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Abstract

The present study focuses on the simultaneous localization and mapping (SLAM) system based on point and line features.
Aiming to address the prevalent issue of repeated detection during line feature extraction in low-texture environments, a novel
method for merging redundant line features is proposed. This method effectively mitigates the problem of increased initial
pose estimation error that arises when the same line is erroneously detected as multiple lines in adjacent frames. Furthermore,
recognizing the potential for the introduction of line features to prolong the marginalization process of the information
matrix, optimization strategies are employed to accelerate this process. Additionally, to tackle the issue of insufficient point
feature accuracy, subpixel technology is introduced to enhance the precision of point features, thereby further reducing errors.
Experimental results on the European Robotics Challenge (EUROC) public dataset demonstrate that the proposed LR-SLAM
system exhibits significant advantages over mainstream SLAM systems such as ORB-SLAM3, VINS-Mono, and PL-VIO in
terms of accuracy, efficiency, and robustness.

Keywords Simultaneous localization and mapping - Point and line characteristics - Monocular and IMU fusion -
Monocular vision

1 Introduction

In recent years, the technology of SLAM (Simultaneous
Localization and Mapping) [1] has garnered substantial
attention owing to its extensive applicability, notably in the
domains of autonomous vehicles [2, 3], robotics [4, 5], and
Unmanned Aerial Vehicles [6]. Among the pivotal sensors
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employed in this technology, cameras are fundamental, pri-
marily categorized into three distinct types: stereo cameras,
RGB-D cameras [7], and monocular cameras. In terms of
their inherent capabilities, stereo cameras provide a direct
methodology for pose estimation by leveraging a defined
baseline [8, 9] to ascertain the spatial coordinates of each
pixel. Nevertheless, they are hindered by the intricacies
involved in their configuration and calibration procedures,
as well as the constraints on depth range and accuracy
imposed by the stereo baseline and resolution limitations
[10]. Conversely, RGB-D cameras possess the capability
to directly ascertain the distance between objects and the
camera, thereby facilitating direct pose estimation. However,
their utilization is encumbered by a narrow measurement
range, elevated noise levels, and the susceptibility to frequent
disruptions stemming from sunlight [11].

The field of monocular vision-based SLAM boasts numer-
ous seminal algorithms, including ORB-SLAM?2 [12] (Ori-
ented FAST and Rotated BRIEF for SLAM2), VINS-
Mono [13] (Visual-Inertial Navigation System Mono), the
monocular-oriented PL-SLAM [14] (Real-Time Monocu-
lar Visual SLAM Leveraging Points and Lines), PL-VIO
[15] (Tightly-Coupled Monocular Visual-Inertial Odome-
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try Incorporating Point and Line Features), and PL-VINS
[16] (Point and Line Visual-Inertial Navigation System).
These methodologies are adaptable to diverse environments
and varying illumination condition, albeit they are prone
to limitations in feature extraction qualities [17]. Notably,
ORB-SLAM?2, by relying solely on a single image feature
as a constraint for pose estimation, may exhibit diminished
robustness in certain scenarios.

To mitigate the disruptions stemming from the exclu-
sive reliance on a single feature, inertial measurement units
(IMU) have been seamlessly integrated into the original
monocular systems, notably VINS-Mono and the subsequent
iteration of ORB-SLAM?2. By harnessing the complemen-
tary strengths of two distinct sensors, these algorithms
demonstrate enhanced capabilities in handling environments
characterized by weak or absent textures, as compared
to ORB-SLAM?2. However, it is noteworthy that VINS-
Mono, which employs optical flow for feature point tracking,
remains vulnerable to fluctuations in lighting conditions.
Similarly, ORB-SLAM3 [18] inherits this limitation from
ORB-SLAM2. In an effort to address these challenges,
researchers have augmented existing algorithms with line
features, thereby providing additional constraints for pose
estimation. This has led to the emergence of systems such as
PL-VIO, PL-SLAM, and PL-VINS. Yet, the incorporation of
line features into SLAM systems is not without its complex-
ities. One prominent issue is the occurrence of erroneous
line feature matching due to repeated detections. Classical
line feature extraction methods, like LSD (Line Segment
Detector), are susceptible to this problem. In some instances,
LSD may erroneously segment a single, continuous straight
line into multiple shorter segments within the image, lead-
ing the system to recognize them as distinct line features.
These mistakenly distinguished line features subsequently
participate in feature matching across consecutive frames,
potentially introducing significant errors into the pose esti-
mation process. This issue arises from the fact that line
features are inherently derived from point features, and dur-
ing the extraction phase, they can be distorted by noise and
other confounding factors.

