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Simple Summary: Benign conditions such as nonalcoholic fatty liver disease (NAFLD) can
progress to severe and deadly malignant liver diseases such as hepatocellular carcinoma
(HCC) and cholangiocarcinoma (CC). Aging is a major factor contributing to the progression
of such diseases through mechanisms such as chronic inflammation, immune system
decline, and genetic alterations. However, little is known about the molecular alterations
shared between aging and the acquired pathological changes with the advance of liver
disease. In this study, we investigated how age-related gene expression changes associated
with the progression of liver disease. By analyzing tissue samples from various liver
disease stages, we found decreased levels of the gene SUCLG1 in advanced liver diseases,
particularly in HCC and CC. This downregulation also correlated with poorer patient
survival, suggesting that SUCLG1 may be a potential therapeutic target for age-associated
liver cancers.

Abstract: Introduction: The most common liver disease is nonalcoholic fatty liver disease,
characterized by an intrahepatic accumulation of lipids that most often accompanies
obesity. Fatty liver can evolve, in the presence of oxidative stress and inflammation,
into disabling and deadly liver diseases such as cirrhosis, hepatocellular carcinoma (HCC),
and cholangiocarcinoma (CC). Old age seems to favor HCC and CC, in agreement with
the inflammaging theory, according to which aging accrues inflammation. Cancer, in
general, is an age-related disease, as incidence and mortality for most types of cancer
increase with age. However, how molecular drivers in tumors differ or are mutated
more frequently among patients of different ages remains scarcely investigated. A recent
integrative analysis of the age-associated multi-omic landscape across cancers and healthy
tissues demonstrated that age-related gene expression changes are linked to numerous
biological processes. HCC and CC have among the lowest five-year survival estimates
due to their aggressive progression. Materials and methods: In this study, we extracted
top gene candidates from the above-mentioned pan-analyses (i.e., B2M, C1qA, SUCLG1)
and tested by qPCR their expression and their correlation with disease progression in
48 tissue samples covering liver disease stages (fatty liver, hepatitis, cirrhosis, HCC and
CC) and normal tissues. Results: Here, we report a significant downregulation in the
expression of the age-associated gene SUCLG1 during the progression of liver disease
toward HCC and CC, which also associates with poor patient survival. Conclusion:
SUCGL1, a mitochondrial enzyme gene that catalyzes the conversion of succinyl CoA
to succinate, might be therapeutically targeted for the development and progression of
age-associated liver cancers with low survival rates.
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1. Introduction
The incidence of nearly all types of cancers increases dramatically with age [1]. Pro-

longed exposure to environmental carcinogens, lifestyle-related factors, and chronic in-
flammation cumulatively raise cancer risk [2]. Additionally, aging is associated with
immunosenescence: the gradual decline in immune function that hampers the immune
system’s ability to detect and clear precancerous and cancerous cells [3]. In fact, aging and
cancer share several molecular mechanisms that directly connect the processes of cellular
aging with cancer development, including genomic instability [4], telomere shortening [5],
epigenetic alterations [6,7], cellular senescence [1], altered metabolism [8], and stem cell
exhaustion [9]. Moreover, chronic, low-grade inflammation (‘inflammaging’) accumulates
during aging, which disturbs system homeostasis and contributes to the development of
pathogenic changes and age-related diseases such as cancer [10]. Recently, an inflammaging
score-grading system has been suggested as a powerful method for prognosis assessment
in cancer patients [11]. Furthermore, a longer lifespan increases cumulative exposure to
environmental factors, such as radiation and pollutants, which contribute to DNA dam-
age and, ultimately, cancer risk [12]. The connections between cancer and aging are thus
both epidemiological and molecular. Understanding these connections could guide the
development of therapies that target aging processes to reduce cancer risk and promote
healthier aging.

