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A B S T R A C T

The last two decades have seen a surge in gold mining operations around the world. Despite min-
ing occupying a smaller geographical area compared to other land use/land cover (LULC) classes,
it exhibits strong interconnections with various land uses and serves as a major driver for changes
in mining landscapes. Understanding and evaluating historical and potential future LULC
changes in these landscapes are crucial in assessing the environmental impact of mining. Tradi-
tionally, these assessments heavily rely on geospatial techniques, with limited emphasis on pro-
jecting future LULC trends. This research aims to monitor, analyse the drivers of change, and pre-
dict future changes in LULC under two scenarios: the “business as usual” scenario and the "reme-
dial measures" scenarios. Utilising the CA-Markov model, this article predicts LULC changes and
offers comprehensive insights into the environmental impacts of mining, combining geospatial
and social research methodologies. The investigation spanned a 34-year period (1986–2020) and
employed a blend of supervised and unsupervised image classification methods, complemented
by interviews, focus groups, and field observations. The findings reveal substantial land degrada-
tion, water pollution, and a significant loss of forest cover, accounting for 27,333 ha (36%). Con-
tinuation of current mining practices is predicted to lead to further ecological deterioration.

1. Introduction
Mining of precious minerals, particularly gold, is a vital economic activity for millions of people in Sub-Saharan Africa and a sig-

nificant contributor to the gross domestic product (GDP) of numerous economies in the region. For instance, despite a notable decline
in 2021, the mining sector in Ghana consistently contributed over 7% annually to the GDP of the country (The Ghana Chamber of
Mines 2022). During the same year, the South African mining sector accounted for 8.7% of the country's GDP (Minerals Council South
Africa, 2022), whereas in Zimbabwe, its contribution to GDP is approximately 12% (International Trade Administration, 2022). Gold
mining operations in Africa can be broadly categorised into two segments: large-scale and small-scale mining. Large-scale mining in-
volves the use of advanced, capital-intensive technology, with formal mining operations registered under existing legal frameworks,
typically representing multimillion-dollar investments by multinational corporations in mineral-rich countries. In contrast, small-
scale mining, legally reserved for nationals, encompasses mineral extraction and processing using rudimentary tools, relying on sub-
stantial labour (Hilson et al., 2017). Despite its labour-intensive nature, small-scale mining exhibits variability due to the involvement
of foreign nationals, particularly the Chinese, using sophisticated machine(Crawford et al., 2016; Crawford and Botchwey 2017).
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Fig. 1. Methodological Flowchart
MCE: Multi-Criteria Evaluation; AHP: Analytical Hierarchy Process; WLC: Weighted Linear Combination; FGD: Focus Group Discussion; ORH: Oral Histories; II: Semi-
Structured Interview.

Table 1
The available Landsat satellite images.

Image ID Satellite Sensor ID Resolution (m) Acquisition Date Path/Row

LANDSAT/LC08/CO1/TI_TOA/LC08_194056_20200109 Landsat 8 OLI_TIRS 30 09-01-2020 194/056
LANDSAT/LC08/C01/T1_TOA/LC08_94056_20151229 Landsat 8 OLI_TIRS 30 29-12-2015 194/056
LANDSAT/LE07/C01/T1_TOA/LE07_194056_20080201 Landsat 7 ETM+ 30 01-02-2008 194/056
LANDSAT/LE07/C01/T1_TOA/LE07_194056_20020115 Landsat 7 ETM+ 30 15-01-2002 194/056
LANDSAT/LT05/C01/T1_TOA/LT05_194056_19861229 Landsat 5 TM 30 29-12-1986 194/056

Over the last two decades, gold mining in Ghana, particularly in the small-scale sector, has experienced significant growth, driven
in part by global market factors such as rising gold prices(Barenblitt et al., 2021). Local factors, including the ‘get-rich-quick’ mental-
ity, declining agricultural fortunes, poverty, and opportunities for wealth creation, have also contributed to this growth (Banchirigah
2008; Hilson and Garforth 2012, 2013; Afriyie et al., 2016; Hilson and Hu 2022). The small-scale mining sector has emerged as a sub-
stantial source of local employment, offering opportunities to unemployed youth and women (Hilson and Maconachie 2020; Hilson
and Hu 2022; Arthur-Holmes and Abrefa Busia 2022; Arthur-Holmes et al., 2022). However, despite these socioeconomic benefits,
the environmental impact of small-scale mining in Ghana is well-documented, encompassing disturbances to river basins, water pol-
lution, disruptions to agriculture, deforestation, and land degradation (Schueler et al., 2011; Awotwi et al., 2018; Hausermann et al.,
2018; Obodai et al., 2019; Forkuor et al., 2020; Ofosu et al., 2020; Barenblitt et al., 2021). The severe environmental repercussions of
small-scale gold mining in riverbeds and forest reserves, which employ advanced machinery, prompted a two-year ban on small-scale
activities in 2019. The government also prohibited the issuance of mining permits for gold exploration/mining in forest reserve zones
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Table 2
Description of LULC types.

Type Description Pictorial view of LULC classes in practice

Closed Forest Densely forested areas mostly located in forest reserves

Open Forest Sparse forest, trees, shrubs, bushes, grasses

Cropland Arable land, plantation land, and heterogeneous agricultural areas

Water Rivers, water in mine pits, ponds, wetlands

Mining Areas where both large and small-scale surface mining has taken place

Settlement/Bare lands Areas including villages, towns, cities, roads, bare areas

Table 3
Area of LULC classes of the classification and the percentage area change results.

LULC Classes 1986 2002 2008 2015 2020

Area (ha) % Area Area (ha) % Area Area (ha) % Area Area (ha) % Area Area (ha) % Area

Water 4,798 3.90 1,800 1.46 963 0.78 6,169 5.01 3,484 2.83
Cropland 41,259 33.52 47,390 38.50 40,201 32.67 50,600 41.12 54,851 44.57
Mining 0.0000 0.00 480 0.39 98 0.08 4,276 3.47 5,589 4.54
Closed Forest 35,244 28.64 17,710 14.39 16,603 13.49 13,595 11.05 14,074 11.44
Settlement/bare lands 1,843 1.50 4,320 3.51 15,154 12.31 15,525 12.62 11,308 9.19
Open Forest 39,926 32.44 51,370 41.74 50,050 40.67 32,904 26.74 33,763 27.43
Total 123,070 100.0 123,070 100.0 123,070 100.0 123,070 100.0 123,070 100.0
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Fig. 2. Comparison of land use and land cover increases and decreases from 1986 to 2002, 2002–2008, 2008–2015, 2015–2020, 1986–2020.

