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Abstract
Background: The prediction of ischaemic stroke in patients with heart failure 
with reduced ejection fraction (HFrEF) but without atrial fibrillation (AF) re-
mains challenging. Our aim was to evaluate the performance of machine learning 
(ML) in identifying the development of ischaemic stroke in this population.
Methods: We performed a post- hoc analysis of the WARCEF trial, only includ-
ing patients without a history of AF. We evaluated the performance of 9 ML mod-
els for identifying incident stroke using metrics including area under the curve 
(AUC) and decision curve analysis. The importance of each feature used in the 
model was ranked by SAPley Additive exPlanations (SHAP) values.
Results: We included 2213 patients with HFrEF but without AF (mean age 
58 ± 11 years; 80% male). Of these, 74 (3.3%) had an ischaemic stroke in sinus 
rhythm during a mean follow- up of 3.3 ± 1.8 years. Out of the 29 patient- 
demographics variables, 12 were selected for the ML training. Almost all ML 
models demonstrated high AUC values, outperforming the CHA2DS2- VASc 
score (AUC: 0.643, 95% confidence interval [CI]: 0.512–0.767). The Support 
Vector Machine (SVM) and XGBoost models achieved the highest AUCs, with 
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1  |  INTRODUCTION

The global prevalence of heart failure (HF), particularly 
in developed countries, is increasing, largely attribut-
able to an ageing population.1,2 Despite advancement in 
treatments, heart failure with reduced ejection fraction 
(HFrEF) remains a significant concern, often leading to 
poor outcomes.3 Ischaemic stroke profoundly affects pa-
tients with HF, who face a higher risk compared to indi-
viduals without AF, leading to worsening prognoses and 
increased hospitalisation costs.4

Atrial fibrillation (AF) is a significant contributor to isch-
aemic stroke in patients with HF, yet an elevated stroke risk 
persists even in those in sinus rhythm, particularly in cases 
of HFrEF.5 Clinical trials have primarily focused on assess-
ing the effectiveness of prophylactic oral anticoagulants in 
HFrEF patients are in sinus rhythm,6–9 but identification of 
high risk patients with HFrEF where anticoagulation shows 
a net clinical benefit remains suboptimal.

For example, the Warfarin versus Aspirin in Reduced 
Cardiac Ejection Fraction (WARCEF) Trial, a pivotal ran-
domised controlled trial (RCT), examined the incidence 
of clinical events—a composite of death, ischaemic stroke 
and bleeding—in patients with HFrEF treated with either 
warfarin or aspirin.6 Although the primary endpoint of the 
trial showed no significant differences between the two 
groups, secondary analyses showed a significant reduction 
in ischaemic stroke incidence among patients treated with 
warfarin, but at the cost of higher major bleeding.6 Post- hoc 
analysis of WARCEF study identified that factors such as 
prior stroke, left ventricular ejection fraction (LVEF), resting 
heart rate (HR) and time in therapeutic range (TTR) among 
warfarin- treated patients significantly influenced the oc-
currence of ischaemic events.10–12 However, the accuracy 
of these factors in predicting ischaemic stroke risk during 
sinus rhythm remains uncertain. This uncertainty arises 
partly because the WARCEF trial cohort included approxi-
mately 13% of patients who either had some history of AF 
or developed AF during the follow- up.

Machine learning (ML) has emerged as a promising 
method in contemporary clinical research, rapidly gaining 
prevalence. Prior studies demonstrated the ability of ML 
to identify patients developing AF during follow- up.13,14 
However, research on the ML prediction of ischaemic 
stroke in patients with HFrEF but without AF remains 
limited. We aimed to assess the performance of ML to 
identify risk factors for ischaemic stroke in patients with 
HFrEF in sinus rhythm.