Liver disease is typically age-associated, although there is some epidemiological
controversy [13,14]. The global prevalence of liver disease is substantial and continues
to rise due to multiple factors, including viral hepatitis, alcohol use, and metabolic dis-
orders like non-alcoholic fatty liver disease (NAFLD). Liver diseases are responsible for
approximately two million deaths annually, with one million attributed to complications of
cirrhosis and another million to primary liver cancer, primarily hepatocellular carcinoma
(HCC) [15]. HCC is the most common type of primary liver cancer, accounting for about
75–85% of all liver cancers. Cholangiocarcinoma (CC), a cancer of the bile duct, is less com-
mon than HCC and is subdivided into intrahepatic and extrahepatic cholangiocarcinoma.
HCC and CC are both highly lethal liver cancers with significant mortality rates worldwide
often due to late diagnoses and limited treatment options. HCC has a high mortality rate
due to its aggressive nature and common late-stage diagnosis, with a 5-year survival rate of
less than 20% in most countries [16]. Like HCC, CC has a poor prognosis, with an overall
5-year survival rate under 10% globally, mainly due to difficulties in early detection and
the cancer’s resistance to chemotherapy and radiation [17].

How molecular drivers in HCC and CC, and in tumors in general, differ among
patients of different ages is scarcely understood [13,18–20]. Recent studies comprehen-
sively characterized transcriptomic alterations in relation to patients’ age across cancer
types or multiple normal tissues, providing an omics view of age-associated alterations
in health [21] and malignancy [22]. In this study, we extracted top gene candidates from
a meta-analysis of 127 publicly available transcriptomic datasets from mice, rats, and hu-
mans, identifying a transcriptomic signature of aging across species and tissues (i.e., B2M,
C1qA, and SUCLG1) [21], and tested their expression by qPCR and their correlation with
disease progression in 48 tissue samples covering several liver disease stages (i.e., fatty
liver, hepatitis, cirrhosis, HCC, and CC) and normal tissues, supported by bioinformatics
analyses in The Cancer Genome Atlas (TCGA).
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2. Materials and Methods
2.1. Human Tissue

Human normal cDNA array (Origene Technologies, catalogue number: HMRT504),
human brain cancer cDNA array (Origene Technologies, catalogue number: HBRT502)
and human liver cancer cDNA array (Origene Technologies, catalogue number: LVRT501)
were used to assess the relative gene expression of B2M, C1qA, and SUCLG1 across brain
and liver tissues. All available clinical information, including pathology reports and tissue
images used in the microscopic examination, is recorded for each patient individually
in the clinical information files provided by Origene Technologies; they can be found on
the manufacturer’s website: https://www.origene.com/hbrt502-tissuescan-brain-cancer-
cdna-array-i (for the brain array) and https://www.origene.com/lvrt501-tissuescan-liver-
cancer-cdna-array-i (for the liver array).

2.2. Real-Time qPCR

TissueScan plates were removed from −20 ◦C storage and allowed to warm to room
temperature for 20 min, followed by centrifugation at 1000× g for 1 min. To prepare the
mixes for each of the genes, we used SG qPCR Master Mix (2×) (EurX, Gdansk, Poland;
E0402-01, final concentration 1 × 2.5 mM MgCl2), ROX Solution (EurX, Gdansk, Poland;
E0402-01, final concentration of 50 nM), forward and reverse primers (at final concentration
of 300 nM), and nuclease-free water (EurX, Gdank, Poland; E0402-01). Since QuantStudio
DX was used, we converted the arrays from 96-well to 384-well format. In short, 25 µL
of the prepared gene-specific mix was added per well with a lyophilized cDNA sample.
The plate was centrifuged for 1 min at 1000× g, vortexed, centrifuged a second time for
1 min at 1000× g, and allowed to stand at room temperature for 15 min to facilitate cDNA
reconstitution. The plate was then vortexed and centrifuged for 1 min at 1000× g. Each
sample was loaded in duplicates (10 µL per well) in a 384-well plate. The plate was then
centrifuged for 1 min at 1000× g. The following primer sequences were used for the
PCR amplification:

Gene Forward Primer Reverse Primer
Annealing

Temperature (◦C)

Actin β CTTCCTGGGCATGGAGTC CGCTCAGGAGGAGCAATGAT 60

GAPDH CATCACTGCCACCCAGAAGACTG ATGCCAGTGAGCTTCCCGTTCAG 60

B2M GCCGCATTTGGATTGGATGAA CCTAGAGCTACCTGTGGAGC 58

C1qA AAACATCAAGGACCAGCCGA CGGTTCTTCCTGGTTGGTGA 55

SUCLG1 CTTTTGCTGCTGCTGCCATTA AGCCTTGTCTTTTCCTGGCG 58

2.3. Data Acquisition and Bioinformatics Analysis

The HCC and CC Illumina HiSeq-based gene expression datasets used in this study
were downloaded from The Cancer Genome Atlas (TCGA) (https://www.cancer.gov/tcga),
specifically from the GDC TCGA Liver Cancer (LIHC) and TCGA Bile Duct Cancer (CHOL)
projects. The datasets comprised 377 HCC samples, 59 control HCC samples, 36 CC
samples, and 9 control CC samples. Clinical information associated with both HCC and
CC, specifically age at index (age of the patient at the diagnosis), vital status (survival
status: ‘Alive’ or ‘Dead’), and days to death (time in days from diagnosis to death), was
also retrieved from TCGA and integrated with the gene expression data using the Pandas
Python library v1.5.3. Tumor samples were compared with controls for the assessment of the
differential expression of the SUCLG1 gene. Tumor samples were analyzed independently

https://www.origene.com/hbrt502-tissuescan-brain-cancer-cdna-array-i
https://www.origene.com/hbrt502-tissuescan-brain-cancer-cdna-array-i
https://www.origene.com/lvrt501-tissuescan-liver-cancer-cdna-array-i
https://www.origene.com/lvrt501-tissuescan-liver-cancer-cdna-array-i
https://www.cancer.gov/tcga
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of the controls to study the association between SUCLG1 expression profiles and patient
survival. Gene expression data for the SUCLG1 gene were provided as FPKM values.
Survival information was related to the overall survival of patients from the time of
diagnosis to death, regardless of cause. To investigate the relationship between SUCLG1
expression and patient age in both HCC and CC, Spearman’s rank correlation analysis
was performed using Python library SciPy v1.9.3. The analysis was conducted using
SUCLG1 gene expression data and patient age, with both variables converted to numeric
values, and missing or invalid data points were excluded. The statistical significance of the
correlation was determined by the p-value, where a p-value less than 0.05 was considered
statistically significant.

For the SUCLG1 gene, patients were divided into two groups (high expression and
low expression) according to an identified optimal expression cut-point. This was achieved
by exhaustively applying a log-rank test to multiple configurations of the two groups of pa-
tients. The optimal cut-point was defined as the SUCLG1 expression value that minimized
the statistical significance of the log-rank test, thereby indicating the greatest separation
in overall survival probability between the two groups. Kaplan–Meier survival curves
were then generated using the KaplanMeierFitter function from the lifelines Python library
v0.27.8 [23], which was then used to visualize the differences in survival probabilities over
time. The statistical significance of survival differences between groups was assessed using
the log-rank test, from which p-values and chi-square statistics were extracted. To compare
the distributions of the HCC and CC groups for the gene SUCLG1, the Mann–Whitney U
test was performed using the mannwhitneyu function of the Python library SciPy.

2.4. Statistical Analysis

Relative gene expression was calculated by the delta-delta Ct method. We used
two housekeeping genes—actin beta (ACTB) and glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH)—for normalization. The delta Ct for the housekeeping genes was calculated
by taking the geometric mean of ACTB Ct and GAPDH Ct. Statistical analyses were con-
ducted in GraphPad Prism (version 10.2.3). Multiple Mann–Whitney tests were performed
to compare relative expression levels of B2M, C1qA, and SUCLG1 between the groups. To
correct for multiple testing, we applied the Bonferroni–Dunn method. Asterisks indicate
the level of significance: <0.05 (*), <0.01 (**), and <0.001 (***). Boxplots were created using
GraphPad Prism (version 10.2.3).