Apart from the aforementioned issues with line features,
the integration of line feature information in SLAM systems
necessitates the use of an information matrix for pose estima-
tion that becomes more computationally intensive, requiring
additional optimization measures. Additionally, the corner
points extracted by these systems are inherently constrained
to pixel-level precision, whereas the actual positions of the
corners often do not coincide with integer pixel positions.
To address these concerns, this paper introduces the LR-
SLAM algorithm, which builds upon and improves upon the
PL-VIO framework. The key innovative contributions of the
LR-SLAM algorithm are outlined as follows:

(1) By employing a sub-pixel corner point detection tech-
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nique and applying sub-pixel edge constraints to corner
points, we effectively enhance the matching precision of fea-
ture points. (2) This work represents the initial endeavor to
utilize a combined approach of 2D and 3D distance assess-
ments for the elimination of redundant line features. Initially,
we discern the unique ID number assigned to each line fea-
ture. Subsequently, we evaluate the 3D distance along the
structured line feature, along with the angle and distance in
2D. From these three perspectives, we assess whether the
line features fulfill the criteria for merging, and subsequently
merge those that do, thereby achieving the removal of redun-
dant line features. (3) The proposed method is primarily
optimized for the marginalization of the information matrix.
In cases where the information to be marginalized encom-
passes camera pose information, the information matrix
undergoes a two-step marginalization process followed by
integration. Conversely, when this is not the case, the entire
matrix undergoes marginalization.

Figure 1 shows an example of LR-SLAM output for
sequence MHO1 in the EUROC dataset, where the sub-pixel
point feature (one frame) of sequence MHO1 in the EUROC
dataset is shown on the left in Fig. 1(a), and the line feature
(one frame) of the merged sequence MHOI in the EUROC
dataset is shown on the right in the Fig. 1(b). In Fig. 1(a)
shown are the feature points extracted from the image, which
are represented using red and blue color respectively, the red-
der the feature point the more frames are being tracked, and
the bluer the feature point the lesser number of frames are
being tracked. The rest of the paper is organized as follows:
related work on SLAM is presented in Section 2; Section 3
details the approach proposed in this paper; Section 4 gives
a comparison between several common SLAM systems and
the SLAM system proposed in this paper on the EUROC
dataset experiments; Section 5, draws conclusions.

2 Related Works

With the development of SLAM technology, many visual
SLAM methods have been investigated and some represen-
tative methods have emerged, such as the feature point-based
ORB-SLAM3 [16], the PL-VIO [14] based on point-line
features, and VINS-Mono [13]. A robust SLAM system is
essential for the further development of the field.

2.1 Feature Point Extraction

In feature-based SLAM, feature points are crucial. ORB-
SLAM3 extracts points from an image pyramid using FAST
and describes them with BRIEF [19], ensuring robustness
and accuracy. PL-SLAM follows a similar approach. Mean-
while, PL-VIO detects parallel lines to extract geometrically
constrained feature points, improving matching robustness
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(a) Sub-pixel point feature

v

(b) Merged line features

Fig.1 The extracted point and line features of the LR-SLAM system in one frame image of the MHO1 sequence are respectively displayed

and efficiency. VINS-Mono uses FAST for ORB feature
extraction, but these methods can struggle with accuracy and
motion blur. This thesis adopts a sub-pixel method to improve
precision and resilience to motion blur.

