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Abstract. Several approaches have been proposed for the analysis of DNA microarray
datasets, focusing on the performance and robustness of the final feature subsets. The
novelty of this paper arises in the use of q-values to pre-filter the features of a DNA
microarray dataset identifying the most significant ones and including this information
into a genetic algorithm for further feature selection. This method is applied to a lung
cancer microarray dataset resulting in similar performance rates and greater robustness
in terms of selected features (on average a 36.21% of robustness improvement) when
compared to results of the standard algorithm.

1 Scientific Background
DNA microarray technology has been widely used for gene expression profiling and

prediction of cancer. Analysis of such data involves facing a problem commonly re-
ferred to as the curse of dimensionality [9] where each sample is described by thousands
of features (genes) with few samples - often fewer than a hundred - available. Several
approaches have been proposed to identify relevant genes with good performance in
classifying the disorder under investigation. However, these approaches lack a desirable
feature when identifying gene expression profiles - robustness. A common feature of
such methods is instability of results with high variability of identified features when re-
peated executions of the algorithm are made. To tackle this problem, recent works have
proposed different methodologies that try to achieve robust feature subset selections
with good performance rates in test data [7, 10].

Use of statistical tests with multiple features against some null hypothesis is common
practice with the expectation that a proportion of such features would be incorrectly
considered significant [8]. In such circumstances it is important to use some form of
false discovery rate technique to either adjust the p-values [1] or use a different measure
which takes into account false positives such as the q-value [8]. Use of such a measure
allows focus to be placed on features which can be considered to satisfy a null hypoth-
esis in further analysis. In the original paper [8] this methodology reduced the number
of features identified in the Hedenfalk dataset from 605 to 162 within a total feature set
of 3170.

In this paper a modified t-test and q-values [8] are incorporated into a feature selec-
tion procedure similar to the genetic algorithm (GA) described in [7] with the purpose
of identifying genes that are significant in differentiating lung cancer microarray ex-
pressions. In their approach, biological information from KEGG [5, 6] database was
included into the GA resulting in more robust feature subsets with good performance
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rates. The expectation of introducing a subset of genes, selected using q-values, into the
GA would be for better and more robust solutions than the original results from the GA.

The rest of the paper is structured as follows: Section 2 describes the dataset used in
this study as well as the methodology applied; Section 3 shows the results obtained in
this work and a comparison to previous results of one similar approach; and Section 4
provides some conclusions.

2 Materials and Methods
A freely available1 high dimensional biomedical dataset has been used throughout

this work, comprising 181 tissue samples of two types of lung cancer, malignant pleural
Mesothelioma (MPM) and Adenocarcinoma (ADCA) [4]. Samples are unbalanced with
31 corresponding to MPM and 150 ADCA, described in each case by 12533 genes. The
Affymetrix ID for the lung cancer DNA microarray dataset is hgu95a and the R package
“hgu95a.db” [2] was used to manage and pre-process biological information related to
this microarray. For the analysis, the dataset was separated into training and test sets,
comprising 80 samples and 101 samples respectively with care taken to keep the same
proportion of both MPM and ADCA classes.

The novelty of this approach is the introduction of a more robust statistical method
with the expectation of an improvement in the robustness of the final obtained subset of
features with direct biological relevance, evidenced by the maintaining of good gener-
alisation in the validation results.

2.1 Significance Testing
A permutation based modified t-test [8] was used to evaluate the null hypothesis that

there is no difference in expression between the two different groups (MDM and ADCA)
accounting for the different variance within each group. The two sample t-statistic for a
given gene is expressed as in (1), and the p-values estimated as per (2). In this case x̄1
and x̄2 represent the means of group 1 and group 2, with s21 and s22 being the respective
variances. B is the number of re-samples taken for the modified t-test (a value of B=100
was used), n the number of features and t the value for a given t-statistic (t0b1 to t0bn are
the set of null statistics calculated using the resampling procedure).

t =
x̄1 − x̄2√
s21
n1

+
s22
n2

(1)

pi =
B∑
b=1

#
{
j :
∣∣t0bj ∣∣ ≥ |ti| , j = 1, . . . , n

}
n×B

(2)

This approach has as the null hypothesis that there is no difference in expression
between the two genes and that the t-statistic holds to the same distribution across both
[8].