2  |  METHODS

2.1 | Study design

We conducted a ML- driven analyses to identify risk fac-
tors for ischaemic stroke incident utilising the data from 
the WARCEF trial. The conceptual framework and pri-
mary outcomes of this trial have been published else-
where.6 Briefly, the trial was a 1:1 RCT that compared the 
efficacy of warfarin with aspirin, in patients with HFrEF, 
characterised by a LVEF of 35% or less, who were in sinus 
rhythm. The trial was conducted between October 2002 
to January 2010, recruited a total of 2305 patients across 
168 centres in 11 countries, with follow- up periods lasting 
6 years (mean duration 3.5 ± 1.8 years).

The WARCEF study was conducted in adherence to 
the ethical guidelines stipulated in the Declaration of 
Helsinki and received approval from the Institutional 
Review Boards and ethics committees of the coordinating 
centres at all participating sites. This post- hoc analysis uti-
lised anonymised WARCEF datasets.

2.2 | Study endpoint

We selected patients who did not have a history of AF, 
with demographic data missing in less than 50% of cases, 
as our study population. The incidence of ischaemic 

0.874 (95% CI: 0.769–0.959) and 0.873 (95% CI: 0.783–0.953), respectively. The 
SVM and LightGBM consistently provided significant net clinical benefits. Key 
features consistently identified across these models were creatinine clearance 
(CrCl), blood urea nitrogen (BUN) and warfarin use.
Conclusions: Machine- learning models can be useful in identifying incident is-
chaemic strokes in patients with HFrEF but without AF. CrCl, BUN and warfarin 
use were the key features.

K E Y W O R D S

heart failure with reduced ejection fraction, machine learning, stroke

 13652362, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/eci.14360 by L

IV
E

R
PO

O
L

 JO
H

N
 M

O
O

R
E

S U
N

IV
, W

iley O
nline L

ibrary on [02/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



   | 3 of 12ISHIGUCHI et al.

stroke during sinus rhythm was set as the study endpoint. 
We excluded ischaemic stroke events that occurred after 
the development of AF in patients who developed AF dur-
ing the follow- up period.

2.3 | Data pre- processing

We analysed data on patient baseline demographics, in-
cluding variables previously identified as critical factors 
for ischaemic stroke in prior post- hoc analyses. These 
variables included LVEF, history of stroke and resting 
HR.10,11,15 For continuous variables, outliers were identi-
fied using a Z- score threshold of greater than ±3 in a nor-
mal distribution. In non- normal distributions, Tukey's 
outlier detection method was applied, identifying values 
less than 3 times the interquartile range (IQR) plus the 
first quartile or greater than 3 times the IQR plus the third 
quartile. The Miceforest programme was employed for 
the imputation of these outlier variables, along with other 
missing values, including categorical data.

From the analysed variables, we selected 12 features for 
inclusion into the ML models. This selection was guided 
by the application of the Boruta algorithm, informa-
tion gain analysis and the Least Absolute Shrinkage and 
Selection Operator (LASSO) technique.16 To assess mul-
ticollinearity among the selected features, Pearson cor-
relation coefficients (R- values) and the Variance Inflation 
Factor (VIF) were calculated for each variable to evaluate 
multicollinearity. For categorical variables exhibiting R- 
values of ≥0.7, one of each pair was omitted. When con-
tinuous variables with R- values ≥0.7 or a VIF exceeding 
10 were identified, one variable from each correlated pair 
was then binarised by its mean or median value to miti-
gate the effects of multicollinearity. If binarising the one 
variable did not sufficiently mitigate multicollinearity, the 
other variable in the pair was also binarised.

2.4 | Machine learning

We compared the efficacy of 9 ML models in identifying 
patients who developed ischaemic stroke. These models 
included CatBoost, Decision Tree (DT), Light- Gradient 
Boosting Machine (LightGBM), K- Nearest Neighbours 
(KNN), Logistic Regression (LR), Multi- Layer Perceptron 
(MLP), Random Forest (RF), Support Vector Machine 
(SVM) and XGBoost.

