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A B S T R A C T

Improving regulatory confidence and acceptance of in silico toxicology methods for chemical risk assessment 
requires assessment of associated uncertainties. Therefore, there is a need to identify and systematically cate
gorize sources of uncertainty relevant to the methods and their predictions. In the present study, we analyzed 
studies that have characterized sources of uncertainty across commonly applied in silico toxicology methods. Our 
study reveals variations in the kind and number of uncertainty sources these studies cover. Additionally, the 
studies use different terminologies to describe similar sources of uncertainty; consequently, a majority of the 
sources considerably overlap. Building on an existing framework, we developed a new uncertainty categorization 
framework that systematically consolidates and categorizes the different uncertainty sources described in the 
analyzed studies. We then illustrate the importance of the developed framework through a case study involving 
QSAR prediction of the toxicity of five compounds, as well as compare it with the QSAR Assessment Framework 
(QAF). The framework can provide a structured (and potentially more transparent) understanding of where the 
uncertainties reside within in silico toxicology models and model predictions, thus promoting critical reflection 
on appropriate strategies to address the uncertainties.

1. Introduction

In silico toxicology methods play a central role in the risk assessment 
of chemicals as they are used to predict the biological activities of 
chemicals by drawing on the knowledge of chemical structures or 
physicochemical properties (Cronin and Madden, 2010). For the pur
pose of this paper, the term “in silico toxicology methods” is taken to 
refer to quantitative structure-activity relationship (QSAR) models, 
structural alerts, read-across and chemical category formation ap
proaches that are based on any type of chemical descriptor or property. 
The basic tenet of in silico toxicology modeling is that the potential 
toxicity of a chemical in a biological system can be deduced from the 
chemical’s molecular structure/properties, where chemicals with 
similar structures/properties are assumed to have similar toxicological 
behavior (Cronin and Madden, 2010; Cronin et al., 2013; Enoch, 2010). 
These types of in silico methods are thus used to predict the properties, or 
activities, of data-poor chemicals by using knowledge of the biological 
activities induced by data-rich chemicals with similar structure
s/properties (Schultz et al., 2019).

Considerable research has been conducted to improve the predictive 

accuracy of in silico toxicology methods, especially for regulatory pur
poses, through the characterization of the uncertainties associated with 
their predictions. Commonly cited sources of uncertainty include the 
quality of modeling data and inferences based on chemical structural 
similarity assumptions (Blackburn and Stuard, 2014; Parish et al., 2020; 
Schultz et al., 2019). Uncertainty is also inherent in silico models simply 
because they, like all models (including in vivo and in vitro tests), are 
surrogates of real systems. In silico toxicology models can consequently 
only approximate the potential harm posed by chemicals to a particular 
level of certainty. Generally, transparent analysis and communication of 
uncertainties of model-based quantitative assessments are considered 
part of good modeling practice (Benford et al., 2018). Peer-reviewed 
scientific publications rarely, however, include systematic and trans
parent accounting of associated uncertainties (Blackburn and Stuard, 
2014; Cronin et al., 2019; Pham et al., 2019; Schultz et al., 2019).

Blackburn and Stuard (2014) stated that a lack of transparent 
communication of uncertainties hinders proper assessment of the 
strength and robustness of in silico models for toxicity predictions. It also 
potentially gives a false sense of confidence in the data applied, 
modeling process, and model prediction output. Indeed, the regulatory 
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application of in silico toxicology methods would undeniably improve if 
uncertainties were more transparently communicated. Transparent 
communication of uncertainties is, however, not sufficient to gain reg
ulatory acceptance. It is also necessary to systematically categorize the 
uncertainties (Achar et al., 2024d; Alexander-White et al., 2022; ECHA 
(European Chemical Agency), 2012). There is, therefore, a need to 
develop frameworks that can aid systematic categorization of un
certainties associated with in silico toxicology predictions, as this would 
provide an easier understanding of their sources within in silico toxi
cology prediction processes (Alexander-White et al., 2022).

A few studies have attempted to categorize sources of uncertainty in 
in silico toxicology methods – e.g., Benfenati et al. (2019), Blackburn and 
Stuard (2014), Cronin et al. (2019, 2022) and Pham et al. (2019), while 
others discuss uncertainties in the methods but do not explicitly cate
gorize the uncertainty sources (e.g., Sahlin et al. (2011, 2013; 2014)). 
The studies that categorize sources of uncertainty, however, only focus 
on a limited number of sources of uncertainty within a particular 
method (e.g., QSAR, structural alerts/rule-based, or read-across). 
Consequently, none of the studies provide a general framework that 
covers sources of uncertainty across different methods as a means to 
provide a holistic picture of diverse sources of uncertainty in in silico 
toxicology methods while also facilitating communication of the un
certainty sources (ECHA, 2012; Kirchner et al., 2021). The lack of such a 
general framework may also result in a lack of harmonization of ter
minologies used to describe sources of uncertainty, thereby leading to 
poor communication of the sources among different stakeholders.

This investigation aimed to develop an uncertainty categorization 
framework that systematically categorizes general sources of uncer
tainty (GSU) across different in silico toxicology methods. This was 
achieved by reviewing peer-reviewed publications on in silico toxicology 
methods and verbatim recording the sources of uncertainty (VRSU) 
discussed in this literature. Drawing on general uncertainty concepts, we 
deduce GSU through iterative categorization of the VRSU (the process 
followed to develop the framework is shown in Fig. 1). Our assumption 
is that this framework can provide developers and users of in silico 
toxicology models a foundational understanding of where uncertainties 
reside within the broader in silico toxicology modeling contexts.

2. Identification and verbatim recording of sources of 
uncertainty (VRSU) in the literature

Peer-reviewed papers that discuss sources of uncertainty in in silico 
toxicology methods were identified through a search in the Web of 
Science using the following keywords and Booleans: (topic) uncertain* 
AND "in silico*" OR QSAR OR SAR OR read-across OR structural alerts 
AND chemical*. This led to the retrieval of 283 papers. These were 
skimmed (titles, abstracts, and, when needed, the entirety of the iden
tified literature) to identify relevant papers based on the following 
criteria: (1) must be related to in silico toxicology predictions (and 
mention at least one of the methods), (2) include a discussion of un
certainty, and (3) make direct (explicit) reference to at least three 
sources of uncertainty. This resulted in the identification of 11 relevant 
publications (see Table S1). A content analysis was conducted of these 
publications through line-by-line reading (Sarah, 2018), identifying 
sources of uncertainty mentioned or discussed in these papers. We 

illustrate the process used to identify sources of uncertainty by 
describing the analysis of Pham et al. (2019). This paper includes a 
section with the heading "Uncertainty in QSAR modeling”, suggesting 
that uncertainties in QSAR modeling would be discussed in this section, 
which also was the case. We proceeded by verbatim recording each 
uncertainty source mentioned in this section, which included “choice of 
modeling algorithm and hyperparameter selection” and “model pre
diction reproducibility“. The analysis of the 11 publications resulted in 
the identification of 87 sources of uncertainty, which were all recorded 
verbatim, hence the acronym VSRU (“verbatim recorded sources of 
uncertainty”) (Table S1). In so doing, we note that other literature (e.g., 
Sahlin et al. (2011, 2013; 2014)) that merely discuss but do not cate
gorize uncertainty sources were not included in Table S1.

As noted with asterisks in Table S1, all but six of the 87 VRSU were 
deemed irrelevant for the present paper, thus excluded. One of the 
excluded sources was the "acceptable level of uncertainty" mentioned by 
Schultz et al. (2019), which, while relevant in decision contexts, is 
beyond the scope of our paper. In addition, we excluded four VRSU that 
point primarily to variability in model systems: “error associated with 
biological data” (Cronin et al., 2019), “variability of biological data” 
(Schilter et al., 2014), “parametric variability” (e.g., the descriptors) and 
“observation error” (Benfenati et al., 2019), and ”data variability” 
(Pham et al., 2019). Skinner et al. (2014a,b), ECHA (2012) and US EPA 
(2011) emphasize the need to treat uncertainty and variability sepa
rately. Whereas variability is stochastic in nature (thus irreducible), 
uncertainty is due to imperfection in knowledge about a model system, 
thus, may potentially be reduced by more knowledge. Similarly, po
tential areas of bias were not considered in this investigation. Here, bias 
refers to the possibility of introducing systematic errors in model pre
dictions given the methodological criteria applied (Cronin et al., 2019). 
While we acknowledge that identifying areas of variability and bias in in 
silico model systems is also important, it is beyond the scope of this 
paper.

3. Categorizing VRSU and formulating GSU

In the present paper, we modify the framework developed by Belfield 
et al. (2021) for assessing the fitness-for-purpose of QSAR models to 
categorize the identified VRSU. The framework outlines 10 criteria 
(formalized as “higher-level assessment components") for evaluating 
QSAR models, which broadly focuses on model creation, characteriza
tion and application. There is considerable overlap between what ECHA 
(2012) refers to as “sources of uncertainty” and the components in this 
framework. As such, we conceptualized the 10 components in Belfield 
et al. (2021) as areas that generally characterize potential sources of 
uncertainty in in silico toxicology modeling (Table 1).

