
Lu, Y, Qiu, Z, Zhang, S, Hu, W, Qiu, Y and Qiu, Z

 Coded Ultrasonic Ranging for the Distance Measurement of Coaxial Rotor 
Blades

http://researchonline.ljmu.ac.uk/id/eprint/25688/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Lu, Y, Qiu, Z, Zhang, S, Hu, W, Qiu, Y and Qiu, Z (2025) Coded Ultrasonic 
Ranging for the Distance Measurement of Coaxial Rotor Blades. 
Micromachines, 16 (2). 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Academic Editor: Viviana Mulloni

Received: 14 January 2025

Revised: 10 February 2025

Accepted: 17 February 2025

Published: 19 February 2025

Citation: Lu, Y.; Qiu, Z.; Zhang, S.;

Hu, W.; Qiu, Y.; Qiu, Z. Coded

Ultrasonic Ranging for the Distance

Measurement of Coaxial Rotor Blades.

Micromachines 2025, 16, 240. https://

doi.org/10.3390/mi16020240

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Coded Ultrasonic Ranging for the Distance Measurement of
Coaxial Rotor Blades
Yaohuan Lu 1 , Zhen Qiu 2 , Shan Zhang 1 , Wenchuan Hu 3, Yongqiang Qiu 4 and Zurong Qiu 1,*

1 State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University,
Tianjin 300072, China; luyaohuan@tju.edu.cn (Y.L.); fami_z34@tju.edu.cn (S.Z.)

2 School of Engineering, University of Bolton, Bolton BL3 5AB, UK; z.qiu@bolton.ac.uk
3 College of Mechanical Engineering, Tianjin University of Technology and Education, Tianjin 300355, China;

huwenchuan@tute.edu.cn
4 School of Engineering, Liverpool John Moores University, Liverpool L3 3AF, UK; y.qiu@ljmu.ac.uk
* Correspondence: qzr@tju.edu.cn

Abstract: Coaxial rotor helicopters have a wide range of civilian and military applications;
however, the collision risk of the upper and lower blades that comes with the coaxial
rotor system remains. This paper introduces a blade-tip distance measurement method
based on coded ultrasonic ranging to tackle this challenge. Coded ultrasonic ranging with
phase modulation was adopted to improve the measurement rate. In this paper, seven-bit
M-sequences and Gold codes are chosen with four periods of 200 kHz sine wave carriers as
the excitation signals, and the received signals are filtered by a bandpass filter and decoded
by a matching filter. The coding performance is evaluated by the distinguishability and
energy level of the received signals. The experimental results show that the measurement
rate can reach 3060 Hz for a distance of one meter. They also give the potential solution for
other high-speed measurement problems.

Keywords: blade-tip distance; coded ultrasonic ranging; signal processing;
measurement rate

1. Introduction
Compared with traditional single-rotor helicopters, coaxial rotor helicopters have the

advantages of a small size, a compact design, high weight efficiency, increased stability,
and good maneuverability [1–4]. However, the dual-rotor system introduces structure
complexity and raises the risk of collision between the upper and lower blades. Blade
collision usually happens at the blade tips due to the deformation of the blades during
the high-speed rotation. In order to prevent this risk, it is necessary to measure the
distance between the upper and lower blades in real-time during flight and use the distance
information to adjust the flight status. In addition, the method introduced herein can also
provide a reference during the design of the coaxial rotor blades.

Fiber-optic sensors are proposed to monitor blade deformation in [5,6]. In their
method, a series of fiber-optic sensors are arranged on the surface of the blade, and the
strain deflection line of the blade is obtained by fitting and decoupling the strain of the
sensors. Due to the discrete distribution of the fiber-optic sensors, the sensor installation
angle has a great influence on the measurement accuracy, and the decoupling of strain is
relatively difficult. The blade deformation error can reach 5% [6], which causes a larger error
in calculating the blade-tip distance from the blade deformation. The visual measurement
method is also widely used. In this method, a target or irradiation mark is affixed to the
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blade surface, and then images of the blade are taken by multiple CCD cameras which are
mounted on the ground [7–10]; subsequently, the mark position and the parameters of the
blade tip can be obtained after image processing. However, this method is not suitable for
airborne real-time measurement due to the layout requirements for the ground installation
of large measuring devices. In addition, the accuracy of visual measurements can be easily
influenced by environmental factors. An electromagnetic measurement method is proposed
in [11] which entails embedding electric or magnetic field antennas in the upper and lower
rotor blades and using the principle of near-field effect. However, this method is still in
the theoretical research stage, and actual engineering experiment verification has not been
reported yet. Electromagnetic ranging is usually utilized for long distance measurements,
at hundreds of meters, but suffers from a low resolution; for example, the resolution is
37.5 mm when using the common 5 GHz electromagnetic bandwidth [12]. In addition, it
raises further risk of electromagnetic interference among electronic devices. As a common
ranging method, laser measurement has good directivity [13], but blade flapping and
lagging and torsion of the blade lead to the laser measurement not being aligned with the
measured target, so it is not suitable for the measurement of blade-tip distance.

Ultrasonic ranging is a method of distance measurement based on the time of flight
and the speed of ultrasound propagation in the medium. It is suitable for short range
measurements within several meters [14], covering the distance between upper and lower
rotor blades’ tips (in general 100–1000 mm). For a typical air-coupled ultrasonic transducer
of 40 kHz, the wavelength of the propagated wave is 8.5 mm, making the measurement
accuracy sufficient for the proposed application. The size of these types of transducers is
relatively small, and they can be installed in the blade tip to complete the airborne real-time
measurement. In addition, ultrasonic ranging does not cause electromagnetic interference
with other electronics on the helicopters.