Table 4
Net Area of Change and the percentage changes in the observed LULC classes.

1986–2002 2002–2008 2008–2015 2015–2020 1986–2020

LULC Classes Net area of
change (Ha)

%
Change

Net area of
change (Ha)

%
Change

Net area of
change (Ha)

%
Change

Net area of
change (Ha)

%
Change

Net area of
change (Ha)

%
Change

Closed Forest −17534 −49.75 −1107 −6.25 −3008 −18.12 479 3.53 −21170 −60.06
Cropland 6130 14.86 −7188 −15.17 10399 25.87 4251 8.40 13593 32.94
Mining 483 0.00 −386 −79.75 4178 4266.73 1313 30.70 5589 100.00
Open Forest 11444 28.66 −1320 −2.57 −17146 −34.26 859 2.61 −6163 −15.43
Settlement/bare

lands
2478 134.45 10834 250.76 371 2.45 −4217 −27.16 9466 513.67

Water −2996 −62.45 −839 −46.52 5207 540.87 −2685 −43.53 −1314 −27.38

and imposed a ban on excavator exports. Existing excavators at illegal small-scale mining sites were destroyed by a joint police-
military task force. These actions have faced criticism for hindering efforts to formalise the small-scale mining sector (Hilson 2017;
Hilson and Maconachie 2020).

Mining activities are closely intertwined with other land use and land cover (LULC) types, resulting in changes in adjoining land
use/cover with multifaceted implications. Examining past and future LULC changes in mining landscapes is instrumental in under-
standing the environmental footprint of mining, essential for sustainable resource management and long-term planning. Therefore,
this study pursues three primary objectives: (1) monitoring land use and land cover changes in a mining landscape over the past three
decades; (2) analysing the drivers behind these changes; and (3) projecting potential future landscapes under two scenarios: ‘business
as usual’ and ‘remedial’ measures.

The advancement of Earth observation tools, specifically remote sensing, and geographical information systems (GIS) has signifi-
cantly enhanced the ability of researchers to comprehend LULC dynamics within mining landscapes. Notable studies demonstrate the
impact of these technologies. For instance, Garai and Narayana (2018) utilised Landsat satellite imagery to analyse land use and land
cover changes in coal mining areas in Southern India over 24 years, revealing the direct influence of mining on forest cover. Similarly,
Lobo et al. (2018) effectively mapped mining areas in the Brazilian Amazon using Sentinel-2 images, highlighting the prevalence of
small-scale gold and tin mining. Another study in the Peruvian Amazon by Espejo et al. (2018) illustrated the ecological consequences
of gold mining on deforestation and forest degradation, employing CLASlite and the Global Forest Change dataset. Furthermore,
Barenblitt et al. (2021) employed machine learning and change detection techniques to reveal the conversion of approximately
47,000 ha of vegetation cover to mining in southwestern Ghana. Also, Nyamekye et al. (2021), focusing on the eastern part of Ghana,
used Sentinel-2 data to monitor post-ban small-scale mining activities, indicating a substantial increase in such mining. In addition to
these remote sensing-based findings, several studies have established the adverse effects of small-scale mining on major natural river
drainage systems in Ghana (Awotwi et al., 2018; Obodai et al., 2019; Boakye et al., 2020).

While these studies have contributed valuable insights, they primarily rely on remote sensing and GIS technologies. To achieve a
more comprehensive understanding of dynamic LULC changes in mining landscapes, integrating state-of-the-art GIS technologies
with social research approaches is essential. Also, few studies, apart from Awotwi et al. (2018), have attempted to predict the future
LULC trends in mining areas in Ghana. This article addresses this gap by employing a combination of geospatial and social research
methods to assess LULC dynamics and their driving forces in mining environment in the southwestern part of Ghana. Additionally,
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Fig. 3. (a) The polluted Oda River at Watreso (b) The polluted Offin at Keniago.

the study employs the CA Markov model to predict LULC changes over the next decade under both “business as usual” (BAU) and “re-
medial” scenarios. The subsequent section elaborates on the materials and procedures used in this study.

2. Materials and methods
2.1. Study area

This research was conducted in the Amansie West and South Districts (AWSD) of rural Ghana, located between Longitude 6.05°,
6.35° West and Latitude 1.40°, 2.05° North (Map 1). These districts account for 5% of Ghana’s Ashanti region total land area and
cover a total of 1230 km2. Both the Offin and Oda rivers, as well as their tributaries, provide drainage for these areas, which are in the
Wet Semi-Equatorial climate zone and see a double-maximum rainfall pattern (March to July: major season, and September to No-
vember: minor season). The rain forest type with moist semi-deciduous characteristics of the vegetation in the AWSD is responsible
for the exceptionally abundant fertile grounds that sustain agriculture as a key livelihood activity across the district. The average
yearly rainfall in AWSD fluctuates between 855 mm and 1,500 mm. From December to March, the weather is typically dry, marked
by elevated temperatures and early morning fog or moisture with cold conditions. Temperatures remain consistently high year-round,
averaging around 27 °C each month. Humidity levels peak during the rainy season, but from December to February, humidity drops
significantly (Amansie West District Assembly, 2018). Oda River, Apanprama, Jemira, and Gyeni River Forest Reserves are the four
most significant protected areas in the district. Anthropogenic activities such as unsustainable farming methods, illegal mining, and
logging have recently posed a serious threat to these forest reserves (Ghana Statistical Service 2014).

2.2. Method
Fig. 1 provides a graphical flowchart of the research process that guided this investigation. The procedures and methods are then

described and discussed.

