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Abstract: The flag state control (FSC) inspection is an important measure to ensure maritime safety.
However, it is difficult to improve ship safety management efficiency using data mining due to the
scattered and multi-source ship inspection knowledge. In this paper, the emerging knowledge graph
technology is used to integrate multi-source knowledge for the FSC inspection. Firstly, an ontology
model is built to systematically describe the knowledge and guide the construction of the data layer
of the knowledge graph. Then, the BERT-BiGRU-CRF model is used to extract entities from the
unstructured data of the FSC inspection. The extracted results are associated with structured and
semi-structured data and stored in the graph database Neo4j to construct the knowledge graph. In
addition, a case study of the FSC inspection knowledge graph of Dafeng Port in Yancheng, China,
is conducted to verify the strength of the proposed method. The results show that the knowledge
graph can correlate trivial knowledge and benefit the efficiency of the FSC inspection. Moreover, the
knowledge graph can reflect the deficiency characteristics of ships and support the safety management
of water transportation.

Keywords: maritime safety; flag state control inspection; knowledge graph; knowledge extraction;
BERT-BiGRU-CRF model

1. Introduction

Shipping is an important method of transportation in international trade, bearing
more than 80% of the world’s total transportation volume and playing an irreplaceable
role [1,2]. However, maritime traffic creates serious problems of navigation safety and
ship pollution [3–5]. In both open sea and coastal waters, maritime traffic accidents occur
frequently and could cause severe consequences, such as economic loss, environmental
impact, and huge casualties [6]. Therefore, it is crucial to reduce ship navigation risk and
prevent waterborne traffic accidents.

The flag state control (FSC) inspection is a powerful and effective measure adopted by
maritime authorities to ensure ship navigation safety and to prevent marine environmental
pollution from ships. The maritime administration authority takes corresponding mea-
sures for ships with deficiencies according to relevant laws, regulations, and professional
knowledge [7]. In some serious cases, the ship will be “detained” and unable to leave
the port. In the FSC inspection, the officers of maritime administrative inspection need to
master multi-source information including ship information, laws, regulations, inspection
requirements, and professional knowledge. Therefore, it is important to fuse knowledge
from multiple sources to improve the efficiency of the FSC inspection.

As a result of the rapid development in information technology, knowledge manage-
ment has been continuously updated in recent years. In 2012, the concept of a “knowledge
graph” was first proposed to efficiently integrate useful knowledge and information from

J. Mar. Sci. Eng. 2022, 10, 1352. https://doi.org/10.3390/jmse10101352 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse10101352
https://doi.org/10.3390/jmse10101352
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-1809-7766
https://doi.org/10.3390/jmse10101352
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse10101352?type=check_update&version=2


J. Mar. Sci. Eng. 2022, 10, 1352 2 of 22

massive amounts of data [8]. The emerging knowledge graph technology uses entities as
nodes and relations as edges to connect people and objects in the real world, resulting in a
similar “multi-relation graph” of a huge semantic network [9,10]. It can be used to connect
trivial knowledge and represent the complex relationship of professional knowledge to
support multiple applications, such as knowledge retrieval and knowledge visualization.
This provides a technique to solve the problem of knowledge dispersion in the field of ship
inspection. Therefore, the research problem addressed in this paper is determining how to
construct an FSC inspection knowledge graph, to realize the correlation of the knowledge
and improve the efficiency of the FSC inspection.

To achieve this aim, a knowledge graph for the FSC inspection for ships is constructed
and applied in this paper. Firstly, the relevant knowledge of the FSC field is integrated
and an ontology model is designed with FSC inspection. Then, the Bidirectional Encoder
Representations from Transformers-Bidirectional Gated Recurrent Units—Conditional
Random Fields (BERT-BiGRU-CRF) model is used to extract the entity of text data, and
the extraction results are associated with structured and semi-structured data. Finally, the
graph database Neo4j is used to store multi-source heterogeneous data to construct and
visualize the knowledge graph.

The remainder of this paper is organized as follows. A literature review on ship safety
inspection and knowledge graph technology applications is conducted in Section 2. In
Section 3, the construction method of the FSC inspection knowledge graph, including
the ontology construction and the data layer construction, is introduced. In Section 4, a
case study of the FSC inspection knowledge graph of Dafeng Port in Yancheng, China,
is conducted, followed by a comprehensive discussion in Section 5. In Section 6, the
conclusion is drawn.