3. Results
3.1. SUCLG1 Is Downregulated in Liver Disease and Cancers

We based our study on a global meta-analysis of aging that employed 127 microarray
and RNA-Seq datasets from humans, mice, and rats and applied machine learning alongside
enrichment methods [21]. That global meta-analysis across various tissues and species
identified 449 genes overexpressed with age and 162 underexpressed with age [21]. We
then selected three of the top upregulated or downregulated genes in aging for further
studies in liver diseases/cancer: B2M (upregulated with age), C1qA (upregulated with
age), and SUCLG1 (downregulated with age) (Table 1).

The selected genes exert quite distinct functions. B2M, or β2 microglobulin, is a
component of MHC Class I molecules, found on the cell surface of all nucleated cells.
C1qA encodes the A-chain polypeptide of serum complement subcomponent C1q, which
associates with C1r and C1s to yield the first component of the serum complement system.
SUCLG1 encodes the alpha subunit of the heterodimeric enzyme succinate coenzyme A
ligase. This enzyme is targeted to the mitochondria and catalyzes the conversion of succinyl
CoA and ADP or GDP to succinate and ATP or GTP. To study the role of these selected
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age-associated genes in the progression of liver diseases, we used a human liver cancer
cDNA array obtained from liver biopsies of patients either healthy (n = 9) or with hepatitis
(n = 3), fatty liver (n = 5), cirrhosis (n = 5), HCC (n = 24) and CC (n = 3). Demographic details
and diagnosis of subjects are reported in Table 2. While B2M and C1qA did not display
any change across the spectrum of liver disease, SUCGL1 mRNA expression decreases
significantly and progressively with the deterioration of liver disease, reaching the lowest
levels in malignant settings, i.e., HCC and CC (Figure 1). These findings seemed to be
specific to hepatic malignancies, as none of the three genes (B2M, C1qA, and SUCGL1)
displayed significant variations in their expression levels across a spectrum of human
brain cancers [healthy (n = 3), meningioma (n = 25), astrocytoma (n = 8), oligoastrocytoma
(n = 2), oligodendroglioma (n = 5), glioblastoma multiforme (n = 2), hemangiopericytoma
(n = 2) (Supplementary Figure S1)]. Demographic details and diagnoses of these subjects
are reported in Supplemental Table S1. Furthermore, in our study cohort, the expression of
SUCLG1 in liver tissues did not correlate with age (Supplementary Figure S2).

Table 1. Selection for genes differentially expressed with age across tissues and across species.

Gene Gene Full Name With Age p-Value
Source (For a Complete List of Database See

Supplemental Table S1 of Original Study
https://www.aging-us.com/article/202648/text)

C1qa complement C1q A chain Up 3.54 × 10−22 Microarray
and RNA-Seq datasets

B2M Beta-2-microglobulin Up 2.55 × 10−20 Microarray
and RNA-Seq datasets

SUCLG1
Succinate-CoA ligase
GDP/ADP-forming

subunit alpha
Down 4.11 × 10−9 Microarray

and RNA-Seq datasets

Table 2. Characteristics of the liver cohort patients.