In our modification of the framework, we excluded two higher-level 
assessment components in Belfield et al. (2021) – Description and Us
ability – as they do not directly relate to areas of uncertainty in in silico 
toxicology modeling. As noted by Cronin et al. (2019), Description and 
Usability draw on experiences and barriers (e.g., software accessibility 
and intellectual property) to the practical usage of models; thus, while 
relevant in, for example, assessment of whether a model software is 
ethically developed and transparently documented, they are less rele
vant for characterizing uncertainties in the application of models for 

Fig. 1. A flow chart describing the steps undertaken to develop the framework that categorizes general sources of uncertainty in in silico models for toxicological data 
dap filling.
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toxicity prediction. In another modification, as further discussed in 
Section 3.1.4, we added a new higher-level assessment component – 
“Similarity”. This was placed under the Model creation phase. As the 
framework we set out to develop includes characterizing uncertainty 
related to the use of in silico toxicology models, we also added “Appli
cability” as a higher-level assessment component, resulting in a total of 
10 higher-level assessment components (Table 1). Cronin et al. (2019)
argue that Applicability is relevant for characterizing uncertainty in the 
Model application phase, as it characterizes the potential use of a model 
to provide data for similar prediction problems. An example is the po
tential application of a model to predict the effect of similar target 
chemicals or inferring unknown values from trends in the known data 
(Cronin et al., 2019).

We started the categorization process by reviewing the 81 VRSU 
(Table S1) in light of the descriptions of the higher-level assessment 
components in Table 1 and the ways in which the VRSU are discussed in 
the analyzed texts. The VRSU were placed under the higher-level 
assessment component deemed most suitable (4th column in Table 2). 
These VRSU were then analyzed for similarities and then used to 
formulate the GSU shown in Table 2 (column 3). Subsections 3.1, 3.2, 
and 3.3 below describe the reasoning that led to the categorization of the 
VRSU and the formulation of the GSU.

3.1. The model creation phase

3.1.1. Data
The higher-level assessment component “Data” is in our framework 

described as “Quantity and quality of individual studies within the data 
set and the data set overall (e.g., homogeneity of the protocols) that was 
used for modeling” (Table 1). This description is modified from Belfield 
et al. (2021), who did not include quantity aspects in their description of 
Data. The need to consider both quality and quantity as inherent char
acteristics of data has been emphasized (Fu et al., 2011; Nendza et al., 
2010; Stausberg et al., 2023), hence the inclusion of data 
quantity-related VRSU here, as further developed below.

The categorization process led us to place 37 VRSU under this 
component. Examples of quality-related VRSU are “quality of the data 
considered” (Blackburn and Stuard, 2014), “quality and robustness of 
the source or analogue data” (Schultz et al., 2015), and “quality of data”, 
“relevance of data for the endpoint of interest to its intended use”, and 
“completeness of data” (each from Cronin et al., 2019). Examples of 
quantity-related VRSU that were added include: “quantity of the data 
considered”, “number of analogues contributing data” and “number of 
the chemical analogues identified” (the full list of the VRSU categorized 
under Dara is shown in Table 2).

The initial analysis of the 37 VRSU led us to formulate 17 GSU, which 
were later consolidated into six GSU: Data quantity, Data balance, Data 
relevance, Data reliability, Data accuracy, and Data validity. To 

illustrate: the formulation of the GSU “Number of data” was based on the 
merging of four VRSU, each of which relates to the amount of data and 
contains the term ”number” when mentioning the amount of data – i.e., 
“number of analogues contributing data” (Blackburn and Stuard, 2014; 
Schultz et al., 2019), "number of the chemical analogues identified” 
(Schilter et al., 2014), and “number of source chemicals” (Schultz et al., 
2015). The formulated GSU “Number of data” was subsequently merged 
with the GSU “Data coverage”, which Cronin et al. (2022) define as the 
proportion of hits in alerts. As “Number of data” and “Coverage” both 
refer to the quantity of data for modeling, we formulated “Data quan
tity” as the common GSU that covers them (Fig. 2). The choice of the 
term “data quantity”, was based on its common use in describing un
certainty related to the amount of data (WHO/IPCS, 2008).

We also note that the GSU “Data quality”, as used in six papers 
(Table 2), refers to characteristics of data that make them fit for an 
intended use. These characteristics are distinctly described in the other 
data quality-specific GSU: Data relevance, Data suitability, Data 
completeness, Database deficiency, Data reliability, Data consistency, 
Data robustness, Data accuracy, and Data validity. As such, we excluded 
Data quality as a separate GSU.

Our analysis revealed an overlap in the description of three initial 
GSU: Data balance, Data distribution, and Data homogeneity. Pham 
et al. (2019), (citing He and Garcia (2009)), describe Data distribution 
(i.e., “distribution of the training data set”) as the characteristic of data 
that reflects class distribution of balanced dataset, and Data balance (i. 
e., "balance of the training data set”) as the distributive characteristics of 
data for categoric (toxic/non-toxic) endpoints. These descriptions are 
similar to how Cronin et al. (2019) describe Data balance (i.e., “data 
balance”). In another instance, Cronin et al. (2019) describe Data ho
mogeneity as the distributive characteristics of datasets across the 
chemical space of the training and test sets for continuous (potency) 
data. In the literature, uncertainties related to data balance have been 
broadly described to span from potential inadequacies in partitioning 
data between two classes to considerations of distributive characteristics 
of continuous data (He and Garcia, 2009). This suggests Data distribu
tion and Data homogeneity (as described in the analyzed studies) can be 
subsumed under the GSU “Data balance”.

Three data quality-related GSU – Data suitability ("suitability of 
analogues"; Blackburn and Stuard, 2014; Schilter et al., 2014), Data 
completeness ("completeness of the data set"; Cronin et al., 2019 and 
“completeness of the argument provided [for data quality]”; Schultz 
et al., 2019), and Database deficiency (“database deficiency”; Wang 
et al., 2012) – were subsumed under the GSU Data relevance. This is 
because both Data suitability and Data completeness are related to the 
appropriateness of chemical or biological data for predicting a toxico
logical endpoint (Blackburn and Stuard, 2014; Cronin et al., 2019; 
Schultz et al., 2019; Schilter et al., 2014) – Table 2. Notably, these de
scriptions align with descriptions of Data relevance by Cronin et al. 

Table 1 
In silico toxicology modeling phases, higher-level assessment components, and definition of the components of relevance for the present study.

Modeling phase Higher-level assessment 
component

Definition of the higher-level assessment component

Model creation Data Quantity and quality of individual studies within the data set and the data set overall (e.g., homogeneity of the protocols) 
that was used for modeling

​ Structure Accuracy and/or quality of the reported chemical structures in the training (and, if applicable, test) set used for modeling
​ Similarity Resemblance or commonality between chemical compounds, e.g., in terms of functional groups, toxicokinetic/ 

toxicodynamic properties, and chemical structure
​ Descriptors Appropriate use and adequate definition of the descriptors used for modeling (including how and where sourced)
Model 

characterization
Modeling The appropriateness and/or adequacy of the modeling approach for the endpoint with regard to complexity of the endpoint 

and potential use of the
​ Performance Adequate statistical fit, predictivity and appropriate reporting
​ Mechanisms Definition and interpretation of the mechanistic significance of the model to allow for the definition of appropriate domains
​ Toxicokinetics Appropriate consideration of metabolism and toxicokinetics in the model
Model application Applicability The use of a model to provide data for similar prediction problem (e.g., inferring unknown values from trends in the known 

data
​ Relevance Relevance of the model to its intended purpose and use
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Table 2 
Categories of the 81 VRSU and the formulated general sources of uncertainty (GSU, column 3). The non-bolded GSU are the tentative GSU that were subsumed under 
the refined GSU (bolded). Publication numbers are provided in Table S1.