2.2.1. Digital and qualitative data acquisition, pre-processing, and analysis
Landsat imagery from the United States Geological Survey, pertaining to our research area, was acquired via Google Earth Engine

for this study. The selected images were from the pre-processed Tier 1 calibrated top-of-atmosphere (TOA) reflectance archive, based
on date and time constraints. As indicated in Table 1, five cloud-free multispectral images from the years 1986, 2002, 2008, 2015, and
2020 were obtained for our analytical purposes. To address the ETM + Scan Line Corrector off data issue, the GDAL “fill no data” tool
in QGIS Desktop 3.14.16 was applied.

In addition to utilising digital remote sensing data, the research was supplemented with qualitative data obtained through a multi-
faceted approach, encompassing field observations, oral histories, and interviews. Interviews were conducted with a diverse range of
stakeholders, including local and national mining and farming officials, chief farmers, and small-scale miners. Furthermore, to gain a
comprehensive understanding of the long-term environmental and socio-economic transformations since the base year of 1986, cru-
cial for assessing dynamic land use and land cover changes, oral history sessions with long-term residents who had resided in the
study communities since birth or for over three decades was conducted. These oral histories involved interactions with village elders,
appointed and unappointed assembly members, and traditional leaders. It is noteworthy that all participants in the study volunteered
their involvement, either verbally or in written form. The oral histories and interviews were meticulously recorded, transcribed, and
analysed using NVivo 12 Plus. The analysis followed the thematic analysis method outlined by Braun and Clarke (2006), which con-
sists of six distinct stages. Additionally, to enrich the primary qualitative dataset, a qualitative content analysis of pertinent literature
was also conducted.

2.2.2. LULC classification
The study employed Landsat 5 and Landsat 7 bands B1, B2, B3, B4, B5, and B7 for the years 2002, 2008, and 2015, respectively,

and Landsat 8 bands B2, B3, B4, B5, B6, and B7 for the years 2015 and 2020 in the LULC classification. The classification process inte-
grated elements of both supervised and unsupervised methods. Initially, an unsupervised classification was conducted using the ISO
Cluster algorithm in ArcGIS Pro version 2.7.1 to automatically group pixels with similar spectral properties into distinct spectral clus-
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Fig. 4. Turbid water from Oda River undergoing treatment to be used as drinking water.

ters (classes) for preliminary interpretation (Lillesand et al., 2015). Subsequently, LULC maps were generated through a supervised
image classification employing the random forest (RF) classifier, known for its higher accuracy compared to unsupervised methods
(Tso and Mather 2009). Field survey data and visual interpretation from RGB compositions were utilised to establish accurate refer-
ence data for the predefined classes of interest. Six macro classes, following the USGS classification system (Anderson et al., 1976),
were chosen for representation (Refer to Table 2). Misclassifications of images were anticipated in the utilisation of Landsat images
from three satellites due to their medium spatial resolution, as documented in prior studies (Hassan et al. 2016; Pei et al., 2017). The
predominant misclassifications were observed between open forest and croplands; mining and settlements/bare lands. To rectify the
most evident misclassifications, an ArcGIS Pro post-classification algorithm (Pixel Editor tool) was utilised.

2.2.3. Accuracy assessment
In order to enhance the utility of the maps for decision-making purposes, a quantitative accuracy assessment procedure was imple-

mented to detect, quantify, and rectify the map errors (Congalton and Green 2009). The accuracy of the classified maps was assessed
by employing both a kappa statistic and a confusion matrix, which considered both omission and commission errors. To create the er-
ror matrix required for the validation of the classified maps, data sources such as Landsat, ESRI High Definition (3m), GPS ground
truth data obtained from field surveys, and Google Earth images were utilised. To ensure the reliability of the classified maps, a strati-
fied random sampling approach was employed, involving the selection of five hundred randomly chosen points for verification. A sep-
arate set of sampling points was used to train the land use and land cover classification algorithm. As a result of these efforts, the accu-
racy levels of the classified maps for the years 2008, 2015, and 2020 were all greater than or equal to 90%, yielding kappa indices
greater than 0.90.

2.2.4. Change detection
Quantitative analysis of LULC conversions, along with the determination of LULC change rates, was accomplished using the Post

Classification Comparison (PCC) technique (Hassan et al. 2016). Notably, the PCC method offers the advantage of providing insights
into the nature of changes, making it the most reliable method (Mas 1999). The assessment of LULC change was conducted using a
spatial analysis model of land use dynamics, which is grounded in the dynamic degree concept proposed by Shenghe and Shu-Jin
(2002) and subsequently adopted by Liping et al. (2018). Given below is the formula for the spatial-based land use dynamic degree
(rate of change):

CCL = TRLi + IRLi Equation (1)

TRLi

LA(i,t1) − ULAi

LA(i,t1)

×
1

t2 − t1

× 100% Equation (2)

IRLi

LA(i,t2) − ULAi

LA(i,t1)

×
1

t2 − t1

× 100% Equation (3)

where LA (i, t1) is the area of a certain type of land use at an earlier date, while LA (i, t2) is the area of a certain type of land use at a later
date. ULAi is the part that is not changed. t1 and t2 represent the year before and after the change, respectively. TRLi is the transfer-out
rate, IRLi is the transfer-in rate, and CCLi is the sum of TRLi and IRLi.

2.2.5. LULC change scenarios
Decision-makers leverage LULC scenario modelling to gain insights into the uncertainties inherent in land processes across various

potential future trajectories, their impacts, and interactions (Höjer et al., 2008; Moss et al., 2010; Armenteras et al., 2019). Two dis-
tinct LULC scenarios were developed: the “business as usual (BAU)” and the “remedial”. The BAU scenario was initially employed to
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predict LULC changes by modelling the rates and transition trends of change from 2008 to 2015, during which significant shifts oc-
curred due to mining activity. Subsequently, the ‘remedial’ scenario utilised actual rates of change in LULC from 2015 to 2020, pre-
suming the continuation and enhancement of corrective initiatives by the Ghanaian government, which began in 2016 and resulted in
slight reductions in land degradation and deforestation (Forkuor et al., 2020). The modelling process involved employing the transi-
tion area matrix between 2015 and 2020, with 2020 as the base year.