Patient n Gender Age Sample Diagnosis Patient Diagnosis Tumor Grade Stage

P1 Male 81 Normal HCC Not applicable Not applicable

P2 Male 73 Normal HCC Not applicable Not applicable

P3 Male 71 Normal HCC Not applicable Not applicable

P4 Male 86 Normal HCC Not applicable Not applicable

P5 Male 52 Normal Granuloma Not applicable Not applicable

P6 Female 33 Normal Hyperplasia Not applicable Not applicable

P7 Male 66 Normal HCC Not applicable Not applicable

P8 Male 68 Normal HCC Not applicable Not applicable

P9 Female 79 Hepatitis HCC Not applicable Not applicable

P10 Male 68 Hepatitis HCC Not applicable Not applicable

P11 Female 58 Hepatitis HCC Not applicable Not applicable

P12 Male 73 Fatty liver HCC Not applicable Not applicable

P13 Female 32 Fatty liver Hyperplasia Not applicable Not applicable

P14 Male 79 Fatty liver HCC Not applicable Not applicable

P15 Male 56 Fatty liver HCC Not applicable Not applicable

P16 Male 26 Fatty liver HCC Not applicable Not applicable

https://www.aging-us.com/article/202648/text
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Table 2. Cont.

Patient n Gender Age Sample Diagnosis Patient Diagnosis Tumor Grade Stage

P17 Female 31 Adenoma Adenoma Not reported Not reported

P18 Male 71 Cirrhosis HCC Not applicable Not applicable

P19 Male 43 Cirrhosis HCC Not applicable Not applicable

P20 Male 60 Cirrhosis HCC Not applicable Not applicable

P21 Male 50 Cirrhosis HCC Not applicable Not applicable

P22 Male 77 Cirrhosis HCC Not applicable Not applicable

P23 Male 81 HCC HCC AJCC G1:
Well-differentiated I

P24 Male 79 HCC HCC AJCC G2: Moderately
differentiated I

P25 Female 61 HCC HCC AJCC G1:
Well-differentiated I

P26 Female 58 HCC HCC Not reported I

P27 Male 66 HCC HCC AJCC G3: Poorly
differentiated I

P28 Female 63 HCC HCC AJCC G2: Moderately
differentiated II

P29 Male 73 HCC HCC AJCC G2: Moderately
differentiated II

P30 Male 68 HCC HCC Not Reported II

P31 Male 60 HCC HCC AJCC G3: Poorly
differentiated II

P32 Female 62 HCC HCC AJCC G1:
Well-differentiated II

P33 Male 60 HCC HCC AJCC G2: Moderately
differentiated II

P34 Male 77 HCC HCC AJCC G1:
Well-differentiated II

P35 Male 63 HCC HCC AJCC G2:
Moderately differentiated II

P36 Female 39 HCC HCC AJCC G1:
Well-differentiated IIIA

P37 Male 43 HCC HCC AJCC G3:
Poorly differentiated IIIA

P38 Female 79 HCC HCC AJCC G2:
Moderately differentiated IIIA

P39 Male 56 HCC HCC AJCC G2:
Moderately differentiated IIIA

P40 Male 71 HCC HCC AJCC G2:
Moderately differentiated IIIA

P41 Male 86 HCC HCC AJCC G1:
Well-differentiated IIIA

P42 Male 26 HCC HCC AJCC G2:
Moderately differentiated IIIA

P43 Male 68 HCC HCC AJCC G2:
Moderately differentiated IIIA
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Table 2. Cont.

Patient n Gender Age Sample Diagnosis Patient Diagnosis Tumor Grade Stage

P44 Male 21 HCC HCC AJCC G2:
Moderately differentiated IV

P45 Male 70 HCC HCC AJCC G3:
Poorly differentiated IV

P46 Female 62 CC CC AJCC G2:
Moderately differentiated I

P47 Female 78 CC CC AJCC G2:
Moderately differentiated I

P48 Male 66 CC CC Not reported IV
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Figure 1. SUCLG1 mRNA levels decrease with liver-tissue deterioration alterations. Expression
mRNA levels of B2M, C1qA, and SUCLG1 in tissues with normal appearance (n = 9) or tissue specimen
with diagnosis: Fatty liver (n = 5), hepatitis (n = 3), cirrhosis (n = 5), hepatocellular carcinoma (n = 24)
or cholangiocarcinoma (n = 3). Significant differences are indicated by asterisks: <0.05 (*), <0.01 (**),
and <0.001 (***). All tissue samples in the liver cancer cohorts are biopsied from the tumor tissue area.

