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Abstract: Blood doping remains a significant problem that
threatens the integrity of sport. The current indirectmethod for
detecting blood doping involves the longitudinal measurement
of an athlete’s haematological variables and identification of
suspicious results that are indicative of doping (i.e., the athlete
biological passport). While this has played a significant role in
the protection of clean sport, improvements are needed. The
development of a transcriptomic test, that can be used to detect
the use of blood doping has been discussed and researched for
decades and yet, an anti-doping test that can be adopted by the
World Anti-Doping Agency (WADA) is yet to be established.
With recent advancements in our understanding, as well as
in methods of sample collection, the possibility of a tran-
scriptomic test that can be used by WADA, is imminent. There
are, however, several practical considerations that must first
be made, that will be highlighted in this perspective article.

Keywords: anti-doping; testing; blood doping; EPO;
transcriptomics

Introduction

In endurance sports, blood doping has the potential to
significantly improve endurance performance, primarily by

increasing the oxygen carrying capacity of the users’ blood [1].
The use of rHuEpo to enhance athletic performance was
prohibited by the International Olympic Committee (IOC) in
1990, however its detection to this day remains a challenge. In
1997, a “no start” rule was introduced by the Union Cycliste
Internationale (UCI), with athletes providing a blood sample
prior to competition [2] and if their Haematocrit (HCT)
exceeded the predetermined limit, theywere not permitted to
race. The Athlete Biological Passport (ABP) was later intro-
duced by the UCI in 2008 [3] and soon after adopted byWADA.
Since then, it has been a critical element of anti-doping testing
programmes.

The ABP measures an athlete’s haematological vari-
ables longitudinally, and with the use of Bayesian statistics,
generates an individual upper and lower limit [3]. If an
athlete’s haematological variables exceed the calculated
upper or lower limit, it suggests that there is only a 1:100
chance that this is due to “natural” physiological variance
[4] and can be used as evidence of doping and result in
the sanctioning of an athlete [5]. It has, however, been
demonstrated that it is possible to use low doses of Re-
combinant human erythropoietin (rHuEpo) and avoid
detection by the ABP [6], and despite improvements to the
ABP [7], questions remain about its reliability as a method
of detecting doping and its efficacy as a deterrent, on a
global scale [8].

A transcriptomic method of detecting rHuEpo abuse
was described in 2001 [9], a year after the first direct test for
rHuEpo in urine was established [10]. Recent research into
transcriptomics for anti-doping has focused on identifying
specific transcriptomic markers that are associated with
rHuEpo abuse [11, 12], confounding variables such as altitude
exposure [13] and reproducibility of transcriptomic markers
in differing sample collection matrixes such as Dried Blood
Spot (DBS) [14].

Despite significant research, a transcriptomic test, that is
either standalone, or an addition to the current ABP has yet to
be established. There are several theoretical and practical
hurdles that must be overcome prior to the adoption of a
transcriptomic test as an anti-doping tool. The summary of
this article is presented in Figure 1.
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Identifying transcriptomic markers

Numerous studies have characterised the transcriptomic
response to blood doping in whole blood (e.g., Table 1, [15])
and DBS [16], along with conditions that may confound re-
sults, such as altitude exposure [13] and iron injections [17].
There is yet to be consensus onwhatmarkers should be used
to indicate blood doping, or which confounding factors
should be accounted for in an anti-doping test.

There is growing evidence for specific transcriptomic
markers as candidates for a transcriptomic test. For example,
the transcript 5′-Aminolevulinate Synthase 2 (ALAS2) has been

shown to be differentially expressed following both high [11]
and low [12] doses of rHuEpo in whole blood in addition to
being identifiable following high doses of rHuEpo in DBS [18].
Although ALAS2 appears to also be differentially expressed to
altitude exposure [13], which might reduce its sensitivity to
detecting blood doping, a recent pilot study has demonstrated
that the administration of rHuEpo at altitude, remains
detectable, using this marker [19].

There is currently no consensus on how to integrate
gene expression data into a test. Broadly, it appears that
there are two likely methods. Firstly, the integration of
transcriptomic biomarkers into the existing ABP, which

Figure 1: Graphical representation of this article. Figure created with BioRender.
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show evidence that their differential gene expression in-
dicates doping [20]. For this method, upper and lower limits
should be determined and if exceeded, the data sent to a panel
for review. Secondly, a standalone test, that uses numerous
transcripts to create a signature of doping, which will require
a regulatory approachmore similar to a direct test of rHuEpo
in urine [10]. It is not yet obvious which method will prove
most useful to anti-doping efforts, with more research
required once a more substantial number of suitable tran-
scriptomic markers has been established.