Ultrasonic ranging can be set up in the pitch-catch mode with a pair of transducers.
One transducer is used as a transmitter, and the other one works as a receiver. When
applying ultrasonic ranging to real-time blade-tip distance measurement, the challenge
arises from the blade moving at a high speed, with rotor speeds generally being between
400 and 500 revolutions per minute (RPM). The intersection of the upper and lower blades
happens quickly within a very short time window. On the contrary, the propagation
speed of ultrasound is relatively slow, about 340 m/s in the air at 20 ◦C. If the traditional
ultrasonic ranging method is adopted, the transmitter transmits a measurement signal
when the upper and lower blades intersect. However, due to the high speed of the blade
tips and the relatively slow propagation of ultrasonic waves, the signal cannot travel the
full distance and be received by the receiver. By the time the signal travels the full distance,
the receiver has moved out of the measurable range of this intersection. Thus, the effective
measurement of the blade-tip distance cannot be completed. The time required for a single
measurement is limited by the speed of sound, resulting in a relatively low measurement
rate which hinders the application of ultrasonic ranging to blade-tip distance measurement.

In this paper, a continuous measurement method based on coded ultrasonic ranging
is proposed for measuring blade-tip distance, and it is also potentially suitable for other
applications that require high-speed measurement in dynamic scenarios. The traditional
method of ultrasonic ranging can only transmit one measurement signal at each intersec-
tion, while continuous measurement means that multiple measurement signals can be
continuously transmitted at each intersection. Continuous measurement does not need to
wait for the previous measurement signal to be received by the receiver before transmitting
the next measurement signal. The coded ultrasonic method enables us to add features to the
ultrasonic signal, that is, to modulate the amplitude, frequency, phase, pulse position, and
so on. Currently, pulse-position modulation [15,16] is the prevailing method for improving
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the measurement rate of ultrasonic ranging, but the currently achievable measurement
rate is not enough for blade-tip distance measurement, and there have been no reports on
other coded ranging techniques being utilized. The application of coded ultrasonic ranging
to blade-tip distance measurement is first proposed in this paper, so the coded ultrasonic
signals are studied in detail, and the suitable coding methods are identified.

This paper is structured as follows: Section 2 introduces the definition of blade-tip
distance, the calculation method of blade-tip distance based on coded ultrasonic rang-
ing, and the method of improving the ultrasonic measurement rate; Section 3 presents
the measurement system for coded ultrasonic ranging, the specific coding and decoding
method, and the performance evaluation method for coded ultrasonic ranging; Section 4
presents the experimental results, including the results of the coding, decoding, and per-
formance evaluation; Section 5 summarizes the advantages and disadvantages of the
proposed method.

2. Methodology of Blade-Tip Distance Measurement Based on
Ultrasonic Ranging
2.1. Measurement Method of Blade-Tip Distance

As shown in Figure 1, using an eight-blade coaxial helicopter as an example, the
upper and lower rotors rotate at the same speed but in opposite directions. We define the
helicopter’s fuselage coordinate system as O-XYZ, with OZ as the coaxial axial direction,
OX as the forward direction plane of the helicopter, and OY as perpendicular to the forward
direction plane of the helicopter. O1-X1Y1Z and O2-X2Y2Z represent the lower and upper
rotor coordinate systems. The distance between the helicopter fuselage’s top plane and
the lower rotor blade plane is defined as OO1 = l, and the distance between the lower and
upper rotor blade planes is defined as O1O2 = h. There are eight intersections between
the upper and lower blades during one revolution. Figure 1 represents a situation when
each upper blade aligns with one lower blade. In the proposed measurement method, four
ultrasonic transducers are located at the upper blade tip as transmitters, and another four
transducers are secured at the lower blade tip as receivers. The positions of the transmitters
and receivers are all the same distance away from the axis of the rotor system. Here, the
ultrasonic ranging method adopts the pitch-catch configuration since the intersection time
of the blades is short. The control module and the signal processing module are installed in
the helicopter fuselage, and the signal transmission between the fuselage and the rotors
is realized through the slip ring. A measurement is required at each blade intersection to
measure the distance between each transmitter and receiver pair.
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Figure 2 shows a three-dimensional (3D) coordinate model for the distance measure-
ment of coaxial rotor blades. Points A to G and K are the theoretical positions of the blade
tip at a certain time of intersection. However, the actual motion of the blade tip can deviate
from the theoretical trajectory; thus, Points A′ to G′ and K′ represent the possible positions
during the motion. The distances to be measured are the blade-tip distances h1, h2, h3, and
h4 at each intersection moment, and h1 = A′B′, h2 = C′D′, h3 = E′F′, and h4 = G′K′.
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Figure 2. A 3D coordinate model for blade-tip distance measurement.

The measurable range of the intersection process is defined as the 3D space in which
the receiver can receive the ultrasonic sequence transmitted by the transmitter. In general,
the ranging system takes the corresponding space within the beam spread angle of the
transducer as the measurable range. The measurable range mainly depends on the directiv-
ity of the transducer [14]. The parameter beam spread angle 2α can be used to represent
the directivity of the ultrasound transducer. The beam spread angle measures the width
of the beam, from side to side in degrees, of the main lobe where the ultrasonic energy
intensity drops to −3 dB. In this paper, the directivity of the transducer is represented by the
measurable range where effective signal acquisition and measurement can be completed.
The cones in Figure 3 illustrate the simplified effective region in which the transducers
transmit and receive ultrasonic waves. Effective measurement cannot be completed when
the effective regions of the transmitter and receiver do not overlap, as shown in Figure 3a.
When the blade tips are in the state shown in Figure 3b, the distance measurement can
be completed as long as the two transducers stay within each other’s effective regions.
Since the blade tip speed is relatively high during helicopter flight, turbulence can impact
ultrasonic measurements. Specifically, turbulence affects the overlapping duration of the
transmitter and receiver being within the measurable range, as well as the propagation of
the ultrasonic measurement signal. Therefore, it is necessary to improve the subsequent
requirements for measurement signals to ensure accurate identification of the measurement
signal even under turbulent conditions.