2.2 Line Feature Extraction

Compared to point features, line features in SLAM sys-
tems [20] exhibit three primary advantages elaborated: they
provide richer geometric constraint information, including
angles and lengths between segments, enhancing camera
motion estimation accuracy and map quality; they excel in
low-texture regions due to their stability against illumination
and occlusion changes; and they offer higher measurement
precision, determined by more pixels, leading to a more
robust and accurate optimization process. In PL-VIO and
PL-SLAM, LSD [21] is the primary line feature detector,
while PL-VINS employs an improved LSD with optimized
hidden parameters and length suppression. However, these
methods may suffer from duplicate line detections, increas-
ing pose estimation errors. To mitigate this, the proposed line
feature merging method aims to reduce such duplications for
more accurate pose estimation.

2.3 Marginalization of Information Matrix

The simplest solution for the relative camera pose is obtained
by calculating it from two frames before and after the image.
Although this method is fast but low in accuracy and can
only be used in a short period of time, it is highly accu-
rate but inefficient if a global optimization method (such as
bundle adjustment) is used [22]. Therefore, researchers have
proposed the sliding window approach [23], which performs
optimization operations on a fixed number of frames at a time,
thus ensuring both accuracy and efficiency. Since it is a slid-
ing window, new image frames are bound to come in as well

as old ones leave during the sliding process. Marginalization
is a technique aimed at effectively utilizing the discarded
image frames. It involves retaining valuable information,
such as prior knowledge and IMU data, from those frames
that are no longer needed, ensuring that no useful data goes to
waste. In PL-VIO system, in order to speed up the marginal-
ization process, the marginalization of information matrix
is divided into two steps. Firstly, marginalization of the part
except camera pose, then marginalization of the camera pose,
and finally merging the two parts.

3 Proposed Method

This section consists of four parts. First, the thematic frame-
work of the LR-SLAM algorithm is briefly introduced. Next,
the sub-pixel method for optimizing feature points will be
introduced. Then, redundant line removal and its application
in line feature detection process will be discussed. Finally,
the optimization method of marginalized information matrix
will be presented.

3.1 System Framework

The system framework demonstrated in Fig. 2 represents
the main framework of the LR-SLAM algorithm, which is
based on the PL-VIO algorithm with additional improve-
ments highlighted in yellow boxes. The system framework
is divided into two main components: the front-end and the
back-end. The front-end utilizes extracted feature lines and
IMU data for preliminary position estimation. On the other
hand, the back-end is responsible for refining the position
accuracy and optimizing it. This algorithm achieves local-
ization based on the following equations.
{Ak = f(Ak-1, Up) + Wi, )
Ck,j = h(Bj, Ax) + Vi,j,

@ Springer



169 Page4of 12

Journal of Intelligent & Robotic Systems (2024) 110:169

A. Front End

Extraction of Line Features
and Point Features from »
Images

Redundant Line Merging and Sub-
pixel Refinement of Feature Points

A 4

Line Features Matching

IMU Pre-integration from
IMU

B. Back End

A 4

Point Features Matching

Reconstruction of
3D Points and

Pose Optimization and
Selective Information

Lines Matrix Marginalization

Outlier Lines and Outlier
Points Culling

Fig.2 Systematic framework for the LR-SLAM algorithm

where, A represents the position at a certain time, B repre-
sents an observed point, C represents the pixel mapping of
the observed point in the image, and U represents known
data. f and & represent the functional relationship between
them, while W and V denote noise.

3.2 Sub-pixel Optimization of Feature Points

Although the PL-VIO system has many features, there are
still many problems in system implementation. For example,
the pixel coordinates of feature points are integers and have a
certain deviation from the actual image, which can affect the
accuracy of feature point matching. Therefore, in this paper,
LR-SLAM is proposed to improve the accuracy of feature
points using the sub-pixel method. By utilizing the sub-pixel
method, the feature points’ coordinates can be refined from
integers to decimals, thereby improving the matching accu-
racy between features.