Modeling phase Higher-level assessment 
component

General sources of uncertainty 
(GSU)

Verbatim recorded sources of uncertainty (VRSU) Publication 
number

Model creation Data Data quantity Quantity of the data considered 1
Number of data Number of analogues contributing data 1
​ Number of analogues contributing data 3
​ Number of the chemical analogues identified 5
​ Number of source chemicals 8
Data size Size of training data set data 4
Data coverage Coverage [of structural alert] 7
Data balance Balance of the training data set 4
​ Data balance 6
Data distribution Distribution of the training data set 4
Data homogeneity Homogeneity of the chemical space of the training and test sets. 6
Data relevance Relevance of data for the endpoint of interest 6
​ Relevance of data 10
Data suitability Suitability of analogues 1
​ Suitability of the chemical analogues identified 5
Data completeness Completeness of the argument provided [for data quality] 3
​ Completeness of the data set 6
Database deficiency Database deficiencies (e.g., lack sensitive endpoint or toxicity 

information)
2

Data reliability Reliability of data 10
Data consistency Consistency of the data set 6
​ Consistency of data 9
Data robustness Strength or robustness of the supporting data sets 3
​ Robustness of the source or analogue data 8
​ Robustness of the supporting data sets 9
Data accuracy Accuracy of data 10
​ [computed/not experimentally measured] Parameters used to 

construct the model
11

Data validity Validity of data 10
Data qualitya Quality of the data 1
​ Quality of the apical endpoint data 3
​ Quality of data used to build model 5
​ Toxicological information found for the analogues 5
​ Quality of data 6
​ Quality of the source or analogue data 8
​ Quality of data 9

Structure Chemical structure Structure and its representation 8
​ ​ Structural description 7
Similarity Chemical similarity Structural similarity to target 1
​ ​ Similarity in chemistry 3
​ ​ Toxicokinetic similarity 3
​ ​ Toxicodynamic similarity 3
​ ​ Similarity justification 4
​ ​ Definition and demonstration of similarity 8
Descriptors Descriptor relevance Choice of molecular descriptors 4

​ ​ Descriptor concordance Calculated/experimentally measured properties and descriptors 6
​ ​ ​ Property domain 7
Model 

characterization
Modeling Model structure Modeling algorithm and hyperparameter 4

​ Numerical errors and/or numerical approximations 11
​ Model bias 11
Activity/potency The potency of the analogues for those [toxic] effects 1
​ Nature and severity of the identified toxic effects 1
​ Prediction of complex endpoints such as chronic toxicity 5
​ Species specificity 7
​ Toxicity or relationship to adversity 7
Activity/potency evidence Weight-of-Evidence 3
​ Supporting evidence 7
​ Corroborating evidence 7

​ ​ Weight-of-evidence supporting the prediction 9
Performance Model performance Model performance 5
​ ​ Reproducibility of model and model prediction 6
​ ​ Adequacy of the model to make a prediction for the stated 

purpose
6

​ ​ Statistical performance 6
​ ​ [predictive] Performance 7
Mechanisms Mechanistic plausibility Mechanistic plausibility 3, 8, 9
​ ​ Mechanistic causality 7
​ Mechanistic relevance Mechanistic relevance and interpretability 6
​ ​ Mechanistic relevance 8
Toxicokinetics Metabolic domain Metabolic domain 7

(continued on next page)
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(2019) and Madden et al. (2020), who refer to it as the meaningfulness 
of data – i.e., the extent to which data are considered useful for a 
particular prediction context – be it endpoint, route of exposure, etc. We 
also note that Wang et al. (2012) use Database deficiency in reference to 
the incompleteness of data, which also aligns with the description of 
Data relevance. In other words, each of these three tentative GSU (Data 
suitability, Data completeness, and Database deficiency) refers to the 
extent to which data incorporates essential information for a given use, 
thus it is reasonable to subsume them under the GSU “Data relevance”.

We decided to subsume Data consistency (“consistency of the data”; 
Cronin et al., 2019; Pestana et al., 2021) and Data robustness (“strength 
or robustness of the supporting data sets”; Pestana et al., 2021; Schultz 
et al., 2019) under Data reliability (Madden et al., 2020), as the 
distinction between them is unclear and the definition of Data reliability 

seems to cover the elements described in them – i.e., Data reliability 
refers to the comparability and reproducibility of data obtained from 
different laboratories under consistent test protocols or toxicity end
points or biomarkers (Madden et al., 2020). Pestana et al. (2021) do not 
provide an explicit definition of Data consistency relating to read-across, 
but describe it as the uniformity of toxicity information in chemical 
datasets – one of the examples provided by the authors is “consistency in 
the in vivo effects and potency data”. Similarly, Cronin et al. (2019)
describe Data consistency as the uniformity of datasets or data repro
ducibility between different tests. These descriptions are similar to Data 
robustness, which Schultz et al. (2019) describe as data consistency 
based on how extensive the data are measured or observed across source 
and target chemical categories. Given these similarities, we decided to 
subsume Data consistency and Data robustness under a common GSU 

Table 2 (continued )

Modeling phase Higher-level assessment 
component 

General sources of uncertainty 
(GSU) 

Verbatim recorded sources of uncertainty (VRSU) Publication 
number

​ Coverage of ADME activity Adequate coverage of Absorption, Distribution, Metabolism and 
Excretion effects

6

​ Applicability Applicability domain Applicability domain 4
​ ​ ​ Applicability domain 5

​ ​ Applicability domain 6
​ ​ Applicability domain 8
Relevance Extrapolation Extrapolations (interspecies (animal-to-human) 2
​ ​ Extrapolations intraspecies (susceptible human subpopulation) 2
​ ​ Extrapolations (subchronic-to-chronic) 2
​ ​ Extrapolations (LOAEL-to-NOAEL) 2
​ ​ Extrapolation of the toxicity of the substance of interest based on 

data on analogues
5

​ Model relevance Relevance [of the QSAR] to the prediction or assessment goal 6
​ ​ Purpose or potential use of the structure alert 7

LOAEL = lowest observed adverse effect level; NOAEL = no observed adverse effect level; QSAR = quantitative structure-activity relationship.
a Quality = tentatively identified GSU excluded in the final iteration of the proposed framework, as the VRSU that initially were placed under this category were 

subsumed under other categories, as further explained in section 3.1.

Fig. 2. The refined GSU (bulleted in the rectangles) resulting from the analysis and iterative categorization of the VRSU. The descriptions of the GSU are provided in 
Table S2. The grey rectangles indicate the higher-level assessment components under which the GSU are categorized, and the grey-dotted rectangles are the newly 
proposed higher-level assessment components. The components are, in turn, connected to one of the Modeling phases (shown in the ovals).
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“Data reliability”.
The GSU Data accuracy is described by Madden et al. (2020) as the 

extent to which measured data deviates from its true value. The same 
authors relate Data validity to the acceptability of the methods used to 
generate modeling data relative to set guidelines or consideration of 
whether the methods measure what they are intended to measure. As 
they describe, uncertainty related to Data validity might impact data 
reproducibility if such guidelines are not followed. However, Data val
idity does not have to be always interlinked to data reproducibility, as 
invalid data generated using non-standardized guidelines may still be 
reproduced using similar non-standardized guidelines; consequently, we 
retained both “Data accuracy” and “Data validity” as distinct GSU 
(Fig. 2).

3.1.2. Structure
The higher-level assessment component “Structure” is, in this 

framework, described as the “Accuracy and/or quality of the reported 
chemical structures in the training (and, if applicable, test) set used for 
modeling” (Table 1). We placed two VRSU under this component 
(Table 2): “structure and its representation” (Schilter et al., 2014), and 
“structural description” (Cronin et al., 2022). Our analysis of these VRSU 
led us to conclude that they are similar, as they both encompass ques
tions related to chemical structure – i.e., whether a structure (or pres
ence of a substructure) is known and clearly described with appropriate 
identifiers and whether this representation is useable or suitable for a 
defined modeling task or for calculating, for example, descriptors. This, 
therefore, implies that these VRSU can be subsumed under the GSU 
“Chemical structure”. Taken more broadly, uncertainties within this 
GSU thus include the accuracy in the definition of structure, the clarity 
in the description of structural representation, and the measure of the 
fitness or relevance of the structure for a particular use.

3.1.3. Similarity
We define the higher-level assessment component “Similarity” as 

“Resemblance or commonality between chemical compounds, e.g., in 
terms of functional groups, toxicokinetic/toxicodynamic properties, and 
chemical structure” (Table 1). We placed six VRSU (Table 2) within: 
“structural similarity [of analogues] to target” (Blackburn and Stuard, 
2014), “similarity in chemistry”, toxicokinetic similarity, and tox
icodynamic similarity (Schultz et al., 2019), “similarity justification” 
(Pham et al., 2019), “definition and demonstration of similarity” 
(Schultz et al., 2015). Each addresses issues related to chemical simi
larity, which, in the context of read-across modeling, Drake et al. (2023)
describe as the measure of commonality/similarity between chemical 
compounds in terms of their structural and physicochemical properties, 
toxicokinetic/toxicodynamic properties, mechanism of action, etc. The 
major application of this concept in in silico toxicology includes deri
vation of structure-activity relations, grouping of compounds with 
similar activities, and providing justification of read across (Blackburn 
and Stuard, 2014; Schilter et al., 2014; Schultz et al., 2015). This implies 
that, while the component “Similarity” depends on components such as 
“Structure”, it is distinct – i.e., whereas Similarity relates similarity be
tween compounds, Structure relates to chemical characteristics in the 
form of components like atoms and the bonds between them. As the six 
VRSU relate to chemical similarity, we decided to formulate “Chemical 
similarity” as the umbrella GSU that covers them.

3.1.4. Descriptors
As seen in Table 1, the higher-level assessment component “De

scriptors” is here defined as the “Appropriate use and adequate defini
tion of the descriptors used for modeling (including how and where 
sourced)”. Three VRSU were placed under this component: “choice of 
molecular descriptors” (Pham et al., 2019), “calculated/experimentally 
measured properties and descriptors (Cronin et al., 2019), and “property 
domain” (Cronin et al., 2022).