2. Literature Review

According to the different inspection objects, ship safety inspection is generally divided
into port state control (PSC) inspection and flag state control (FSC) inspection [11]. The
former targets foreign ships [12], whereas the latter targets domestic ships [7]. As ship
safety inspection is very important for maritime traffic safety, many studies have been
conducted on ship safety inspections. Tsou [13] analyzed the relationship between ship
detention deficiencies and external factors with the application of association rule mining
technology under big data but did not consider internal factors. Based on previous studies
that only considered the relationship between ship factors and inspection results, the main
types of deficient ships were identified by optimizing the analytic hierarchy process (AHP)
to predict ship detention probability [14]. Considering the internal relationship between
ship critical defects and ship attributes, a hybrid model combining a feature selection
scheme and support vector machine (SVM) was adopted to predict ship detention [15].
He et al. [7] proposed an interpretable decision-making model for ship detention based on
machine learning, namely SMOTE-XGBoost-Ship Detention Model (SMO-XGB-SD). The
model utilized the extreme gradient boosting (XGBoost) algorithm and Synthetic Minority
Oversampling Technique (SMOTE) algorithm to judge whether a ship should be detained.

The research above constructed decision-making models to reduce ship navigation
risks by analyzing the relationship between ship defects, ship attributes, and ship detention
decisions. However, a large amount of knowledge including relevant laws, regulations, and
professional knowledge is involved in the FSC inspection, but not limited to major defects
that cause ship detention. It is a huge challenge to associate different knowledge and realize
the correlation between the inspection elements to improve ship inspection efficiency.

In recent years, the knowledge graph has been gradually developed and successfully
applied in many fields, such as medical treatment, medicine, and energy industries. In
the field of transportation, Liu et al. [16] constructed the railway operational accident
knowledge graph (ROAKG) by abstracting the knowledge entities as connected network
nodes and performed the topological analysis of the ROAKG using new indicators to
reveal the underlying rules of accidents. Tan et al. [17] adopted the TransD knowledge
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reasoning model based on the knowledge graph of the urban transportation system to
excavate the hidden relationship between traffic entities and realize intelligent question
answering of urban traffic services. A knowledge graph based on the travel chain model
integrating multi-source public transport data was built to realize effective contact tracking
of COVID-19 on a large-scale contact network [18].

Some achievements have also been made in maritime traffic. For example, Zhang et al. [19]
constructed a knowledge graph for dangerous goods in waterway transport and correlated
scattered dangerous goods knowledge to quickly query the knowledge of dangerous goods
and automatically judge the stowage and isolation requirements of dangerous goods.
Liu and Wang [20] used rules and dictionaries to extract knowledge of marine laws and
regulations for the International Regulations for Preventing Collisions at Sea (COLREGS)
and built a legal knowledge graph to realize intelligent retrieval of the related knowledge.
Dong et al. [21] established the unified semantic representation of heterogeneous models
through feature recognition and multi-strategy ontology mapping, and used semantic
reasoning to realize the retrieval and reuse of existing knowledge. These results show that
knowledge graph technology can relate trivial knowledge and mine the implicit relationship
between sources of knowledge to realize the retrieval and full utilization of knowledge.

To conclude, most studies of knowledge graphs in maritime traffic have focused on the
acquisition of maritime dynamic information, the association of maritime dangerous goods
knowledge, and the query of ship information. However, little research on the knowledge
graph has focused on the FSC inspection, which urgently needs a method to integrate
multi-source knowledge to improve the efficiency of the FSC inspection.

3. Methodology
3.1. Research Framework

The framework of the construction of the FSC inspection includes data acquisition,
construction of the ontology model, and construction of the data layer, as shown in Figure 1.
Data acquisition is preparatory work for constructing a knowledge graph, as these data
are the source of knowledge. The data types of the FSC inspection can be categorized
into structured data, semi-structured data, and unstructured data. Structured data refers
to data represented in a certain format, such as data stored in a relational database or
object-oriented database, which can be directly used to construct knowledge graphs. Un-
structured data are data having an irregular or incomplete structure, such as text, audio,
and video, which require information extraction to further construct knowledge graphs.
Semi-structured data lie between structured data and unstructured data, such as XML
documents, HTML documents, and weblog files, which also need simple information
extraction to construct knowledge graphs.

The construction of the FSC inspection knowledge graph includes the ontology model
construction and the data layer construction. The ontology model is a combination of
classes, and their attributes and relations, which represents the related concepts and hierar-
chical structure of the FSC inspection domain knowledge. The ontology model construction
consists of knowledge representation, concept combing, attribute definition, and rela-
tion definition.