First get enough corner point and initialization results. If
the number of feature corner point is less than the set parame-
ter value of 150, additional feature corner point are needed. If
the number of feature corner point is more than 150, the 150
corner point with the best quality among them are selected.
Then the gradient information of the image gray value is
used to interpolate the feature corner point positions to get
the position coordinates at the sub-pixel level, and a Gaussian
Newton iteration method is used to optimize the coordinate
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values. The pixel coordinate values of the new feature corner
point are finally obtained.

Of course, since the image is bounded, the feature cor-
ner point are optimized in the sub-pixel to ensure that the
optimized corner point coordinate values cannot exceed the
image boundaries. The method used here is to compare the
sub-pixel coordinates with the pixel coordinates of the image
boundary, and thus to constrain the sub-pixel corner point to
cross the boundary. The specific steps are as follows: 1.Iter-
ate through all sub-pixelated corner point features; 2.Let the
x and y values of the corner point feature pixel coordinates
be compared with the 1-value point (1-value point refers to
the point where x and y are both 1) and the sub-maximum
point (x is the column value of the image minus 1, y is the
row value of the image minus 1) of the image in the same
coordinate system, if the x or y in the feature corner point
pixel coordinates is smaller than the x or y of the 1-value
point, then the x or y in the pixel coordinates is the x or y of
the sub-maximum point. If the x or y in the pixel coordinates
of the feature corner point is greater than the x or y of the
sub-maximum point, the x or y in the pixel coordinates is the
x or y of the sub-maximum point.

3.3 Redundant Line Deletion Method

In order to reduce the increase of pose estimation error caused
by continuously detecting line features in adjacent frames,
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this paper proposes a redundant line removal method (as
shown in Fig. 3). This method is divided into three steps
in total, which will be elaborated in the following three sub-
sections. This is also the focus and difficulty of this study.
The final output of line features is shown in Fig. 4(a) (while
Fig. 4(b) shows the initial line features).

3.3.1 Line Feature ID Determination

The LSD algorithm is mainly used in this paper to implement
line segment detection and extraction. Line segments with a
certain length and direction are detected in the image, and
line segment descriptors are used to represent the features of
these line segments. A unique ID is also assigned to each line
feature for subsequent tracking and matching. Based on the
property of the line feature IDs, screening can be performed
by the ID number of the line feature, since only old IDs may
be duplicate lines of new IDs. This screening is also called
coarse screening. After the coarse screening, the line feature
that meet the requirements will be screened in the following
two steps, which are also called fine screening.

3.3.2 Distance Judgment of Line Features
in Three-dimensional Space

The distance judgment of line feature in 3D space is the first
step of fine screening; first, the line feature under the camera
coordinate system are structured; then, the distance judgment

Frames

}

Structuring the extracted
line features from
consecutive frames

3D Lines distance
<0.1

Yes

A 4

2D Lines distance

<35/460 No— Not merging line features

A

Yes

2D Lines radian
<35

Yes

v

Merging line features

Fig.3 Flow chart of redundant line deletion method

of the structured line feature is performed; finally, the two line
feature whose distance is smaller than the set threshold are
subjected to the last step of fine screening. The specific steps
are detailed as follows:

(1) Line feature structure

Based on the information contained in the line feature, e.g.,
the length and angle of the line feature, the point coordinate
values of the line feature in camera coordinates are calculated
(two-dimensionalized):

X = d] COS 9] ,
{ v =djcosb, 2

where (x7, y;) is the point coordinate, 6; is the angle of the
line feature, and d is the length of the line feature. When
the point coordinates are known, the z-axis values of the
line features in the camera coordinate system are added
to make the point coordinates up-dimensional. Since the
line feature has a front end and a back end, there are two
3D point coordinates after the dimensioning, cl1 (xll, yll, b4 ll)
and clz(xlz, ylz, zlz). Then the selection matrix is converted
to a three-dimensional Manhattan coordinate system with
two coordinates c}wl (lev[p y}m, Z}u,) and c%,,l (xlzwl, y,zul, z%u[),
respectively.