2.2.6. Change prediction
An efficient and widely employed approach, the CA-Markov model, was adopted for simulating and predicting LULC changes

(Awotwi et al., 2018; Liping et al., 2018; Singh et al., 2018; Mondal et al., 2020; Tariq and Shu 2020). This model adhered to three
pivotal standard procedures for LULC predictions: (a) utilising the Markov Model to establish transition matrices and probabilities,
(b) employing Multi-Criteria Evaluation (MCE) for a suitability atlas, and (c) using the CA-Model for forecasting future LULC. The
time periods 1986–2002, 2002–2008, 2008–2015, and 2015–2020 involved the use of Markov chain analysis to produce both the
transition area matrix and the transition probability matrix. For the BAU scenario, the Markov transition area matrix data from 2008
to 2015 was employed to simulate the 2020 LULC map and make predictions for 2030. In contrast, for the remedial scenario, data
from 2015 to 2020 was utilised to forecast projections for 2030.

The MCE tool was utilised to create a set of suitability maps for all LULC classes, integrating various factors into a unified index for
specific evaluation purposes (Liping et al., 2018; Eastman 2020) (See Map 2). Key parameters associated with LULC changes, includ-
ing slope, elevation, population density, and proximity to rivers, roads, and towns, were identified through interviews with key infor-
mants and data derived from existing research (Awotwi et al., 2018; Singh et al., 2018). Low-lying areas with low elevation and gentle
slopes are particularly susceptible to changes due to practices such as agriculture, mining, and settlements. Areas in proximity to river
bodies are more prone to changes induced by mining activities, given the necessity of water for such operations. The population den-
sity directly correlates with changes observed in cropland, closed forest, open forest, and built-up areas. These data sets were com-
piled from diverse sources and processed following standard procedures before utilisation. The 30m × 30m Digital Elevation Model
(DEM) of the study region was obtained from the NASA Shuttle Radar Topography Mission (SRTM) via Earth Explorer and subse-
quently utilised for generating the slope map. Image data from each year were compared with road and river datasets retrieved from
OpenStreetMap. Settlement data, crucial for identifying major settlements in the study area, was sourced from the Land Use and Spa-
tial Planning Authority (LUSPA) of Ghana. Population density data across different time frames was acquired from WorldPop at the
University of Southampton in the UK. Following processing in ArcGIS Pro (version 2.7.1), the images were imported into TerrSet
2020 Geospatial Monitoring and Modelling Systems. Utilising the MCE in TerrSet (2020), individual LULC suitability maps were gen-
erated, combining factors through the Weighted Linear Combination (WLC) option. Standardisation of factors was achieved using the
Fuzzy Module in TerrSet (2020), wherein output was normalised within a range of 0–255 employing various fuzzy functions and con-
trol points (refer to Appendix 1). Suitability maps for each class were subsequently created, with no predefined constraints. The Ana-
lytical Hierarchy Process (AHP), as introduced by Saaty (1977), was implemented within TerrSet 2020 to establish weights for the
standardised factors, ensuring a consistency ratio of 0.03 and 0.8 for the assigned weights for each LULC class. Compilation of class-
specific suitability maps into a unified set was facilitated using the Collection Editor. Employing a conventional 5x5 contiguity filter
and conducting 5 iterations of cellular automata in TerrSet (2020), a simulated LULC map for the year 2020 was developed based on
the collection of suitability maps, utilising the 2008–2015 Markov transition area with the 2015 categorised LULC map serving as the
base map.

2.2.7. Model validation and future LULC change prediction
The validation of the model involved comparing the 2020 predicted LULC classified map with the actual map, resulting in a kappa

index of 82%. Consequently, the predicted LULC map was derived from the simulated LULC, serving as the basis for the 2030 model
forecast under “BAU" and "remedial" scenarios.

2.2.8. Limitation of the study
The CA-Markov model used for the future prediction heavily relies on historical data and may not easily integrate real-time data or

events, limiting its adaptability to rapidly changing land use patterns driven by economic, environmental, or policy factors. Notably,
it struggles to capture the full complexity of emergent policy interactions and feedback loops. Despite these limitations, the CA-
Markov model remains an invaluable tool for providing accurate forecasts of future land use changes.

3. Results and discussion
3.1. Analysis of the LULC changes and their associated ecological footprints

Map 3 illustrates five LULC maps across the AWSD, encompassing six macro classifications: closed forest, open forest, farmland,
water, mining, and settlement/bare lands for the years under study (1980, 2002, 2008, 2015, and 2020). Table 3 presents the per-
centages and corresponding statistics for these LULC categories over the specified years. The trends in LULC, evident in both Map 3
and Table 3, can be comprehended in connection with four distinct phases of LULC dynamics, which are elaborated upon below.

3.1.1. First phase: None to limited mining footprints
In Map 3a, no conspicuous physical evidence of mining activities is evident during the initial phase in the 1980s. However, oral

histories indicate that artisanal miners utilised basic tools—such as pickaxes, shovels, and pans—on small land plots, resulting in faint
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traces of their work. Supporting this, an appointed assembly member and elderly resident from a study community affirmed the his-
torically minimal environmental impact linked to mining activities as follows:

“Historically, this community was not well known for mining activities, though our forefathers did engage in some artisanal ‘galamsey’
activities. There were gold nuggets referred to as ‘nkomra’. They dug deep holes on their farms to extract these golds nuggets. It was
nothing like what is currently being done, where standing here [in front of a settlement shop] you can see a vast area degraded due to
gold mining using mechanics” (ORH_04_AD).

In this period, the predominant LULC comprised open forest, encompassing 32% of the total land area, and cropland, accounting
for 34% of the total land extent, as indicated in Table 3. Subsequently, closed forests, predominantly situated within forest reserves,
covered 29% of the total land area, amounting to 35,244 ha. Natural water bodies, such as rivers, streams, ponds, and wetlands, occu-
pied 4,798 ha. Notably, the Offin and Oda rivers,1 along with their tributaries, served as the primary water sources during this period.
Settlements were notably scarce in these areas.