The data layer construction refers to the combination and filling of data based on the
ontology, including knowledge extraction and knowledge storage. Knowledge extraction
is a process of extracting available knowledge units from data of different sources and
structures by automatic technology. The knowledge unit mainly includes three knowledge
elements: entity, attribute, and relation. The entity is an individual in a conceptual classi-
fication, such as people’s name and place name. The attribute is a further description of
entity features, which is attached to entity existence. The relation is the semantic connection
between different entities [22]. The entities, attributes, and relations obtained by knowl-
edge extraction are represented in the form of (entity, relation, entity) or (entity, attribute,
attribute value), namely a triple structure [23]. In a real inspection scenario, the FSC entity
includes not only the contents and processing measures of each FSC inspection, but also the
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people, objects, and organizations involved in the inspection process. The entity attribute is
the supplementary description of the inspected entity and exists in the form of attached text,
whereas the FSC entity relation is a connecting bridge between different entities. Finally,
knowledge storage is the process of storing triplet data obtained by knowledge extraction
in the most popular graph database, Neo4j [24].
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Figure 1. The framework of the FSC inspection construction.

3.2. Data Acquisition

In the task of constructing the FSC inspection knowledge graph, the data related to
the FSC inspection should be collected. The data relating to the FSC inspection can be
found from three sources: the structured historical inspection data from the collaborative
management platform of the Maritime Safety Administration, the semi-structured ship
static data from a maritime data supplier (www.shipxy.com, accessed on 3 November 2021),
and the unstructured data from the official website and public account of the Maritime
Safety Administration.

3.3. Construction of the Ontology Model

The ontology model of the FSC inspection knowledge graph is constructed to deter-
mine the entity types, relations, and attributes of the domain. The construction adopts
the Protégé software developed by Stanford University [25]. Based on the seven-step
method [26], the FSC inspection ontology construction process is determined, as shown
in Figure 1. Firstly, it is necessary to determine the domain category and boundary de-
scribed by ontology and fully understand the relevant knowledge system. On this basis,
the core concepts and hierarchical structure between concept classes are combed. Then, the
attributes of ontology concepts and the relations between concepts are defined to reflect
the complete FSC inspection knowledge association system. Finally, the Protégé software is
used to implement FSC inspection domain ontology representation.

3.4. Construction of the Data Layer

The construction of the data layer of the FSC inspection includes two parts: knowledge
extraction and knowledge storage. Firstly, entity information and its semantic association

www.shipxy.com
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are extracted based on different types of FSC inspection information. Then, the entities are
associated and the FSC inspection knowledge network is established according to the FSC
inspection ontology. Finally, the Neo4j graph database is used for knowledge storage.

3.4.1. Knowledge Extraction

The knowledge extraction is conducted to extract detailed information about entities
and attributes from the FSC inspection data. Various types of relations between entities are
defined by the constructed ontology model.

(1) Entity extraction based on the BERT-BiGRU-CRF model
In the FSC inspection, most entities exist in structured and semi-structured data and

can be obtained directly after data preprocessing. However, entities including inspection
items and contents mostly exist in unstructured texts such as laws and regulations, so
they need to be identified by entity extraction technology. Entity extraction, also known as
named entity recognition, is an important technology in natural language processing to
identify entities with specific meanings from text statements, such as people’s names, orga-
nization names, and proper nouns. There are three main types of entity extraction methods,
namely, rule-based and dictionary-based methods, statistical model-based methods, and
deep learning-based methods. With the development of the neural network, the neural
network method based on deep learning has become the mainstream of entity extraction.

In entity extraction, each word first needs to be sequence-labeled. Sequence labeling
refers to the task of labeling each element or part of elements in a sequence. This paper
adopts the sequence-labeling method of BIO to annotate the text. The character at the
beginning of the vocabulary is represented by “B-”, whereas non-beginning characters of
the vocabulary are represented by “I-” and other invalid characters are represented by “O-”.

It is necessary to use a neural network model to train and learn the dataset obtained
by sequence labeling to identify the needed entities from the new text. In this paper, the
neural network model combining Bidirectional Encoder Representations from Transformers
(BERT) [27], Bidirectional Gated Recurrent Units (BiGRU) [28,29], and Conditional Random
Fields (CRF) [30] is used to identify entities in the FSC inspection. As shown in Figure 2,
the structure of the BERT-BiGRU-CRF model is composed of three parts [29]. Firstly,
the semantic representation of the input is obtained through the BERT layer pre-trained
language model, and the word vector representation containing context information is
obtained. Then, the word matrix composed of word vectors is used as the input of the
BiGRU layer for semantic encoding. After feature extraction in the BiGRU layer, the label
sequence with the highest probability of realizing named entity extraction for ship FSC
inspection is obtained in the CRF layer.

To fuse the context on the left and right sides of the word, the bidirectional transformer
is used as the encoder in the BERT. Two tasks, namely, Masked Language Model (MLM)
and Next Sentence Prediction (NSP), are set in the BERT to capture word-level and sentence-
level representations, respectively, and perform joint training. A paragraph of text based
on the attention mechanism is modeled in BERT’s transformer structure.

