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Optimizing wind turbine blade 
pitch control via input output 
differential model free adaptive 
control
Ziang Zhou1, Shuangxin Wang1, Jiading Jiang2, Hongrui Li1, Juchao Zhao1 & Dingli Yu3

In the context of wind energy systems, maintaining optimal power output in wind turbines when 
wind speeds exceed rated values necessitates precise regulation of blade pitch through the pitch 
control system. However, challenges in accurately modeling nonlinear control systems and enhancing 
control responsiveness arise due to factors such as actuator constraints, unmodeled dynamics, and 
random wind speed fluctuations. This paper proposes an improved model free control, termed Input 
Output Model Free Adaptive Control (IO-MFAC). It enhances the system’s adaptability to stochastic 
wind and improves tracking capabilities by adaptively adjusting the input difference based on the 
output difference through the new cost function. Moreover, to demonstrate the stability of IO-MFAC, 
its monotonic convergence is theoretically confirmed. Simulations conducted on the FAST simulator 
and hardware-in-the-loop experiments demonstrate that IO-MFAC outperforms basic MFAC under 
constant wind and turbulent conditions, exhibiting superior dynamic tracking performance, control 
effectiveness, and practical utility.

Wind energy is a vital renewable resource due to its abundant availability and potential. However, the variable 
nature of wind, combined with the complexities of wind turbine systems, presents significant challenges in 
effectively harnessing this energy. To manage these challenges, control strategies are implemented to adjust the 
blade pitch angle, particularly when wind speeds exceed the turbine’s rated capacity. This adjustment is crucial 
for stabilizing power output and preventing damage to essential components during high wind conditions1. 
Consequently, effective blade control is central to maintaining the reliability of wind power systems.

Various control strategies have been employed in variable pitch control. These include the Proportional-
Integral (PI) method2, which combines proportional and integral terms for enhanced performance; the Linear 
Quadratic Gaussian (LQG) approach3, which utilizes quadratic optimization and accounts for Gaussian noise; 
and Model Predictive Control (MPC)4, which optimizes control inputs by predicting system behavior over a 
finite time horizon. Other methods, such as finite-time continuous nonsingular terminal synergetic control5, 
enhance robustness under actuator faults, while L1 adaptive schemes6 improve pitch angle control stability in 
Permanent Magnet Synchronous Generator (PMSG) wind turbine systems; and the Robust Control method7, 
designed to handle uncertainties and disturbances for enhanced system stability. However, these algorithms 
heavily rely on accurate models of the control systems. For instance, Robust Control methods necessitate prior 
mathematical modeling of wind turbines and an understanding of uncertain dynamics8. Additionally, LQG and 
PI approaches are limited by their reliance on specific operating point models, making them less responsive to 
changes in system data9. As systems grow increasingly complex and nonlinear, creating precise controller models 
becomes more difficult, and model-based methods often face limitations due to unmodeled dynamics.

To tackle these modeling challenges, artificial intelligence (AI) control methods have also emerged. Notably, a 
novel reinforcement learning (RL) controller that integrates deep neural networks (DNNs) with MPC has shown 
significant improvements in the robustness and performance of wind turbine control systems, particularly under 
uncertain conditions and actuator failures10. Additionally, a fractional-order fuzzy control (FOFC) method has 
proven effective in enhancing the robustness of doubly-fed induction generator (DFIG)-based wind energy 
systems, outperforming traditional Direct Power Control (DPC) strategies in mitigating power ripple and 
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harmonic distortion11. However, these AI-based approaches often require extensive training data and time, and 
may lack interpretability, creating challenges in their practical application.

In light of these issues, model-free adaptive control (MFAC) methods, which depend on real-time system 
data rather than mathematical models, have gained attention in recent research12. MFAC has been successfully 
applied in various fields, including distributed collaborative tracking in multi-agent systems (MAS)13, crane load 
sway management14, reactive power compensation15, and inverter synchronization16. Nonetheless, there remains 
limited research on its application to stochastic wind energy17, highlighting the need for further investigation 
in this area.