(2) Line Feature Distance Determination on a Three-
dimensional Plane

The endpoint coordinates of the two line features in the
Manhattan coordinate system are obtained in the above man-
ner. By subtracting the corresponding endpoint coordinates,
the line vectors /1 and [, representing the two lines are
obtained as follows:

{“@ﬁ@%_ﬁﬁfiT Q)

(xlz T YV T Ve Ty T le)’

{diS1=||P><11||2/||11||2, @)
disy = ||p x I2|l2/||l2]]2

dis = (dis) +dis2)/2 (©)

The auxiliary vector pj is then constructed in the above
way based on the coordinates of the same end of the two line
feature (either end is chosen, in this paper the coordinates
of the front end are chosen). The distance values of the two
lines are calculated from Eq. 4 as dis; and dis;, and then
the final distance value between the two lines is derived from
Eq. 5 as dis. According to the obtained distance value, dis is
compared with the threshold value 0.1, if it is lower, the next
step of fine screening is performed.

(3) Line feature distance determination on a two-dimensi-
onal plane

Two 3D line features are projected into 2D space to
generate two 2D lines. The endpoint coordinates of the two-
dimensional lines are also both two-dimensional. At this

@ Springer
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Fig.4 (a) It shows the initially
extracted linear features (in red).
(b)It shows the merged linear
features (in white). Images are
sourced from the KITTI
dataset(100 features)

\
4 1]

point, the endpoint coordinates of the two two-dimensional
lines are expanded (in three dimensions) to construct their
flush coordinates, clll (xll1 , ylll, 1),c121 (xlzl , yl21, 1) and cll2 (xllz,
yllz, 1), 0122 (xlzz, ylzz, 1), respectively. Select the two chi-
square coordinates corresponding to one of the lines (the
first line is chosen in this paper) to determine a linear line

vector p).

{disg = p2-chl/lIpalla. ©

disy =|p2-cpl/lIpalla,

The flush endpoint coordinates of the other line to the line
vector distance [, is given by the Eq. 6 for dis3 and disy.
By determining whether one of dis3 and disy is smaller than
the threshold 35/460, if it is satisfied, the angle comparison
of the two lines /1 and [, is performed, and their direction
vectors are obtained by means of the Eq. 3.

I -1
arccos ——— 2 @)

NIRERVII R

The number of angles between the two lines is calculated
according to the Eq. 7. The obtained angle number is con-
verted into radian number, and if the radian number is less
than 3.5, the line features are merged to achieve the purpose
of redundant line deletion.

@ Springer
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(b)

3.4 Marginalization of the Information Matrix

In SLAM systems, when a new observation is added, a new
node and some new edges are created, and an information
matrix can describe the relationship between these nodes and
edges. In PL-VIO, the information matrix is a matrix used to
describe the relationship between several variables such as
camera pose, IMU measurement, and feature point location.

However, in practical applications, the information matrix
can significantly expand in size, resulting in substantial com-
putational overhead. Therefore, some strategies need to be
adopted to simplify the problem. One of the solutions is to
use Schur complement to marginalize the information matrix,
thus reducing the solution volume and optimization cost.
Marginalization of the information matrix transforms the part
of the information matrix related to the unknown variables
into a new information matrix by matrix elimination based
on the known variables, simplifying the problem.

This paper proposes an optional information matrix
marginalization method based on the PL-VIO marginaliza-
tion method. The optional information matrix marginaliza-
tion method adds selectivity to the traditional information
matrix marginalization. The traditional information matrix
marginalization involves marginalizing the entire matrix,
while the optional method allows for marginalization based
on different situations. Therefore, when the marginalized
information contains complex camera pose information, the
marginalization is performed in two steps: first, the infor-
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mation matrix of non-camera poses is marginalized; then,
the information of camera poses is marginalized. Finally, the
marginalized information from the first two steps is merged.
If the marginalized information does not contain camera pose
information, the entire information matrix is marginalized.
This method helps improve the efficiency of information
matrix marginalization.