As a variant of Long Short-Term Memory (LSTM) [31], the Gated Recurrent Unit
(GRU) [28] contains two gate structures: the reset gate for controlling information loss and
the update gate for controlling information flow into the next moment. Compared to the
LSTM, the scale of parameters is greatly reduced and the training speed of the network
is improved. In entity extraction, it is necessary to mine the internal relationship of the
context. However, the GRU model cannot encode information from back to front in the text.
Therefore, the Bidirectional Gated Recurrent Unit (BiGRU) model containing the forward
GRU and the backward GRU can be used to obtain the context information of the current
word to make the prediction result more accurate.
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The BiGRU contains the forward and backward GRU for each input sequence, so
the output results of the BiGRU network are obtained by the combined action of these
two GRUs [29]. For each GRU, the initial input value is the word vector sequence
x = (x1, x2, . . . , xn) trained by the BERT layer and the hidden state ht−1 of the previous
moment. In the GRU, the reset gate represents the information required at the current
moment according to the current input, which can be obtained by Equation (1):

rt = σ(Wr · [ht−1, xt]) (1)

where rt denotes the vector for the update gate. σ denotes the sigmoid function, x =
(x1, x2, . . . , xn) is the input vector at the moment t, Wr is the weight matrix for the update
gate. The reset gate data is spliced with xt to obtain the candidate hidden state h̃t. The h̃t
can be calculated by the Equation (2):

h̃t = tanh(Wc · [rt · ht−1, xt]) (2)

where Wc is the weight matrix for the candidate hidden state.
The vector for the update gate zt is obtained by Equation (3) to control the information

flowing into the next moment:

zt = σ(Wz · [ht−1, xt]) (3)

where Wz is the weight matrix for the update gate.
Finally, the hidden state ht of the current moment is obtained by the linear combination

of the hidden state ht−1 of the previous moment and the candidate hidden state h̃t. The
weight sum of ht−1 and h̃t is 1. The weight of h̃t is the output of the update gate, which
represents the intensity of the information update. ht is obtained by Equation (4):

ht = (1− zt) · ht−1 + zt · h̃t (4)

Each BiGRU gets a forward hidden state
→
h t and a backward hidden state

←
h . A com-

plete state sequence Ht in Equation (5) is obtained by splicing the two types of information
received forward and backward:
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Ht =

[→
h t ⊕

←
h t

]
(5)

Although the GRU can well consider the long-term context relation, it cannot identify
the dependencies between labels. For example, in the named entity recognition, some
labels cannot appear consecutively, so it is necessary to add a CRF layer to the model to
obtain the global optimal label sequence considering the adjacent relation between labels.
For a given sequence x = (x1, x2, . . . , xn), the corresponding prediction label sequence
y = (y1, y2, . . . , yn) can be obtained by using the linear chain conditional random field, and
the prediction score can be calculated by Equation (6) [30]:

s(x, y) =
n

∑
i=1

(Wyi−1,yi + Pi,yi ) (6)

where Wi,j represents the label transfer score, Pi,yi denotes the score of the yi−th label of
the character. The definition of Pi is shown in Equation (7):

Pi = Wsh(t) + bs (7)

where W denotes the transformation matrix, h(t) is the hidden state of the input data x(t) at
the previous layer moment t.

Maximum conditional likelihood estimation is used for CRF training. For the training
set {(xi, yi)}, the likelihood function is calculated by Equation (8):

L = ∑ loga(p(yi|xi )) +
λ

2
‖θ‖2 (8)

where the calculation of p can be calculated by Equation (9), which represents the probability
corresponding to the original sequence to the predicted sequence:

p(y|x ) = ex(x,y)

∑
y∈Yx

es(x,y)
(9)

In this paper, the evaluation indicators of entity extraction are precision rate P, recall
rate R, and F1 value, which are widely used as knowledge graph evaluation criteria [32,33].
The P value refers to the probability of actually being positive out of all predicted positive
samples, which can be calculated by Equation (10). The R value refers to the probability
of being predicted as a positive sample among the actual positive samples, which can be
calculated by Equation (11). The F1 value is used to comprehensively evaluate the precision
and recall, which can be calculated by Equation (12):

P =
TP

TP + FP
× 100% (10)

R =
TP

TP + FN
× 100% (11)

F1 =
2PR

P + R
× 100% (12)

where TP is the number of correct entities identified by the model, FP is the number of
irrelevant entities identified by the model, and FN is the number of related entities not
detected by the model.

(2) Attribute extraction
Attributes are important information for the further semantic expression of entities,

which can realize the complete description of entities. Its constituent elements generally
include two parts: attribute name and attribute value. Attribute extraction refers to the data
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operation of extracting the corresponding attributes and attribute values from the target
website according to the entity type and its attributes constructed by the FSC inspection
ontology model.