Recent advancements in MFAC have led to notable improvements. For instance, Huang et al.18 developed 
a Differential Evolution and Sliding Mode Control strategy for Full-Form Dynamic Linearization Model-
Independent Adaptive Control (DESO-based FFDL MFAC), which effectively addresses trajectory tracking for 
wheeled mobile robots. Li et al.19 integrated fuzzy optimization with MFAC for underwater vehicle heading 
control, demonstrating its effectiveness through simulations and experiments. Similarly, Yu et al.20 enhanced the 
dynamic linearization of MFAC using neural networks, confirming its application for controlling Piezoelectric 
Micro-Positioning (PMP) platforms. Liu et al.21 combined MFAC with reinforcement learning to improve 
robustness and tracking accuracy. Xu et al.22 employed a particle swarm optimization strategy with recurrent 
neural networks to enhance stability in Czochralski-grown silicon crystal production. While these developments 
improve the performance of basic MFAC, they also introduce high computational complexity and constraints in 
specific applications, indicating a need for further research to enhance their generality and practicality.

Considering the inherent variability of stochastic wind energy in variable-pitch systems, this paper proposes 
a novel enhanced data-driven model-free control method. By monitoring real-time input and output error rates 
and adjusting the blade pitch angle accordingly, we improve the system’s adaptability to changes in wind energy. 
This approach improves the controller’s ability to track generator speed variations without requiring precise 
system modeling, reducing computational complexity and enhancing general applicability.

The mathematical formulation derivation of IO-MFAC
Figure 1 illustrates the overall structure of IO-MFAC, where the symbol Z−1 denotes the backward temporal 
shift. The module labeled as D&M incorporates the principles of difference and memory.

The mathematical form of basic-MFAC
The classical discrete-time nonlinear system with a single-input single-output (SISO) configuration can be 
expressed as follows:

	 y(k + 1) = f (y(k), · · · , y (k − ny) , u(k), · · · , u (k − nu)) .� (1)

In this representation, u(k) ∈ R denotes the system input at time k, and y(k) ∈ R represents the corresponding 
output. The parameters ny  and nu are positive integers with uncertainty. Additionally, f(·) : Rnu+ny+2 → R 
characterizes an uncertain nonlinear function governing the system dynamics.

For convenience in subsequent discussions, we make two reasonable assumptions about the SISO system: 

	1.	� With the exception of a finite set of time points, the continuity of the partial derivative of f(·) concerning the 
(ny + 2)th variable is maintained. this assumption is generally practical, as most physical systems, including 
wind turbines, tend to have smooth response characteristics.

	2.	� With the exception of a finite set of time points, the SISO system adheres to the generalized Lipschitz condi-
tion. This implies that, for any k1 ̸= k2, k1, k2 ≥ 0, and u(k1) ̸= u(k2), the following condition is met: 

Fig. 1.  Overall structure of the IO-MFAC.
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	 |y (k1 + 1) − y (k2 + 1)| ≤ b |u (k1) − u (k2)| ,� (2)

 with b > 0 as a constant.The Lipschitz condition suggests that the system’s output is predictable and stable 
relative to its input. In practice, this condition can usually be met by controlling the input signal and using 
appropriate filtering, as demonstrated in many real-world systems.

Given the aforementioned assumptions, it is possible to convert the SISO system into a concise form using 
dynamic linearization, often referred to as the Compact Form Dynamic Linearization (CFDL) model23:

	 y(k + 1) = ϕc(k)∆u(k) + y(k),� (3)

where ∆u(k) = u(k) − u(k − 1) and ϕc(k) ∈ R is the bounded pseudo partial derivative (PPD).
When dealing with discrete-time systems, control algorithms often adjust system behavior by minimizing 

the cost function associated with prediction errors. However, excessive focus on one-step prediction errors can 
lead to unnecessary control inputs, potentially causing harm to the overall system. Additionally, introducing a 
cost function with weighted one-step prediction errors may introduce errors during steady-state. Therefore, to 
address these issues, the following cost function is introduced:

	 J(u(k)) = (y∗(k + 1) − y(k + 1))2 + λ(u(k) − u(k − 1))2, � (4)

where y∗(k + 1) is the reference of output; λ > 0 is a weighting factor.
By deriving Eq. (4) partially concerning u(k) and equating it to zero, we derive the optimal control input as 

follows:

	
u(k) = u(k − 1) + ρϕc(k)

