (see the blue 
bar in Fig. 8(a)) over a short-term period almost account for 100%. 
Secondly, the jumping transitions, i.e., the transitions beyond 1 level, 
start to occupy a certain proportion when the evolving time lasts for 20 
min (see the second bar in Fig. 8(b)). These results imply that the 
regional traffic situations evolve steadily over time. Meanwhile, the 
change degree of RCR2 over short-term and long-term periods is shown 
in Fig. 8(c) and (d). According to these figures, the degree of change of 
RCR2 grows linearly over a short-term period, while the growth rate of 
change degree gradually decreases over a long-term period. This is 
basically in line with the evolutionary features of RCR1 (see the change 
degree of red bars in Fig. 8(a) and (b)). Additionally, Fig. 8(e) illustrates 

the life cycle of different regional collision risk levels. The life cycle 
refers to the existing duration of the current risk levels/classes. It is 
found when the regional collision risk is at higher risk levels, the “life 
cycle ≤ 5 min” will occupy a higher percentage; that is, a larger risk level 
corresponds to a shorter life cycle. This may be attributed to the fact that 
when faced with a persistent high-risk situation, maritime operators will 
take appropriate strategies to relieve the regional traffic complexity and 
consequently, the high-risk traffic situation will disappear soon. These 
evolutionary investigations provide a basis for future prediction of a 
high-level maritime traffic risk and offer insights into the design of 
maritime safety management strategies. 

A similar evolutionary analysis is conducted for single ship collision 
risk. To investigate the transition features and life cycle of single ship 
collision risk, it is equally divided into six levels in terms of the cumu
lative probability distribution of individual collision risk. The corre
sponding statistical results are shown in Fig. 9. Compared to the regional 
collision risk evolution, two different findings are revealed. First, the 
individual collision risk evolves faster than the regional collision risk 
because the jumping transitions of risk levels occur over a short period 
(Compare Figs. 8(a) and 9(a)). Second, the medium risk levels have a 
shorter life cycle than the remaining risk levels since their life cycle with 
the duration less than or equal to 5 min occupies a higher percentage 
(see Fig. 9(c)). This may be because the slightly high (SH) and slightly 
low (SL) risk levels can transit to two sides while the very high (VH) and 
very low (VL) risk levels can only transit to one side, so that the formers 
are associated with higher dynamics and instability. 

As for the evolutionary analysis of multiple ships, it is difficult to be 
performed since the generated traffic clusters will dynamically change 
over time rather than being time-invariant. To prove this, an inconsis
tent measure index in [78] is adopted to quantify the distance between 
two clustering results. Fig. 10 depicts the distance measure results be
tween the traffic partitions with different time intervals. The numbers of 
traffic clusters applied for segmenting all traffic scenarios are 15 and 25, 
respectively. In theory, the distance index CTKM of two identical traffic 
partition results is equal to the minus number of clusters, i.e. -NS. 
However, there is an apparent difference between the real CTKM and 

Fig. 7. Multi-view collision risk evaluation for a traffic scenario. (a) Visualization of multi-view traffic clusters; (b) risk criticality and number of ships of each traffic 
cluster; (c)–(e) visualization of some traffic clusters. 

X. Xin et al.                                                                                                                                                                                                                                      



Reliability Engineering and System Safety 240 (2023) 109554

10

ideal CTKM (i.e., -15 in Fig. 10(a) and -25 in Fig. 10(b)), even for the 
CTKM calculation of two partition results with a 1-minute interval. It 
reveals why conflict resolution involving multiple ships with spatio
temporal dependencies in highly dynamic waters is a complex task. It 
also indicates that the new traffic partition research incorporating the 
time-dependency nature of maritime traffic deserves further attention, 
which can obtain stable traffic clusters to support the continuous 
implementation of risk control strategies. 

4.4. Model validation 

The methodological validation is an indispensable part of any 
modeling approach since it confirms the confidence level of the results 
produced. In this study, the model robustness validation consists of two 
crucial blocks: one is the reliability analysis of the multi-scale collision 
risk evaluation, which needs to be conducted from the perspectives of 
ship pair, global traffic, single ship, and multiple ships, respectively; the 
other is the effectiveness test of the optimal maritime traffic partition, 
which concerns the model performance in terms of capturing the 
optimal spatial scales. 