Using the p-values from this study, an FDR-based significance measure, q-values [8],
was used to select only those genes significant at the 5% level for inclusion in the model
estimation stage. These q-values are an important tool in determining significance of
features, and particularly so in genome studies, as they implicitly account for multiple
testing, and allow for a more accurate determination of the expected false-positives from
the inclusion of a particular feature.

2.2 Model estimation
In this paper, the strategy proposed in [7] is used with some slight changes. The

strategy consists of two separate stages:

1http://cilab.ujn.edu.cn/datasets.htm
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• The 228 pathways identified as related to lung cancer disease are analysed to pro-
duce a ranking which allows selection of the best pathways. In contrast to the
first stage in [7] only the training dataset of 80 samples is analysed by applying
a 10-fold cross-validation strategy. The purpose at this stage is to obtain an ac-
curacy measure and identify the number of keywords for each pathway using a
text-mining procedure, following the same process as [7] but refined using genes
identified as significant in Section 2.1.

• Using pathways identified from the first stage as being of importance, a genetic
algorithm is applied using the fitness function from (3) where λ, β ∈ [0, 1) and
λ+ β < 1, k is the number of selected features, 100 is a normalization factor due
to the limited number of active features in a chromosome, and function score(x)
which estimates the biological relevance of the selected features. This function
has been modified to (4) where M and N are normalization factors representing
the number of significant genes on the pathway and total number of significant
genes on all pathways respectively. i is the number of selected significant genes
included in the pathway being analysed and j the number of selected significant
genes not in the pathway such that i + j = k. To obtain the accuracy rate for
(3), Linear Discriminant Analysis (LDA) [3] is used by applying 10-k-fold cross
validation to each chromosome analysed within the GA execution.

• The final step validates the performance of the selected model by performing LDA
on the training data and applying the results to the larger test dataset to obtain the
prediction accuracy. LDA was chosen in order to make a fair comparison to results
previously published in [7] as well as for its simplicity.

fitness(x) = (1− λ− β)(1− ACC(x)) + λ
k

100
+ βscore(x), (3)

score(x) =

(
1− i

M

)
+
(
1− j

N−M

)
2

, (4)

3 Results
The predictive capability and the number of relevant keywords were calculated for

each of the 228 pathways. Table 1 details the best pathways according to Accuracy
(Acc) values using the genes identified as being significant at q < 0.05 as the first
sorting criterion, and the number of keywords found during the text mining of the path-
way descriptions in the KEGG database as the second criterion. Bold rows correspond
to pathways which ranked in the top 10 found in [7] during the first stage. Those in
bold-italic are the six best pathways selected to be analysed on the second stage of the
methodology previously. Of note is that the top 10 pathways from the original work are
ranked in the overall top 27 pathways (< 12% of total), and pathway “04610” being the
only one exhibiting minimal decline in ranking.

Instead of selecting the best pathways using this ranking as previously done, for
comparative purposes the six best pathways from the previous work were selected [7]
for analysis using the modified GA presented in Section 2.2 using the test/train datasets
for model estimation and validation. This stage of the analysis was repeated 100 times
for each of the six pathways to obtain estimates of the model accuracy.

Table 2 shows on average a perfomance comparison using the GA approach pub-
lished in [7] and our proposal in this paper. In terms of prediction accuracy, both ap-
proaches obtain similar performance (approximately 95% depending on the analysed
pathway). However, the main advantage of the present approach arises while analyzing
the robustness of the subset of features selected. This robustness measure is obtained by
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Table 1: Pathways ranked by prediction ability using significant genes and number of keywords found.
Bold rows correspond to pathways which ranked in the top 10 according to [7] (See the text for more
details).