Micromachines 2025, 16, x FOR PEER REVIEW 4 of 20 
 

 

Figure 2 shows a three-dimensional (3D) coordinate model for the distance measure-
ment of coaxial rotor blades. Points A to G and K are the theoretical positions of the blade 
tip at a certain time of intersection. However, the actual motion of the blade tip can deviate 
from the theoretical trajectory; thus, Points A'   to G'   and K'   represent the possible 
positions during the motion. The distances to be measured are the blade-tip distances 1h
, 2h , 3h , and 4h  at each intersection moment, and 1 =h A B' ' , 2 =h C D' ' , 3 =h E F' ' , and 

4 =h G K' ' . 

 

Figure 2. A 3D coordinate model for blade-tip distance measurement. 

The measurable range of the intersection process is defined as the 3D space in which 
the receiver can receive the ultrasonic sequence transmitted by the transmitter. In general, 
the ranging system takes the corresponding space within the beam spread angle of the 
transducer as the measurable range. The measurable range mainly depends on the di-
rectivity of the transducer [14]. The parameter beam spread angle 2α  can be used to 
represent the directivity of the ultrasound transducer. The beam spread angle measures 
the width of the beam, from side to side in degrees, of the main lobe where the ultrasonic 
energy intensity drops to −3 dB. In this paper, the directivity of the transducer is repre-
sented by the measurable range where effective signal acquisition and measurement can 
be completed. The cones in Figure 3 illustrate the simplified effective region in which the 
transducers transmit and receive ultrasonic waves. Effective measurement cannot be com-
pleted when the effective regions of the transmitter and receiver do not overlap, as shown 
in Figure 3a. When the blade tips are in the state shown in Figure 3b, the distance meas-
urement can be completed as long as the two transducers stay within each other’s effective 
regions. Since the blade tip speed is relatively high during helicopter flight, turbulence 
can impact ultrasonic measurements. Specifically, turbulence affects the overlapping du-
ration of the transmitter and receiver being within the measurable range, as well as the 
propagation of the ultrasonic measurement signal. Therefore, it is necessary to improve 
the subsequent requirements for measurement signals to ensure accurate identification of 
the measurement signal even under turbulent conditions. 

  

Figure 3. The positions of transmitter and receiver (a) out of the measurable range and (b) in the 
measurable range. 

Figure 3. The positions of transmitter and receiver (a) out of the measurable range and (b) in the
measurable range.



Micromachines 2025, 16, 240 5 of 19

In the actual measurement, the measured distance (the red solid line in Figure 3b) may
not be the vertical distance (the blue solid line in Figure 3b). Therefore, to calculate the
vertical blade-tip distance (h1), as is shown in Figure 4, at least two valid measurements
need to be completed during each intersection. Points A′′, B′′, A′′′, and B′′′ are the positions
of the blade tips when two measurements are completed, and the measured distances are
h1−n and h1−m, respectively. The measured distances are calculated by multiplying the
speed of sound (c) and the measured time of flight (Tof ) between the transmitted signal
and the received signal. s is the sum of the distances moved by the upper blade tip and the
lower blade tip, and s = A′′A′′′ + B′′B′′′. Then,

h1 =
2
√

p(p − h1−m)(p − h1−n)(p − s)
s

(1)

where p = (h1−n + h1−n + s)/2.
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To obtain the vertical blade-tip distance, multiple distances need to be measured
in a very short intersection time, which puts forward high requirements in terms of the
measurement rates for ultrasonic ranging. In the case of more than two distance values
being obtained, the shortest two should be selected for calculation.

The requirement for the measurement rate during blade intersection depends on
the duration of the transmitter and receiver being in the measurable range, which is
shown in Figure 3b. With blade tip A as a reference, the coordinate system OA-XAZA is
established as shown in Figure 5. Blade tip A is relatively stationary, blade tip B moves
in the positive direction along the YA axis, and blade-tip distance measurement can be
completed when blade tip B moves within the measurable range. The measurable range in
Figure 5 is the measured range of the OA-XAZA plane in the blade-tip distance d range of
100–1000 mm. The coordinates of blade tip B when it enters the measurable range and leaves
the measurable range are B(d)Enter(yEnter, -d) and B(d)Leave(yLeave, -d), respectively. Then,
the distance moved within the measurable range is w(d) = yLeave − yEnter . The speed of the
blade tip B is VR-Lover, the duration within the measurable range is TB(d)min= w(d)/VR-Lover ,
and the minimum time is TB(d)min= w(100)/VR-Lover. Therefore, the requirement for the
measurement rate is greater than 2/TB(d)min. The maximum speed of helicopter blade
tips is generally less than 200 m per second, as it is limited by the speed of sound. The
transmitter and receiver are installed at a distance of 0.85 radii from the axis, resulting
in a relative blade tip speed VR-Lover = 340 m/s. Since the shortest measured distance is
100 mm, and w(100) is 320 mm according to the parameters of the transducer used, the
required measurement rate needs to be greater than 2125 Hz.
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2.2. Method of Improving Measurement Rate

The measurement rate is the reciprocal of the time required for a single measurement.
When a pair of transducers in the pitch-catch mode is used in the ranging system, the
transmitter would usually be set up in a way so that it will not fire the next pulse until the
receiver receives the signal.

The maximum measurement rate of the pitch-catch method is as follows:

Maximum measurement rate =
1

Tof
=

c
h

(2)

where h is the measured distance.
The measurement rate decreases inversely with increases in the distance and is limited

by the ultrasonic propagation speed. For a 1.0 m measurement distance, the measurement
rate is 340 Hz, given that the speed of sound in air is 340 m/s at 20 ◦C.