3.4.2. Knowledge Storage

After the extraction, the knowledge needs to be stored to support the construction
of the data layer. In this research, the graph database Neo4j is used to store triplet data
extracted from knowledge. The entities in the triples are stored as nodes, while the relations
are stored as edges and the properties are stored as attributes of the corresponding nodes.
The Neo4j is used to realize the one-to-one correspondence between structured knowledge,
nodes, and edges in the graph structure.

4. Case Study

In this paper, a case study is conducted to construct the FSC inspection knowledge
graph for Dafeng Port in Yancheng, China, using the FSC inspection data from January 2018
to July 2021. Firstly, the FSC inspection knowledge is sorted and the FSC inspection ontology
is constructed. Then, the FSC inspection corpus is constructed by obtaining the relevant text
data of the FSC inspection from the official platform of the Maritime Safety Administration.
The entity extraction is carried out using the BERT-BiGRU-CRF model based on corpus
annotation. Finally, the FSC inspection knowledge graph is constructed and visualized.

4.1. Data Acquisition

The data used in this study include structured historical ship FSC inspection data,
semi-structured ship static data, and unstructured FSC inspection text.

The structured data adopt the historical inspection data of ships in the collaborative
management platform of the Maritime Safety Administration. The original dataset consists
of 4363 FSC ship safety inspection samples and 11 features, including the ship’s name,
security inspection type, inspection date, inspection port, inspection authority, inspector,
number of deficiencies, ship detention result, deficiency code, deficiency description, and
handling opinion description.

The semi-structured data adopt the web crawler method. Static data of the ships
involved in the historical inspection data are obtained from the maritime data provider
(www.shipxy.com, accessed on 3 November 2021). Every piece of data includes the ship
type, tonnage, length, width, height, port of registry, and the relevant information, such as
organizations and personnel.

The unstructured data are the FSC inspection-related texts published on the Maritime
Safety Administration’s official website and the official public account. They are used to
extract relevant entities of the ship inspection content. The size of the collected text is 248 KB.

4.2. The Ontology Construction

This paper uses the ontology editing tool Protégé to complete the construction of
the ontology in the FSC inspection field. Protégé is ontology editing software, which can
provide good support for knowledge visualization, query, and storage.

4.2.1. Knowledge Concepts and Attributes

In this research, the knowledge is categorized into factual knowledge and cognitive
knowledge, according to the definition of the Organization for Economic Co-operation and
Development (OECD) on the “knowledge-based economy” in 1996. The factual knowledge
answers questions of what and who, whereas cognitive knowledge answers questions
of why and how. To represent the structural level of FSC inspection domain knowledge
concepts, the first and the second level concepts are designed under the classification of
factual knowledge and cognitive knowledge. The factual knowledge includes all kinds of
entities involved in FSC inspection, which can be divided into three categories: natural
persons, objects, and institutions. Natural persons include officers and crew involved in the

www.shipxy.com


J. Mar. Sci. Eng. 2022, 10, 1352 9 of 22

supervision and inspection process. Objects mainly refer to ships that are inspected by ship
FSC. Institutions include maritime administration authorities and shipping companies. The
cognitive knowledge in the FSC inspection field includes the legal basis, disposal decisions,
inspection items, and deficiencies, which are usually expressed in words and symbols with
various documents as the carrier.

In addition, the concept attributes are added to the knowledge as a supplement to
accurately describe various types of knowledge. For example, attributes such as name,
gender, title, and work unit are defined for the “Maritime officer” entity. Attributes such as
name, gender, title, and eligibility information are defined for the “Crew” entity. Attributes
such as type, ship identification number, length, width, and port of registry are defined for
the “Ship” entity. Attributes such as subordination, responsibility, and scope of jurisdiction
are defined for the “Maritime administration authority” entity. The details of the concepts
and attributes are shown in Table 1.

Table 1. FSC inspection knowledge concepts and attributes.

Knowledge
Category

The First-Level
Concepts The Second-Level Concepts Attributes

Factual knowledge

Natural person

Maritime officer Name, gender, position, work unit

Crew Name, gender, position,
qualification information

Object Ship Type, ship identification number, length,
breadth, port of registry

Institution
Maritime administration authority Affiliation, Responsibilities, Jurisdiction

Shipping company Name, audit information, location

Cognitive knowledge Documentation

Legal basis Object-oriented, the scope of application,
legal period, the content of articles

Disposition decision Decision codes, the scope of application

Inspection item Types, object orientation, bullet points

Deficiency Deficiency code, the scope of application

4.2.2. The Relations between Concepts

Based on the above-mentioned FSC inspection knowledge hierarchy design and its
attribute division, the relations between FSC inspection knowledge are determined. The
relations among FSC concepts include categorical relations, namely, upper–lower relations,
and non-categorical relations reflecting semantic relations, as shown in Figure 3. The
categorical relation reflects the logical level of the knowledge, such as crew and maritime
officers under the natural person level, and legal basis, disposal decisions, deficiencies,
and inspection items under the document level. The non-categorical relations represent
semantic relations between different concepts, as shown in Table 2.