The cohort was partitioned into a training set (80%) 
and a test set (20%). Due to the imbalanced nature of the 
population, with a smaller proportion of patients with 
ischaemic stroke (74 out of 2213 patients; 3.3%), we em-
ployed the Synthetic Minority Over- sampling Technique 

(SMOTE)17 for resampling the training cohort. Each 
model underwent training with adjusted hyperparame-
ters, optimised through grid search results. To ensure the 
robustness and reliability of our findings, we conducted 
cross- validations five times for the training cohort in each 
model. Upon establishing the optimal settings for each 
model, we evaluated the importance of each feature using 
Shapley Additive exPlanations (SHAP) values.18

2.5 | Statistical analysis

Variables with normal distributions were represented as 
mean ± standard deviation, while those with non- normal 
distributions were presented as medians with interquar-
tile ranges (IQR; first and third quartiles). The Mann–
Whitney U test was used to compare these variables. 
Categorical variables were expressed as numbers with per-
centages and compared using the Chi- squared test. The 
performance of each ML algorithm was evaluated based 
on the area under the curve (AUC) with a 95% confidence 
interval (CI), alongside the optimal threshold determined 
by the Youden index applied across various metrics. The 
metrics involved precision (true positive number / total 
positive number), recall (sensitivity, true positive num-
ber/total ischaemic stroke number), F1 score (2 × [preci-
sion × recall]/[precision + recall]), accuracy ([true positive 
number + true negative number]/total number) and speci-
ficity. Receiver operator curves (ROC) were delineated for 
each model comparison. The CHA2DS2- VASc score was 
included as a reference in the ROC analysis, using the en-
tire cohort rather than the test cohort. Additionally, deci-
sion curve analysis (DCA) was also conducted to evaluate 
the net clinical benefit of each model. For the sensitivity 
analysis, we conducted ML analysis on a cohort superfi-
cially excluding individuals who had a history of AF as 
well as those who developed with incident AF during the 
study period. Results were presented statistically signifi-
cant at a p- value of less than .05. All statistical analyses 
were performed using R version 4.0.4. All programming 
tasks were executed using Python 3.10.12.

3  |  RESULTS

3.1 | Study cohort

Of the total WARCEF cohort (n = 2305 randomised), we 
excluded 86 patients with prior history of AF, and an addi-
tional 6 with excessive (≥50%) missing data, leaving 2213 
eligible for the current analysis (mean age 58 ± 11 years; 
80% male). Among these, 215 (9.7%) patients developed 
AF during follow- up. Additionally, 74 (3.3% of the 2213 
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initially eligible patients) developed ischaemic stroke dur-
ing follow- up (3.3 ± 1.8 years). In patients who developed 
AF, 13 events were documented after the development of 
AF. These events were not included as outcomes.

3.2 | Patient demographics

Patient demographics are detailed in Table  1. Patients 
who developed ischaemic stroke during the study were 
significantly more likely to have a prior stroke compared 
to those who did not (26% vs. 10%, p < .001). The stroke 
incidence was lower in patients randomised to warfarin 
compared to patients randomised to aspirin. Furthermore, 
patients with ischaemic stroke had lower creatinine clear-
ance (CrCl) and higher blood urea nitrogen (BUN) levels, 
although these differences did not reach statistical signifi-
cance (p = .065 for CrCl and p = .101 for BUN).

3.3 | Preprocessing variables

The missing rates for the variables were generally low (the 
median value of 0.1%). The highest missing rate was ob-
served in the use of statin at 28%. A small proportion of 
values for systolic blood pressure (BP), heart rate (HR), 
creatinine clearance (CrCl) and blood urea nitrogen 
(BUN) were identified as outliers, accounting for 0.39%, 
0.04%, 5% and 1% of the data, respectively. These variables 
were imputed using the MiceForest program.

