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GRAPHICAL ABSTRACT 28 

 29 

ABSTRACT 30 

Recent studies suggest per- and polyfluoroalkyl substances (PFAS) are ubiquitous in 31 

rivers worldwide. In the Asia-Pacific region, the frequency of PFAS detection in rivers is 32 

believed to be increasing. However, the overwhelming majority of studies and data represent 33 

high population and urbanised river catchments. In this study, we investigate PFAS occurrence 34 

in major Philippine river systems characterised by both high and low population densities. In 35 

the Pasig Laguna de Bay River, which drains a major urban conurbation, we detected PFAS at 36 

concentrations typical of global rivers. Unexpectedly, we did not detect PFAS in river water or 37 

sediments in low population density river catchments, despite our instrument detection limits 38 

being lower than the vast majority of river concentrations reported worldwide. We hypothesise 39 

that septic tanks, as the dominant wastewater treatment practice in Philippines catchments, may 40 
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control the release of PFAS into groundwater and rivers in the Philippines. However, no 41 

groundwater PFAS data currently exist to validate this supposition. More broadly, our findings 42 

highlight the need for more representative PFAS sampling in rivers to more accurately 43 

represent regional and global detection frequencies and trends.  44 

 45 

KEYWORDS: PFAS; chemical pollution; Philippines; wastewater treatment; population 46 

density; detection limits 47 

 48 

HIGHLIGHTS: 49 

● PFAS in an urban Philippines river system are typical of global concentrations.    50 

● PFAS were not detected in Philippines rivers with low population densities.       51 

● Septic tanks may be an important PFAS source in Philippines catchments.          52 

● PFAS monitoring in groundwaters in the Philippines is recommended. 53 

● Monitoring PFAS in surface and groundwaters beyond urban areas is recommended. 54 

 55 

1. Introduction 56 

Per- and poly-fluoroalkyl substances (PFAS), commonly termed ‘forever chemicals’, 57 

are a group of more than 14,000 chemicals (U.S. EPA, 2022) first manufactured in the 1940s 58 

and now detected in environments, wildlife, and humans worldwide (Evich et al., 2022; Ng et 59 

al., 2021). The oil- and water-repellent characteristics of PFAS, as well as their high thermal 60 

stability, have led to widespread applications in industry (e.g., polymer manufacture, 61 

surfactants, electronics) and in everyday consumer products (e.g., cookware, food packaging, 62 

personal care products, and textiles) (Glüge et al., 2020). The critical concern with PFAS is 63 

toxicity to humans and wildlife (Cathey et al., 2023; Grandjean et al., 2023; Pitter et al., 2020; 64 
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Sheng et al., 2018; van Gerwen et al., 2023; Zhang et al., 2021), which is exacerbated by their 65 

extreme persistence (100s to 1000s of years) and long-range transport in the environment 66 

(Cousins et al., 2022). 67 

Much research has focused on PFAS occurrence in rivers given their importance as 68 

sources of water (drinking and irrigation) and food (fish, shellfish, and plants), and because 69 

rivers and their catchment drainage processes control the transport of chemical compounds 70 

including PFAS from source areas to sensitive receptors, and ultimately to the oceans (Byrne 71 

et al., 2024). A recent synthesis of global surface and groundwater data (n = >45,900 samples) 72 

published in the journal Nature Geoscience (Ackerman Grunfeld et al., 2024) concluded that 73 

PFAS are pervasive in surface water and groundwater worldwide. However, almost all of these 74 

samples represent urbanised and densely populated river catchments, and post-industrial and 75 

agricultural landscapes in the Global North. In the Asia-Pacific region, PFAS detection in 76 

environmental matrices (air, soil, sediment, water) is reported to be increasing (UNEP; 2017; 77 

Baluyot et al., 2021; Kurwadkar et al., 2022). However, sample points are typically focussed 78 

on rivers with high population densities, leading to poor data coverage, especially in tropical 79 

river catchments with low population densities.  80 

The Philippines (Figure 1) exemplifies many Asia-Pacific nations experiencing rapid 81 

urbanisation and population growth. In the Second Global Monitoring Report on Persistent 82 

Organic Pollutants (2017), the Stockholm Convention reported widespread PFAS 83 

contamination in rivers in the Asia-Pacific region (UNEP, 2017). However, in the Philippines, 84 

PFAS data are limited to one surface water body supplying drinking water to an urban 85 

conurbation (Metro Manila) (Guardian et al., 2020; Sevilla-Nastor et al., 2022). There exists 86 

no data on PFAS occurrence in any other Philippines surface waters, including rivers. Yet, 87 

representative sampling of PFAS occurrence in Philippines rivers is critically important as 88 

approximately 36% of rivers are utilised for public water supply (The World Bank Group, 89 
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2003). In this Perspective, we present preliminary findings and interpretations from the first 90 

regional-scale assessment of PFAS occurrence in major Philippines rivers. 91 

 92 

2. Methodology 93 

2.1 Study location 94 

Our investigation focussed on five of the 18 major Philippines catchments classified by 95 

the National Water Resources Council on the basis of their size (i.e. catchments with a land 96 

area greater than 1400 km2) and importance for water supply and biodiversity (Figure 1; Tabios 97 