Table 2. Relations in the constructed knowledge graph.

Relation Label Head Entity and Tail Entity Description

Inspect Maritime officer—Ship Maritime officers inspect ships
Maritime officer—Crew Maritime officers inspect the crew

Manage
Maritime administration

authority—Shipping company
The maritime administration authority manages the

shipping company
Shipping company—Ship The shipping company manages the ship

Work
Maritime officer—Maritime

administration authority
A maritime officer works in a maritime

administration authority
Crew—Ship Crew work on a ship
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Table 2. Cont.

Relation Label Head Entity and Tail Entity Description

InspectItem Crew—Inspection item The inspection item of the crew
Ship—Inspection item The inspection item of the ship

TakeFor Deficiency—Disposition decision Take disposition decisions for deficiencies

Exist Inspection item—Deficiency An inspection item exists deficiencies

BasedOn
Inspection item—Laws and regulations The inspection item is based on laws and regulations

Deficiency—Laws and regulations The deficiency is based on laws and regulations
Disposition decision—Laws and regulations The disposition decision is based on laws and regulations
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Based on the above definition of concepts and their attributes and relations, the
ontology model of the FSC inspection is constructed, as shown in Figure 4.
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4.3. The Knowledge Extraction Experiment

FSC historical inspection records of Dafeng Port in Yancheng, China, from January
2018 to July 2021 were collected, and 4363 structured data were obtained after preprocessing.
Factual entities in historical ship inspection data were used as search terms, and attribute
data were retrieved from ship websites such as the maritime data supplier (www.shipxy.
com, accessed on 3 November 2021) and the official websites of each directly affiliated
maritime bureau to complete attribute extraction. For relation extraction, the relation types
are shown in Figure 3 and various entities are linked according to the relation defined by
the ontology. For entity extraction, the entities of the inspection item class and inspection
content class mostly exist in unstructured texts such as FSC inspection related procedure
manuals and laws and regulations. In this research, the BERT-BiGRU-CRF model was used
for entity extraction, and the specific experimental process is as follows.

4.3.1. Experimental Set-Up

The experimental environment for the FSC inspection entity extraction is Python 3.6.13
and the deep learning framework is Kashgari 1.1.5. The meanings and settings of various
parameters in the entity extraction experiment are shown in Table 3.

Table 3. Experiment parameters’ meaning and setting.

Experimental Parameters Meaning Value

Max_seq_len Maximum sentence length in the BERT layer 100
Batch_size The number of samples passed to the program for training in a single iteration 16

Epoch The number of updates when all training data has been used once 50
BiGRU_units The hidden unit of BiGRU 128

Dropout The parameter used to prevent overfitting 0.5

4.3.2. Sequence Labeling Result

The sequence labeling method of BIO is used to annotate the text. To classify entities
in text data, this paper defines six categories of labels: “CEDO”, “PCT”, “CMDP”, “STR”,
“FAEQ”, and “REQ”. The representative entities and their specific meaning are shown
in Table 4. Therefore, each word in the text is labeled as “B-CEDO”, “I-CEDO”, “B-PCT”,
“I-PCT”, “B-CMDP”, “I-CMDP”, “B-STR”, “I-STR”, “B-FAEQ”, “I-FAEQ”, “B-REQ”,
“I-REQ”, and “O”. An example is shown in Figure 5 by converting the text “after the
inspection of lifting equipment is qualified, ships should be equipped with the relevant
‘lifting equipment certificate’” in Chinese into the sequence label.

Table 4. Six types of entities and their specific meaning.

Label Entity The Specific Meaning

CEDO Certificate documents The ship, crew provisioning, and holding of relevant statutory
certificates and related materials

PCT Passenger and cargo
transportation The ship’s carrying of passengers, cargo, precautions, and cargo securing and lashing

CMDP Crew staffing and duty
performance

The situation of the crew on the ship, and the crew performing their duties, including the
maintenance of facilities and equipment related to their duties, and the actual operation ability

STR Ship structure
The internal and external structure of the ship, such as ship skeleton form, fire prevention

structure and its corresponding requirements, the type of ship pipe system and layout
requirements, etc.