3.4 | Features selection

All the 29 variables encompassing patient demographics 
were organised according to their rankings as determined 
by Boruta algorithm (Figure  S1A), the information gain 
(Figure  S1B), and the LASSO techniques (Figure  S1C). 
Among the variables that ranked high by any of these 
methods, systolic BP was excluded due to the highest 
VIF of 94, with a significant correlation with diastolic BP 
(R = 0.65). The use of antiplatelet agents was also excluded 
due to their high correlation with warfarin use (R = 0.95). 
Warfarin use was retained because of its relevance to the 
outcome. Remaining 12 variables were selected as fea-
tures for the ML models. These variables include age, body 
mass index, diastolic BP, BUN, diabetes mellitus, CrCl, 
educational status, Haemoglobin, a history of stroke, HR, 
LVEF and warfarin use. Age, BMI, diastolic BP, HR, LVEF 
and haemoglobin levels were dichotomized based on their 
mean values due to high VIFs of 34, 42, 47, 37, 13 and 74, 
respectively. The final VIF values in these features are pre-
sented in Table S1.

3.5 | Performance of each machine 
learning model

Table  2 details the performance metrics for each ML 
model. Table S2 shows the optimal hyperparameters iden-
tified through grid search.

All models in our study exhibited AUC values higher 
than those of the CHA2DS2- VASc score (AUC 0.643, 
95%CI: 0.512–0.767), although the improvement over this 
score was modest in the case of LR, as shown in Figure 1. 
The SVM model (AUC: 0.874, 95% CI: 0.769–0.959) and 
XGBoost model (0.873, 95% CI: 0.783–0.953) demon-
strated high AUC values (≥0.85). Furthermore, the RF and 
LightGBM models exhibited high specificity (≥0.9).

DCA was performed to compare the net clinical ben-
efit among the ML models (Figure  2). Except for LR 
model and CatBoost, all other models exhibited a higher 
net clinical benefit compared to the scenario of treating 
all patients. Remarkably, when the threshold probability 
was set below 0.2, both the SVM and LightGBM models 
consistently demonstrated a significant net clinical bene-
fit. Similarly, the XGBoost model sustained a net clinical 
benefit at a threshold probability set below 0.15.

In the sensitivity analysis, we conducted analyses spe-
cifically excluding patients with either a history of AF or 
incident AF, comprising of 1998 subjects. The results from 
this refined cohort remained consistent with our initial 
findings (Table S3). The AUC exceeded 0.8 for all models, 
with the lone exception of the LR model. Additionally, the 
specificity exceeded 0.9 in all models except for the LR and 
DT models.

3.6 | Important features

SHAP values were used to compare the contribution of 
features across each ML model, with the specific perfor-
mance metrics for each model detailed in Figures  3–5 
(SVM, XGBoost and RF, respectively) and Figure S2 (re-
maining 6 models). In high- performance ML models with 
high AUC scores, CrCl and BUN consistently ranked as 
top 3 important features by SHAP values (Figures 3–5 and 
Figure S2A). The use of warfarin was also identified as an 
important feature for predicting the event, as it ranked the 
first in 5 out of 9 models.

4  |  DISCUSSION

The principal findings of this study are as follows (graphi-
cal abstract). First, all ML models demonstrated high AUC 
values, surpassing those of the CHA2DS2- VASc score, 
in identifying patients who developed ischaemic stroke, 
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T A B L E  1  Patient demographics.

Patients with ischaemic 
stroke (n = 74)