The marginalization of the non-camera pose information
matrix mentioned above is performed to marginalize the pose
and motion information of the IMU. This non-camera state
information includes the angle, angular velocity, and linear
acceleration of the IMU. First, using the angular velocity and
linear acceleration measurements of the IMU, the changes
of the IMU states (e.g., attitude, velocity, and displacement)
over a time window are computed using a pre-integration
method; then, based on some criteria (e.g., relevance, fre-
quency of use, etc.), a decision is made as to which IMU
states or observations will be marginalized; and, finally, the
variables that need to be marginalized are removed from the
information matrix and from the right-hand side observation
vectors.

4 Experiment

In this section, the method proposed in this paper is compared
with open-source algorithms such as VINS-Mono, ORB-
SLAM3’s monocular and PL-VIO, tested on the EUROC
dataset [24] and the KITTI dataset [25], and evaluated with
the EVO Evaluation Tool on the trajectory maps of the above
SLAM systems.

4.1 Experimental Platform

The experiments were conducted on Ubuntu 18.04. The main
hardware used in this article includes Intel(R) Core(TM) i7-
9750H CPU @ 2.60 GHz, 3.0 GHz 16 GB and NVIDA
GeForce GTX 2060.

4.2 Setting Parameters

The optimized corner points in LR-SLAM are 150, the image
resolution is, the distance scale factor of the line features in
3D space is 0.1, the distance scale factor of the line features
in 2D plane is 35/460, and the angle degree between the line
features.

4.3 Evaluation Metrics

In this paper, the evaluation metric ATE is used to evaluate the
experimental results of each SLAM system, which measures
the accuracy of the algorithm and the global consistency of
the trajectory [26]. The subset of ATE metrics consists of

Table 1 Metric absolute trajectory error (ATE/m) results for VINS-
Mono and LR-SLAM on the EUROC dataset (MH series)

VINS-Mono LR-SLAM
Data Mean Std Rmse Mean Std Rmse
MHO1 0.188 0.110 0.218 0.111 0.055 0.124
MHO03 0.341 0.255 0.426 0.217 0.094 0.237
MHO04 0.334 0.230 0.406 0.302 0.088 0.314
MHO05 0.322 0.206 0.383 0.266 0.071 0.276

certain metrics, among which, the dominant metrics are root
mean square error (RMSE), mean absolute error (MEAN)
[27]. The following illustrates the detailed definitions of all
three main indicators in ATE:

1 N
— _ N — )2
RMSE = | — ;(J(m,) ni)2, ®)
1 N
MEAN = ﬁl;”(mi) —nil, )
1 N
STD= |+ > (U (m;) — Mean)?, (10)

i=1
where m and n are respectively the keyframe trajectory gener-
ated by the system and the ground truth associated with them,
N is the number of keyframes, i is the keyframe sequence
number, and J (-) is a trajectory alignment function based on
rotation and scale consistency between m; and n;.

4.4 EUROC and KITTI Dataset

In order to better validate the performance of the devel-
oped LR-SLAM method and compare it with other excellent
SLAM systems, several excellent sequences provided by the
widely used EUROC public dataset were selected for testing.
In this paper, four MH sequences from the EORUC dataset
(one simple sequence MHO1, one medium sequence MHO3,
and two difficult sequences MH04 and MHO5) as well as a
partial dataset from KITTI were chosen. These data can be

Table 2 Metric absolute trajectory error (ATE/m) results for ORB-
SLAM3 monocular and LR-SLAM on the EUROC dataset (MH
sequence)