In the broader in silico modeling literature (e.g., Chandrasekaran 

et al., 2018; Cronin et al., 2013; US EPA, 2016), a descriptor is typically 
defined as providing a quantitative representation of the physicochem
ical or structural properties of a chemical, e.g., descriptors derived from 
molecular or atomic properties may reflect its physicochemical, topo
logical, and surface properties. We interpret this definition as an elab
oration of the description of Descriptors in Table 1, which then implies 
that a descriptor represents a logical transformation of chemical infor
mation encoded within its physicochemical properties. In our categori
zation (Table 2), we, therefore, interpreted the component Descriptors 
in a broad sense to not only explicitly encompass physicochemical de
scriptors but also include the physicochemical properties from which the 
descriptors are obtained. In this case, uncertainty originates from a lack 
of relevant physicochemical descriptors, as this could translate to an 
inaccurate interpretation of the properties or an inability to accurately 
calculate physicochemical descriptor values (Ball et al., 2016; Cronin 
et al., 2019).

Analysis of the three VRSU referenced above led us to formulate two 
GSU: “Descriptor relevance” and “Descriptor concordance”. Descriptor 
relevance incorporates solely the VSRU “choice of molecular de
scriptors” (e.g., Log P) generated from physicochemical properties) 
(Pham et al., 2019). Pham et al. (2019) note that understanding this 
uncertainty source involves asking whether the physicochemical prop
erties in question are relevant to predict the descriptors (hence 
“Descriptor relevance"). In this case, a lack of relevant physicochemical 
descriptors could translate to an inaccurate interpretation of the prop
erties or an inability to accurately calculate physicochemical descriptors 
as well as inconsistent descriptor values (Ball et al., 2016; Cronin et al., 
2019).

The remaining two VRSU: “calculated/experimentally measured 
properties and descriptors (Cronin et al., 2019) and “property domain” 
(Cronin et al., 2022), were used to formulate the GSU “Descriptor 
concordance”. Drawing on the ways in which these are discussed in the 
analyzed literature (Cronin et al., 2022), it is clear that the concept of 
Descriptor concordance differs from Descriptor relevance. That is, 
Descriptor concordance provides a quantitative or qualitative descrip
tion of the degree of agreement between descriptors and, for example, 
the toxicokinetic or toxicodynamic properties of a chemical (Cronin 
et al., 2019, 2022). Thus, it can be understood as a measure that dem
onstrates the extent of correlation between the descriptor and a variable, 
Y. In contrast, Descriptor relevance relates to the capacity of the de
scriptors to provide insight into what a model intends to predict – i.e., 
relevance characterizes quality dimensions like completeness and 
appropriateness of the descriptors.

3.2. The model characterization phase

3.2.1. Modeling
The higher-level assessment component “Modeling” is here 

described as the “Appropriateness and/or adequacy of the modeling 
approach for the endpoint with regard to the complexity of the endpoint 
and potential use of the model” (Table 1). We placed 11 VRSU in this 
category – for example, “modeling algorithm and hyperparameter” 
(Pham et al., 2019), “species specificity” (Cronin et al., 2022), and 
“prediction of complex endpoints such as chronic toxicity” (Schilter 
et al., 2014) (see Table 2 for the full list).

Cronin et al. (2019) elaborate on the definition of Modeling by 
noting that an appropriate modeling approach is one which can be 
gauged not only on its ability to deal with the complexity of data but also 
on its ability to predict activity or the toxic effects of chemicals of in
terest, either in simple or complex scenarios. Here, the degree of con
fidence in the predicted activity/potency is dependent upon the 
available supporting evidence (Pestana et al., 2021) or the adequacy of 
the modeling approach (e.g., in terms of modeling parameters and 
model algorithms) to predict an activity/potency (Pham et al., 2019). 
Taken more broadly, the component Modeling, therefore, encompasses 
characterizing the structure of a model (e.g., model algorithms and 

J. Achar et al.                                                                                                                                                                                                                                   Regulatory Toxicology and Pharmacology 154 (2024) 105737 

6 



parameters), prediction of activity or potency of chemicals, and 
consideration of the evidence that supports such predictions.

Three of the aforementioned 11 VRSU: “modeling algorithm and 
hyperparameter” (Pham et al. (2019), alongside “numerical errors 
and/or numerical approximations” and “model bias” (Benfenati et al., 
2019) relate to uncertainties embedded in the model structure. Walker 
et al. (2003) associate uncertainty in model structure with the appro
priateness or accuracy of model algorithms, mathematical formulations 
and parameters, etc., for particular predictions. Following this descrip
tion, we decided to use “Model structure” as the umbrella GSU to group 
these three VRSU.

Similarity was noted among five other VRSU: “the potency of the 
analogues for those [toxic] effects”, “nature and severity of the identi
fied toxic effects” (Blackburn and Stuard, 2014), “toxicity or relation
ship to adversity”, “species specificity” (Cronin et al., 2022), and 
“prediction of complex endpoints such as chronic toxicity” (Schilter 
et al., 2014). Uncertainties within the first four VRSU are described in 
the context of QSAR, read-across, and structural alerts to relate to the 
definition, establishing the association, or modeling the relationship 
between a chemical (or an alert) and particular toxicological activity or 
effects they elicit. Similarly, Schilter et al. (2014) relate the last VRSU to 
the reasonable predictions of toxicity of chemicals for complex end
points such as chronic toxicity. Overall, our analysis led us to conclude 
that each of these five VRSU relates to the ability to model toxicological 
activities or potency of chemicals (Table 2). Considering the similarities, 
we thus formulated “Activity/potency”, as the umbrella GSU term for 
these five VRSU (Table 2).

Finally, we noted similarity among the remaining three VRSU – 
“corroborating evidence” (Cronin et al., 2022), “supporting evidence” 
(Cronin et al., 2022), and “weight-of-evidence supporting the predic
tion” (Pestana et al., 2021; Schultz et al., 2019). The discussion of these 
VRSU in the analyzed papers led us to conclude that the authors use the 
concept of “evidence” uniformly in reference to evidence of the toxic 
activity or potency of chemicals. That is, the availability of toxicological 
information from approaches such as in vitro assays, to support conclu
sion on activity/potency predicted by in silico models. Here, similar to 
Pestana et al. (2021), we argue that although evidence of activity/po
tency is closely related to the earlier formulated GSU “Activity/po
tency”, it is secondary to it and thus can be treated as a separate class. 
For example, while Activity/potency refers to the ability of a chemical to 
cause harm, evidence of activity/potency instead pertains to the body of 
information that supports whether or not toxicity is elicited and the 
extent of it. As seen in Table 2, therefore, we used these three VRSU to 
formulate the GSU “Activity/potency evidence”.

3.2.2. Performance
The higher-level assessment component “Performance” is here 

defined as “Adequate statistical fit, predictivity and appropriate 
reporting”. We placed five VRSU in this category: “model performance” 
(Schilter et al., 2014), “reproducibility of model and model prediction” 
(Cronin et al., 2019), “adequacy of the model to make a prediction for 
the stated purpose” (Cronin et al., 2019), “statistical performance” 
(Cronin et al., 2019), and “[predictive] performance” (Cronin et al., 
2022). Our analysis led us to conclude that they are similar on the basis 
that they relate to the concept of “model performance”, which broadly 
refers to the measure of model predictivity of external dataset (via 
external validation) or of the same dataset used for model development 
(via internal validation), or estimation of statistical fit in the context of 
regression models in which a measure of overfitting in a model or sta
tistical significance of model predictions are considered (Cronin et al., 
2019; Schilter et al., 2014). Consequently, we formulated “Model per
formance” as the umbrella GSU for these VRSU.

3.2.3. Mechanisms
The higher-level assessment component “Mechanisms” is here 

defined as the “Definition and interpretation of the mechanistic 

significance of the model to allow for the definition of appropriate do
mains”. Four VRSU mentioned from six studies were placed under this 
component: “mechanistic plausibility” (Pestana et al., 2021; Schultz 
et al., 2015, 2019), "mechanistic causality” (Cronin et al., 2022), 
"mechanistic relevance and interpretability” (Schultz et al., 2015) and 
"mechanistic relevance” (Cronin et al., 2019). Each relates to the 
mechanistic characterization of the effects of chemicals in biological 
systems (Table 2), which aligns with the description of Mechanism 
(Table 1).

Initial analysis led us to formulate two GSU – “Mechanistic plausi
bility” and “Mechanistic relevance”. The VRSU “mechanistic plausibil
ity” by Pestana et al. (2021), Schultz et al. (2015), and Schultz et al. 
(2019) is based on the concept of adverse outcome pathway (AOP), 
where uncertainty within it is associated with the understanding of the 
toxic causal pathways of chemicals, involving the identification of mo
lecular initiating events/key events causally linked to a target endpoint. 
Similarly, our analysis of Cronin et al. (2022), who use “mechanistic 
causality” in the context of structural alerts, describe this VRSU as the 
mechanism of action that underpins interactions of the functional group 
represented by the structural alert with physiological or biochemical 
processes in an AOP system. This led us to conclude that, as with 
mechanistic plausibility, uncertainty related to mechanistic causality 
concerns the understanding of causality as strengthened by consistency 
with sources or experimental data that demonstrate plausible biological 
or chemical reaction mechanisms. Given the similarity, we settled on 
using Mechanistic plausibility for the GSU, as it is used by OECD (OECD, 
2019) to characterize uncertainty due to, for example, incomplete un
derstanding of the mechanism of action or adverse outcome pathway of 
chemical compounds.