3.1.2. Second phase: Gradual to accelerated increase mining footprints
The classified map from 2002 (Map 3b) illustrates active mining activities and their associated social and environmental impacts

during the second phase (late 1980s to early 1990s). In response to the escalating environmental effects of the mining industry and
other sectors, the Ghanaian government established the Environmental Protection Agency in 1994. There was also a restructuring of
the mining sector, providing substantial incentives for private entities (Akabzaa and Darimani 2001; Abdulai 2017), during this pe-
riod. Consequently, licensed mining corporations primarily conducted mining activities. Specifically, in the study district, mineral li-
censes were granted to the Bonte Gold Mines in 1991 and to Amansie Resources Limited in 1994. Bonte Gold Mines operated for 13
years, while Amansie Resources Ltd operated for 8 years before being acquired by Resolute Amansie in 1997. The 'visible' footprint of
mining activities (480 ha in 2002) was observed in the operational areas of these mining firms (Map 3). Remarkably, since 1986,
there has been a notable increase in both open forest and crop land, with the former expanding from 32% to 39% and the latter from
34% to 42%. Human settlement areas also grew by 3.5%, accommodating the rising population. In contrast, closed forest areas signif-
icantly decreased from 35,244 ha in 1986 to 17,710 ha by 2002. By 2002, nearly half of the freshwater reserves in the district had de-
pleted due to the disappearance of water puddles in forests. Moreover, the Offin river in the western part of the district, closer to Keni-
ago, was concealed by trees, potentially due to illicit mining activities, such as river dredging in the upper reaches of the Offin in adja-
cent regions, contributing to the reduced downstream flow.

3.1.3. Third phase: Sharp increases in mining footprint
From 2008 to early 2017, the third phase of gold mining in Ghana witnessed a significant upsurge in small-scale mining activities

due to the escalating gold prices (Hausermann et al., 2018; Barenblitt et al., 2021). This era marked a significant environmental im-
pact as advanced technology such as excavators and wash plants were introduced, establishing a lasting footprint on the environment
of Ghana. Remarkably, it was during this period that other nationals, predominantly Chinese, and prominent political elite entered
the small-scale mining industry. Research indicates a substantial level of collaboration and collusion between Chinese miners, Ghana-
ian miners, traditional leaders, and government officials, leveraging their positions for personal financial gain (Crawford et al., 2016,
p.4). The land use and land cover dynamics in 2008 and 2015, depicted in Map 3c and d, illustrate fluctuations in mining activity.
Map 3c showcases a decline in mining operations in the initial half of 2008, followed by a subsequent spike. The closure of significant
licensed mining entities notably contributed to this initial decrease. Environmental degradation and disputes led to the revocation of
licenses for Bonte Gold Mines in 2004 and the suspension of operations by Resolute Amansie in 2002, likely influenced by a downturn
in gold prices during that time. Additionally, conflicts and the outbreak of Buruli ulcer in Tontokrom and adjacent communities, as re-
ported by Freiku (2005) and Owusu-sekyere (2012) respectively, likely contributed to the decline in mining activities.

Table 3 shows the significant expansion of mining activities between 2008 (98 ha) and 2015 (4,276 ha), amounting to 3.5% of
the total land area. Concurrently, from 2002 to 2008, the land allocated to settlements or left barren increased from 4,320 ha
(3.5%) to 15,525 ha (12.7%). This rise in barren areas can be attributed to land clearance for agriculture and mining, accompanied
by the construction of structures to accommodate the increasing number of miners in the region. The change in land use is evident
in the reduction of agricultural land from 47,390 ha (38.5%) in 2002 to 40,200 ha (32.7%) in 2008. Similarly, the open forest area
decreased from 51,370 ha (41.7%) in 2002 to 50,050 ha (40.7%) in 2008. Water primarily from mining pits, land surfaces, and
redirected river channels increased over time, tripling from 1,800 ha (1.5%) in 2002 to 6,170 ha (5%) in 2015. This confirms a sim-
ilar study conducted by Hausermann et al. (2018) along sections of the Offin River, highlighting a substantial 13,000% increase in
mine water coverage, expanding over 200 ha between 2008 and 2013. These findings validate the widespread increases in mine
water as a land cover class in mining environments within this study. Predominantly, small-scale mining operations concentrated
along the courses of major rivers—namely, the Offin and Oda Rivers. Alluvial gold dredging notably expanded the drainage basins
of these rivers, consequently augmenting water accumulation. Moreover, diversion of river sources to distant locations for gold ore
washing further contributed to the rise in water volume. Resultantly, effluents gather on the land and in abandoned mining pits.
The substantial surge in water coverage largely stems from the development of numerous water-collecting mining pits and the accu-

1 The Oda and Offin rivers are two major tributaries of the Pra River in Ghana. Together with the main Pra river, rivers Anum and Birim, and their tributaries, they
form the largest river basin of the three principal south-western basin systems of Ghana (i.e., Ankobra, Tano, and Pra). The Pra River basin has a total basin area of approxi-
mately 23,200 km2, with an area of 1174 km2 in the Amansie West and South Districts.
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Map 1. Study Area from continental and national contexts. Source: Obodai et al. (2023).

mulation of water both on land surfaces and into the primary river systems of the study districts. In 2015, the area of closed forest
reduced further to 13600 ha (11.05%), reflecting a continued long-term trend of forest area diminution.

3.1.4. Fourth phase: Gradual decrease in mining footprint
From 2017 to 2021, a significant surge in public opposition to illegal small-scale gold mining practices occurred due to severe en-

vironmental repercussions, including deforestation, land degradation, and water contamination. The public, alongside governmental
efforts, led a movement against these activities. Between March 2017 and December 2018, all forms of small-scale mining were pro-
hibited, enforced by a combined military and police task force, resulting in the arrest of defiant miners and the confiscation of mining
equipment. Ghana took further action on May 1, 2019, imposing a temporary restriction on excavator imports to tackle illegal min-
ing. Despite prior attempts to curb unlawful mining between 2008 and 2015, the activities persisted, although at reduced rates. Re-
search by Forkuor et al. (2020) aligned with this, showing a decline in illegal mining in southwestern Ghana from 2015/2016 to
2018/2019. Conversely, Nyamekye et al. (2021) reported an increase in scale mining activities in eastern Ghana between the period
2017 to 2018.