λ + |ϕc(k)|2
(y∗(k + 1) − y(k)) .� (5)

Here, we introduce the step factor ρ ∈ (0, 1] to provide a more generalized form for this algorithm.
Given that PPD is a parameter that varies with time and obtaining its actual value poses challenges, an 

estimation approach has been employed to approximate PPD. The consideration involves the utilization of the 
following criterion function for PPD estimation:

	 J(ϕc(k)) = (y(k) − y(k − 1) − ϕc(k)∆u(k − 1))2 + µ(ϕc(k) − ϕ̂c(k))2, � (6)

where µ > 0.
We take the derivative of (6) with respect to ϕc(k), and note that the extreme value point of J(ϕc(k)) is the 

estimated value ϕ̂c(k),

	 ϕ̂c(k) : ϕc(k) = ϕ̂c(k − 1) + η∆u(k−1)
µ+∆u(k−1)2 (∆y(k) − ϕ̂c(k − 1)∆u(k − 1)), � (7)

where η ∈ (0, 1] denotes step factor and µ > 0.  If either |ϕ̂c(k)| ≤ ε,   ∆u(k − 1) ≤ ε,  or 
sign(ϕ̂c(k)) ̸= sign(ϕ̂c(1)) is true, then ϕ̂c(k) is set to ϕ̂c(1).   Here, ϕ̂c(1) represents the initial value, and ε is 
a sufficiently small positive constant.

Using historical data, we obtain ϕ̂c(k) through Formula (7), and by guiding Formula (5) with it, we derive 
the final control input, achieving model free control relying solely on data. Organizing the above equation, the 
final control input for basic-MFAC is

	
u(k) = u(k − 1) + ρϕ̂c(k)

λ +
∣∣ϕ̂c(k)

∣∣2 (y∗(k + 1) − y(k)) .� (8)

The mathematical formulation of IO-MFAC
The rotational speed of wind turbines fluctuates significantly due to the unpredictable nature of wind. 
Concurrently, basic-MFAC faces conflicting demands of responsiveness and tracking arising from constraints in 
actuators, the inertia of the system, and delays in time24. This conflict intensifies because the squared difference 
term of the control input in Function (4) does not adaptively account for the variations in output between 
adjacent moments, leading to basic-MFAC’s inability to accurately modulate blade pitch angles in response 
to fluctuations in generator speed caused by wind velocity changes. To address this limitation and enhance 
the modeling and tracking performance of basic-MFAC, we propose an IO-MFAC strategy that considers the 
mutual influence of input and output variations. A new cost function for control input is formulated as follows:

	

J(u(k)) = (y∗(k + 1) − y(k + 1))2 + λ(u(k) − u(k − 1))2

+ α(y(k + 1) − y(k) − β(u(k) − u(k − 1)))2.
� (9)

Equation (9) indicates that to minimize the last term in the cost function, the system must rapidly adjust the input 
differences to counterbalance substantial variations in output between consecutive time steps. This constraint 
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allows the controller to dynamically adapt the inputs based on the output variations, thereby enhancing the 
system’s ability to achieve precise state tracking.

In combination with (7), we derive the derivative of (9) for u(k) to obtain the optimal J(u(k)). The IO-MFAC 
is obtained

	

u(k) = u(k − 1) + ρϕ̂c(k)
λ + (ϕ̂c(k))2 + α(ϕ̂c(k) − β)2

(y∗(k + 1) − y(k))

−
α

{
[y(k) − y(k − 1)] − ϕ̂c(k − 1)[u(k − 1) − u(k − 2)]

}
[ϕ̂c(k) − β]

λ + (ϕ̂c(k))2 + α[ϕ̂c(k) − β]2
.

� (10)

While this formulation incorporates the necessary adjustments for effective control, a more detailed explanation 
of each step, along with a simplified representation where possible, could further enhance understanding. For 
instance, highlighting the roles of parameters such as ρ,γ, and α in tuning the control response could clarify 
their impact on system behavior.