A second GSU, “Mechanistic relevance”, was formulated from the 
VRSU – “mechanistic relevance and interpretability” and “mechanistic 
relevance”, both of which explain the potential relevance of the causa
tive or putative mechanism of actions of chemicals in biological systems 
(Table 2). However, further analysis revealed that, although described 
using different terminology, Mechanistic relevance also relates to 
Mechanistic plausibility. As seen in Table 2, uncertainty within Mech
anistic relevance concerns knowledge gaps or unknowns in the under
standing of causative or putative explanations of the mechanism of 
action of chemicals in biological systems with regard to AOPs. This 
suggests that both Mechanistic plausibility and Mechanistic relevance 
concern the understanding of causative or putative explanations of the 
mechanism of action of chemicals; as such, Mechanistic relevance can be 
subsumed under Mechanistic plausibility. Therefore, in our framework 
(Fig. 2), the GSU “Mechanistic plausibility” not only includes the 
consideration of the causative or putative mechanism of action of 
chemicals but also the relevance of the characterized mechanisms by 
drawing on the concept of AOP, including any measurable change at 
molecular level (molecular initiating event) or key event in biological 
system (see Table S2 for the description). Lastly, we note that while 
Mechanistic relevance, as used in the analyzed studies, warrants sub
suming it under Mechanistic plausibility, this term could also be 
distinctly used to explain the biological relevance of a pathway to an 
endpoint/the test system or the relevance of the pathway to a known 
toxicant (Hartung et al., 2013). A detailed analysis of the difference 
between these two concepts was not explored in this study; thus, it re
mains for future studies to explore it.

3.2.4. Toxicokinetics
The higher-level assessment component “Toxicokinetics” is defined 

in the framework as “Appropriate consideration of metabolism and 
toxicokinetics in the model” (Table 1). Two of the VRSU align with this 
definition: “metabolic domain” (Cronin et al., 2022) and “adequate 
coverage of ADME effects” of metabolites (Cronin et al., 2019). Similar 
to Toxicokinetics, each considers the production of chemical metabolites 
as part of interaction with biological systems and the potential effects 
that result from it.
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The VRSU “metabolic domain” is limited to the knowledge of 
whether or not the production of metabolites is part of the process of 
chemical interaction with biological systems or chemical reactivity 
(Cronin et al., 2022). Here, uncertainty could concern whether the 
metabolites are known or unambiguously stated – for example, in the 
oxidation of phenols to quinone, where uncertainty arises if quinone 
production is ambiguously/poorly defined or not stated at all (Cronin 
et al., 2022). In contrast, our analysis of the second VRSU: “adequate 
coverage of ADME effects” (Cronin et al., 2019), led us to conclude that 
this uncertainty occurs if the production of a metabolite (e.g., quinone) 
is known and clearly stated, but its potential activities are poorly un
derstood, not considered, or the activities are only assumed without 
supporting evidence. Given the clear distinction between these two 
VRSU, we decided to formulate two GSU from these two VRSU: 
“Metabolic domain” from “metabolic domain” and “Coverage of ADME 
activity” from “adequate coverage of ADME effects” (Fig. 2). Here, we 
take Coverage of ADME activity more broadly to consider the potency, 
exposure, interaction with biological systems, and/or toxicity of chem
ical metabolites (Achar et al., 2020a, 2020b; Cronin et al., 2019).

3.3. The model application phase

3.3.1. Applicability
Drawing on Cronin et al. (2019), we here define the higher-level 

assessment component “Applicability” as “Use of a model to provide 
data for similar prediction problems (e.g., inferring unknown values 
from trends in the known data)”. We concluded that one of the VRSU 
that did not easily fit under any of the higher-level components in the 
original framework by Belfield et al. (2021) fit instead here: “applica
bility domain” mentioned in four papers (Cronin et al., 2019; Pham 
et al., 2019; Schilter et al., 2014; Schultz et al., 2015). These authors 
discuss applicability domain in reference to the adequacy of chemical 
space or category to predict effects of similar chemicals in a specified 
model prediction context (Table 2). This means that applicability 
domain is established prior to model application and can thus be 
assumed to be intrinsic to a model. Given the common term (i.e., 
“applicability domain”) used in these studies, we decided to formulate 
“Applicability domain” as the umbrella for this VRSU.

3.3.2. Relevance
“Relevance” is defined in this context as “Relevance of the model to 

its intended purpose and use” (Table 1). We placed seven VRSU under 
this component: "extrapolations (interspecies (animal-to-human), “ex
trapolations intraspecies (susceptible human subpopulation)”, “extrap
olations (subchronic-to-chronic)”, “extrapolations (LOAEL-to-NOAEL)” 
mentioned by Wang et al. (2012), “extrapolation of the toxicity of the 
substance of interest based on data on analogues” mentioned by Schilter 
et al. (2014), “relevance [of QSAR] to the prediction or assessment” 
(Cronin et al., 2019), and “purpose [or potential use of the structure 
alert]” (Cronin et al., 2022), on account of our analysis suggesting that 
each points to the transferability of a model or model prediction towards 
a different context.

Our analysis revealed that the first five VRSU listed under this 
component relate to the concept “extrapolation” – i.e., making pre
dictions beyond the range of the observed/known data (e.g., LOAEL 
data) in attempts to estimate or infer unknown properties (e.g., NOAEL) 
(Wang et al., 2012). Here, uncertainty arises, for example, in the use of 
uncertainty factors to cater for species differences in toxicological effect 
or where a read-across extrapolation is deemed inaccurate. As such, we 
used these VRSU to formulate the GSU “Extrapolation”.

The last two VRSU both describe uncertainties arising from the 
relevance of a model to its intended use (e.g., regulatory application). 
For example, while Cronin et al. (2019) discuss “relevance [of QSAR] to 
the prediction or assessment” as characterizing the relevance of a 
modeling approach for a specified endpoint or an intended use (e.g., 
regulatory toxicity assessment), Cronin et al. (2022) describe “purpose 

[or potential use of the structure alert]” in terms of potential use (e.g., 
with respect to product development and regulatory applications). As 
such, we formulated the GSU “Model relevance” through a combination 
of these two VRSU. Here, Model relevance is distinct from Extrapolation 
– while Model relevance points to the uncertainties residing within 
transferability of a model or model prediction to a different prediction 
context (e.g., regulatory application), uncertainties within Extrapolation 
are closely related to making inference to data outside the range of the 
available data.

4. Application of the framework to prioritize areas of 
uncertainty

This study developed a framework (Fig. 2) to aid systematic cate
gorization of sources of uncertainty across in silico toxicology methods. 
To evaluate its application as a tool for mapping out and prioritizing 
areas to consider for uncertainty during model prediction interpretation, 
uncertainty analysis, or data gap-filling exercises in specified prediction 
context(s), a case study is here used. This case study is used for illus
trative purposes only and is targeted towards a simple prediction 
problem.

4.1. Case study

The overarching aim of the study was to evaluate the performance of 
Toxicity Estimation Software Tool (TEST; v5.1.2) (US EPA, 2015) in the 
prediction of oral rat LD50 (the dose that causes death of 50% of test 
samples) – this kind of evaluation is useful when considering to apply a 
model for safety evaluation of chemicals, especially when in vivo data 
are lacking or limited (Graham et al., 2021). The performance evalua
tion was based on the agreement of TEST predicted LD50-based Globally 
Harmonized System (GHS) categories with the corresponding experi
mental LD50-based GHS categories. The GHS classification categories are 
presented in Table S3) (United Nations, 2021). The choice of the GHS 
criteria was based on its ability to provide harmonized system for clas
sifying chemicals with respect to their degree of health concerns 
(expressed in LD50 mg/kg bodyweight), as well as the ability to facilitate 
communication of chemical hazards via safety data sheets and labeling 
requirements (United Nations, 2021).

For illustrative purposes only, five organic compounds (Table 3) with 
oral rat experimental LD50 data were used (the data is available in Fir
man et al. (2022)); the experimental data allows for comparison with the 
predicted data. These compounds were deliberately selected for this 
illustration as they have different experimental LD50 values, which we 
anticipated to be useful in demonstrating model under-and over-
prediction scenarios. TEST was selected for this illustration given its 
open-source accessibility; although it is acknowledged that similar 
open-access tools are available. Only predictions from TEST Consensus 
method (average of the Hierarchical and Nearest-neighbor model pre
dictions were used as they are considered more reliable than predictions 
from the individual methods (US EPA, 2015). The chemical CASRN 
identifiers were used as input and TEST prediction options were set as: 
endpoint – oral rat LD50, method – consensus, and fragment constrain – 
relaxed. The predicted oral rat LD50 data are shown in Table 3.