The data from this current study illustrated in Table 3 reveals an expansion in mining areas from 4,280 ha (3.5%) in 2015 to
5,590 ha (4.5%) in 2020. In 2015, water decreased significantly by nearly a half. However, there was an increase in the total area of
croplands from 50,600 ha (41.1%) in 2015 to 54,850 ha (44.6%) in 2020, facilitated by a government initiative known as "planting
for food and jobs." This program provided farmers with resources like free seedlings and nutrients, enabling increased agricultural
land use. Both closed and open forest cover saw slight increases from 2015 to 2020, with closed forest expanding from 13,595 ha to
14,070 ha, and open forest growing from 32,900 ha (26.7%) to 33,760 ha (27.4%). By 2020, settlements and bare land decreased,
demonstrating a change in land use patterns. The reduction primarily resulted from the decrease in bare lands, specifically those allo-
cated for mining activities that were exhausted. Additionally, the joint military and police operations during that period likely con-
tributed minimally to the creation of new bare land.

3.2. Analysis of the trend and patterns of the LULC changes
Fig. 2 provides visual representations while Table 4 offers numerical summaries of the LULC changes from 1986 to 2020. Four

distinct phases in LULC dynamics are identified, showcasing significant changes experienced by AWSD during these periods. No-
tably, prominent changes in LULC occurred between 2002-2008 and 2008–2015, evident in both Fig. 2 and Table 4.

During 1986–2002, closed forest diminished by half of its original size (17,534 ha), while water bodies reduced by over 60%
(Table 4). The most substantial increase, a 134% rise, was observed in settlements and bare land, expanding by 2,478 ha. Only ap-
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Map 2. Suitability maps for each land use and land cover class and the input datasets used in its generation. (a) Water (b) cropland (c) mining (d) Closed Forest (e)
Settlements/bare lands (f) open forest are suitability maps. (g) slope (h) DEM (i) Population Density (j)river (k) secondary roads (l) tertiary roads (m) major settle-
ments are input map.

proximately half of the original settlement/bare land shifted to other LULC categories. Open forest expanded by 11,444 ha, and crop-
land increased by 6,130 ha, representing 28.66% and 14.86% of the total increments, respectively. Around 50.82% and 61.78% of
open forest area changed to different vegetation types. The farmland witnessed changes, with 48.22% converted from other land uses
and 54.92% converted into other land uses.

Between 2002 and 2008, there was a decline in all LULC categories except settlement/bare lands. Remarkably, there was a sub-
stantial net increase in the settlement/bare land area by 10,834 ha, marking a 251% rise. Only 25% of settlement/bare land transi-
tioned to other LULC types, while 79% of all other land categories converted to these uses. Following settlement/bare lands, the most
significant changes were observed in mining (80% decrease, resulting in a marginal net loss of 386 ha) and water (−47% decrease,
leading to an 839-ha loss). Closed forest cover decreased by 1,107 ha (6%) during this period, with the most significant net area loss
occurring in cropland (7,188 ha), while open forest experienced a smaller loss of 1,320 ha. Approximately 58% of arable land was re-
assigned to other LULC classifications, and a similar amount was gained (51%).

The trends in LULC changes from 2002 to 2008 mirrored those observed between 2008 and 2015, indicating a consistent long-
term pattern. The most substantial changes occurred in mining and water categories, both experiencing notable net gains in area dur-
ing the preceding period. Simultaneously, all other LULC categories experienced net losses. Mining and water accounted for most
recorded changes, with net gains of 4,178 ha and 5,207 ha, respectively. Nearly the entire extracted land came from other LULC
classes. Closed forest (3,008 ha) and open forest (17,146 ha) saw significant net losses, representing 34% and 18% of the observable
changes, respectively. However, cropland reversed its prior losses to register a net gain of 10,399 ha, constituting 26% of the total
changes. Settlement area saw a minor increase of 371 ha, representing only 2% of the overall change during this period.

From 2015 to 2020, mining and water classes remained the most dynamic, accounting for 31% and 44% of observed changes, re-
spectively, with a net gain of 1,313 ha and a net loss of 2,685 ha in area. Settlements/bare lands experienced a net loss of 4,217 ha,
marking a 27-percentage point change. Open forest area increased by 859 ha, and closed forest increased by 479 ha. Some net gains
were recorded in cropland area (4,251 ha), contributing to 8% of the total changes, but these gains were relatively small.

The changes in land use and land cover types between 1986 and 2020 are illustrated through change maps in Map 4(a-f). Green
and red layers represent areas gained or lost to other land uses and cover types, respectively, for each category. The yellow layer indi-
cates areas that have remained unchanged over time. These changes highlighted in Map 4 signify significant changes over four peri-
ods, aligning with the distinct phases of LULC dynamics discussed previously. In examining the change maps from 1986 to 2020 (Map
4), notable deforestation is evident due to the conversion of open forest and closed forest land cover to other uses. Conversely, min-
ing, croplands, and settlements/bare lands experienced substantial growth during this period. Specifically, mining activities intensi-
fied along the Oda and Offin rivers.
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Map 3. LULC Classification Maps of the study area.

3.3. The driving forces initiating and perpetuating LULC changes and their associated footprints
The observed trends and patterns of LULC changes result from a myriad of causes and events. Simplifying these variables poses a

challenge (Lambin et al., 2001). Geist and Lambin (2002) categorised these causes into proximate and underlying factors. Proximate
driving forces stem from human activities and immediate local actions that shape planned land use and impact land cover. Con-
versely, underlying factors are dominant social processes that directly influence national or international levels or reinforce proxi-
mate causes at the local level (Geist and Lambin, 2002).

Despite occupying a relatively small area compared to other land uses, mining significantly influences the observed patterns and
trends, alongside its associated environmental footprint, according to the interviews and field observations. Small-scale gold mining
activities directly cause three main environmental footprints: land degradation, water pollution and diversion, and deforestation. Sig-
nificant land deterioration was observed due to the use of excavators and other sophisticated machinery for gold extraction, spanning
a substantial area (refer to Map 5).