Patients without ischaemic 
stroke (n = 2139) p- value

Age (years), mean ± SD [0] 59 ± 12 58 ± 11 .328

Male, n (%) [0.2] 58 (78) 1713 (80) .831

BMI (kg/m2), mean ± SD [0.5] 28 ± 5 29 ± 5 .171

White ethnicity, n (%) [0] 60 (81) 1718 (80) .989

Live alone, n (%) [0] 18 (24) 474 (22) .684

NYHA class >2, n (%) [0] 26 (35) 653 (31) .473

LVEF (%), mean ± SD [6] 24 ± 7 25 ± 11 .705

Systolic BP (mmHg), mean ± SD [0] 124 ± 19 124 ± 18 .756

Diastolic BP (mmHg), mean ± SD [0] 74 ± 11 74 ± 11 .749

HR (/min), mean ± SD [0.1] 71 ± 13 72 ± 11 .543

Therapeutic agents

Any antiplatelet agents, n (%) [0]* 49 (66) 1100 (51) .017

Statin, n (%) [28] 61 (82) 1691 (79) .577

ACEI/ARB, n (%) [0] 73 (99) 2108 (99) >.999

BB, n (%) [0] 67 (91) 1924 (90) >.999

CCB, n (%) [0.1] 4 (5) 189 (9) .412

Diuretics, n (%) [0] 57 (77) 1725 (81) .533

Laboratory findings

CrCl (ml/min), mean ± SD [0.6] 78 ± 31 85 ± 32 .065

Haemoglobin (g/dl), mean ± SD [8] 14 ± 1 14 ± 1 .829

BUN (mg/dl), median (Q1, Q3) [3] 21 (17, 31) 20 (15, 27) .101

Educational status [0.1] .184

≤ 8th grade, n (%) 19 (26) 387 (18)

Some high school, n (%) 10 (14) 550 (26)

High school grad, n (%) 20 (27) 569 (27)

Some colleges, n (%) 12 (16) 307 (14)

College grad, n (%) 8 (11) 234 (11)

Post- grad education, n (%) 5 (7) 92 (4)

Marital status [0] .886

Married, n (%) 46 (62) 1366 (64)

Single, n (%) 11 (15) 262 (12)

Divorced, n (%) 8 (11) 276 (13)

Widowed, n (%) 9 (12) 235 (11)

Smoking [0.1] .966

Current, n (%) 14 (19) 381 (18)

Ex, n (%) 37 (50) 1100 (51)

Never, n (%) 23 (31) 658 (31)

Alcohol [0] .456

Current, n (%) 14 (19) 541 (25)

Ex, n (%) 18 (24) 467 (22)

Never, n (%) 42 (57) 1131 (53)

Comorbidities

Hypertension, n (%) [3] 46 (62) 1305 (61) .937

DM, n (%) [0.1] 28 (38) 662 (31) .258
(Continues)
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within a cohort exclusively consisting of HFrEF patients 
in sinus rhythm, although with a marginal difference in 
LR. Second, the XGBoost, RF, SVM and LightGBM mod-
els showed high performances, achieving high scores in 
AUC. Third, SVM and LightGBM consistently provided 
significant net clinical benefits at a threshold probability 
of less than 0.2, using DCA. Finally, CrCl, BUN and war-
farin usage emerged as primary key features for predicting 
ischaemic stroke.

4.1 | Ischaemic stroke in heart failure

The mechanism of thromboembolism in patients 
with HFrEF is thought to be related to the fulfilment 
of ‘Virchow's triad’, that is abnormal blood stasis, ab-
normal blood constitutions and endothelial damage/
dysfunction.19 Neurohormonal abnormalities and pro- 
inflammatory pathways are implicated in promoting a 

hypercoagulable state and endothelial dysfunction. Blood 
stasis, primarily resulting from left ventricular dysfunction 
(e.g., left ventricular aneurysm), is recognised as a key fac-
tor in the occurrence of ischaemic stroke in patients with 
HFrEF.19 Left ventricular wall motion abnormalities are 
also often observed in patients who have thromboembolic 
strokes.20

Several trials, including the WARCEF trial, have 
demonstrated a reduction in ischaemic stroke incidence 
through the administration of oral anticoagulants in pa-
tients with HFrEF in sinus rhythm, but this is outweighed 
by the increased risk of major bleeding.7–9 Given the 
relatively low annual risk of ischaemic stroke in this pa-
tient population (approximately 1.0%), the indiscriminate 
use of anticoagulation therapy could lead to a situation 
where the associated risks exceed the potential benefits.21 
Therefore, selecting patients where the benefits clearly 
outweigh the risks would be a key to make the most of 
benefit of this therapy.