According to the measurement rate requirement of the coaxial helicopter, it needs to
be greater than 2125 Hz if two distance measurements need to be completed. Therefore, the
measurement rate of the traditional pitch-catch method cannot meet the requirement for the
measurement of blade-tip distance. To this end, we proposed the coded ultrasonic ranging
method to improve the measurement rate. Instead of transmitting one measurement signal
and waiting for the signal to fully propagate to the receiver, the transmitters will transmit a
series of coded ultrasonic sequences with varying patterns. A signal processing module
will be set up at the receiving end and complete the decoding of the received ultrasonic
sequences. The sequence identification and associated transmitting time will be decoded to
realize more measurements during the short period of blade intersection. Figure 6 illustrates
the proposed coded ultrasonic ranging method. The ultrasonic transmitter transmits a
series of coded ultrasonic signals of different characteristics in the measurable range.

Micromachines 2025, 16, x FOR PEER REVIEW 6 of 20 
 

 

 

Figure 5. A schematic diagram of the measurement rate requirement at the intersection. 

2.2. Method of Improving Measurement Rate 

The measurement rate is the reciprocal of the time required for a single measurement. 
When a pair of transducers in the pitch-catch mode is used in the ranging system, the 
transmitter would usually be set up in a way so that it will not fire the next pulse until the 
receiver receives the signal. 

The maximum measurement rate of the pitch-catch method is as follows: 

c= =
Tof h

1Maximum measurement rate  (2) 

where h is the measured distance. 
The measurement rate decreases inversely with increases in the distance and is lim-

ited by the ultrasonic propagation speed. For a 1.0 m measurement distance, the measure-
ment rate is 340 Hz, given that the speed of sound in air is 340 m/s at 20 °C. 

According to the measurement rate requirement of the coaxial helicopter, it needs to 
be greater than 2125 Hz if two distance measurements need to be completed. Therefore, 
the measurement rate of the traditional pitch-catch method cannot meet the requirement 
for the measurement of blade-tip distance. To this end, we proposed the coded ultrasonic 
ranging method to improve the measurement rate. Instead of transmitting one measure-
ment signal and waiting for the signal to fully propagate to the receiver, the transmitters 
will transmit a series of coded ultrasonic sequences with varying patterns. A signal pro-
cessing module will be set up at the receiving end and complete the decoding of the re-
ceived ultrasonic sequences. The sequence identification and associated transmitting time 
will be decoded to realize more measurements during the short period of blade intersec-
tion. Figure 6 illustrates the proposed coded ultrasonic ranging method. The ultrasonic 
transmitter transmits a series of coded ultrasonic signals of different characteristics in the 
measurable range. 

 

Figure 6. A schematic diagram of coded ultrasonic ranging. Figure 6. A schematic diagram of coded ultrasonic ranging.



Micromachines 2025, 16, 240 7 of 19

Consider the single measurement period of the ultrasonic receiver within the mea-
surable range as T, the number of coded signals being transmitted as η, and the max-
imum distance to be measured as L. Then, the number of codes η needs to satisfy the
following formula:

η ≥ L/(T · c) (3)

Since the single measurement time needs to be less than 0.49 ms within a distance range
of 1 m, according to Equation (3), when T = 0.49 ms, L = 1 m, and c = 340 m/s, then the number
of coded signals η needs to be greater than six. In order to shorten the single measurement
cycle, the signal length is also required, and the transmitted signal duration and received
signal duration of each ultrasonic sequence should be less than T/1.5 ≈ 0.32 ms.

In addition, a single measurement T is determined by the maximum duration of the
received signal Td. To prevent aliasing between the received signals of different sequences,
T ≥ 1.5Td is set. Td is determined by the amplitude threshold method, which is a method
to judge the effectiveness part of a signal according its voltage amplitude. As shown in
Figure 7, two amplitude thresholds, a and b, are defined, where b is the maximum peak
value of the received signal and a = b/10, since any amplitude less than b/10 is greatly
affected by noise. The first sampling point whose amplitude is greater than the threshold
value a, or less than −a, is taken as the initial point of the effective signal. The first sampling
point whose amplitude is smaller than the threshold value and the subsequent sampling
points that are less than the threshold value are taken as the end point of the effective signal.
The initial point and the end point are defined as TInitial and TEnd. The duration of a coded
signal can then be calculated by TEnd − TInitial.
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Since the maximum measurement rate is limited by the maximum duration of the
received signals Td and the number of codes η, the maximum measurement rate vmax based
on a set of sequences can be defined as:

vmax = min(1 /1.5Td, η · c/ L) (4)

3. Coded Ultrasonic Ranging
3.1. Measurement System

The proposed measurement system consists of a sensing module, a signal processing
module, and a sound velocity compensation module. Figure 8 shows a block diagram
of a complete distance measurement. The sensing module amplifies the modulated ex-
citation signal and transmits it through the slip ring to the ultrasonic transmitter. After
the coded ultrasonic wave is propagated in the air, the ultrasonic receiver receives the
signal and amplifies it through the preamplifier. The signal processing module carries
out the coding of the transmitted signal, the de-noising and decoding by the matched
filter of the received signal, and the distance calculation by using a microprocessor. The
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sound velocity compensation module measures the known fixed distance using a calibrated
ultrasonic sensor and obtains the real-time sound velocity. This compensation method can
compensate for the errors caused by various environmental factors. The calculated distance
is the distance d between the ultrasonic transmitter and the ultrasonic receiver. This paper
presents our intermediate research and results on the proposed signal processing module,
with an emphasis on the coding and decoding of the ultrasonic signal.
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3.2. Coding Method of Excitation Signals
3.2.1. Selection of Excitation Signals

For traditional ultrasonic ranging, the excitation signal is a sinusoidal pulse with a
fixed period number, and the received signal can be generally modelled as a damped
sinusoid. The received signal reflects the characteristics of the excitation signal to a certain
extent. In order to make the received signals have different characteristics, it is necessary to
encode the excitation signals.