4.2. Identification of relevant GSU from the case study

We proposed a checklist to support the identification and justifica
tion of GSU deemed relevant for inclusion from the case study (see 
Table 4). The left-hand side column of the checklists is the GSU from the 
framework (Fig. 2). While not all the 20 GSU may be considered relevant 
in a prediction context, we recommend that all of them should be 
included. The right-hand side column contains spaces for justifying why 
a GSU is selected.

Taken together, the case study presented here, and the checklist 
(Table 4) indicate that the GSU within the framework can be used to 
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map out areas of concern for uncertainty. Notably, the checklist makes it 
easier to: delineate and clarify which GSU are embedded within a model 
or prediction (based on the areas of concern for uncertainty), and 
document in a structured format the rationale for including the GSU – 
this makes it easy to interpret the rationale and further facilitate sub
sequent review by others. The checklist thus offers guidance to modelers 
and other stakeholders seeking to make informed decisions about which 
area of uncertainty to consider for uncertainty analysis, incorporate in 
the interpretation of prediction results, and/or prioritize for data gap 
filling.

As shown in Table 4, not all the 20 GSU may be relevant for inclusion 
in a study – i.e., relevance of a GSU depends on a study context; how
ever, whether selected or not, we argue that all the 20 GSU should 
remain in the checklist, as this will might not only reduce the risk of 
modelers overlooking potentially important GSU in a study but also help 
during a review process the risk of not selecting specific GSU. Overall, 
we note that even though it may be tempting for a modeler to, for 
example, analyze uncertainty in a study without a systematic and an 
explicit indication and subsequently justification of relevant GSU (as in 
the checklist – Table 4), similar to Achar et al. (2024c, 2024d), Jones and 
Falloon (2009) and Przybylak et al. (2012), we argue that this might 
make it unclear whether the estimated uncertainty truly reflect relevant 
areas within in silico modeling known for potential uncertainties or 
whether these areas are truly justified for inclusion in the analysis.

4.3. Consideration of the framework within the OECD’s QSAR 
Assessment Framework

The framework developed in this study addresses areas of concern 
for uncertainty in different contexts of in silico toxicology modeling. 
Indeed, it is anticipated that the framework will be a valuable reference 
tool in regulatory decision-making processes as it aligns with the prin
ciples in the OECD’s proposed (Q)SAR Assessment Framework (QAF), as 
well as extends the discussions within the principles (OECD, 2023; Gissi 
et al., 2024)). QAF is based on the 2007 OECD principles for the vali
dation of QSARs (OECD, 2007). The QAF provides four principles to 
guide the assessment of QSAR results from multiple predictions with the 
goal of supporting regulatory decision-making: (1) the model input(s) 
should be correct, (2) the substance should be within the applicability 
domain of the model, (3) the prediction(s) should be reliable, and (4) the 
outcome should be fit for the regulatory purpose (OECD, 2023). The 
scheme lays out two sets of assessment elements that must be considered 
before model predictions can be used in regulatory decisions. The first 
set is based on the 2007 OECD guidance principles for QSAR validation 
(summarized on left side of Fig. 3) (OECD, 2007), while the second set is 

based on the 2023 OECD guidance on the assessment of QSAR pre
dictions (summarized on right side of Fig. 3) (OECD, 2023).

QAF does not in itself provide a systematic categorization of diverse 
sources of uncertainty based on model components and modeling phases 
(as in our framework – Fig. 2); however, a number of issues and con
ditions raised in it with respect to regulatory application and acceptance 
of QSARs constitute the basis for the development of our framework. For 
example, within QAF, transparency and quality of experimental data for 
model building are key elements to consider in the assessment of the 
level of confidence in a model and predictions. As discussed in Section 1
and illustrated through the checklist (Table 4), our framework is simi
larly based on the understanding that in silico models and their pre
dictions should be transparently reported to promote transparent 
evaluation of whether they are fit for defined purpose – this includes 
transparent accounting for uncertainty. In another example, similar to 
our framework, the 3rd principle in QAF recognizes that QSARs are 
associated with limitations with respect to, for example, physicochem
ical, structural and response spaces upon which they can generate reli
able predictions and, at the same time, highlight issues related to model 
performance (OECD, 2023). In other words, these similarities suggest 
that the principles and our framework both recognize that the validity 
and uncertainty issues associated with the conceptual basis of models as 
well as the adequacy of model predictions are important considerations 
when evaluating whether models and predictions are fit-for-purpose.

Despite the similarities, our framework goes beyond the areas 
addressed in QAF (thus extending QAF) in different ways. For example, 
QAF’s primary focus is the characterization of levels of uncertainty 
associated with the elements based on semi-qualitative uncertainty 
scales of “low”, “medium”, or “high”. The goal here is to determine (by 
balancing risk against benefits) whether the levels of uncertainty are 
acceptable within a given regulatory context. However, it is not always 
clear how much detail should be considered under the elements or what 
kind of uncertainty-related information is pertinent for an element to 
guide the characterization process. For example, despite the recom
mendation about the need to ensure quality of the underlying experi
mental data, QAF does not give a comprehensive characterization of 
what data quality entails (only data relevance and reliability are 
mentioned); rather, it open-endedly recommends that “the quality of 
individual data should also be assessed to the extent possible” (OECD, 
2023; p14). In our framework, therefore, we not only expand consid
eration of data quality by proposing two additional indicators (data 
accuracy and validity) but also introduce two other aspects of data (i.e., 
data quantity and balance). In so doing, our framework aligns with the 
working principles of EFSA (Benford et al., 2018) and WHO/IPCS 
(2008), where comprehensive and explicit identification of possible 

Table 3 
Information about the five compounds used for the illustration and their experimental and model-predicted LD50 data and LD50-based GHS categories.

Compound CASRN Structure Experimental data TEST Consensus data

Rat (mg/kg) GHS category Rat (mg/kg) GHS category

Demeton-O 298-03-3 7.5 2 6.1 2

Muscimol 2763-96-4 45 2 146 2

Dimethylvinphos 2274-67-1 98 3 759.67 4

4-(1-Phenylethyl)benzene-1,3-diol 85-27-8 500 4 4324 5

Quintiofos 1776-83-6 150 3 24 2
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Table 4 
A checklist used to highlight which GSU is relevant to consider from the case 
study. For each GSU selected, the corresponding justification is provided. 
Selected GSU is indicated by the ticked box ( ), while an empty box ( ) in
dicates that a GSU is not selected/considered relevant.

GSU Justification for selecting a GSU

Data quantity ​

Data balance ​

Data relevance TEST is built on a large amount of data (i.e., 7413 
available in ChemIDplus database) collated from 
different studies and with multiple LD50 values for the 
same compound or isomers with different LD50 (US 
EPA, 2015), suggesting that some level of data 
variability is expected (Karmaus et al., 2022). When 
relying upon such heterogeneous data to predict LD50, 
it thus becomes relevant to ask whether all the data are 
appropriate for making the predictions – e.g., do the 
data reflect appropriate/realistic chemical doses or 
exposure scenarios for rats?

Data reliability As explained under Data relevance, TEST modeling 
data has a high degree of variability. It should be 
noted that even with curation, such data may still 
suffer from reliability issues (e.g., in terms of data 
reproducibility), which ultimately impact the model 
prediction accuracy (Hoffmann et al., 2010; Karmaus 
et al., 2022). The fact that TEST does not report the 
reliability of the data suggests the need to factor in this 
GSU when interpreting the oral rat LD50 results.

Data accuracy
Table 3 shows that the experimental LD50-based GHS 
categories for the five chemicals do not match their 
predicted LD50-based GHS categories (e.g., Quintiofos 
lies within GHS category 3 (according to its 
experimental LD50 value), while its predicted GHS 
category is 2. According to Gromek et al. (2022) and 
Langley (2005), such discrepancies may reflect 
inaccuracy in data on which a model is built. Thus, it is 
important to consider data accuracy as a source of 
uncertainty, especially when propagating uncertainty 
to the predicted results (Kopańska et al., 2023).

Data validity In the TEST user manual, the oral rat LD50 predictive 
abilities of TEST are considered as “not good” due to 
experimental uncertainty (US EPA (2015). Data 
validity is well recognized as a contributor to this type 
of uncertainty, attributed to the use of experimental 
data generated using procedures that partially or do 
not adhere to OECD Test guidelines or conform to 
good laboratory practice standards (Madden et al., 
2020; Pham et al., 2019). The fact that this 
information is not characterized within the model 
presents a knowledge gap when judging the level of 
validity of the data.

Chemical structure ​

Chemical similarity From the TEST prediction output, structural similarity 
coefficients for the five chemicals range from 0.57 to 
0.81 (data not shown). Given this wide range of 
similarity (with as low as 0.57), it remains relevant to 
question, for example, whether the structurally 
diverse analogues may have dissimilar toxicological 
properties to the target compounds and how this 
might have influenced the accuracy of the predicted 
LD50 values.