Patients with ischaemic 
stroke (n = 74)

Patients without ischaemic 
stroke (n = 2139) p- value

History of stroke, n (%) [0.1]* 19 (26) 220 (10) <.001

Any vascular diseases, n (%) [0.2] 52 (70) 1325 (62) .183

CAD, n (%) [0] 48 (65) 1280 (60) .455

Agents

Randomised to Aspirin/Warfarin [0]* .016

Aspirin, n (%) 48 (65) 1069 (50)

Warfarin, n (%) 26 (35) 1070 (50)

Note: Numerical data are expressed as mean ± SD or median (interquartile range; first quartile, third quartile). Categorical data are expressed as numbers and 
percentages. Asterisk (*) indicates statistical significance (p < 0.05). [] indicates missing rate (%).
Abbreviations: ACEI, angiotensin- converting enzyme inhibitor; ARB, angiotensin II receptor blocker; BB, beta blocker; BMI, body mass index; BP, blood 
pressure; BUN, blood urea nitrogen; CAD, coronary artery disease; CCB, calcium channel blocker; CrCl, creatinine clearance; DM, diabetes mellitus; HR, heart 
rate; LVEF, left ventricular ejection fraction; NYHA, New York Heart Association; SD, standard deviation.

T A B L E  1  (Continued)

T A B L E  2  Comparison of machine learning models for identifying patients who developed ischaemic stroke.

AUC AUC: 95%CI
Optimal 
threshold Precision F1 Score Accuracy

Sensitivity 
(recall) Specificity

SVM 0.874 0.769–0.959 0.005 0.098 0.177 0.769 0.917 0.766

XGBoost 0.873 0.783–0.953 0.017 0.110 0.194 0.812 0.833 0.812

RF 0.843 0.725–0.942 0.185 0.186 0.291 0.911 0.667 0.919

LightGBM 0.828 0.705–0.941 0.002 0.157 0.253 0.893 0.667 0.900

CatBoost 0.823 0.694–0.927 0.187 0.089 0.161 0.767 0.833 0.763

KNN 0.819 0.674–0.934 0.097 0.084 0.154 0.752 0.833 0.749

MLP 0.741 0.584–0.883 0.0002 0.045 0.086 0.476 0.917 0.464

DT 0.735 0.582–0.879 0.125 0.114 0.192 0.867 0.583 0.875

LR 0.644 0.557–0.721 0.191 0.047 0.091 0.456 1.000 0.441

Abbreviations: AUC, area under the curve; CI, confidence interval; DT, decision tree; GBM, gradient boosting machine; KNN, K- nearest neighbours; LR, 
logistic regression; MLP, multi- layer perceptron; RF, random forest; SVM, support vector machine.
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4.2 | Identifying high- risk patients for 
ischaemic stroke in sinus rhythm

Several studies have aimed to identify the high- risk popu-
lations for ischaemic stroke in HFrEF patients without 
AF.22,23 For example, Abdul- Rahim et  al. identified pre-
dictors of stroke, including, age, higher New York Heart 

Association class, diabetes treated with insulin, decreas-
ing body mass index, history of prior stroke and elevated 
levels of N- terminal pro B- type natriuretic peptide (NT- 
proBNP), based on data from two major HF trials.22 They 
developed a scoring system derived from these variables, 
successfully distinguishing a high- risk patient group with 
an annual stroke incidence of 2.2% and a C- index of 0.75. 

F I G U R E  1  The comparison of the 
receiver operating characteristic curves for 
9 models. The shaded area around each 
curve indicates the 95% CI. CI, confidence 
interval; DT, decision tree; GBM, gradient 
boosting machine; KNN, K- nearest 
neighbours; LR, logistic regression; MLP, 
multi- layer perceptron; RF, random forest; 
ROC, receiver operating characteristic; 
SVM, support vector machine.

F I G U R E  2  The comparison of the 
decision curve analysis for 9 models. DCA, 
decision curve analysis; DT, decision 
tree; GBM, gradient boosting machine; 
KNN, K- nearest neighbours; LR, logistic 
regression; MLP, multi- layer perceptron; 
RF, random forest; SVM, support vector 
machine.
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Kondo et  al. further refined this ischaemic stroke risk 
prediction model by focusing on history of prior stroke, 
diabetes treated with insulin and NT- proBNP levels, using 
data from three contemporary HF trial cohorts.23 The 
refined model effectively identified a subset of high- risk 
patients (2.1% annual stroke incidence) and achieved a C- 
index of 0.84.