First, the effectiveness of the ship pair collision risk model in 
considering the influence of ship motion dynamics and water topog
raphy is analysed. A complicated two-ship encounter scenario is 
extracted from the historical AIS data, where the curves in Fig. 11(a) 

represent the trajectories of two encountering ships. It is obvious that 
the two ships have significant dynamic motion characteristics, and the 
presence of islands obstruct them. In Fig. 11(b), the C-DCPA and E-DCPA 
represent the DCPA values obtained by classic and dynamic CPA 
calculation models, respectively. Note that to obtain the waypoints of 
potential ship motion for E-DCPA calculation, the Douglas–Peucker (DP) 
algorithm is adopted to identify the turn points of ship trajectories and 
detailed implementation information about the algorithm is found in 
[79]. According to Fig. 11(b), the C-DCPA values fluctuate dramatically 
and experience several peaks and troughs, which may confuse ship 
navigators in capturing the actual collision dangers. In contrast, the 
E-DCPA values keep relatively stable and can help find the reliable 
minimal passing distance earlier, thereby assisting in detecting potential 
risks timely. Fig. 11(c) further provides the ship pair collision risk evo
lution over time, where CRAB* and CRAB represent the collision risk that 
considers and not considers the influence of water topography. It is 
evident that CRAB* provides more convincing assessment results since it 
can eliminate the estimated collision risk when the presence of islands 
obstructs the encountering ships. Consequently, the improved 
CPA-based method can detect collision risks reliably and timely with the 
consideration of both the potential ship dynamic motion and restricted 
water topography. 

Secondly, the regional collision risk evaluation model is examined 
through two Axioms of sensitivity analysis [80–82]: (1) an 

Fig. 8. Regional collision risk evolution. (a)-(b) Transition probabilities between different regional collision risk levels RCR1 over short-term and long-term periods, 
where J0, J1, …, J5 represent the transitions with 1, 2, …, 5 levels; (c)-(d) change degree of RCR2 over short-term and long-term periods; (e) life cycle of different 
regional collision risk levels, where 1 min, 2 min…, >5 min denote the life cycle with 1 min, 2 min…, >5 min. 
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increase/decrease in the Number of Nodes (NN) or the Number of Edges 
(NE) in a traffic network scenario should lead to a corresponding 
increase/decrease in the regional collision risk RCR; (2) the total influ
ence of NN and NE should not be smaller than the change by its subsets 
(i.e., any part of NN or NE). Following the two Axioms, Table 1 shows 
the effects of single factor change on the RCR. It is observed that the 
increase/decrease of NN or NE results in the correspondence change in 
the RCR and their change amplitude is positively correlated. These re
sults are in good agreement with Axiom 1. Equally, Table 2 presents the 

effects of multiple factor change. There is a more substantial variation in 
the RCR when NN and NE change together. This coincides with Axiom 2, 
which proves the rationality of the regional collision risk model to some 
extent. 

As for the validity examination of the individual collision risk model, 
the correlations between the SCR and the local network indices (i.e., Di, 
VSi, KSi, CCi) are investigated, as shown in Fig. 12. It is remarkable that 
the SCR has a significantly positive relation with each of local network 
indicators. These results conform to the common sense, i.e., a single ship 

Fig. 9. Individual ship collision risk evolution. (a) Transition probabilities between different single ship collision risk levels over a short-term period; (b) change 
degree of SCR2

i over a short-term time; (c) life cycle of different single ship risk levels. 

Fig. 10. Distance measure results between the current traffic partition and the future traffic partition with different time intervals. (a) NS = 15; (b) NS = 25.  