Binary pseudorandom noise (PRN) sequences are a set of special ascertained vectors
with outstanding autocorrelation and cross-correlation properties, i.e., orthogonality, such
as Barker codes [17], Golay codes [18,19], M-sequences [20,21], Gold codes [22], and Kasami
codes [23,24] to name a few. They add features of the binary sequence to the excitation
signal and then manifest in the received signal. Among the above-mentioned coded
signals, the length of each Barker code is inconsistent, which will cause the receiving signal
duration to be different; Golay codes have good autocorrelation characteristics and can
eliminate sidelobe; however, the signals need to be transmitted twice which is not suitable
for high-speed and dynamic measurement; the length of Kasami codes is longer than that
of M-sequence and Gold codes, making them less favourable when the signal length and
measurement rate matter. Therefore, M-sequence and Gold codes are more suitable for our
application of high-speed measurement.

For the efficient transmission of PRN sequences via an ultrasonic transducer, the signal
must be generated using a specific modulation scheme. Common modulation methods are
binary amplitude shift keying (BASK) [25], binary frequency shift keying (BFSK) [26], and
binary phase shift keying (BPSK) [27]. When the excitation signal adopts a rising edge and
a falling edge, the received signal has a different starting vibration direction, so the BPSK
of the excitation signal can be used to change the vibration form of the received signal.
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3.2.2. M-Sequences and Gold Codes

After considering the signal length and the number of codes, M-sequences and Gold
codes are chosen. An M-sequence, or maximum-length sequence, is a type of pseudo-
random binary sequence with the property of having the maximum possible length for
a given register size. These sequences are generated using linear feedback shift registers
(LFSRs) and exhibit a maximum period of 2k−1, where k is the number of shift register
stages. M-sequences are characterized by their maximal length, pseudo-randomness, and
unique autocorrelation properties. A Gold code is a composite sequence of M-sequences,
which is composed of two M-sequence pairs with the same code appearance and code clock
rate through mod 2 operation. Gold codes can generate more sequences, and their cross-
correlation property is better than that of M-sequences. In this article, 7-bit M-sequences,
15-bit M-sequences, and 7-bit Gold codes are used for the coding ranging system because
the number of sequences is 7, 15, and 9, respectively, which meets the requirements of >6.

The coded sequences are defined as sMi-j(m) and sGold i-j(m), where i represents
the number of sequence groups and j represents the position of the sequence within its
respective group. The two groups of 7-bit M-sequences are defined as M1 and M2, the
two groups of 15-bit M-sequences are defined as M3 and M4, and the seven groups of Gold
codes are defined as Gold1, Gold2, . . ., and Gold7 respectively. The 7-bit M-sequences and
7-bit Gold codes consist of 7 code values, the 15-bit M-sequences consist of 15 code values,
and m represents the specific position of the code value. Take M1 as an example, when j = 1,
sM1-1(m) = [1, 0, 1, 1, 1, 0, 0] The other sequences of each set of M-sequences are obtained
by cyclic shifting of the first sequence. For Gold codes, the first group is calculated by these
two M-sequence pairs, [1, 0 ,1 ,1 ,1 ,0 ,0] and [1, 0, 1, 0, 0, 1, 1], and the other groups are
obtained by the first group of cyclic shifts. The specific code values are shown in Tables 1–3.

Table 1. Code values of 7-bit M-sequences.

7-bit M-Sequence M1 M2

j = 1 [1, 0, 1, 1, 1, 0, 0] [1, 0, 1, 0, 0, 1, 1]
j = 2 [0, 1, 1, 1, 0, 0, 1] [0, 1, 0, 0, 1, 1, 1]
j = 3 [1, 1, 1, 0, 0, 1, 0] [1, 0, 0, 1, 1, 1, 0]
j = 4 [1, 1, 0, 0, 1, 0, 1] [0, 0, 1, 1 ,1 ,0 ,1]
j = 5 [1, 0, 0, 1, 0, 1, 1] [0, 1, 1, 1, 0, 1, 0]
j = 6 [0, 0, 1, 0, 1, 1, 1] [1, 1, 1, 0, 1, 0, 0]
j = 7 [0, 1, 0, 1, 1, 1, 0] [1, 1, 0, 1, 0, 0, 1]

Table 2. Code values of 15-bit M-sequences.

15-bit
M-Sequence M3 M4

j = 1 [1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0] [1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1]
j = 2 [0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1] [0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1]
j = 3 [0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0] [0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0]
. . . . . . . . .

j = 13 [0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1 ,1] [1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0]
j = 14 [0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0] [0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1]
j = 15 [0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0] [1, 1, 0, 0, 1, 0, 0 ,0, 1, 1, 1, 1, 0, 1, 0]
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Table 3. Code values of 7-bit Gold codes.

7-bit Gold Code Gold1 Gold2 . . . Gold6 Gold7

j = 1 [1, 0, 1, 1, 1, 0, 0] [0, 1, 1, 1, 0, 0, 1] . . . [0, 0, 1, 0, 1, 1, 1] [0, 1, 0, 1, 1, 1, 0]
j = 2 [1, 0, 1, 0, 0, 1, 1] [0, 1, 0, 0, 1, 1, 1] . . . [1, 1, 1, 0, 1, 0, 0] [1, 1, 0, 1, 0, 0, 1]
j = 3 [0, 0, 0, 1, 1, 1, 1] [0, 0, 1, 1, 1, 1, 0] . . . [1, 1, 0, 0, 0, 1, 1] [1, 0, 0, 0, 1, 1, 1]
. . . . . . . . . . . . . . . . . .

j = 7 [1, 1, 0, 0, 1, 1, 0] [1, 0, 0, 1, 1, 0, 1] . . . [1, 0, 1, 1, 0, 0, 1] [0, 1, 1, 0, 0, 1, 1]
j = 8 [0, 1, 0, 1, 0, 0, 0] [1, 0, 1, 0, 0, 0, 0] . . . [0, 0, 0, 1, 0, 1, 0] [0, 0, 1, 0, 1, 0, 0]
j = 9 [0, 1, 1, 0, 1, 0, 1] [1, 1, 0, 1, 0, 1, 0] . . . [0, 1, 0, 1, 1, 0, 1] [1, 0, 1, 1, 0, 1, 0]

3.2.3. Coded Excitation Signals

In this research, the BPSK method is adopted, and the carrier wave is a sine wave with
q cycles at the transducer’s resonance frequency.