III, 2020). The study catchments are located in the island of Luzon, namely: the Abra River 98 

Basin, Agno River Basin, Apayao-Abulug River Basin, Cagayan River Basin, and Pasig-99 

Laguna de Bay River Basin. Catchment areas range from 4,000 to 27,500 km2 and the Pasig-100 

Laguna de Bay catchment has a large urban extent (22.2%) and high population density (3295 101 

/km2) (Table 1), compared to the other four catchments (urban extent: 1.1 to 4.3%; population 102 

density: 136 to 235 /km2).  103 

 104 

2.2 Sampling methods 105 

A summary of samples collected, and catchment characteristics is presented in Table 1. 106 

In each catchment, two river water samples (replicates) were collected near the catchment 107 

outlet using 250 mL high-density polyethylene (HDPE) bottles, as recommended by U.S. EPA 108 

Method 1633 to minimise potential contamination from sample bottles (U.S. EPA, 2024). 109 

Sampling was conducted just below the water surface, in the thalweg, and upstream of each 110 

tidal limit. In the Agno catchment, three sediment samples were also collected. One sample 111 

was collected from sediment deposited on the floodplain and interpreted to be from a recent 112 

high flow event. A second sample was collected from the surface of a geomorphologically 113 
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active bar (1 cm depth), and a third sample was collected from the subsurface beneath the bar 114 

(20 cm depth). Five subsamples were retrieved from each sample location using a stainless-115 

steel trowel. PFAS-free de-ionised water field blanks were also collected in each catchment to 116 

ensure that collection procedures and sample storage did not contaminate the samples. All 117 

samples were stored in fridges (at 4°C) and transported in cool boxes before analysis in the 118 

United Kingdom (UK). 119 

 120 

2.3 Sample extraction and analysis 121 

A detailed description of laboratory analytical procedures is provided in the supporting 122 

information. Briefly, water and sediment samples were extracted in a commercial laboratory 123 

(ALS Laboratories (UK) Ltd) using accredited methods TM337 (ALS Laboratories Ltd, 2022a) 124 

and TM338 (ALS Laboratories Ltd, 2022b) for water and sediment samples, respectively. 125 

Samples were spiked with isotopically labelled standards then extracted by solid-phase 126 

extraction (SPE). Samples were then analysed for 50 and 22 PFAS compounds in water and 127 

sediment (Table S1 and Table S2), respectively, using isotope dilution high performance liquid 128 

chromatography-tandem mass spectrometry (HPLC-MS/MS). The limits of detection (LOD) 129 

ranged from 0.65 ng L-1 PFOA to 10 ng L-1 EtFOSE in river water and 1 ng g-1 PFOA to 20 ng 130 

g-1 5:3 FTCA in river sediment. No contamination of field or laboratory blanks was detected.  131 

 132 
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 133 

Fig. 1. Map of study catchments in the Philippines, showing the location of the Philippines (A) (Global 134 

Administrative Areas (2022)), the location of the study catchments on the island of Luzon (B) (ESRI (2024) and 135 

Boothroyd et al., 2023), the annual rainfall in 2021 in the study catchments (C) (Huffman et al., 2014), land cover 136 

in the study catchments (D) (NAMRIA, 2021), and the population density of the study catchments (E) (River 137 

Basin Control Authority (2014) and Philippine Statistics Authority (2023)). 138 

 139 

3. Analysis 140 

 Eight PFAS out of the 50 targeted compounds were detected in river water in the Pasig-141 

Laguna de Bay River which flows through Metro Manila. The compounds detected (range = 142 

1.49 ng L-1 to 9.28 ng L-1) were 6:2-fluorotelomer sulfonic acid (6:2 FTS), perfluorohexanoic 143 

acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctane sulfonic acid (PFOS), 144 

perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS), perfluorobutanoic 145 

acid (PFBA), and perfluorobutane sulfonic acid (PFBS) (Table S1). To aid interpretation, we 146 



9 

draw a comparison of four PFAS (PFBA, PBFS, PFOA, PFOS) detected in the Pasig Laguna 147 

de Bay River with data from the River Mersey, UK (Byrne et al., 2024), which has a similar 148 

catchment area (4680 km2) and high population density (1068 /km2), and a synthesis of global 149 

surface water data presented by Calore et al. (2023). Concentrations observed in the Pasig 150 