Fig. 11. A two-ship encounter scenario. (a) Ship trajectories; (2) evolutions of distance and DCPA indicators over time; (c) collision risk evolutions over time.  
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associated with larger local network indices should have a higher risk 
level than the one with smaller network indices. Simultaneously, the 
identical statistical analyses are carried out for the multi-ship collision 
risk model. According to Fig. 13, similar responses between the multi- 
ship collision risk (MCR) and the network indices can be observed, 
which helps further validate the model’s feasibility and reliability. 

Additionally, the robustness of the optimal maritime traffic partition 
model is tested. In fact, the performance of SNMF on graph partition has 
been comprehensively verified to be reliable and robust in [62,83,87]. 
Here, the proposed traffic partition model is compared with a widely 

favoured graph clustering algorithm (i.e., spectral clustering) to 
demonstrate its superiority and practical usability. Other clustering al
gorithms, such as density-based and prototype-based clustering, are not 
considered for comparison due to their limitations in coping with the 
complex interactions/interrelationships between any pair of data sam
ples. Two graph-based metrics, ‘NcutSilhouette’ (NcutS) [47] and 
Normalized cut (NC) [64] are employed to check the traffic partition 
quality. Note that each produced cluster has a NcutS measure, and the 
overall partition performance is evaluated based on the average NcutS of 
all generated clusters in one traffic scenario. The comparable results are 
depicted in Fig. 14. It is noticeable that the developed model performs 
better than spectral clustering under various numbers of clusters, 
thereby demonstrating its generalization ability and stability. In addi
tion, the statistical results show that the NcutS value of each generated 
traffic cluster is smaller than 1, indicating that all traffic scenarios are 
properly separated [47]. Therefore, the multiple dependent conflict re
lations among ships are well integrated when searching for the optimal 
scales for practical collision risk evaluation. 

5. Conclusions 

Multi-scale collision risk estimation regards different spatial scales as 

Table 1 
Validity test (1) for regional collision risk model.  

Change rate 
of NN 

ΔRCR1 ΔRCR2 Change rate 
of NE 

ΔRCR1 ΔRCR2 

+5% +0.22% +0.74% +5% +2.2% +2.95% 
+10% +0.38% +1.49% +10% +4.57% +5.93% 
+15% +0.55% +2.22% +15% +6.86% +8.97% 
+20% +0.75% +2.96% +20% +9.12% +12% 
− 5% − 5.99% − 8.07% − 5% − 4.93% − 6.55% 
− 10% − 12.84% − 16.25% − 10% − 9.92% − 12.58% 
− 15% − 21.14% − 24.77% − 15% − 15.08% − 18.28% 
− 20% − 28.24% − 32.83% − 20% − 20.14% − 23.58%  

Table 2 
Validity test (2) for regional collision risk model.  

Change rate of NN +5% +5% − 5% − 5% +10% +10% − 10% − 10% 

Change rate of NE / +5% / − 5% / +10% / − 10% 
ΔRCR1 +0.22% +2.43% − 5.99% − 11% +0.38% +4.86% − 12.84% − 22.71% 
ΔRCR2 +0.74% +3.67% − 8.07% − 14.09% +1.49% +7.33% − 16.25% − 26.58% 
Change rate of NN +15% +15% − 15% − 15% +20% +20% − 20% − 20% 
Change rate of NE / +15% / − 15% / +20% / − 20% 
ΔRCR1 +0.55% +7.16% − 21.14% − 32.75% +0.75% +9.48% − 28.24% − 41.91% 
ΔRCR2 +2.22% +10.96% − 24.77% − 37.85% +2.96% +14.58% − 32.83% − 47.6%  