ORB-SLAM3 LR-SLAM
Data Mean Std Rmse Mean Std Rmse
MHO1 1.977 1.123 2.274 0.111 0.055 0.124
MHO03 2.878 1.203 3.120 0.217 0.094 0.237
MHO04 6.084 2.333 6.516 0.302 0.088 0.314
MHO05 3.398 2.060 4.005 0.266 0.071 0.276
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Table 3 Metric absolute
trajectory error (ATE/m) results
for PL-VIO and LR-SLAM on
the EUROC dataset (MH series)

Table 4 Metric absolute
trajectory error (ATE/m) results
for PL-VIO and LR-SLAM on
the EUROC dataset (MH series)

Table 5 Metric absolute
trajectory error (ATE/m) results
for PL-VIO and LR-SLAM on
the KITTI dataset (part series)

Fig.5 (a) Compare the
trajectory predictions of
VINS-Mono (blue),
ORB-SLAM3 monocular
(green), PL-VIO (red), and
LR-SLAM (purple) for
sequence MHO3 with the ground
truth trajectory (brown). (b), (c)
and (d) respectively show the
comparisons between
VINS-Mono, ORB-SLAM3,
and PL-VIO (green) with
LR-SLAM (blue) and the
ground truth (brown)

@ Springer

PL-VIO LR-SLAM

Data Mean Std Rmse Mean Std Rmse
MHO1 0.153 0.084 0.175 0.111 0.055 0.124
MHO03 0.238 0.110 0.262 0.217 0.094 0.237
MHO04 0.336 0.104 0.352 0.302 0.088 0.314
MHO05 0.323 0.210 0.385 0.266 0.071 0.276

VINS-Mono ORB-SLAM3 PL-VIO
Data Mean Std Rmse Mean Std Rmse Mean Std Rmse
MHO1 40.9 50.0 42.9 94.4 95.1 94.5 27.2 34.5 28.6
MHO03 36.0 63.1 444 92.4 92.1 92.4 8.4 15.3 9.9
MHO04 9.8 61.7 22.4 95.0 96.2 95.1 10.1 154 10.5
MHO05 17.3 65.7 28.0 92.1 96.5 93.1 17.3 66.3 28.5

VINS-Mono ORB-SLAM3 PL-VIO

Data Mean Std Rmse Mean Std Rmse Mean Std Rmse
KITTIOO 9.6 11.0 8.9 86.5 82.1 83.3 7.4 6.9 8.4
KITTIO2 2.3 4.3 / 87.4 72.1 76.7 8.4 12.9 6.5
KITTIO4 14.8 22.7 19.6 82.3 89.7 84.3 8.1 7.8 9.1
KITTIO6 13.1 5.7 6.8 89.7 91.5 84.3 7.7 6.9 9.2
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PLVIO
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LR SLAM

groundtrue
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used to evaluate the performance of SLAM algorithms and
provide a standardized database for research in the field of
robot localization and navigation.

4.5 The Advantages of Redundant Line Feature
Merging

This section provides a qualitative analysis of the redundant
line deletion (merging) proposed in this paper. As mentioned
earlier, the initial pose estimation in SLAM technology is
calculated based on matched feature pairs. Therefore, the
quality of the features used for matching and the accuracy of
the matching significantly determine its performance. Hence,
this section measures the advantage of the improved line fea-
tures over the unimproved ones using the metric of matching
accuracy. The accuracy metric is expressed as a percentage,
calculated by subtracting the number of successfully matched
line features from the total number of extracted line fea-
tures, and then dividing the result by the total number of line
features. In this paper, using this metric, we conducted experi-
ments on line feature extraction and matching with 10 images
as a group, and a total of 10 groups of images. With other
experimental conditions remaining constant (such as light-
ing), the average accuracy of line feature matching before

Fig.6 (a) Compare the
trajectory predictions of
VINS-Mono (blue),
ORB-SLAM3 monocular
(green), PL-VIO (red), and

LR-SLAM (purple) for g VS I= ==
sequence MHO5 with the ground & ¢
truth trajectory (brown). (b), (c) \\ /

and (d) respectively show the ,;/ B\,
comparisons between k '
VINS-Mono, ORB-SLAM3, >

and PL-VIO (green) with
LR-SLAM (blue) and the
ground truth (brown)

improvement was 89.42%, while the average accuracy after
improvement was 92.74%. This demonstrates the advantage
of the proposed method.