3.2. Survival Analysis of SUCLG1 Expression in HCC and CC Patients

Next, we explored The Cancer Genome Atlas (TCGA), a landmark cancer genomics
program that molecularly characterized over 20,000 primary cancers, and matched normal
samples spanning 33 cancer types, including HCC and CC. The Mann–Whitney U test was
performed to compare the distributions of the SUCLG1 gene between the HCC and CC
groups and respective control samples. The analysis involved 377 HCC samples, 59 control
HCC samples, 36 CC samples, and 9 control CC samples.

The analysis revealed a highly significant difference between the groups, with a
p-value of 1.860560 x 10-11 and a U statistic of 11204.5, indicating a strong separation in
the distribution of SUCLG1 expression between HCC or CC and their control groups,
respectively (Figure 2). The Kaplan–Meier survival curves for the SUCLG1 gene expres-
sion levels in HCC and CC are shown in Figures 3 and 4. Patients were stratified into
two groups based on the optimal cut-point for SUCLG1 expression: high expression (blue)
and low expression (orange). For CC, clinical information was available for all 36 samples,
allowing for their inclusion in the Kaplan–Meier survival analysis. Conversely, of the
377 HCC samples, 354 had the necessary clinical information to generate the Kaplan–Meier
survival curve.

For HCC, the log-rank test also indicated a significant survival difference between the
high- and low-expression groups, with a p-value of 0.0419 and a chi-square value of 4.14.
High SUCLG1 expression, i.e., ≥12.58, was associated with better survival outcomes than
lower expression (<12.58) (Figure 3). Specifically, the high-expression group consisted of
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24 samples, while the low-expression group included 330 samples. Similarly, for CC, the log-
rank test revealed a significant difference in survival between the two groups, with a p-value
of 0.0123 and a chi-square value of 6.26. Patients with high SUCLG1 expression, i.e., ≥10.39,
exhibited better survival probabilities than those with lower expression (<10.39) (Figure 4).
In this case, the high-expression group included 23 samples, while the low-expression
group consisted of 13 samples.

Cancers 2025, 17, x FOR PEER REVIEW 8 of 13 
 

 

(<10.39) (Figure 4. In this case, the high-expression group included 23 samples, while the 
low-expression group consisted of 13 samples. 

Furthermore, our analysis of SUCLG1 expression levels and patient age in both the 
HCC and CC cohorts revealed differing trends. In the HCC cohort, the relationship be-
tween SUCLG1 expression and age was weak (Spearman correlation coefficient: 0.0596, p-
value = 0.1131). Conversely, in the CC cohort, a significant negative correlation between 
age and SUCLG1 expression was observed (Spearman correlation coefficient: −0.4248, p-
value = 0.0002), suggesting that older patients with lower SUCLG1 expression may have 
a poorer prognosis. 

These results suggest that SUCLG1 expression is a significant predictor of survival in 
both HCC and CC patients, with higher expression correlating with improved survival 
outcomes. 

 

Figure 2. Boxplot of SUCLG1 expression levels in tumor and control samples. The plot compares 
SUCLG1 expression levels (FPKM) in hepatocellular carcinoma (HCC) and cholangiocarcinoma 
(CC) tumor samples with their respective normal control tissues. The analysis included 377 HCC 
tumor samples, 59 control HCC samples, 36 CC tumor samples, and 9 control CC samples. HCC 
tumor samples exhibit a median SUCLG1 expression of 10.69 FPKM, while the corresponding con-
trols show a higher median expression of 11.76 FPKM. Similarly, CC tumor samples have a median 
SUCLG1 expression of 11.91 FPKM compared to a median of 11.56 FPKM in controls. 