Rank Code Pathway #Genes Acc #Genes 0.05 Acc 0.05 #Keywords

1 04020 Calcium signaling pathway 246 0.933 28 0.9975 0/1116

2 04144 Endocytosis 244 0.99 32 0.99 0/506

3 04650 Natural killer cell mediated
cytotoxicity

172 0.915 13 0.9875 3/871

4 04010 MAPK signaling pathway 423 0.935 37 0.9875 2/609

5 04062 Chemokine signaling pathway 254 0.945 29 0.9875 1/901

6 04141 Protein processing in endoplasmic
reticulum

181 0.908 14 0.9875 1/458

7 01100 Metabolic pathways 970 0.975 146 0.9875 0/116

8 00230 Purine metabolism 148 0.93 19 0.9875 0/271

9 04270 Vascular smooth muscle
contraction

149 0.973 28 0.9875 0/891

10 00240 Pyrimidine metabolism 83 0.975 15 0.9875 0/150

11 04510 Focal adhesion 320 0.955 42 0.985 1/824

12 05200 Pathways in cancer 557 0.96 63 0.9825 11/4504

20 04530 Tight junction 158 0.965 27 0.9775 1/545

25 04360 Axon guidance 166 0.975 22 0.975 0/427

27 04514 Cell adhesion molecules (CAMs) 154 0.95 25 0.975 0/921

45 04610 Complement and coagulation
cascades

73 0.978 14 0.965 3/660

Table 2: Comparison of original approach and proposed approach. Columns 2-4 show the mean of each
of No. of Genes,genes in pathway and significant genes in pathway with standard deviations. Addition-
ally, column 5 shows the robustness of results and the last column the accuracy.

Pathway #Genes #Genes in pathway #Genes significant in pathway Robustness Accuracy

O
ri

gi
na

lG
A

04144 4.43±1.00 2.87±1.22 1.75±1.19 0.1225 0.9568±0.0229
04530 4.22±1.05 2.79±1.11 2.04±1.04 0.14125 0.9630±0.0248
04514 3.96±1.07 2.32±1.29 1.49±0.95 0.135 0.9463±0.025
04610 3.85±1.02 2.94±1.24 1.63±1.00 0.24455 0.9398±0.0197
04010 4.04±1.29 1.71±1.09 0.88±0.83 0.086667 0.9445±0.0275
05200 3.86±1.52 1.51±1.20 0.68±0.79 0.079 0.9450±0.0249

O
ur

m
od

ifi
ed

G
A 04144 4.82±1.31 3.96±1.54 3.66±1.63 0.148 0.9590±0.0201

04530 4.63±1.54 3.94±1.64 3.86±1.57 0.158 0.9732±0.0192
04514 5.59±1.55 4.94±1.79 4.89±1.76 0.21591 0.9458±0.0261
04610 4.29±1.04 3.94±1.23 3.12±1.21 0.29846 0.9439±0.02
04010 3.54±1.14 2.58±1.33 2.28±1.32 0.15455 0.9431±0.0302
05200 3.08±1.24 1.63±1.28 1.34±1.20 0.098182 0.932±0.0261

averaging each gene frequency of appearance over the 100 GA executions, discarding
those genes that do not appear more than a 5% of the times. In this sense, it should be
highlighted that in two out of six pathways analysed, a 78.33% and 59.93% of improve-
ment is reached in terms of robustness (pathways “04010” and “04514” respectively).
Pathway “04530” is the one with lowest improvement (just 11.86%), while for the re-
maining pathways the robustness was approximately increased by a 20%.

The top eleven final selected features for each of the pathways as shown in Table 3
can be directly compared to those obtained in [7]. Consistency is apparent in these as
at least four genes are present in the previous work (those highlighted in bold). Further-
more, because of the use of q-values to limit features to those which exhibit significant
difference in expression, this approach yields results that contains a larger number of
significant selected genes belonging to the top 11 features of a given pathway. These
significant genes are also picked by the GA with greater frequency than those shown in
the previous work, and thus the robustness of the present method should be higher, as
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indeed is as seen in Table 2.

Table 3: Frequency of selection for the most frequently picked features in each pathway previously
identified [7] as important. The notes column indicated by† highlights whether the gene is significant in
pathway (*), not significant but in pathway (**) or out of pathway(***).