FAEQ Facility and equipment
The facilities and equipment used to complete the navigation, berthing and unberthing,

loading and unloading of goods and other production operations of ships, and to ensure the
safety of ships and personnel

REQ Inspection requirements The checkpoints and attention points required by FSC inspection

www.shipxy.com
www.shipxy.com
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4.3.3. Entity Extraction and Validation

In this research, the text content related to the FSC inspection was obtained by a
web crawler. Then the corpus was constructed and annotated by the BIO to support the
training, testing, and validating of the entity extraction model. The training set, test set, and
validation set of the experiment were divided according to the ratio of 8:1:1. The precision
rate, recall rate, and F1 value of the BERT-BiGRU-CRF model for the labels of certificate
documents, passenger and cargo transportation, crew manning and duty performance,
ship structure, facility and equipment, and inspection requirements are shown in Table 5.

Table 5. Results of various types of FSC inspection entities (%).

FSC Inspection Entities P R F1

Certificate documents 100.00 73.33 84.62
Passenger and cargo transportation 83.33 90.91 86.96

Crew manning and duty performance 100.00 93.33 96.55
Ship structure 92.86 100.00 96.30

Facility and equipment 85.45 95.92 90.38
Inspection requirements 79.69 87.93 83.61

To verify the effectiveness of the BERT-BiGRU-CRF model in the FSC inspection entity
extraction, comparison research was conducted between the BERT-BiGRU-CRF model and
three other models: the BiGRU-CRF model, Word2vec-BiGRU-CRF, and BERT-CNN-LSTM
model, which are the models of knowledge extraction used in knowledge graphs [29,34,35].
Moreover, the P, R, and F1 values were used to evaluate the four mentioned models.
Figure 6 shows the changes in the P, R, and F1 values with the number of training epochs
under different models. It can be seen that the P, R, and F1 values of different models
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increase with the increase in training epochs, and the training results converge when the
epoch is 50. The robustness of the model is validated using varying training epochs for
different models. The BERT-BiGRU-CRF model used in this paper has always higher P, R,
and F1 values than other models when the epoch increases.
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The results of the comparison at epoch 50 are summarized in Table 6. It can be seen
that the P, R, and F1 values of the BERT-BiGRU-CRF model are 86.41%, 91.38%, and 88.83%,
respectively, at epoch 50, which are all higher than other models.

Table 6. Results of the entity extraction by different models (%).

P R F1

BiGRU-CRF 70.37 78.24 74.09
Word2Vec-BiGRU-

CRF 73.68 82.35 77.78

BERT-CNN-LSTM 75.13 85.06 79.78
BERT-BiGRU-CRF 86.41 91.38 88.83

The combination of Table 6 and Figure 6 shows that BERT-BiGRU-CRF has a strong
feature extraction ability, and the extracted features are more precise than those of the BERT-
CNN-LSTM model. Compared with the Word2Vec-BiGRU-CRF model, the BERT-BiGRU-
CRF model has a great improvement in precision, recall rate, and F1 value. This shows
that the BERT pre-trained language model can better represent the semantic information of
words because the word vector generated by BERT is context-dependent and can extract
sentence features well.

In addition, the P, R, and F1 values of different models for the labels of certificate
documents, passenger and cargo transportation, crew manning and duty performance,
ship structure, facility and equipment, and inspection requirements are shown in Figure 7.
It can be seen that the P and R values of inspection requirements entities are lower than
those of other entities in the BERT-BiGRU-CRF model. This may be because there is a large
amount of interference information, such as noun nesting, abbreviations, and ambiguity in
inspection requirements entities, which means, without other sufficient contexts, prediction
errors can be easily made. Moreover, it can be seen that the P, R, and F1 values of the
BERT-BiGRU-CRF model in the six types of entities are at a high level, which indicates
that the identification performance of the BERT-BiGRU-CRF model is higher than that of
other models.
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4.4. Knowledge Storage and Visualization

In this paper, the Neo4j graph database was chosen for knowledge storage. As
mentioned above, the FSC inspection knowledge graph data consist of structured, semi-
structured, and unstructured data. Taking the ship FSC inspection data of Dafeng Port in
Yancheng, China, from January 2018 to July 2021 as an example, the extracted triple data
were imported into Neo4j using py2neo, which is a third-party library of Python. As shown
in Figure 8, the circular nodes represent entities and the annotated edges represent the
relations between entities in the FSC inspection knowledge graph. Then, the FSC inspection
knowledge graph can integrate multi-source heterogeneous data, and utilizes the entity
concepts and relations to develop the potential value of the FSC inspection system.
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5. Discussion