Descriptor 
relevance

TEST is developed from a pool of 797 2-dimensional 
descriptors, including classes such as molecular 
property (e.g., octanol-water partition coefficient) and 
molecular fragment counts (US EPA, 2015). A notable 
drawback in using such many descriptors is that there 
is no obvious way of determining whether each 
descriptor is relevant to the predicted LD50, the extent 
to which the descriptors were considered relevant, or 
relative importance to the prediction output.

Table 4 (continued )

GSU  Justification for selecting a GSU

Descriptor 
concordance

​

Model structure ​

Activity/potency The predicted LD50 data assume that each chemical 
dose (in a statistical sense) will lead to 50% mortality 
in the rat population. However, according to 
Hoffmann et al. (2010), this assumption should be 
questioned, especially when asking whether the doses 
are realistic or representative of actual exposure 
scenarios involving the target animals and whether 
the doses will result in the recorded potency outcome.

Activity/potency 
evidence

In decision-making contexts, where the basis on which 
the conclusions about the validity or reliability of the 
predicted rat LD50 data should be made, questions 
related to the weight of evidence that supports the 
conclusions are also pertinent to this discussion (
Pestana et al., 2021; Schultz et al., 2019). For 
example, given the discrepancies between the in vivo 
and predicted LD50 values of the five compounds (
Table 3), are there other consistent lines of evidence 
(e.g., similar values obtained from other methods like 
in vitro assays) to support the conclusion?

Model performance Model performance is here evaluated based on the 
ability of the model to accurately classify the predicted 
LD50 data. The overall evaluation of model 
performance across GHS categories indicates that the 
model accurately predicted GHS categories for 3/5 of 
the compounds (Table 3). However, the recorded 
under-and over-predictions (one in each case) raise 
questions about the level of reliability of the model for 
producing true positive/negative classifications 
(especially in the absence of in vivo data), or the rate at 
which incorrect (over- or under) predictions might 
occur in a large dataset.

Mechanistic 
plausibility

​

Metabolic domain ☑ Consideration of chemical biotransformation is 
important for characterizing whether toxicity 
emanates from the parent compound or its metabolite 
(s) (Burden et al., 2016). While TEST can generate 
transformation products of compounds, it does not 
factor in any critical metabolite in the estimation of rat 
oral LD50. For example, Demeton-O (Table 3) is known 
to produce the more toxic Demeton-S metabolite (LD50 

of 1.5 mg/kg) in rats (Barnes and Denz, 1954); 
however, this is not accounted for in the predicted 
value (Table 3). During uncertainty analysis or 
interpretation of the predicted data, it thus remains 
relevant to consider the consequences of not including 
the influence of such toxic metabolite (Burden et al., 
2016).

Coverage of ADME 
activity

​

Applicability 
domain

☑ TEST Consensus model considers a prediction to be 
within its applicability domain provided the 
prediction is within the applicability domains of the 
Hierarchical clustering and Nearest neighbor models (
US EPA, 2015). However, it remains unknown how 
representative the chemical spaces covered by the 
Hierarchical clustering and Nearest neighbor models 
are, particularly when considering the possibility that 
more relevant and structurally similar compounds 
may not have been covered by either (Zhu et al., 
2009).

Extrapolation ☐ ​
Model relevance ☑ One of the problems realized in the study above is 

over-and under-predictions (Table 3). This makes it 
important to consider uncertainty regarding the 
relevance of the models for hazard classification in a 
regulatory context. For example, where conservative 
predictions are desired as a health-protective strategy, 
under-prediction incidences (Table 3) are not 

(continued on next page)

J. Achar et al.                                                                                                                                                                                                                                   Regulatory Toxicology and Pharmacology 154 (2024) 105737 

10 



sources of uncertainty deemed to have the potential of altering 
conclusion drawn from predictions are key.

QAF is built on the premise that the usefulness of QSAR model(s) and 
the adequacy of their predictions are judged based on model perfor
mance in terms of the measures of goodness-of-fit and predictivity, and 
the consequence of the model(s) and predictions being uncertain. Our 
framework extends this understanding by further arguing that it might 
not always be beneficial to only consider these performance parameters, 
especially when assessing complex regulatory endpoints that are not 
well mechanistically understood (Cronin et al., 2019, 2022; Pestana 
et al., 2021; Schultz et al., 2019). Instead, the adequacy of QSARs to 
provide predictions with acceptable levels of confidence (which then 
rules out the need for any in vivo testing) should also be judged based on 
lines of evidence (presented in the framework as “Activity/potency ev
idence” – Fig. 2) from other decision-support methods such as in vitro 
tests. This is in line with the EFSA guidance on weight of evidence 
approach, which emphasizes the need to integrate and weight similar 
types of evidence to in silico predictions in order to improve confidence 
in the predicted outcome (EFSA et al., 2017). Such evidence can guide 
expert review processes aimed at determining the robustness of the 
models as well as the accuracy of their predictions (Pestana et al., 2021).

Within QAF, models (in the case of QSAR Model Reporting Format) 
and predictions (in the case of QSAR Prediction Reporting Format) are 
defined as separate steps (Fig. 3) when indeed, they should be defined as 
interconnected steps (Barber et al., 2024). This is true for reasons such as 
model predictions can only be trusted (and consequently accepted) if the 
model is suitable and robust enough to make the predictions within a 
defined applicability domain and if the reliability of the predictions can 
be ascertained (Barber et al., 2024). In attempts to incorporate this 
interconnection, our framework, therefore, shows connections between 
the proposed modeling phases (creation, characterization and applica
tion) (Fig. 2). The idea here is to promote a holistic view of the entire 
modeling process (which includes a model and prediction) and enable a 
better understanding of how different components in different phases 
might interact or the implications of changes in one phase on the entire 
modeling process.

5. Discussion and conclusion

A general uncertainty categorization framework that aids a 

structured means of identifying, categorizing, and describing diverse 
sources of uncertainty associated with in silico toxicology models and 
their predictions could promote the alignment of terminologies for 
describing the sources of uncertainty and contribute to transparent 
communication with decision-makers about the models and their pre
dictions (Alexander-White et al., 2022; ECHA, 2012; Kirchner et al., 
2021). This study contributes to the development of such a framework.

We analyzed studies that have categorized sources of uncertainty 
across different in silico toxicology methods. Our analysis reveals that 
there is little overlap between the studies in terms of the kind and 
number of uncertainty sources they cover within as well as across the 
methods they describe, which, therefore, suggests the need for a general 
framework that covers a wide range of uncertainty sources across the 
methods. Additionally, as discussed in Section 3, there is little alignment 
in the terminologies used to describe the same sources of uncertainty. In 
a similar analysis of terminologies used in different uncertainty typol
ogies in the general risk assessment literature, Skinner et al. (2014a,b)
noted that such a lack of harmonization of terminologies presents a gap 
in the literature, as it does not only lead to confusion about the meaning 
of the uncertainty sources but also contributes to poor communication of 
the sources with stakeholders.

In an attempt to fill the highlighted gaps, we developed a framework 
(Fig. 2) that covers the different sources of uncertainty described in the 
analyzed studies and harmonizes terminologies used in describing 
similar uncertainty sources. While the framework is based on the 
framework by Belfield et al. (2021), we see our contributions in three 
ways. Firstly, we modified the framework by specifically tailoring it 
towards areas of uncertainty relevant to in silico toxicology modeling. 
This was done by introducing two new components (i.e., “Similarity” 
and “Applicability”), which, similar to Cronin et al. (2019), we argue to 
be more relevant for describing uncertainty sources in in silico toxicology 
modeling than “Description” and “Usability” proposed in the framework 
by Belfield et al. (2021). Secondly, we assessed, compared, and syn
thesized existing uncertainty sources in the analyzed studies and showed 
that these uncertainty sources, despite being discussed under different in 
silico toxicology methods, can be systematically categorized under the 
modified framework to form a more comprehensive uncertainty cate
gorization framework. Lastly, our framework draws on diverse experi
ences and perspectives on sources of uncertainty in the in silico 
toxicology modeling literature as well as the recently OECD’s proposed 
QAF (OECD, 2023). Thus, relative to the one proposed by Belfield et al. 
(2021) (or the original framework by Cronin et al. (2019)), it can be 
argued that our framework is more representative of areas of uncer
tainty identified by multiple modelers. In other words, the importance of 
our framework is in its conceptual breadth and ability to provide a more 
holistic picture of the diversity of sources of uncertainty in in silico 
toxicology methods. As further illustrated in the Case study under Sec
tion 4, we have shown that the introduced general sources of uncertainty 

Table 4 (continued )

GSU  Justification for selecting a GSU

desirable. On the other hand, over-prediction raises 
the question about whether false classification of less 
toxic (or safe) chemicals as more toxic (or toxic) might 
lead to potentially beneficial compounds being 
abandoned during chemical/drug development.

Fig. 3. A summary of the principles and elements outlined in the 2023 OECD’s proposed QAF. The elements are bulleted under the principles.
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(GSU) can provide a more nuanced understanding and practical way of 
prioritizing specific areas within an in silico toxicology prediction for 
uncertainty analysis or for addressing uncertainty.