Laguna de Bay River (Figure 2, Table S3) are broadly similar to median concentrations from 151 

the global (Calore et al., 2023) and high population density (Byrne et al., 2024) datasets. The 152 

range of concentrations in the global dataset is considerable and demonstrates large variability 153 

in surface water concentrations in rivers worldwide.  154 

Unexpectedly, PFAS were not detected (LODs = 0.65 to 2 ng L-1) in river water in the 155 

Abra, Apayao-Abulog, Agno, and Cagayan catchments, and no PFAS were detected in the 156 

sediments of the Agno (LODs = 1 to 20 ng g-1). Importantly, LODs in the present study are 157 

lower than 84% (PFBS) to 97% (PFOA) of the surface water concentrations reported by Calore 158 

et al. (2023) (Table S3), indicating PFAS are either not present in these rivers or at undetectable 159 

concentrations. This apparent absence of PFAS in major Philippine rivers (water and 160 

sediments) outside of Metro Manila is surprising given the well-documented global spread of 161 

these compounds (Cousins et al., 2022; Ackerman Grunfeld et al., 2024) and the increased 162 

detection of PFAS in environmental matrices in the Asia-Pacific Region (Kurwadkar et al., 163 

2022). We offer three hypotheses to explore our findings. 164 

 165 

 166 
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167 

Fig. 2. Comparison of PFAS (PFBA, PFBS, PFOA, PFOS) detected in the Pasig-Laguna de Bay River (Manila, 168 

Philippines) (n=1) with the River Mersey (United Kingdom) (n=33) (Byrne et al., 2024) and a global dataset 169 

(mean values, n=47) (Calore et al., 2023). Diamond symbols represent outliers and asterisks represent the limits 170 

of detection (LOD) for the Philippines river water analysis. 171 

 172 

PFAS transport in Philippines catchments is constrained by connectivity and 173 

wastewater management practice. Effluents (treated and untreated) from sewage treatment 174 

plants (STPs) are one of the main sources of PFAS to rivers worldwide and an efficient 175 

transport pathway for PFAS source areas to rivers (Calore et al., 2023; Comber et al., 2020). 176 

In our study, we identified 55 STPs in the Pasig Laguna De Bay catchment but there are no 177 

STPs in the Agno, Abra, Cagayan and Apayao-Abulog catchments as far as we are aware 178 

(NEDA (2021); Table S4). Although the population density of these four catchments is low, 179 

they still have large total populations (Table 1) served primarily by septic tanks (more than 180 
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70% of households in the Philippines are served by septic tanks) (World Bank and Australian 181 

Aid, 2013). Septic tanks are an important source of PFAS to groundwater and the unsaturated 182 

(vadose) zone between soils and groundwater can accumulate large stores of PFAS from septic 183 

tanks (Schaider et al., 2016; Silver et al., 2023). Release of this PFAS into groundwater might 184 

not occur for decades to centuries, with the hydraulic time scale of transport to rivers depending 185 

on transmissivity of the aquifer (Ascott et al., 2017). In theory, PFAS-contaminated 186 

groundwater may not yet have reached some major river systems in Luzon. It follows that at 187 

some point in the future PFAS-contaminated groundwater may ‘breakthrough’ and impact river 188 

water quality, as is happening with nitrate in many countries where intensive use of fertilisers 189 

in the past has caused leaching to groundwater over decades and relatively slow transport to 190 

rivers (Abascal et al., 2022; Byrne et al., 2014).   191 

River catchment population density and urban extent are important controls on 192 

the occurrence of PFAS in rivers. In our study, PFAS were only detected in the Pasig River 193 

(Metro Manila). This river catchment has an average population density of 3,295 persons per 194 

km2 (range = ~1,000 to >40,000 persons per km2) and an urban extent of 22.2% (Figure 1 and 195 

Table 1). In contrast, the Apayao-Abulog, Abra, Cagayan, and Agno catchments have average 196 

population densities ranging from 136 to 235 persons per km2 and urban extents ranging from 197 

1 to 4% (Figure 1 and Table 2). It is worth hypothesising, therefore, that the non-detection of 198 

PFAS in four of our five study catchments in Luzon may be explained by their low population 199 

densities and urban extent. In the USA and Sweden, recent national-scale studies found people 200 

living in urban areas have higher probabilities of PFAS exposure in drinking water and soil, 201 

respectively (Smalling et al., 2023; Sörengård et al., 2022). Of course, the presence of a 202 

centralised sewerage system in Metro Manila may serve to efficiently route PFAS from 203 

catchment source areas to the river, as described previously. However, only about 15% of 204 

households in Manila are connected to a sewerage system and, importantly, industrial and 205 
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commercial activities are also likely to be sources of PFAS to the Pasig River (Jalilov, 2018). 206 