To the best of our knowledge, this study is the first 
to demonstrate the effectiveness of ML in identifying 
ischaemic stroke development within a cohort of HFrEF 
patients in sinus rhythm. All our ML models, with the 
exception of LR, exhibited AUC values ranging from 0.74 
to 0.87, reaching levels comparable or better than those 
reported in previous studies.22,23 The significant dis-
parity in performance between LR and other ML mod-
els can likely be attributed to their varying abilities to 
handle non- linear relationships. For example, Jang et al. 
previously showed that models proficient in non- linear 
pattern recognition, such as SVM, RF and XGBoost, can 
surpass LR in predicting poor outcomes in ischaemic 
stroke patients.24 Our results are aligned with these 
observations.

4.3 | Important features for identifying 
ischaemic stroke

In our study, CrCl and BUN were identified as key fea-
tures, even after incorporating variables previously recog-
nised as stroke risk factors in other studies.10,11,22,23

The decline in renal function and the ensuing devel-
opment of ischaemic stroke share common risk factors, 
including the promotion of atherosclerosis, with renal 
dysfunction significantly increasing the risk of stroke.25 In 
the chronic kidney disease (CKD) patient population, it 
has been reported that with each progressive stage of CKD 
increases the risk of stroke by approximately three to five 
times compared to the general population.26 This trend is 
more pronounced in the context of AF, as evidenced by 
previous research.27,28

Recent meta- analyses have demonstrated that pa-
tients with HF, irrespective of LVEF, exhibit a higher 
prevalence of CKD if they have experienced a stroke 
compared to those without a history of stroke.29 
However, the debate continues regarding whether renal 
dysfunction serves as a direct risk factor for stroke or is 

F I G U R E  3  Feature rankings according to SHAP values in the Support Vector Machine model. Each feature is organised according to 
SHAP values. BMI, body mass index; BUN, blood urea nitrogen; CrCl, creatinine clearance; DBP, diastolic blood pressure; DM, diabetes 
mellitus; DT, decision tree; HR, heart rate; KNN, K- nearest neighbours; LR, logistic regression; LVEF, left ventricular ejection fraction; MLP, 
multi- layer perceptron; SHAP, SHapley Additive exPlanations.
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merely a consequence of comorbidities such as hyper-
tension and diabetes.29

In our findings, we propose that renal function may 
be a valuable indicator for identifying high- risk patients 
for ischaemic stroke among those with HFrEF in sinus 
rhythm. Notably, our results suggest that BUN could be 
also a potential marker for high stroke risk, given that ele-
vated BUN levels are indicative of dehydration and wors-
ening renal function. We also identified the use of warfarin 
as a protective factor, aligned with prior analyses of the 
WARCEF trial,6,12 but in our cohort which excluded indi-
viduals with a history of AF and censored for those who 
developed AF. Thus, our strengthens the evidence that 
warfarin use can offer protection against ischaemic stroke 
even in patients who are exclusively in sinus rhythm.

4.4 | Clinical implications

Our study presents important clinical implications for 
managing patients with HFrEF in sinus rhythm. First, 
our ML models, particularly SVM, XGBoost, RF and 
LightGBM, demonstrated excellent performance in iden-
tifying patients at high risk of ischaemic stroke, despite 

its low overall incidence in this population. This approach 
could help clinicians to stratify risk more accurately than 
traditional methods. Secondly, our findings reinforce the 
protective role of warfarin against ischaemic stroke in 
HFrEF patients, even in the absence of AF. Notably, the 
emergence of renal function parameters such as CrCl and 
BUN, as key predictive features highlight the crucial role 
of kidney function in stroke risk assessment for HFrEF 
patients. This suggests that routine monitoring of renal 
function may play a vital role in stroke risk stratification, 
potentially identifying high- risk patients who could ben-
efit from anticoagulation therapy. Lastly, while ischaemic 
stroke is a relatively infrequent in HFrEF patients without 
AF, it remains an important and preventable complica-
tion. Some of our ML models demonstrated high accuracy 
in identifying high- risk individuals, potentially enabling 
more targeted preventive strategies in this vulnerable 
population.