 

Figure 3. Kaplan–Meier survival curves for SUCLG1 expression in HCC. Kaplan–Meier survival 
plots display the survival probabilities for patients grouped by SUCLG1 expression levels in hepa-
tocellular carcinoma (HCC). In HCC, high SUCLG1 expression (≥12.58) was associated with 

Figure 2. Boxplot of SUCLG1 expression levels in tumor and control samples. The plot compares
SUCLG1 expression levels (FPKM) in hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC)
tumor samples with their respective normal control tissues. The analysis included 377 HCC tumor
samples, 59 control HCC samples, 36 CC tumor samples, and 9 control CC samples. HCC tumor
samples exhibit a median SUCLG1 expression of 10.69 FPKM, while the corresponding controls show
a higher median expression of 11.76 FPKM. Similarly, CC tumor samples have a median SUCLG1
expression of 11.91 FPKM compared to a median of 11.56 FPKM in controls.
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Figure 3. Kaplan–Meier survival curves for SUCLG1 expression in HCC. Kaplan–Meier survival plots
display the survival probabilities for patients grouped by SUCLG1 expression levels in hepatocellular
carcinoma (HCC). In HCC, high SUCLG1 expression (≥12.58) was associated with improved survival
compared to low expression (<12.58) (log-rank test: p = 0.0419, χ2 = 4.14). The high-expression group
comprised 24 samples, while the low-expression group included 330 samples.

Furthermore, our analysis of SUCLG1 expression levels and patient age in both the
HCC and CC cohorts revealed differing trends. In the HCC cohort, the relationship
between SUCLG1 expression and age was weak (Spearman correlation coefficient: 0.0596,
p-value = 0.1131). Conversely, in the CC cohort, a significant negative correlation between
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age and SUCLG1 expression was observed (Spearman correlation coefficient: −0.4248,
p-value = 0.0002), suggesting that older patients with lower SUCLG1 expression may have
a poorer prognosis.
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display the survival probabilities for patients grouped by SUCLG1 expression levels in cholangio-
carcinoma (CC). In CC, patients with high SUCLG1 expression (≥10.39) had significantly better
survival compared to those with low expression (<10.39) (log-rank test: p = 0.0123, χ2 = 6.26). The
high-expression group included 23 samples, while the low-expression group consisted of 13 samples.

These results suggest that SUCLG1 expression is a significant predictor of survival in both
HCC and CC patients, with higher expression correlating with improved survival outcomes.