Stability proof
Formulated for the meticulous scrutiny of stability, the assumptions are postulated for the System 1 as follows25: 

	1.	� Given a bounded expected output y∗(k + 1), existing a bounded control input u∗(k), such that the system 
output equals to y∗(k + 1) with the impact of this input. Although wind speed is highly random, a reason-
able control strategy can ensure that the system input and output remain within the expected range, thus 
satisfying the boundedness condition. This is crucial for ensuring the stable operation of the wind turbine 
and extending its lifespan.

	2.	� For any non-zero ∆u(k), the positive and negative signs of PDD remain consistent, and it satisfies 
|ϕc(k)| > ε, where ε denotes a small positive value. It ensures that the system has sufficient driving force 
during the control process, avoiding control failures due to excessively small input changes. This assumption 
can be achieved in practical control design by adjusting control gains and filter parameters, ensuring that the 
system’s response has the expected stability and predictability.

Without loss of generality, we set ϕc(k) > ε in this paper.
Moreover, these assumptions help simplify mathematical analysis, making the stability proof more rigorous 

and feasible. However, we also recognize that in certain extreme conditions, there may be a few cases where 
these assumptions are not fully met.Therefore, future experiments and simulation studies will further verify the 
applicability of these assumptions in real-world applications and explore the system’s performance when the 
assumptions are not fully satisfied.

Simulation and results
We construct the simulation model in this section. Subsequently, our experiments are primarily divided into 
four dimensions. Firstly, the preliminary viability of IO-MFAC under steady wind speed is validated. Secondly, 
the experiment is conducted on the impact of hyper-parameter values on control performance. Thirdly, a 
comparison with classical control algorithms is undertaken to validate the tracking performance of IO-MFAC. 
Lastly, the feasibility of the algorithm is verified through hardware-in-the-loop experiments.

Simulation modeling
This paper employs the Simulink joint fatigue, aerodynamics, structure, and turbulence (FAST)26,27 to implement 
basic-MFAC, and IO-MFAC. Developed by the National Renewable Energy Laboratory, the FAST software excels 
in constructing a wind turbine simulation environment with high precision. This study employs the 5  MW 
benchmark wind turbine from FAST as the experimental simulation. This wind turbine, rated at 5 megawatts, 
is equipped with three blades, each boasting a 126-meter diameter. Comprising the wind rotor, gearbox, and 
generator, the wind turbine’s pitch system is equipped with a standard pitch controller (baseline PI) and a torque 
controller28. Refer to Table 1 for additional parameters.

Parameters Value

Rated power 5 MW

Rotor orientation, configuration Upwind, 3 Blades

Rotor, hub diameter 126 m, 3 m

Cut-in, rated, cut-out wind speed 3 m/s, 11.4 m/s, 25 m/s

Cut-in, rated rotor speed 6.9 rpm, 12.1 rpm

Rotor mass 110,000 kg

Nacelle mass 240,000 kg

Tower mass 347,460 kg

Table 1.  Main parameters of the 5 MW wind turbine.
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The baseline PI controller, as a proportional-integral controller, has been thoroughly examined and adopted 
as the benchmark controller28–30. In order to ensure fairness and evaluate the controller’s uniformity in the 
simulation environment, we choose the baseline PI as the benchmark for the controller. Furthermore, we 
exclusively modify the pitch controller, keeping all other parameters at their default values.

Figure 2 illustrates the Simulink model of the controller, while Table 2 outlines the parameters of the 
controller. These parameters have been carefully selected to achieve optimal performance.

Control performance under steady wind conditions
Utilizing the designed IO-MFAC variable-pitch controller, simulation is conducted in the Simulink/FAST 
platform. The total simulation duration is set at 100 s, employing a constant wind speed of 15 m/s. Given that 
the wind speed of 15 m/s exceeds the rated wind speed for the turbine, the ideal operational state of the turbine 
should involve maintaining a power output near the rated power of 5 MW. Additionally, the generator speed of 
the turbine is expected to remain in proximity to the rated speed of 123 rad/s. The wind turbine’s power output, 
generator speed, generator torque, and pitch angle are depicted in Fig. 3.