ID Symbol Probe Set ID Freq.(%) Note†

2520 CLTB 32522_f_at 13.00 **
1035 KDR 1954_at 14.00 *
633 ERBB3 1585_at 15.00 *
1182 ERBB3 2089_s_at 16.00 *
11052 PARD3 40973_at 16.00 *
2521 CLTB 32523_at 22.00 *
12020 DAB2 479_at 22.00 *
9758 SH3GLB1 39691_at 27.00 *
967 NTRK1 1892_s_at 28.00 *
3893 RAB11FIP5 33882_at 41.00 *
9863 AP2M1 39795_at 43.00 *

(a) Lung Pathway 04144

ID Symbol Probe Set ID Freq.(%) Note†

6335 PRKCZ 362_at 13.00 *
7453 MYH11 37407_s_at 14.00 *
12312 MYH11 773_at 14.00 *
3916 CLDN3 33904_at 15.00 *
4174 ACTG1 34160_at 19.00 *
8537 CLDN7 38482_at 20.00 *
11052 PARD3 40973_at 23.00 *
8393 RRAS 38338_at 26.00 *
2039 PRKCD 32046_at 32.00 *
3844 SPTAN1 33833_at 33.00 *
5301 CLDN4 35276_at 57.00 *

(b) Lung Pathway 04530

ID Symbol Probe Set ID Freq.(%) Note†

1248 PECAM1 268_at 24.00 *
1718 HLA-DOA 31728_at 25.00 *
3173 NEO1 33169_at 25.00 *
3916 CLDN3 33904_at 25.00 *
8509 ICAM2 38454_g_at 25.00 *
10372 ICAM3 402_s_at 27.00 *
8537 CLDN7 38482_at 29.00 *
1143 CDH2 2053_at 30.00 *
8508 ICAM2 38453_at 34.00 *
4217 PVRL3 34202_at 38.00 *
5301 CLDN4 35276_at 66.00 *

(c) Lung Pathway 04514

ID Symbol Probe Set ID Freq.(%) Note†

6581 F3 36543_at 11.00 *
5783 PROS1 35752_s_at 13.00 *
6821 SERPINA1 36781_at 14.00 *
8496 CD46 38441_s_at 14.00 *

12146 VWF 607_s_at 22.00 *
12211 SERPINE1 672_at 23.00 **
9474 C1R 39409_at 36.00 *
5727 CFI 35698_at 45.00 *
8178 SERPINE1 38125_at 59.00 **
5853 CFB 35822_at 67.00 *
9843 SERPING1 39775_at 68.00 *

(d) Lung Pathway 04610

ID Symbol Probe Set ID Freq.(%) Note†

6700 CD14 36661_s_at 6.00 *
620 PDGFB 1573_at 7.00 *
957 MECOM 1882_g_at 7.00 *
5104 FGF9 35081_at 9.00 *
3250 MAPK13 33245_at 11.00 *
5997 HSPA6 35965_at 14.00 *
909 RRAS2 1838_g_at 16.00 *
8393 RRAS 38338_at 16.00 *
5356 FLNC 35330_at 17.00 *
967 NTRK1 1892_s_at 23.00 *
667 FGF9 1616_at 44.00 *

(e) Lung Pathway 04010

ID Symbol Probe Set ID Freq.(%) Note†

8813 FADD 38755_at 6.00 *
12200 GAS1 661_at 6.00 ***
6616 BIRC2 36578_at 7.00 *
411 RARB 1381_at 8.00 *
7849 SEMA3C 377_g_at 8.00 ***
8370 ALDH1A2 38315_at 9.00 ***
5104 FGF9 35081_at 10.00 *

967 NTRK1 1892_s_at 11.00 *
1136 JUP 2047_s_at 13.00 *

10532 STAT5A 40458_at 14.00 *
667 FGF9 1616_at 16.00 *

(f) Lung Pathway 05200

4 Conclusion
In this work, a lung cancer disease microarray dataset has been analysed in order

to obtain a subset of genes with good predictive performance by using a previously
published genetic algorithm modified to include a significance test based on the use of
q-values. It has been shown that the inclusion of this information into the GA, to iden-
tify those genes having a significant difference in expression, has yielded results that
are similar in performance to the original method but exhibiting improved robustness in
terms of the selected features with an improvement between 11.86%-78.33% (average
36.21%). This higher robustness observed is achieved as the search in the GA is now
guided to genes previously identified as significant without discarding the potential util-
ity of other genes. Moreover, these results are consistent with the original ones since
in the top 11 most selected genes, 4 to 6 genes were also included within the results in
the original work. Further work should consider a deeper biological analysis of these
results and also further investigation of the predictive abilities of pathways either alone
or in combination with those genes identified as significant in this study.
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