4. Discussion
HCC and CC are a major challenge in oncology due to their aggressive nature and

limited treatment options. Current treatments for HCC or CC, such as surgical resection,
liver transplantation, and systemic therapies, often fail to provide long-term survival bene-
fits. The identification of novel therapeutic targets is essential to improve patient outcomes.
The shared mechanisms between aging and cancer suggest targeting aging processes may
help mitigate cancer risk. Interventions like senolytics (agents that clear senescent cells),
caloric restriction, and exercise have shown potential in reducing inflammation, enhancing
DNA repair, and improving metabolic health, all of which may delay both aging and cancer
development [1–4]. Cellular senescence is a hallmark in the progression of liver disease,
HCC, and CC [24–27]. However, highly investigated senolytics such as dasatinib and
quercetin may not be effective in preclinical models of HCC, and may even exacerbate the
progression of age-associated liver disease [28,29]. Hence, new age-associated therapeutic
targets for liver cancers should be identified. Here, we based our ex vivo and in silico study
on a meta-analysis of 127 transcriptomic datasets from mice, rats, and humans, identifying
a transcriptomic signature of aging across species and tissues [21], and identified SUCLG1
as a commonly downregulated protein in both HCC and CC tissue, which also associates
to lower patient survival. SUCLG1 encodes an enzyme involved in the citric acid cycle,
catalyzing the conversion of succinyl-CoA and ADP or GDP to succinate and ATP or GTP.
This enzyme is essential for mitochondrial function and energy metabolism—processes
that are often dysregulated in cancer. Mutations in the SUCLG1 gene have been linked
to mitochondrial DNA depletion syndromes (MDDSs), characterized by severe metabolic
dysfunctions [30]. Recently, Yan et al. showed that SUCLG1 restricts succinyl-CoA levels
to suppress the succinylation of mitochondrial RNA polymerase (POLRMT), maintaining
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mtDNA transcription and mitochondrial biogenesis [31]. As the ‘Warburg effect’ is charac-
terized by a metabolic shift in cancer cells from glucose catabolism via the citric acid cycle
to anaerobic glycolysis, even in the presence of adequate oxygen levels, it is conceivable
that SUCLG1 downregulation could be a possible candidate in the modulation of HCC
and CC metabolic rewiring [32,33]. Metabolic changes are hallmarks of both aging and
tumorigenesis. During aging, the build-up of metabolic byproducts and waste molecules
in the circulation and within tissues negatively affects blood flow, oxygenation, and tissue
stiffness. Altogether, these age-driven changes lead to metabolic reprogramming in differ-
ent cell types, including liver parenchyma, which is particularly susceptible to stiffness and
fibrosis [34]. The metabolic changes that occur during aging, including changes in SUCGL1
activity, might thus help create a favorable environment for liver tumorigenesis [35,36],
although this notion has been debated regarding the very elderly [13,37]. Previous studies
have linked SUCLG1 to various metabolic disorders and non-hepatic cancers, particularly
leukemia, suggesting its potential as a therapeutic target [31,38–40]. Chen et al. showed
that the transient overexpression of SUCLG1, PCK2, and GLDC can inhibit the progres-
sion of renal cancer cells [38], suggesting that a similar therapeutic approach might prove
valuable also in HCC and/or CC preclinical models. As mentioned, SUCLG1 catalyzes
the conversion of succinyl-CoA to succinate. Potential anti-cancer therapeutic strategies
should target a boost in SUCLG1 activity and/or expression. In principle, SUCLG1 activity
is enhanced by the direct supplementation of succinyl-CoA to patients, which, however
does not seem a suitable strategy, since CoA esters are not membrane-permeable and
therefore succinyl-CoA is unlikely to penetrate the cell membrane [41]. More promising
approaches targeting SUCLG1 and other candidate genes, which are under investigation to
treat MDDS, involve lentiviral or adeno-associated vector-mediated gene therapy [42]. In
turn, the latter technologies, targeting genes such as adenovirus-thymidine kinase (ADV)
or p53, are also currently being tested in clinical trials enrolling HCC patients [43]. How-
ever, it remains unpredictable whether gene therapy against SUCLG1 or other targets
may impact overall survival or adverse events in aging HCC patients. Succinylation has
been shown to be associated with worse patient survival prognosis in HCC. An altered
expression of succinylation-related genes is linked to poor outcomes in HCC patients [44],
supporting our findings. SUCGL1 is an integral part of the succinylation post-translational
modification process, which affects various proteins, including histones [45]. The bio-
logical role of succinylation is relatively newly under investigation, but as the addition
of a succinyl group introduces a relatively large structural moiety (100 Da) (bigger than
acetylation (42 Da) or methylation (14 Da)), it is believed to significantly affect protein
structure and function [46]. To the best of our knowledge, this is the first report associating
SUCLG1 with CC and patient survival. However, our study does not provide a validation
of SUCLG1 as a therapeutic target in preclinical or clinical models for HCC/CC or age-
associated diseases, which remains to be explored in further studies. The identification
of age-associated genes and pathways provides a deeper understanding of the molecular
mechanisms underlying SUCLG1’s involvement in HCC and CC and highlights potential
targets for therapeutic intervention.

5. Conclusions
Tissue biopsies with molecular phenotypes related to liver disease progression show

downregulated mRNA levels of SUCLG1, most drastically observed in the malignant
liver disease stages of HCC and CC. Low SUCLG1 expression levels among HCC and CC
patients are also associated with poorer survival. The crucial role of SUCLG1 in metabolic
homeostasis and its inhibition with age and in malignant liver disease stages present a
rationale for further elucidating the ‘driving’ role of SUCLG1 in age-associated cancers.
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