From the simulation results, it is evident that the system enters a stable state after 20 s of simulation. The 
designed IO-MFAC controller effectively maintains the power output of around 5 MW, and the generator speed 
stabilizes near the reference value of 123 rad/s. It is observable that the designed IO-MFAC controller enables 
the wind turbine to stably track parameters such as power output and generator speed under steady-state wind 
conditions in the third operating condition.

The impact of selecting various α and β values on the performance of control
The IO-MFAC designs parameters α and β aimed at enhancing the performance in tracking generator speed 
while maintaining generality in the algorithm. Under conditions of turbulence, characterized by an average 
wind speed of 15 m/s (Fig. 4), simulations are conducted to assess the impact of varying α and β values on 
the presented algorithm. The parameters α and β are configured as 7, 6, 8, and 2, 1, 0.5, respectively. Figure 5 
illustrates the variations in final power output and generator speed tracking performance.

Figure 5a, b reveals that the choice of α directly impacts the controller’s tracking performance. Additionally, 
the sensitivity in error bias and power variations is inversely correlated with the value of α. As shown in Fig. 
5c, d, it is evident that for β ∈ (1, 2), decreasing the parameter value results in more stable power control and 
generator speed closer to the ideal speed.

Parameter Description IO-MFAC Basic-MFAC PI

η Cost function step factor 0.200 0.800 None

µ PPD weight factor 0.001 1 × 10−5 None

λ Cost function weight factor 2.000 40.000 None

ρ PPD step factor 0.015 0.001 None

α Input Output step factor 8.000 None None

β Input step factor 1.000 None None

ϕc(1) Initial PPD 10.000 10.000 None

u(1) Initial input pitch angle 0.000 0.000 None

y(1) Initial output generator speed 0.000 0.000 None

Kp Scale factor None None 0.0081

Ki Integral factor None None 0.110

Table 2.  Parameters of the controllers.

 

Fig. 2.  Pitch controller based on IO-MFAC control of Simulink.
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Comparison with classical control algorithms
Comparison in the stable wind condition
First, simulations between different algorithms are performed at a constant wind speed of 15 m/s. At 15 m/s, the 
wind turbine operates in the third operating condition, i.e., the constant power control stage.

The operational parameters of the wind turbine under the three controllers are shown in Fig. 6. It can be seen 
from Fig. 6 that the basic-MFAC controller has a large overshoot and a long adjustment time, and it is almost 
impossible to play a role in the wind turbine pitch system. Compared with the PI controller, the IO-MFAC 
controller has faster response speed, reduced overshoot, and swift adjustment capabilities in power, rotational 
speed, and pitch angle control.

Results are compared in Table 3. It can be seen that at the constant wind speed of 15 m/s, the IO-MFAC 
control algorithm has smaller power error, generator speed error, power standard error(PSE), and generator 
speed standard error(GSE) than the PI control and the basic-MFAC control. The overshoot and adjustment time 
of the IO-MFAC are reduced by 35.4% and 49 s on average compared with the other two controllers, so it has a 
better performance.

Comparison in the turbulent wind condition
We conduct comparative experiments using the turbulent wind depicted in Fig. 4. In this environment, except 
for a slight decrease in wind speed around the 65th and 75th s, the wind speed remains above the rated speed 
for the remaining duration. Moreover, the wind possesses significant unpredictability and turbulence. We use 

Fig. 4.  Turbulent wind simulation.

 

Fig. 3.  Results of IO-MFAC under stable wind conditions: (a) power, (b) generator rotational speed, (c) 
torque, (d) angle.
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Performance Index PI Basic-MFAC IO-MFAC

Mean power (kW) 4999 4999 4900

Rated power (kW) 5000.00 5000.00 5000.00

Power error (kW) 1.00 100.00 1.00

Power standard deviation (kW) 42.44 245.55 39.01

Mean generator speed (rad/s) 123.46 135.36 122.56

Generator reference speed (rad/s) 122.9 122.9 122.9

Generator speed error (rad/s) 0.56 12.46 0.34

Standard deviation of 
generator speed (rad/s) 3.96 33.94 2.07

Adjustment time (s) 32 120 27

Overshoot (%) 20.83 66.67 8.33

Table 3.  Comparison results of control performances for different methods under steady wind.