The coded excitation signal of the M-sequences and Gold codes is defined as EMi-j(n)
and EGold i-j(n), respectively, and

EMi-j(n) = U ·
p

∑
M=1

sin{2 π f (n/ fs) + [sMi-j(m)+1] · π
}
∗ δ[n-

fs

f
· q(m−1)] (5)

EGold i-j(n) = U ·
p

∑
M=1

sin{2 π f (n/ fs) + [sGold i-j(m)+1] · π
}
∗ δ[n-

fs

f
· q(m−1)] (6)

where U is the amplitude of the excitation voltage, sMi-j(m) and sGold i-j(m) are the coded
sequences, n = 0, 1, 2, . . . , (q · fs/ f − 1) and nmax + 1 = q · fs/ f are the number of sample
points of the excitation signal corresponding to each code value, fs is the signal acquisition
frequency, p is the number of bits of the sequence, f is the center frequency of the transducer,
δ(n) is the unit impulse function, and * refers to the convolution operation.

Higher transducer center frequencies lead to faster energy attenuation during propaga-
tion, but also shorter single-cycle vibration times and thus a higher resolution. Considering
that the measured distance range is up to 1 m, the transducer with a center frequency
of 200 kHz is selected. The received signal is longer than the excitation signal due to
the transducer’s residual vibration. To meet the requirement that the period is less than
0.32 ms, the carrier cycles choose 4 and 2, and so the excitation signal lengths are 0.14 ms
and 0.15 ms. Under this condition, the received signal at 1 m can also ensure better quality.
Taking EM1-1(n) as an example, the coded excitation signal is shown in Figure 9.
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3.3. Decoding Method of Received Signals
3.3.1. De-Noising Method

The ultrasonic transmitter emits an ultrasonic wave in response to a coded excitation
signal. The receiver converts the returning signal to an electrical form and digitizes it
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with an AD converter at 5 MHz. Filtering is then used to remove noise before decoding.
In this paper, a bandpass filter and wavelet filter are investigated for the coded signal
that is used and their filtering effects are evaluated by the resulting degree of signal
restoration and received signal correlation. The smaller the degree of signal distortion, the
less the influence on the accuracy of the subsequent calculation of Tof. The received signal
correlation refers to the degree of correlation between the filtered received signals and the
same code under different conditions. The higher the correlation, the more conducive the
signal is to subsequent decoding processing.

A bandpass filter is a filter that passes through frequency components in a certain
frequency range but attenuates frequency components in other ranges to very low levels.
The passband cut-off frequencies are fp1 = 150 kHz and fp2 = 250 kHz, the stopband cut-off
frequencies are fs1 = 50 kHz and fs2 = 350 kHz, the maximum passband attenuation is 2 dB,
the minimum stopband attenuation is 30 dB, and the order of the filter is 5. The wavelet
filter [28] is a powerful tool for digital signal processing which decomposes a signal in
both the frequency and time domains. The factors that affect the effect of noise reduction
include the wavelet basis, decomposition layer number, threshold value, and threshold
function. Here, the db4 wavelet is selected, for which the wavelet function is Daubechies
and the order of vanishing moments is 4, making it suitable for the decomposition of
one-dimensional signals. The number of decomposition layers is four, which is determined
by the sampling rate of 5 MHz. The threshold is selected by the ‘VisuShrink’ method and
λ = σ

√
2 lnN, where σ is the noise standard deviation and N is the signal length, and

the threshold function is selected by the soft threshold function due to the better overall
continuity of the signal.

Taking the M-sequence as an example, RMi-j(n) is the unprocessed received signal of a
coded sequence and RMi-j′(n) and RMi-j

′′(n
)

are the received signal after bandpass filtering
and wavelet filtering, respectively. The filtering results are presented in Figure 10.
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Figure 10. The received signals of an M-sequence: (a) unprocessed received signal, (b) received signal
after bandpass filtering, and (c) received signal after wavelet filtering.
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Comparing the two methods based on the degree of signal restoration, the wavelet
filter proves superior. It provides more accurate restoration, particularly at the transition
points (circled in Figure 10), without the time delay observed (for example, at the peak-1
and peak-2 positions in Figure 10).

The correlation performance is determined by ρ(d).

ρ(d) =

(
η

∑
j=1

ρMi-j(d)

)
/η (7)

where d is the reference distance between the transmitter and the receiver, η is the number
of sequences in each group, ρMi-j(d) is the correlation coefficient between the received
signal at d and the received signal at dmin = 100 mm of the same coding, and the calculation
formula is as follows:

ρMi-j(d) =
∑
(

RMi-j(dmin)− RMi-j(dmin)
)(

RMi-j(d)− RMi-j(d)
)

√
∑
(

RMi-j(dmin)− RMi-j(dmin)
)2
√

∑
(

RMi-j(d)− RMi-j(d)
)2

(8)

The calculated correlation coefficients of the received signals after bandpass filtering
and wavelet filtering, respectively, are shown in Figure 11. Comparing the two methods
based on the received signal correlation at various distances, the bandpass filtering shows
a higher correlation coefficient than the wavelet filtering.
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Due to the consistency of the delay in the time domain, it can be compensated for
by calculating the Tof. In addition, the distortion at the transition position has little effect
on the calculation of the Tof as long as the signal’s starting point is clear. Therefore, the
received signal after the bandpass filtering is chosen for subsequent decoding.