4.6 Positioning Precision Assessment

To verify the performance of LR-SLAM, experiments were
conducted on the EUROC and KITTI benchmark datasets,
and compared with some SLAM systems such as VINS-
Mono, ORB-SLAM3 Monocular, and PL-VIO. The follow-
ing results were obtained (Tables 1, 2, 3, 4, and 5).

To validate the performance of LR-SLAM, we conducted
experiments on the EUROC and KITTI benchmark datasets,
comparing it with SLAM systems such as VINS-Mono,
ORB-SLAM3 Monocular, and PL-VIO. The results obtained
are presented in Tables 1 to 5. Tables 1 to 3 showcase the
average Absolute Trajectory Error (ATE) test results for four
representative sequences from the EUROC dataset. Table 4
displays the comparative results between LR-SLAM and
other systems in the aforementioned tests. These results were
calculated using Eqs. 11, 12, and 13. From the results, it
is evident that LR-SLAM maintains a higher level of accu-
racy compared to VINS-Mono, ORB-SLAM3 Monocular,
and PL-VIO. The reason why the method proposed in this

groun
VINS.
ORB-SLAM3

PLVIO
LRSLAM

groundtrue
PLVIO
LR SLAM
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paper uses point features combined with line features to esti-
mate pose is that line features can be easier to extract and
have higher quality in certain scenarios compared to point
features. For example, line features are relatively easy to
extract on man-made structures and large objects, and they
possess a higher level of abstraction compared to point fea-
tures. Therefore, SLAM systems based on line features can
perform better in certain scenarios than SLAM systems based
on point features, such as the ORB-SLAM algorithm in the
experiments of this section, which is a system based on point
features and exhibits poorer pose estimation performance.

From Figs. 5 to 6, it can be seen that the total error of
LR-SLAM is smaller compared to that of VINS-Mono, ORB-
SLAM3 monocular, and PL-VIO, and it can be verified in
Tables 1-5. In conclusion, the estimated trajectories of LR-
SLAM are more consistent with the ground truth than those
of VINS-Mono, ORB-SLAM?3 monocular, and PL-VIO.

rmse; —rmse;

% 100, (11)
rmse

td) — std

HA 7R 00, (12)
stdy

stdy = stda 00 (13)
stdy ’

where rmse; is the root-mean-square error of VINS-Mono,
ORB-SLAM3 monocular and PL-VIO, rmse; is the root-
mean-square error of this system, szdj is the sum-of-squares
error of VINS-Mono, ORB-SLAM3 Monocular and PL-VIO
and std; is the sum-of-squares error of this system, mean
is the mean absolute error of VINS-Mono, ORB-SLAM3
monocular and PL-VIO, mean, is the mean absolute error
of this system.

5 Conclusion

In this paper, a line feature fusion method is proposed with
the aim of improving the accuracy of SLAM by this method.
In addition to the line feature fusion method, sub-pixel
point features and optional information matrix marginal-
ization optimization methods are also utilized to enhance
the positioning accuracy of monocular inertial navigation
fused SLAM systems. Experimental results show that the
line feature fusion method effectively mitigates the posi-
tion estimation error due to repeated detection of the same
lines in consecutive frames. With recent advances in the
field of machine learning, parameterization, uncertainty, and
multidimensional machine learning algorithms [28-30] can
provide more effective learning and prediction capabilities
when using limited features. These algorithms can be incor-
porated into SLAM algorithms that are tuned to specific

@ Springer

parameters, improving the algorithm’s adaptability and gen-
eralization capabilities, and performing well in the face of
missing or incomplete features.
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