Fig. 12. Correlations between single ship collision risk and local network indices. (a) SCRi vs. Di; (b) SCRi vs. VSi; (c) SCRi vs. KSi; (d) SCRi vs. CCi.  
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different views to characterize the different aspects of a traffic scenario. 
This study shifts a paradigm of ship collision risk analysis from a single 
scale focused scheme towards a regium involving a multi-scale collision 
risk study to reveal the traffic risk patterns under different spatial 
granularity. It synergizes a series of techniques to achieve collision risk 
estimation at any spatial scale and capture the optimal spatial scope for 
risk analysis. The developed methodology has several unique features: 
(1) it incorporates the influence of ship motion dynamics and water 
topography on collision risk to ensure the applicability in generalized 
scenarios; (2) the topological characteristics of multiple ship conflicts 
are explicitly considered to reveal the resolving difficulty of collisions 
brought by traffic interaction structure; (3) it pioneers the application of 
node deletion method to quantify the aggregation risk criticality of any 
multiple ship interactions to a regional traffic situation; (4) a competi
tive SNMF framework is embedded to search for the optimal traffic 
clusters at any spatial scale. Comprehensive experiments based on real- 
AIS data are performed to evaluate and check the performance of the 
proposed approach. Experimental results show that the proposed 
methodology can offer a complete comprehension for a traffic scenario 
and facilitate strategic maritime safety management. Additionally, the 
robustness and superiority of the proposed methods are tested and 

Fig. 13. Correlations between multi-ship collision risk and global network indices. (a) MCR vs. NN; (b) MCR vs. NE; (c) MCR vs. VS; (d) MCR vs. KS; (e) MCR vs. CC.  

Fig. 14. Performance comparison between SNMF and spectral clustering: (a) average NcutS comparisons; (b) NC comparisons. A smaller average NcutS and NC 
indicate a better clustering performance. 

Algorithm B1 
Maritime traffic partition.  

Input: The set of ships associated with their attributes 
{xi}i=1:N, and the desired number of clusters NS. 
Output: The set of clusters {C1,C2,⋯CNS}. 
// A. Similarity measure 
1. Initialize similarity matrix as Wij←0[N×N] . 

2. For ∀ xa, xb ∈ {xi}i=1:N do 
3. Wab = CRab, where CRab is obtained by Eq. (1). 

4. End 
// B. SNMF implementation 
5. D = diag(di), where di =

∑N
j=1Wij. 

6. W̃ = D− 1/2WD− 1/2 

7. H∗ = argmin ‖ W̃ − HHT ‖2, where H ∈ RN×NS
+ . 

8. For i = 1 : N do 
9. j∗ = argmax{j=1,2,⋯,NS}Hij 

10. xi ∈ Cj∗

11.End  
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examined through sensitivity analysis, correlation analysis and model 
comparison. This study therefore could be used in practise to support 
intelligent maritime perception and promote maritime system 
automation. 

Future research will put efforts on the following aspects. First, the 
impact of additional factors, e.g., ship maneuverability, human behav
iours, and environmental disturbances, on the traffic collision risk could 
be taken into consideration. It could help improve the collision risk 
evaluation accuracy. Second, the propagation and prediction of mari
time traffic risk deserve further concern. It will enhance the perception 
ability for the forthcoming traffic situations, which is helpful for issuing 
an early collision alert and preventing the time lag in risk management 
response. Finally, a new conflict resolution approach that can coordinate 
the local and regional collision risk could be beneficial to guide sur
veillance operators to devise multi-layered strategies for hierarchical 
risk control purposes. 
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APPENDIX A. Detailed illustration of the FCI approach 

The detailed procedure for implementing the FCI model is depicted as follows. 
Suppose there are n assessment samples and each sample records m indices as Aj = (a1j, a2j, …, amj). Then the sample dataset is expressed as matrix 

A = (aij)m × n, where aij represents the ith index of sample j. 
As each index has different orders of magnitude, the elements in A should be standardized to eliminate the dimensionality influence, using the 

following equation: 

rij =
(
aij − ai,min

)/(
ai,max − ai,min

)
(A.1)  

where ai,min and ai,max represent the minimum and maximum values in the ith row in A, respectively. Hence, matrix A can be transformed into a 
normalised matrix R. 