Furthermore, although the population density of catchments outside of Manila is low, the total 207 

population of these catchments is still large (Table 2) with clusters of high population centres 208 

served primarily by septic tanks. 209 

 210 

Catchment Sample 
Location 

Sample 
ID 

Population 
(thousands) 

Area 
(km2) 1 

Pop. 
Density       
(/km2)2 

Average 
annual 
rainfall in 
2021 (mm 
yr-1)3 

Urban 
Extent 
(%)4 

Apayao-
Abulog, 
Philippines 

18.201846°N 
121.252458°E 

L-N3-

WAT-R1 

L-N3-

WAT-R2 

L-N3-
WAT-BL 

554 4071 136 1936 1.2 

Abra, 
Philippines 

17.333308°N 
120.273837°E 

L-N4-

WAT-R1 

L-N4-

WAT-R2 

L-N4-
WAT-BL 

669 4919 136 2727 1.1 

Cagayan, 
Philippines 

18.072064°N 
121.402073°E 

L-N2-

WAT-R1 

L-N2-

WAT-R2 

L-N2-
WAT-BL 

4,271 27558 155 1870 2.1 

Agno, 
Philippines 

15.532796°N 
120.151319°E 

L-N1-

WAT-R1 

L-N1-

WAT-R2 

L-N1-

WAT-BL 

1,452 6179 235 2602 4.3 
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L-N1-

SED-FP 

L-N1-

SED-

SUR 

L-N1-
SED-
SUB 

Pasig-
Laguna de 
Bay, 
Philippines 

14.335474°N 
121.042326°E 

L-N5-

WAT 

L-N5-
WAT-BL 

13,526 4105 3295 2445 22.2 

Table 1. River catchment area, population density, annual rainfall, and urban extent for the five study catchments 211 

in Luzon, Philippines.  Key for samples: L = Luzon; N1-5 = river catchment; WAT = water sample; SED = 212 

sediment sample; R1-2 = replicate samples; BL = blank sample; FP = floodplain sediment; SUR = river channel 213 

surface sediment; SUB = river channel subsurface sediment. Philippines data was obtained from Boothroyd et al. 214 

(2021)1, River Basin Control Authority (2014) and Philippine Statistics Authority (2023)2, Huffman et al. (2014)3, 215 

and NAMRIA (2021)4. 216 

PFAS are present in Philippines rivers, but not detectable with our analytical 217 

approach. It is surprising that we did not detect PFAS in river water and sediment samples 218 

outside of Metro Manila. Our sampling campaign took place during the dry season in Luzon 219 

(November to April) when we expected solute and chemical concentrations in river water to 220 

be highest due to reduced dilution. If pollution events were transient, for example associated 221 

with rainfall, we would expect to detect PFAS in river sediments which are more resilient to 222 

seasonal hydrological and biogeochemical processes that drive variability in river water 223 

concentrations. Although our sample sites were situated close to the catchment outlets, PFAS 224 

entering the rivers from upstream sources (e.g., groundwater or runoff from agricultural land) 225 

may have undergone dilution within the river channel, causing non-detection at our sample 226 

sites. However, the LODs for PFAS in our study were well below typical river and surface 227 

water concentrations (e.g. Calore et al., 2023; Byrne et al., 2024; Ackerman Grunfeld et al., 228 
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2024; Figure 2), so if PFAS were present, we would have expected to detect them. Our 229 

analytical approach utilised a targeted method to quantify concentrations of a limited number 230 

of PFAS compounds (50 in water and 20 in sediment samples). As a result, it is possible that 231 

other PFAS compounds were missed and suspect screening using non-targeted or total PFAS 232 

analysis (e.g. TOP Assay) may be preferable to confirm the presence or absence of PFAS in 233 

rivers (Ateia et al., 2023).      234 

 235 

4. Conclusions  236 

 In this Perspective, we report no detectable PFAS (<0.65 to <2 ng L-1 in water and <1 237 

to <20 ng g-1 in sediment) in four of our five study rivers in the Philippines. This is despite 238 

concern that PFAS are ubiquitous in surface water worldwide and detection frequencies are 239 

increasing, in particular in the Asia-Pacific region. If we assume PFAS are ubiquitous in rivers, 240 

then where are they? We hypothesise that the delayed and dispersed release of PFAS into 241 

groundwater via septic tanks in low population density river catchments explains this result. 242 

Unfortunately, as far as we are aware, no data exists on PFAS occurrence in groundwater in 243 

the Philippines. Our findings highlight the need for more representative PFAS sampling in 244 

Philippines river catchments, and more broadly throughout the Asia-Pacific region. 245 

Furthermore, in river catchments where wastewater management is dominated by septic tanks, 246 

we suggest that groundwater should be tested for PFAS, preferably using both targeted and 247 

non-targeted analytical methods.   248 

 249 
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