 

Fig. 6.  Response of different controllers under the steady wind speed: (a) Generator rotational speed, (b) 
power, (c) angle.

 

Fig. 5.  The tracking performance of generator speed and power under different values of α and β. (a) Power; 
(b) generator rotational speed; (c) power; (d) generator rotational speed.
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PI and basic-MFAC as benchmarks for the comparative experiments. The experiments are conducted using 
simulations. And the results are presented in Fig. 7.

From Fig. 7a–c, it can be observed that IO-MFAC exhibits more exact speed output and quicker response. 
Furthermore, in turbulent conditions, due to its robust tracking performance, the method achieves better control 
performance through more blade movements.

Additionally, basic-MFAC struggles to adequately respond to rapid speed changes in turbulent wind speeds. 
This leads to substantial fluctuations in generator speed and power. In contrast, IO-MFAC rapidly reduces 
tracking errors induced by wind speed disturbances. Contrasted with the PI, IO-MFAC has lower generator 
speed fluctuations and maintains a more stable power level. At the 67th second in Fig. 7b, a sudden decrease in 
wind speed is observed. At this time, the IO-MFAC demonstrates a power reduction magnitude approximately 
two-thirds less than that of the baseline PI. This indicates that IO-MFAC exhibits stronger robustness under 
critical wind speed conditions.

We further quantify these control performances. Table 4 shows that PI has a slightly lower generator speed 
error than IO-MFAC control in terms of generator speed error. However, the IO-MFAC has a smaller power 
error, PSE, and GSE compared to PI and MFAC. In particular, when compared to the PI, the PSE and GSE of the 
IO-MFAC have decreased by 16.2% and 33.3%, respectively.

The Hil simulation of the IO-MFAC
To enhance the verification of the reliability and adaptability of IO-MFAC in real operational scenarios, a 
hardware-in-the-loop (HIL) simulation experiment is devised. Within the simulation, the tangible apparatus 
or environment is replaced by a simulated model interfaced with the authentic controller, thereby establishing a 
closed-loop test system. Moreover, intricate components resistant to mathematical modeling, such as converter 
systems, can be retained within the closed-loop system, facilitating controller testing within a laboratory setting31.

As obtaining a real wind turbine experimental environment is challenging, only the wind turbine controller 
components are involved in the experiment. The IO-MFAC is transplanted onto the S7-1200 PLC for the HIL 
controller experiment, where the simulated wind turbine from FAST serves as the controlled object. Figure 8 
shows the experimental setup.

In Fig. 9, It is evident that the IO-MFAC pitch controller demonstrates comparable trends in both 
experimental and simulation conditions. Hence, the performance of IO-MFAC in a semi-physical environment 
remains largely unaffected, showcasing a certain level of adaptability and reliability.

Discussion
From the simulation results, IO-MFAC demonstrates superior dynamic performance in both constant and 
turbulent wind conditions. In the presence of random wind speed disturbances, IO-MFAC exhibits smoother 

Performance index PI Basic-MFAC IO-MFAC

Mean power (kW) 4950.00 4668.00 4957.00

Rated power (kW) 5000.00 5000.00 5000.00

Power error (kW) 50.00 332.00 43.00

Power standard deviation 
(kW) 249.95 600.72 209.22

Mean generator speed
 (rad/s) 123.27 126.19 122.38

Generator reference speed
 (rad/s) 122.90 122.90 122.90

Generator speed error 
(rad/s) 0.37 3.29 0.52

Standard deviation of generator
 speed (rad/s) 4.51 36.88 3.01

Table 4.  Comparison results of control performances for different methods under turbulent wind.

 

Fig. 7.  Response of different controllers under the turbulent wind speed: (a) generator rotational speed, (b) 
power, (c) angle.
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speed output and stronger tracking performance (see Fig. 6a, c). Contrastingly, achieving a balance between 
response speed and overshoot becomes challenging for basic-MFAC due to the impact of actuator constraints, 
system inertia, and time delays. Consequently, selecting and tuning parameters for basic-MFAC prove to be a 
challenging task. The results indicate that basic-MFAC can only achieve gradual stabilization in stable wind 
conditions but with a longer stabilization time, leading to insignificant fluctuations in power and generator 
speed. Additionally, in turbulent conditions, basic-MFAC fails to promptly suppress wind power fluctuations, 
especially during sudden changes in wind speed.