Future developments in identifying
transcriptomic markers

As Artificial Intelligence (AI) develops, it could be harnessed to
review the substantial data outputs from Next generation
sequencing (NGS) [21] and create a “signature” of blood doping,
highlighting unique signatures over and above current
methods of identifying transcriptomicmarkers and/or create a
“profiling” approach as has been theorised [22]. The better the
quality data used, the better the generative AI prediction. We
would expect the prediction of doping to improve as the AI
learns from doping cases. However, there are AI-specific
challenges that should be addressed, including the require-
ment to have large training datasets to create robust algo-
rithms. More importantly, the development of explainable AI
algorithms is crucial, as these would allow researchers and
regulators tounderstand thedecision-makingprocess of theAI,
ensuring transparency and trust in its findings [23].

As transcriptomic markers are identified and validated,
there exists an opportunity to develop hybrid testing models,
combining the outputs of transcriptomic tests with outputs
from other, complimentary tests to provide a more compre-
hensive understanding of an athlete’s physiology. There are
numerous methods of doping detection that could be used as
part of a hybrid model of anti-doping testing, many of which
have promising areas of development [24]. The development of
hybrid model of anti-doping seems most likely to incorporate
aspects of the “OMICS” cascade, incorporating information
from genomic, transcriptomic, metabolomic and proteomic
analysis [25]. A hybrid testing approachwill take a considerable
time to develop, as the influence of confounding factors and
individual variation for each aspect of the test must be vali-
dated prior to incorporation into anti-doping testing.While the
development of transcriptomic markers in whole blood and
other sample matrixes is yielding potential new biomarkers,
other matrixes should also be explored in the OMICS cascade.
For example, investigation of metabolomics and proteomics in
cell-free matrixes such as plasma and serum may provide
another avenue for developing anti-doping biomarkers. Simi-
larly, the investigation of spatial transcriptomics may yield

additional biomarkers, however a significant amount of
further research is required before itwill be of practical use for
anti-doping efforts.

Blood collection and long-term
storage

In order to integrate a transcriptomic test within the current
anti-doping system, methods of collection, transport and
long-term storage should align closely with those described
in the WADA International Standard for Testing and In-
vestigations (ISTI) [26] and sample collection guidelines [27].
For example, there are a series of conditions/situations that
an athlete should declare when a sample is collected (e.g.,
recent significant blood loss or exposure extreme environ-
mental conditions), however, the effect of these on tran-
scriptomic markers has not yet been established.

Studies that have collected samples for transcriptomic
analysis have predominantly collected whole blood in Tem-
pus™ Blood RNA tubes (Life Technologies, Carlsbad, CA, USA)
which contain reagents to stabilise Ribonucleic acid (RNA).
These are not currently approved for use by WADA, with
K2EDTA tubes used for the collection of blood for analysis of
gene doping [27]. An initial study has demonstrated the stability
of transcriptomic material using K2EDTA collection tubes [28],
suggesting integration with existing sample collection guide-
lines will be possible.

Recently, the use of DBS as a sample collection method
was approved and adopted by WADA [26]. The use of DBS in
anti-doping offers unique advantages beyond traditional
venepuncture collection including greater convenience for
athletes [29] and improved sample stability at room temper-
ature [30]. Research has demonstrated that DBS is a suitable
matrix for monitoring transcriptomic markers [14, 31].

If using an ABP-like strategy, a single A-sample, which
can be discarded within a month should be sufficient for
transcriptomic testing. However, to create a transcriptomic
“signature” of blood doping, both an A- and B- sample would
be necessary to be compliant withWADA’s analytical testing
procedures. Long-term storage would provide the opportu-
nity to store blood for new analyses when new RNA bio-
markers are discovered that better characterise doping.

Laboratory sample processing

WADAhas established the standards related to the laboratory
procedures for the analysis of anti-doping samples within the
International Standard for Laboratories (ISL) [32] and any
methods developed for the analysis of a transcriptomic
markers should adhere to these.
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As with all blood tests, a degree of processing is required
once a sample arrives in the laboratory.While RNA extraction,
for transcriptomic analysis is no longer considered a compli-
catedprocess, there are severalmethodologies available and, to
establish international harmonisation, a single method should
be selected that is quick, easy to perform, cost-effective and
reliable in “real-world” settings.