3.3.2. Decoding Method

The decoding process determines the excitation signal by identifying the correspond-
ing coded sequence within the received signal. This is achieved using a matched filter. The
filtered received signal is cross-correlated with each reference signal, generating a set of
cross-correlation values. The coded sequence associated with the highest cross-correlation
value is the decoded result. XMi-j(n) is the reference signal corresponding to sMi-j. The
reference signal is the filtered signal when the excitation voltage is 200 Vpp and the distance
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between the transmitter and the receiver is 100 mm. The length of the reference signal is
0.25 ms, the same as received signal R′(n).

ρMi-j =
(
∑
(

R′ − R′)(XMi-j − XMi-j

))
/

(√
∑
(

R′ − R′
)2

·
√

∑
(
XMi-j − XMi-j

)2
)

(9)

For a given set of sequences, i is a fixed value and the ρMi-j values corresponding to
different j values are calculated. The decoding result is j, corresponding to the maximum
value of ρMi-j. That is, the code value sMi-j of the excitation signal corresponding to the
received signal R′(n) is obtained.

3.3.3. Coding Performance Evaluation Method

A coding group is deemed effective when the received signals for each code within
the group can be correctly decoded at different distances. The performance of these
effective coding groups is then evaluated and compared. Two key criteria are used for this
assessment: the distinguishability of the received signals and their energy. The objective
function is as follows.

Ob1 ≜ min((ρMi-1max − ρMi-1submax), (ρMi-2max − ρMi-2submax), . . .
(
ρMi-ηmax − ρMi-η submax)) = max (10)

Obj2 ≜ min(PMi-1, PMi-2, . . . , PMi-η) = max (11)

where ρMi-jmax(j= 1, 2, . . . , η) is the correlation coefficient of the received signal and its
corresponding reference signal, ρMi-jsubmax(j= 1, 2, . . . , η) is the maximum value among
the correlation coefficients calculated from the received signal and other reference signals,
and PMi-j(j= 1, 2, . . . , η) is the energy of the received signals corresponding to the jth
sequence. The first index guarantees the optimal correlation properties, while the second
one maximizes the energy of the received signals and makes the signal-to-noise ratio higher.

4. Experiment Results and Discussion
4.1. Experiment Set-Up

An ultrasonic coding ranging experimental setup which was used to validate the
proposed method is shown in Figure 12. The transmitter is fixed, and the receiver is
installed at the probe of the coordinate measuring machine. The coded excitation signals
generated by the arbitrary signal generator are applied to the transmitter through a high-
voltage amplifier. The response of the receiver is collected through the oscilloscope and then
processed by the computer. After considering the center frequency, directivity, ultrasonic
propagation characteristics, and size of the ultrasonic transducer, DYA-200-01B ultrasonic
transducers (Hangzhou Umbrella Automation Technology Co., Ltd., Hangzhou, China),
which have a center frequency of 200 kHz and a beam angle of 14.5◦, are used as the
transmitter and the receiver. In Figure 12, it is shown that only the middle transducers in
both transmitter and receiver housings are activated in this experiment. The test platform
is a coordinate measuring machine (Global Classic SR 07.10.07, Hexagon Measurement
Technology Ltd., Qingdao, China). The amplitude of the output signal from an arbitrary
signal generator (AFG31021, Tektronix, Beverly Hills, OR, USA) is set to 5 Vpp. A high-
voltage amplifier with a bandwidth of 1 MHz (ATA-2000, Aigtek, Xi’an, China) is used to
amplify the ultrasound signal due to the attenuation of sound in the air. The output voltage
of the high-voltage amplifier is 50 Vpp after the magnification factor is set to 10 times. The
sampling rate of the oscilloscope is set to 5 MS/s. In addition, since the experiment in this
paper is intended to evaluate the performance of different coding methods, it is necessary
to fix the transducer on the experimental platform to accurately collect the received signals
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at each measuring point. Thus, it is not necessary to move the transducers while collecting
the received signals in this experiment.
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Firstly, the apertures of the transmitter and the receiver are carefully aligned at a
distance of 0 between the transmitter and the receiver, and then the coordinate measuring
machine probe is moved in the positive direction of the Y axis. The moving distance of the
probe is taken as the reference distance. The measuring distance range is 100–1000 mm,
and a measuring point is selected at every 100 mm increment.

4.2. Results of Coding and Decoding

Take M1 at 100 mm as an example, for which the received signals after filtering
are shown in Figure 13. It can be seen that the response of the receiver is different for
the different codes. The envelopes of the received signal waveform are different, which
proves that their responses to different coded excitations are different. The consecutive
identical codes in the coding are taken as the same segment signal response, and then the
received signals for M1 are divided into four or five response segments. It can be seen
that the received signals of seven sequences can correspond to their respective code values.
Other M-sequences and Gold codes also represent different characteristics of the response.
Therefore, the distinguishability and energy in Section 3.3.3 were evaluated.