The cartographic representation in Map 5 illustrates the extent of land degradation within the primary communities of the study
area. Data acquired from interviews and field observations corroborate these degradation patterns and reveal various causative fac-
tors. Notably, the adoption of advanced mining techniques by foreign nationals, particularly the Chinese, has significantly con-
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Map 4. The gains and losses in land use and land cover classes over the period 1986 to 2020. ‘Gains’ represent an increase in a particular land use and land cover
type, ‘Losses’ represent a decrease in a particular land use and land cover type and ‘No change’ represent no change in a particular land use and land cover.

tributed to environmental ramifications. This aligns with findings of Hilson and McQuilken (2014); Crawford et al. (2016); and
Owusu-Nimo et al., (2018), emphasising extensive Chinese involvement in the mining industry of Ghana and the utilisation of high-
tech equipment. Addressing the profound impact of advanced Chinese technology on LULC changes, a local miner succinctly con-
veyed as follows:

“Had the Chinese operations persisted, our forests would have been obliterated by now. What takes a local miner months to
clear, the Chinese accomplish in days due to their superior technology” (SSI_003_M).

This perspective illuminates the substantial consequences of technological advancements as a key driver of land cover changes,
echoing the shared apprehensions of a significant portion of the participants of the study.

The lax enforcement of laws exacerbates the extent of land degradation. The regulatory bodies, the Mineral Commission and the
Environmental Protection Agency, mandated by law to oversee mining operations and land reclamation, have been found lacking. A
report by the Ghana Audit Service (2021) revealed their failure to implement reclamation bonds, overlook submission of operating
plans, neglect monitoring of reclaimed lands, and take no action to enforce pre-agreed land reclamation conditions before mining
commences.

Secondly, the natural water resources, particularly the Oda and Offin rivers, suffer adverse effects from excessive water with-
drawal through surface water diversions for mineral ore processing and dewatering mining zones. Illicit small-scale extraction of allu-
vial gold using mercury from riverbeds further impacts both the quality and quantity of these rivers. This destruction extends to
smaller water bodies such as streams and ponds, crucial for household functions, significantly diminishing river water quality over
time. The research participants unanimously affirmed that small-scale gold mining severely pollutes the main rivers and streams in
the towns, rendering them unsuitable for human consumption or agricultural purposes. Apau and Enyemadze (2014) conducted a
study involving drinking water samples collected from boreholes, hand-dug wells, and streams across 23 communities in the study
area. Their findings revealed arsenic concentrations ranging between 0.24 and 37.22 μg/L in streams, 13.49–26.41 μg/L in boreholes,
and 24.11–39.43 μg/L in hand-dug wells. On average, the study indicated that 61%, 69%, and 68% of the total arsenic constituted the
more toxic arsenic (III) form in boreholes, hand-dug wells, and streams, respectively (ibid).

Fig. 3 illustrates the significant murkiness evident in parts of the Oda and Offin rivers due to this pollution. Consequently, for-
mer fishermen in these areas no longer have access to fishable waters. The pollution not only diminishes the water supply but also
escalates the cost of obtaining clean, drinkable water. Interviews with vegetable farmers revealed their reliance on these water
sources for year-round irrigation. Nonetheless, due to contamination from the mines, some farmers are compelled to use unsuitable
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Map 5. A collage of satellite imagery showing the extent of land degradation from mining in 2020. Source: ESRI (2021) High Resolution 30 cm Imagery

Map 6. Simulated and Predicted LULC Maps (a) Simulated LULC map of 2020 (b) Predicted LULC Map of 2030 under ‘remedial’ scenario (c) Predicted LULC Map of
2030 under BAU scenario.
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Table 5
Area and percentage of LULC classes of 2020 classified and the predicted LULC for 2030 under remedial and business as usual scenarios.

2020 LULC 2030 LULC ‘Remedial’
Scenario

2030 LULC ‘BAU’
Scenario

2020 to 2030
‘Remedial’ Scenario

2020 to 2030
‘BAU’ Scenario

LULC Classes Area
(Ha)

%
Area

Area (Ha) %
Area

Area (Ha) %
Area

Net area of Change
(Ha)

%
Change

Net area of Change
(Ha)

%
Change

Water 3,484 2.83 2,465 2.00 4,082 3.32 −1,019 −29.25 599 3.36
Cropland 54,851 s 44.57 55,738 45.29 54,139 43.99 887 1.62 −712 −0.18
Mining 5,589 4.54 4,925 4.00 6,997 5.69 −663 −11.87 1,409 2.24
Closed Forest 14,074 11.44 15,236 12.38 12,525 10.18 1,162 8.25 −1,549 −0.63
Settlements/bare

land
11,308 9.19 8,951 7.27 15,772 12.82 −2,357 −20.85 4,464 1.23

Open Forest 33,763 27.43 35,752 29.05 29,552 24.01 1,990 5.89 4,210 0.26

mine pit water for irrigation, despite its inappropriateness for human consumption. The presence of dissolved toxins in this mining
pit water raises concerns about potential contamination in the food chain over time.

The examination of interviews revealed that mining significantly impacts water resources beyond its immediate vicinity, leading
to direct and indirect environmental consequences. For example, despite treating the polluted River Oda, the Ghana Water Company
Limited utilises it as a water reservoir to provide drinking water to communities situated far from the mining areas (see Fig. 4). This
practice escalates the cost of purifying water due to increased chemical usage. Moreover, substantial amounts of purified water are
wasted, resulting in inadequate and unsafe water supply to reliant communities (see Fig. 5). According to Ing. Dr. Clifford Braimah,
Managing Director of the Ghana Water Company, a daily exclusion of 140,000 people reliant on water sourced from the Oda river in
the study area occur due to elevated turbidity levels resulting from small-scale mining activities. This heightened turbidity leads to
the disposal of over 50% of abstracted water, significantly impacting access for the affected population (Modern Ghana Online 2021).