Following on from RNA extraction, the level of expression
of a transcriptomic marker must be established. The most
widely available method, Real Time Quantitative Polymerase
Chain Reaction (RT-qPCR), was developed ∼ 40 years ago [33]
and its use was prolific during the COVID-19 pandemic [34].
There exist guidelines for laboratories to use RT-qPCR in
WADA-accredited laboratories as a method of detecting gene
doping [35]. While this method is based on replication of DNA,
the methodological approach that is needed to measure tran-
scripts, is largely similar. As with RNA extraction, the subse-
quent analysis would require international harmonisation and
therefore, decisions related to the type of real-time chemistry
(e.g. TaqManvs. SYBR), reverse transcriptionmethod andassay
design and quantitation, would need to be made. Particular
attention should be paid to developing methods to minimise
the variation that is often introduced into results of tran-
scriptomic analysis (i.e. [36]), with methods harmonised across
countries.

Other methods are available that could be used as part of
a transcriptomic anti-doping test, such as short- and long-read
sequencing [37] ormicroarray analysis [38]. The complexity of
these technologies currently hinders their use in anti-doping
laboratories, however continual advances in the simplifica-
tion of such technologies, make this a possibility in the future.
Similarly, advances in robotic technologies provide the pos-
sibility of automating a significant portion of the laboratory
process. By removing the human interaction in the sample
handling and analysis, rates of human errors and contami-
nation that may affect the analysis should decrease. For
example, an automated transcriptomics analysis method can

be developed, from sample to report (Figure 2). The process
begins with the collection of blood samples from test subjects,
which are then transferred, using robotics, from tubes to
96-well plates. Once loaded, an automated nucleic acid
extractor extracts total RNA from the blood samples.
Following this, the samples undergo quality control checks
and normalization procedures, ensuring the quality and
quantity of RNA is suitable for sequencing. The extracted RNA
is then enriched, library prepared, and further sample prep-
aration completed before sequencing, all of which can also be
completed by an automated sample preparation system. Once
the samples are loaded into flow cells, which are in turn,
loaded into the sequencer, sample analysis begins. The raw
data outputs are then sent to a data centre that integrates a
laboratory information management system, bioinformatics
accelerator, and high-performance data storage. For tran-
scriptomics analysis, a comprehensive gene expression report
along with a report detailing Single nucleotide poly-
morphisms (SNPs) and insertions/deletions is created. To
ensure a fully automated and unmanned operation, a robot
transfers samples and consumables in and out of each auto-
mated instrument, with an automatic scheduling system
managing and controlling the entire experimental process.

Using a pipeline illustrated in Figure 2, it is possible to
run four flow-cells at one time, each containing 232 samples,
resulting in 928 samples analysed in 4–5 days. The data from
the analysis can then be integrated into an ABP-style system,
or a more complex system that identifies “signatures” of
doping.

Legal considerations

Strict international harmonisation in collection, storage and
analysis will be necessary to legally defend a transcriptomic
biomarker. When compared to the haematological bio-
markers, the development of transcriptomic markers is in

Figure 2: Automated high throughput
sequencing pipeline, from sample to analysis.
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relatively infancy. Therefore, there are no reference values
available, which contrasts with the haematological markers
used in the ABP, such as for haemoglobin which have been
measured for over 100 years. Additionally, the confounding
factors are not yet well known, but there is growing litera-
ture on this topic.

Currently, outliers in an athletes’ABP are evaluated by a
group of experts. However, it would be challenging to find
enough experts who are able to identify doping using tran-
scriptomic markers. Further research is urgently needed to
generate the knowledge required in the field. Integration of
transcriptomic markers in routine testing could prove
beneficial as the data generated could be used as additional
evidence and simultaneously develop the necessary knowl-
edge and experience over time. However, ethical and legal
concerns related to the secondary use of samples for
research would need to be addressed.

Conclusions

With the advancement of doping practices, more sophisticated
methods of doping detection are required. The growing num-
ber of studies identifying transcriptomic markers character-
ising blood doping makes the development of an effective
transcriptomic anti-doping test ever more likely. This
perspective article has outlined some limitations of a tran-
scriptomic anti-doping test and described the most pressing
steps needed to develop and integrate it within an effective
testing programme, following guidance issued within the ISTI
and ISL. Further collaborative work is needed between sport
scientists, bioinformaticians, anti-doping organisations and
regulators to develop transcriptomic approaches to anti-doping
and further investigate the integration of AI into routine
testing.
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