With the overarching aim of fostering a structured (and potentially 
more transparent) understanding of where uncertainties reside, our 
framework (Fig. 2) and the checklist (Table 4) can help modelers to 
reduce the risk of overlooking particular uncertainty sources during 
modeling, prioritize sources to dedicate efforts and resources for un
certainty analysis, and critically reflect on appropriate strategies to 
reduce and (where possible) eliminate uncertainties. Alternatively, the 
use of the framework could help increase transparency and trust in a 
model or modeling exercise, especially with regards to communicating 
uncertainties between modelers and relevant stakeholders – this is in 
line with the working principles of OECD (2007, 2023) and WHO/IPCS 
(2008), where transparency and trust are key to regulatory acceptance 
of models and predictions.

The proposed framework is intended to be as flexible as possible; 
thus, future studies may continue refining it. Moving forward, we are 
currently exploring other ways to test its practical application in iden
tifying and characterizing uncertainties in the context of in silico pre
dictions of a diverse and larger number of compounds. Lastly, we would 
like to acknowledge the difficulty of developing a framework that covers 
all possible sources of uncertainty; thus, while our framework covers 
several GSU within in silico toxicology modeling, we refrain from 
claiming to have developed a “standard” framework to this end. Addi
tionally, we would also like acknowledge that it is possible that the 
literature search criteria applied in our study (under Section 2) might 
have led to some sources of uncertainty or the (grey) literature in in silico 
toxicology methods not being captured. Nevertheless, believe that this 
potential limitation did not affect the conceptual breadth of our 
framework.
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Walker, W.E., Harremoës, P., Rotmans, J., Sluijs, J.P. van der, Asselt, M.B.A. van, 
Janssen, P., Krauss, M.P.K. von, 2003. Defining uncertainty: A conceptual basis for 
uncertainty management in model-based decision support. Integr. Assess. 4 (1), 
5–17. https://doi.org/10.1076/iaij.4.1.5.16466.

Wang, N.C.Y., Jay Zhao, Q., Wesselkamper, S.C., Lambert, J.C., Petersen, D., Hess- 
Wilson, J.K., 2012. Application of computational toxicological approaches in human 
health risk assessment. I. A tiered surrogate approach. Regul. Toxicol. Pharmacol. 63 
(1), 10–19. https://doi.org/10.1016/j.yrtph.2012.02.006.

WHO/IPCS, 2008. Part 1: Guidance Document on Characterizing and Communicating 
Uncertainty in Exposure Assessment, sixth ed. World Health Organization 
https://www.who.int/ipcs/methods/harmonization/areas/uncertainty20.pdf.

Zhu, H., Martin, T.M., Ye, L., Sedykh, A., Young, D.M., Tropsha, A., 2009. QSAR 
modeling of rat acute toxicity by oral exposure. Chem. Res. Toxicol. 22 (12), 
1913–1921. https://doi.org/10.1021/tx900189p.

J. Achar et al.                                                                                                                                                                                                                                   Regulatory Toxicology and Pharmacology 154 (2024) 105737 

13 

https://doi.org/10.1007/s00204-021-03205-x
https://doi.org/10.1186/1758-2946-3-24
https://doi.org/10.1186/1758-2946-3-24
https://doi.org/10.1016/j.comtox.2024.100326
https://doi.org/10.1016/j.comtox.2024.100326
https://doi.org/10.1016/j.yrtph.2020.104816
https://doi.org/10.1016/j.yrtph.2020.104816
https://doi.org/10.1016/j.yrtph.2021.105109
https://doi.org/10.1016/j.yrtph.2021.105109
http://refhub.elsevier.com/S0273-2300(24)00178-8/sref30
http://refhub.elsevier.com/S0273-2300(24)00178-8/sref30
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1016/j.yrtph.2010.08.004
https://doi.org/10.1016/j.yrtph.2010.08.004
https://doi.org/10.1007/978-90-481-2636-1_13
https://doi.org/10.1093/toxsci/kfac042
https://doi.org/10.1093/toxsci/kfac042
https://doi.org/10.1016/j.envsoft.2020.104905
https://doi.org/10.1007/s00204-023-03557-6
https://doi.org/10.1007/s00204-023-03557-6
https://www.wellbeingintlstudiesrepository.org/appamet/1
https://www.wellbeingintlstudiesrepository.org/appamet/1
https://doi.org/10.1177/0261192920965977
http://refhub.elsevier.com/S0273-2300(24)00178-8/sref37
http://refhub.elsevier.com/S0273-2300(24)00178-8/sref37
http://refhub.elsevier.com/S0273-2300(24)00178-8/sref37
http://refhub.elsevier.com/S0273-2300(24)00178-8/sref37
http://refhub.elsevier.com/S0273-2300(24)00178-8/sref37
https://doi.org/10.1787/9789264085442-en
https://www.oecd-ilibrary.org/environment/guiding-principles-and-key-elements-for-establishing-a-weight-of-evidence-for-chemical-assessment_f11597f6-en
https://www.oecd-ilibrary.org/environment/guiding-principles-and-key-elements-for-establishing-a-weight-of-evidence-for-chemical-assessment_f11597f6-en
https://www.oecd-ilibrary.org/environment/guiding-principles-and-key-elements-for-establishing-a-weight-of-evidence-for-chemical-assessment_f11597f6-en
https://www.oecd-ilibrary.org/environment/q-sar-assessment-framework-guidance-for-the-regulatory-assessment-of-quantitative-structure-activity-relationship-models-and-predictions_d96118f6-en
https://www.oecd-ilibrary.org/environment/q-sar-assessment-framework-guidance-for-the-regulatory-assessment-of-quantitative-structure-activity-relationship-models-and-predictions_d96118f6-en
https://www.oecd-ilibrary.org/environment/q-sar-assessment-framework-guidance-for-the-regulatory-assessment-of-quantitative-structure-activity-relationship-models-and-predictions_d96118f6-en
https://doi.org/10.1016/j.yrtph.2020.104592
https://doi.org/10.1016/j.yrtph.2020.104592
https://doi.org/10.1016/j.yrtph.2020.104855
https://doi.org/10.1016/j.cotox.2019.04.001
https://doi.org/10.1080/1062936X.2012.664825
https://doi.org/10.1002/minf.201000177
https://doi.org/10.1177/026119291304100110
https://doi.org/10.1002/minf.201200131
https://doi.org/10.1002/minf.201200131
https://doi.org/10.22284/QR.2018.19.2.61
https://doi.org/10.22284/QR.2018.19.2.61
https://doi.org/10.1016/j.yrtph.2013.08.018
https://doi.org/10.1016/j.yrtph.2015.05.016
https://doi.org/10.1016/j.comtox.2018.10.003
https://doi.org/10.1016/j.comtox.2018.10.003
https://doi.org/10.1080/13669877.2013.794150
https://doi.org/10.1080/10807039.2013.779899
https://doi.org/10.3233/SHTI230414
https://webapps.ilo.org/static/english/protection/safework/ghs/ghsfinal/ghsc05.pdf
https://webapps.ilo.org/static/english/protection/safework/ghs/ghsfinal/ghsc05.pdf
https://www.epa.gov/sites/default/files/2015-09/documents/efh-chapter02.pdf
https://www.epa.gov/sites/default/files/2015-09/documents/efh-chapter02.pdf
https://www.epa.gov/comptox-tools/toxicity-estimation-software-tool-test
https://www.epa.gov/comptox-tools/toxicity-estimation-software-tool-test
https://www.epa.gov/pesticide-registration/quantitative-structure-activity-relationship-qsar-guidance-document
https://www.epa.gov/pesticide-registration/quantitative-structure-activity-relationship-qsar-guidance-document
https://doi.org/10.1076/iaij.4.1.5.16466
https://doi.org/10.1016/j.yrtph.2012.02.006
https://www.who.int/ipcs/methods/harmonization/areas/uncertainty20.pdf
https://doi.org/10.1021/tx900189p

	A framework for categorizing sources of uncertainty in in silico toxicology methods: Considerations for chemical toxicity p ...
	1 Introduction
	2 Identification and verbatim recording of sources of uncertainty (VRSU) in the literature
	3 Categorizing VRSU and formulating GSU
	3.1 The model creation phase
	3.1.1 Data
	3.1.2 Structure
	3.1.3 Similarity
	3.1.4 Descriptors

	3.2 The model characterization phase
	3.2.1 Modeling
	3.2.2 Performance
	3.2.3 Mechanisms
	3.2.4 Toxicokinetics

	3.3 The model application phase
	3.3.1 Applicability
	3.3.2 Relevance


	4 Application of the framework to prioritize areas of uncertainty
	4.1 Case study
	4.2 Identification of relevant GSU from the case study
	4.3 Consideration of the framework within the OECD’s QSAR Assessment Framework

	5 Discussion and conclusion
	CRediT authorship contribution statement
	Funding information
	Declaration of competing interest
	Appendix A Supplementary data
	datalink3
	References