As a result of the rapid development of the world shipping industry and the continu-
ous improvement in human awareness of marine environmental protection, people have
paid increasing attention to the seaworthiness and safety of ships engaged in maritime
transport [4,36,37]. Ship safety inspections are increasingly important for navigation safety.
The flag state is the main body of ship safety administration and is responsible for ship
safety management [38,39]. Therefore, the FSC inspection is a powerful and effective means
to ensure navigation safety on the water and to prevent the pollution of the marine environ-
ment. Today, the FSC inspection heavily relies on the expertise and historical experience
of maritime officers. This method of ship inspection based on experience cognition places
high requirements on the ability of maritime officers and also introduces subjectivity into
the inspection. In addition, the FSC inspection involves many laws and regulations, so
maritime officers need to search for relevant information when inspecting ship deficien-
cies and making decisions accordingly in most inspections. These manual operations are
time-consuming and affect inspection efficiency. Moreover, due to the disadvantages of
data redundancy and low query efficiency in the traditional ship database [40], maritime
officers need to query multiple databases before the FSC inspection to master the complete
information of the inspected ship. Therefore, it is necessary to use advanced and intelligent
technology to improve inspection efficiency and facilitate the maritime administration
authorities to better manage ships.

Many studies on ship safety inspections have been conducted in the past decade
because ship safety inspections are an essential part of ship navigation safety. Most of the
research has focused on the major deficiencies that affect ship navigation safety [41,42].
These research methods are mainly statistical methods and machine learning methods. For
example, association rules are used to study the relation between deficiencies and ship
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parameters, and the influence of different deficiency types on ship retention [41,43–45]. In
addition, principal component analysis, Bayesian models, and grey correlation theory are
normally used to analyze the influence of ship deficiencies and technical parameters on the
retention results [46–49]. However, the above studies cannot be related to all aspects of ship
inspection information. Based on this, it is of great significance to apply knowledge graph
technology to ship FSC inspection. The knowledge graph technology can well associate
different data resources and structures to realize the intelligent management of inspection
data. At the same time, the query technology of Neo4j can be used to input keywords for
associated retrieval according to the information to be used in the actual inspection, to
realize the rapid query of information and improve the inspection efficiency [50].

The FSC inspection knowledge graph can be used to improve the efficiency and
accuracy of ship inspections for maritime authorities. In the real FSC inspection process,
maritime officers often need to query multiple databases to fully understand the relevant
information about ships and inspections [40]. In the FSC inspection knowledge graph,
maritime authorities can use a semantic search using the CYPHER query language of Neo4j
to effectively obtain the relevant knowledge required for ship FSC inspection [24]. As
shown in Figure 9, ship-related information can be obtained by retrieving a specific ship as
a keyword and serves as an input into the FSC inspection. In addition, after adding the
historical inspection activities and relevant elements of the inspection, the “ship” entity
can be obtained by matching to obtain the historical inspection data of the ship. The
historical inspection information includes deficiencies, inspectors, inspection locations,
and the regulatory basis for each inspection deficiency [7], as shown in Figure 10. These
are critical pieces of information, which may guide the next FSC inspection. Moreover,
when maritime officers have doubts about the relevant content of laws and regulations, the
obtained information can provide a timely legal basis for their on-site law enforcement to
improve inspection efficiency and accuracy.
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The FSC inspection knowledge graph can well correlate with trivial FSC inspection
knowledge to improve the efficiency of FSC inspection. However, this study has certain
limitations. Due to limited data sources, this paper only took the ship history inspection of
Dafeng Port in Yancheng, China from January 2018 to July 2021 as an example to construct
the knowledge graph, and not all historical ship inspection data in China were included.
Therefore, more data on the FSC inspection will be collected, and then semantic analysis and
knowledge inference will be added in subsequent studies to study its inference function.

6. Conclusions

Knowledge graph technology is an emerging and important technical means of knowl-
edge visualization and potential association combing, which provides a new research
idea for knowledge management and ship intelligent supervision in the FSC inspection
field. The main contribution of this research is to apply the knowledge graph in data
fusion of multi-source and complex information in the FSC inspection. The FSC inspection
knowledge graph was established to improve the efficiency of the FSC inspection. It can
be seen that the knowledge graph can be used to show the potential relationship between
the FSC inspection knowledge and the hierarchy of industry knowledge. Compared with
traditional knowledge management technology, the FSC inspection knowledge graph can
be used more intuitively to improve the efficiency and knowledge retrieval quality of the
FSC inspection.
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In future research, the application of the FSC inspection knowledge graph will be
further studied based on enriching data sources. Based on the constructed FSC inspection
knowledge graph and enriching data sources, semantic analysis and knowledge reasoning
will be added to deeply mine the implicit relations between ship attributes, ship deficiencies,
and detention decisions, and to explore the influencing factors of FSC examination results.
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