The distinguishability of the coding is defined by parameter u, and u is defined
as follows:

u = ρMi-jmax − ρMi-jsubmax (12)

A higher u means that the autocorrelation performance of the coded signal is better and
that the cross-correlation performance is weaker, that is, the distinguishability is preferable.
In this paper, the distinguishability is evaluated by the average of u for every 100 mm
increment in the range of 100–1000 mm; the calculation results for different codes are shown
in Figure 14. The minimum values of u for each sequence are shown in Table 4, since the
minimum value determines the least distinguishable sequence of the group. It can be
seen that the performance of the 7-bit M-sequences and 7-bit Gold codes is better than
that of 15-bit M-sequences, since the umin values of the 7-bit M-sequence and 7-bit Gold
codes are around 0.1, and most of them are greater than 0.1, while the umin of the 15-bit
M sequence is less than 0.03. The umin of the 15-bit M-sequence is close to 0, which leads
to the risk of misjudgment and poor distinguishability. Therefore, the 7-bit M-sequences
and the Gold codes are selected. Within the selected sequences, the two 7-bit M-sequences
are equivalent because of their similar distinguishability, and Gold4 and Gold5 perform
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better than the other Gold codes and M-sequences since they have larger umin values, 0.185
and 0.175, respectively. In addition, as shown in Figure 14, the u values of different code
values in the same group of M-sequences are very close, and the maximum value is about
1.19–1.33 times the minimum value, while the u values of the Gold codes are very different,
as the maximum value is between 1.85–5.85 times the minimum value. When the number
of required code values decreases, the larger the ratio between the maximum and the
minimum values, the better the distinguishability performance will be when some code
values in the sequence are extracted.
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Table 4. The minimum values of u and the energy of the received signals for different sequences.

Sequences M1 M2 M3 M4 Gold1 Gold2 Gold3 Gold4 Gold5 Gold6 Gold7

umin 0.129 0.115 0.007 0.026 0.145 0.098 0.101 0.185 0.175 0.104 0.143
Energymin/V2 1.964 1.909 1.335 1.375 0.897 0.972 0.561 0.945 0.815 0.897 0.873

As for the energy of the received signals, the average energy of the received signals
at 1000 mm in 10 repeated experiments is evaluated, and the results of different codes are
shown in Figure 15. The minimum values of energy for each sequence are shown in Table 4,
since the minimum value determines the lowest-energy sequence of the group. The energy
performance of the M-sequences is better than that of the Gold codes since the minimum
values of energy of the 7-bit M-sequences are larger than 1.9 V2 and the minimum values
of energy of the 15-bit M-sequences are larger than 1.3 V2, while the minimum values of
energy of the 7-bit Gold codes are less than 1.0 V2. In addition, M1 is similar to M2, while
M3 is similar to M4. As shown in Figure 15, the energy values of different code values in
the same group of 7-bit M-sequences are similar, with the maximum value being from 2.11
to 2.20 times the minimum value. The energy values of the 15-bit M-sequences are more
closely distributed compared to the 7-bit M-sequences, with the maximum value being
from 1.72 to 1.73 times the minimum value. In contrast, the energy values of the Gold codes
show relatively greater variation, with the maximum value being from 3.02 to 4.38 times
the minimum value. When the number of required code values decreases, the larger the
ratio between the maximum and the minimum values, the stronger the energy will be when
some code values in the sequence are extracted. The higher the received signal energy,
the less it is affected by noise, which is advantageous for signal processing in subsequent
distance calculations.

According to the evaluation results of the sequences’ distinguishability and energy,
7-bit M-sequences and 7-bit Gold codes can be used as the code for blade-tip distance
measurement. Then, the maximum duration of the received signal for different sets of
sequences is calculated and shown in Table 5.

Combined with the maximum duration of the received signals Td-max and the number
of coded sequences η, according to Equation (4), the maximum measurement rates vmax of
the 7-bit M-sequences and 7-bit Gold codes are shown in Table 6. All of these sequences can
satisfy the measurement rate requirement (≥2125 Hz) of blade-tip distance measurement.
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Table 5. The maximum duration Td-max of the received signals.

Sequences M1 M2 Gold1 Gold2 Gold3 Gold4 Gold5 Gold6 Gold7

Td-max/µs 182.2 184.8 176.0 185.8 189.2 183.0 185.6 180.8 183.0

Table 6. The maximum measurement rate vmax for different sequences.

Sequences vmax

M1, M2 2380 Hz
Gold1, Gold2, Gold3, Gold4, Gold5, Gold6, Gold7 3060 Hz

In summary, in terms of the number of codes, Gold codes have more codes, and thus a
higher measurement rate (up to 3060 Hz) can be achieved. In terms of distinguishability,
the Gold4 and Gold5 codes perform better, with umin values of 0.185 and 0.175, respectively,
which are larger than those of other codes. In terms of energy, the M1 and M2 codes
perform better, with Energymin values of 1.964 V2 and 1.909 V2, respectively, which are
larger than those of other codes. Therefore, the code can be selected according to the
actual needs.

5. Conclusions
This paper presents a method based on coded ultrasonic ranging for measuring the

blade-tip distance of coaxial rotor helicopters. The feasibility of the method is proved
theoretically and experimentally. Meanwhile, a method of improving the ultrasonic mea-
surement rate is also proposed and the continuous measurement of ultrasonic ranging
is realized. The influence of real-time flight environments, such as turbulence, on the
measurement performance could be studied in the future.

The coding method of the excitation signal adopted herein is the BPSK mode of
7-bit M-sequences and Gold codes with a four sine waves carrier. The received signal
is processed by wavelet filtering and bandpass filtering to denoise it, and the degree of
signal restoration and the correlation of the received signal at different distances is taken
as the evaluation index. Then, the bandpass filtering is chosen as the signal denoising
method. The adopted method of decoding the received signal is cross-correlation operation
through the matching filter, and the 7-bit M-sequences and Gold codes have been proven
to be decodable. Therefore, they can be used in the coded ranging system to improve the
measurement rate. A comparison between the results of this paper and those of other
references is shown in Table 7.
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Table 7. Comparison of measurement rates.

Measurement Rate

Method presented in this paper 3060 Hz
[15] 143 Hz
[16] 100 Hz
[29] 455 Hz

The performance of different codes is evaluated based on the received signal dis-
tinguishability and energy. The Gold4 and Gold5 codes offer better distinguishability,
while the M1 and M2 codes exhibit higher energy. The proposed coding and decod-
ing methods meet the requirements for blade-tip distance measurement: (a) clear signal
distinguishability, (b) a sufficient number of coded sequences, and (c) a short received
signal duration.
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