After that, assume that the n samples with m attributes are clustered with c classes/patterns, the membership matrix and class center matrix can be 
defined as U = (ukj)c × n and S = (sik)m × c, where ukj represents the membership value of sample j assigned to class k, subject to 0 ≤ ukj ≤ 1 and 

∑c
k=1ukj 

= 1, and sik denotes the center of index i in class k, satisfying 0 ≤ sik ≤ 1. 
To gain the optimal U and S, the objective function that minimizes the square sum of the weighted Euclidean distance from samples 1-n to class 

centres 1-c is constructed as follows: 

min
[
F
(
wi, ukj, sik

)]
= min

{
∑n

j=1

∑c

k=1

(

u2
kj

∑m

i=1

(
wi
(
rij − sik

))2

)}

(A.2)  

where wi represents the weight of different indices, subject to 0 ≤ wi ≤ 1 and 
∑m

i=1wi = 1. 
According to the objective function in Eq. (A.2), the w, U, and S can be iteratively optimized by the Lagrange multiplier method, using the following 

equations: 

wi =

[
∑m

i=1

∑n
j=1
∑c

k=1

[
ukj
(
rij − sik

)]2

∑n
j=1
∑c

k=1

[
ukj
(
rij − sik

)]2

]− 1

(A.3)  

ukj =

[
∑c

h=1

∑m
i=1

[
wi
(
rij − sik

)]2

∑m
i=1

[
wi
(
rij − sih

)]2

]− 1

(A.4)  

sik =
∑n

j=1
u2

kjw
2
i rij

/
∑n

j=1
u2

kjw
2
i (A.5) 

The specific update process comprises the following steps.  

(1) Initialize the precision parameters ε1, ε2, and ε3 used for wi, ukj, and sik.  
(2) Let l = 0 and generate the original wl and Ul which satisfy the constraints mentioned above. 
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(3) Calculate the original Sl by inputting the original wl and Ul into Eq. (A.5) and l = l + 1.  
(4) Update wl, Ul, and Sl via Eqs. (A.3)–(A.5), respectively.  
(5) Identify whether all the following constraints are satisfied 

max
i

⃒
⃒wl+1

i − wl
i

⃒
⃒ ≤ ε1  

max
kj

⃒
⃒
⃒ul+1

kj − ul
kj

⃒
⃒
⃒ ≤ ε2  

max
ik

⃒
⃒sl+1

ik − sl
ik

⃒
⃒ ≤ ε3   

If not, l = l + 1 and repeat step 4 until the above termination conditions are held.  

(6) Output the optimal w, U, and S. 

APPENDIX B. Pseudocode for the traffic partition procedure 

Algorithm B.1 presents the pseudocode of the maritime traffic partition. It involves two important modules: similarity measure and SNMF 
implementation. The similarity measure takes the collision risk as the similarity of ship pairs (step 3). Further, the Newton-like algorithm is used to 
optimize the SNMF framework in Eq. (10) (step 7). This algorithm can achieve higher accuracy and quality when solving small size optimization 
problems (e.g., the number of samples is smaller than 3000) [62]. Besides, it is implemented many times with different initial H to avoid falling into 
local minima. The pseudocode of the Newton-like algorithm can be found in [48,83]. 

APPENDIX C. Training results of the FCI model 

This appendix lists the training results of the FCI model. A total of 4315 traffic scenarios are used as the training samples, in which each of them is 
extracted every 10 min from one month of AIS data. One well-known problem that needs to be addressed is identifying the optimal number of levels/ 
classes of regional collision risk. Here, six validity indices in [84], including partition coefficient (PC), partition entropy (PE), modified partition 
coefficient (MPC), VFS, VXB, and VK, are adopted to measure the performance of the FCI model. In these indices, a high PC and MPC value indicates 
that the dataset is well clustered. In contrast, a small value of the remaining indices means that a good traffic partition is produced. Fig. C.1 illustrates 
the average validity performance of the six indices, in which each of the number of risk levels is run 20 times with randomly sampled initial w and U. It 
is seen that the MPC, VXB, and VK indices have the best performance when the number of risk levels is six. Consequently, the optimal number of 
regional risk levels is set to be six. More detailed explanations about the adopted validity indices are summarized in [84]. 

Fig. C2 further displays the optimal results of the FCI model when the number of risk levels is six. By inputting the optimal w and S into Eq. (A.4), 
the regional risk membership distribution of the new traffic scenarios can be calibrated. 

Fig. C1. Model performance illustration with different numbers of risk levels.  
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