4.5 | Limitations

However, our work has several limitations. First, ex-
ternal validation was not performed for our models, 

F I G U R E  4  Feature rankings according to SHAP values in the XGBoost model. Each feature is organised according to SHAP values. 
BMI, body mass index; BUN, blood urea nitrogen; CrCl, creatinine clearance; DBP, diastolic blood pressure; DM, diabetes mellitus; HR, 
heart rate; LVEF, left ventricular ejection fraction; SHAP, SHapley Additive exPlanations.

 13652362, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/eci.14360 by L

IV
E

R
PO

O
L

 JO
H

N
 M

O
O

R
E

S U
N

IV
, W

iley O
nline L

ibrary on [02/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 of 12 |   ISHIGUCHI et al.

which raises uncertainties about their performance and 
generalisability in different populations. Particularly, 
most ischaemic stroke cases in our cohort were of the 
thromboembolic subtype, in contrast to a potentially 
higher proportion of atherosclerotic subtype cases in 
the general population.15 The variation of stroke sub-
types could affect the generalisability of our findings. 
Second, our study did not include ML analysis of other 
completing outcomes, such as bleeding events and 
all- cause mortality. To clarify, our focus on ischemic 
stroke, rather than all- cause mortality—which is sig-
nificantly more prevalent—was aimed to prevent the 
overshadowing of ischaemic stroke assessment by the 
sheer volume of mortality cases. Hence, our analysis of 
the net clinical benefit focused on the context of a ML 
metric, disregarding the broader implications of all- 
cause mortality and its complex interplay with other 
outcomes. Third, we focused our analysis exclusively 
on the HFrEF population, which has significantly 
higher risks of both stroke and mortality compared to 
non- HF groups. Although we identified renal function 
as an important feature, it remains unclear whether this 
applies to non- HF populations as well. Forth, although 
we designated CHA2DS2- VASc score as the reference, 
its effectiveness in estimating stroke risk in patients 

with sinus rhythm remains uncertain. However, previ-
ous literature suggests that the CHA2DS2- VASc score 
may be equally effective in predicting stroke events in 
patients in sinus rhythm as in those with AF.5 Fifth, 
we utilised imputation for missing and outlier values. 
While this preprocessing has been employed in a pre-
vious ML post- hoc analysis of WARCEF trial,13 it has 
not been commonly adopted in other studies. Although 
the frequency of these values is low, it may influence 
the generalizability. Sixth, while this study highlights 
the importance of CrCl and BUN levels in predicting 
ischaemic stroke, the practical implications of these 
findings—including whether baseline measurement is 
sufficient or if repeated measurements are necessary—
still need to be determined through future research. 
This will help clarify how best to utilise these biomark-
ers in clinical practice to effectively manage and poten-
tially prevent stroke this patient population. Finally, 
we defined the development of ischaemic stroke as a 
simple binary outcome, which is common in ML ap-
proaches. However, we acknowledge the importance 
of time- to- event data. Future research would benefit 
from advancements in ML techniques that effectively 
incorporate time- to- event information for more accu-
rate prediction.

F I G U R E  5  Feature rankings according to SHAP values in the Random Forest model. Each feature is organised according to SHAP 
values. BMI, body mass index; BUN, blood urea nitrogen; CrCl, creatinine clearance; DBP, diastolic blood pressure; DM, diabetes mellitus; 
HR, heart rate; LVEF, left ventricular ejection fraction; RF, random forest; SHAP, SHapley Additive exPlanations.
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5  |  CONCLUSIONS

Machine learning models can identify risk factors for is-
chaemic stroke in patients with heart failure with reduced 
ejection fraction but without atrial fibrillation. Creatinine 
clearance, blood urea nitrogen and warfarin use were the 
key features to predict the ischaemic stroke.
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