Mining operations directly contribute to the depletion of forest cover, a correlation extensively documented in the escalating
trends of mining activities. Through a comprehensive examination involving interviews, focus groups, and field observations, it was
evident that extensive areas of farmland were repurposed into mining sites. This change was substantiated by our on-site investiga-
tions, revealing a consequential outcome: numerous farmers increasingly clearing forested areas to accommodate agricultural activi-
ties. The remote sensing and geospatial analysis confirmed a disconcerting reality, showcasing a loss of 36 percent of all forest cover
(comprising both open and closed forests) between 1986 and 2020, amounting to 27,333 ha. This translates to an annual deforesta-
tion rate of 1.07 percent, surpassing the 0.4%–0.7% rates recorded by Acheampong et al. (2019) in the Ashanti Region between 1990
and 2015. This disparity underscores the higher deforestation rates within mining zones.

The accelerated pace of deforestation has been associated with a reduction in ecosystem services and a decline in biodiversity,
echoing established findings in various studies (Pereira et al., 2012; Costanza et al., 2014; Acheampong et al., 2019; Zabel et al.,
2019; Hasan et al., 2020). Furthermore, it influences regional climate and weather patterns.

While mining was highlighted as the primary immediate cause of observed changes and their ecological repercussions, partici-
pants also recognised logging, construction, and agricultural expansion as contributing factors. Inadequate law enforcement, coupled
with the utilisation of advanced technologies, along with population growth (including immigration), agricultural challenges, unem-
ployment, and poverty, were cited as additional factors. The forthcoming section of this study will forecast LULC changes and their
correlated ecological impacts over the next decade to offer valuable insights for policymaking.

3.4. Prediction of future LULC changes
This section undertakes LULC predictions for the 'remedial' and 'business as usual' scenarios discussed in Section 2.2.6. The com-

parison in Map 6 shows the predicted LULC maps for 2030 under both scenarios against the 2020 map generated through simulations.
Related statistics are detailed in Table 5. The remedial LULC modification scenario suggests a potential reduction in land degradation
and deforestation, promising an enhanced local landscape and improved wellbeing for inhabitants. Projections indicate a decrease in
all land uses, except for a modest 1.62% increase in cropland by 887 ha, maintaining a positive trajectory compared to 2020 stan-
dards. Forest land cover is anticipated to show improvement in this context.

Additionally, anticipated changes in LULC in the study area suggest a decline of 1,019 ha (29%) in water and 663 ha (12%) in
mining activities. The interrelation between water and mining operations is evident, where reduced mining leads to less water accu-
mulation in mine pits. Consequently, costs associated with treating drinking water, malaria prevalence, drowning risks, and other ad-
verse effects linked to increased water-filled mine pits are expected to decrease. Furthermore, a 21% reduction in land used for settle-
ments and bare lands is projected, primarily attributed to deforestation for mining purposes, resulting in less bare land. Forests are an-
ticipated to experience a positive change under the remedial scenario, with an expected increase of 1,162 ha (6%) in open forest and
1,990 ha (8%) in closed forest. These increments stem from natural forest regeneration following reduced human intervention. How-
ever, further improvements in forest cover necessitate comprehensive initiatives focused on land reclamation and tree replacement.
Simplification of regulations is imperative to ensure goal attainment, with strict criteria for land reclamation contracts to be awarded
exclusively to reputable firms.

Contrarily, the 'business as usual' scenario foresees expansions in certain land uses and cover classes compared to the remedial
LULC scenario. It is anticipated that water and mining land uses will expand by 599 ha (3%) and 1,409 ha (2%), respectively, from
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their 2020 projections. Predicted reductions in croplands by 712 ha (0.18%) and closed forests by 1,549 ha (0.63%) will notably im-
pact smallholder farmers, who constitute the majority of the farming community in Ghana. Given that approximately 95% of farm-
lands in use are smaller than 10 ha, with an average size of less than 1.6 ha (Environmental Protection Agency 2020), these changes
could displace around 445 farmers by 2030 under the 'business as usual' LULC change scenario for cropland. Moreover, the study pre-
dicts an increase of 4,464 ha (1.23%) in settlements/bare lands and 4,210 ha (0.26%) in open forest by 2030 under the 'business as
usual' scenario. These projections underscore the potential repercussions of continuing current land use trends, especially concerning
smallholder farmers and the landscape's ecological balance.

4. Conclusions and recommendation
This paper quantifies the dynamics of LULC changes, their associated environmental footprints, and the driving forces initiating

and sustaining these changes. Future projections, encompassing both "business as usual" and "remedial" outcomes, have been estab-
lished. Four distinct phases of LULC dynamics for mining footprints have been identified: zero to low, slow to moderate, rapid to ex-
treme, and steady decline. Land degradation, deforestation, and water pollution and diversions are directly and indirectly linked to
these LULC dynamics, primarily stemming from mining activities. Degradation occurs across substantial regions, causing a decrease
in both the quality and quantity of natural water supplies, significantly impacting individuals and communities. Over a 34-year pe-
riod, forest resources diminished by 27,333 ha, representing a 36% loss in forest cover due to an average annual deforestation rate of
1.07%. Using the CA-Markov model, the study predicts a rise in mining and water usage, adversely affecting forest ecosystems in a
business-as-usual scenario. However, under a remedial scenario, the analysis foresees the preservation of forest ecosystems and liveli-
hoods. Despite its smaller spatial coverage compared to other LULC classes, mining is intricately linked with and significantly influ-
ences observed LULC trends. The study advocates for the integration of remote sensing/geographic information systems (RS/GIS) and
social sciences approaches in analysing LULC changes, asserting that their combination yields more comprehensive, robust, and nu-
anced insights than either approach in isolation.
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Appendices
Appendix 1

Appendix 1: Fuzzy functions and control points

Factors (s) Membership function type Membership function shape Control points

Slope (o) Linear Monotonically decreasing c = 0, d = 15
Eleven (m) Sigmoidal Symmetric a = 95, b = 185

c = 190, d = 618
Proximity to rivers (m) J Shaped Monotonically decreasing c = 160, d = 3000
Proximity to major settlements (m) Sigmoidal Symmetric a = 225, b = 2700

c = 3000, d = 22000
Proximity to secondary roads (m) J Shaped Monotonically decreasing a = 280, b = 3000
Proximity to tertiary roads (m) J Shaped Monotonically decreasing a = 80, b = 1400
Population density (people per km2) Sigmoidal Symmetric a = 20, b = 60

c = 80, d = 420
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