In turbulent wind conditions, although the baseline PI controller can accommodate changes in pitch angle, 
its tracking performance is inferior to IO-MFAC, leading to more power losses (see Fig. 7b). From the simulation 
results, we can infer that as wind speed continues to fluctuate, the PI controller, lacking strong nonlinear tracking 
capabilities, will further decrease the power absorption of the wind turbine. Hence, the baseline PI encounters 
difficulties in addressing the requirements of nonlinear control, as its control effectiveness is largely dependent 
on the stability of wind speed.

The IO-MFAC introduces new parameters α and β to adjust the system, aiming to address transient 
performance issues arising from the nonlinear system’s varying time delays and inertia. In this manner, the 
burden on parameters ρ and λ can be alleviated, enhancing the flexibility in designing the controller and 
enabling a better balance between rapid response and high performance in the system.

Crucially, since IO-MFAC does not depend on specific modeling of a particular controlled system, the 
proposed approach is not just relevant for controlling wind turbine blades but is also well-suited for a category of 
control processes with similar characteristics like actuator constraints, significant inertia, and time delays. This 
aids the progress and implementation of the MFAC control theory. Furthermore, due to filter initialization and 
transient behavior during controlled system startup, there might be fluctuations in the initial simulation stages. 
However, compared to a wind turbine’s operational time, these effects are minimal.

In the HIL experiment, the IO-MFAC exhibits results similar to those obtained under simulation conditions. 
This indicates that the controller exhibits good adaptability and reliability in a real hardware environment. 
Since hardware-in-the-loop experiments closely mimic actual working conditions, the consistency of results 
strengthens the credibility of IO-MFAC in practical applications. This consistency also provides a solid 
foundation for further extending and applying IO-MFAC to real wind power generation systems.

Fig. 9.  The HIL experiment versus simulation for collective pitch control utilizing IO-MFAC (a) power, (b) 
generator speed.

 

Fig. 8.  HIL experimental system.

 

Scientific Reports |         (2025) 15:6325 9| https://doi.org/10.1038/s41598-025-88711-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The findings of this study have to be seen in light of some limitations. Firstly, the examination of hyperparameter 
sensitivity is confined, the assessment may fail to capture the full extent of IO-MFAC’s adaptability across diverse 
operational environments. The limited exploration of alternative tuning approaches could inadvertently obscure 
the algorithm’s resilience in variable settings or neglect possible optimization avenues. Secondly, the study’s 
investigation into the algorithm’s impact on mechanical loads is incomplete. Rapid pitch angle modifications 
may escalate mechanical loads, a comprehensive assessment of these effects is lacking.

In future studies, we plan to conduct a more extensive sensitivity analysis of hyperparameters, explore 
alternative tuning methods, and perform a detailed evaluation of the mechanical load impacts associated with 
rapid pitch adjustments to further enhance the robustness and applicability of the IO-MFAC algorithm.

Conclusions
This paper introduces an enhanced model-free adaptive control (IO-MFAC) strategy for wind turbine pitch 
control, addressing model dependency and unmodeled dynamics typical in conventional controllers. By 
utilizing real-time input-output variation information, the IO-MFAC refines the cost function of standard 
MFAC, significantly improving tracking performance under stochastic wind conditions. The proposed algorithm 
achieves BIBO stability and monotonic convergence, with quantitative analysis showing a 16.2% reduction in 
the standard deviation of generator power and a 33.3% decrease in speed compared to basic-MFAC and baseline 
PI. Additionally, hardware-in-the-loop experiments confirm the practical applicability of IO-MFAC. Notably, 
this model-independent approach is relevant not only for wind turbine design but also for various control 
applications facing similar challenges. Future work will involve implementing IO-MFAC on a real wind turbine 
to further validate its performance.
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