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A B S T R A C T

Objectives: To evaluate the roles of oxidative balance score (OBS) in staging and mortality risk of cardiovascular- 
kidney-metabolic syndrome (CKM).
Methods: Data of this study were from the National Health and Nutrition Examination Survey 1999–2018. We 
performed cross-sectional analyses using multinomial logistic regression to investigate the relationship between 
OBS and CKM staging. Cox proportional hazards models were used to assess the impact of OBS on mortality 
outcomes in CKM patients. Additionally, mediation analyses were performed to explore whether OBS mediated 
the relationships between specific predictors (Life’s Simple 7 score [LS7], systemic immune-inflammation index 
[SII], frailty score) and mortality outcomes. Then, machine learning models were developed to classify CKM 
stages 3/4 and predict all-cause mortality, with SHapley Additive exPlanations values used to interpret the 
contribution of OBS components.
Results: 21,609 participants were included (20,319 CKM, median [IQR] age: 52.0 [38.0–65.0] years, 54.3% male, 
median [IQR] follow-up: 9.4 [5.3–14.1] years). Lower OBS quartiles were associated with advanced CKM 
staging. Moreover, lower OBS quartiles were related to increased mortality risk, compared to Q4 of OBS (all- 
cause mortality: Q1: HR 1.31, 95% CI 1.18–1.46, Q2: HR 1.27, 95% CI 1.14–1.42, Q3: HR 1.18, 95% CI 
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1.06–1.32; cardiovascular mortality: Q1: HR 1.44, 95% CI 1.16–1.79, Q2: HR 1.39, 95% CI 1.11–1.74, Q3: HR 
1.26, 95% CI 1.01–1.57; non-cardiovascular mortality, Q1: HR 1.27, 95% CI 1.12–1.44, Q2: HR 1.23, 95% CI 
1.08–1.40, Q3: HR 1.16, 95% CI 1.02–1.31), with optimal risk stratification threshold for OBS was 22. Addi-
tionally, OBS mediated (ranging 4.25%–32.85 %) effects of SII, LS7, frailty scores on mortality outcomes. 
Moreover, light gradient boosting machine achieved the highest performance for predicting advanced CKM 
staging (area under curve: 0.905) and all-cause mortality (area under curve: 0.875). Cotinine increased risk, 
while magnesium, vitamin B6, physical activity were protective.
Conclusions: This study highlights OBS as a risk stratification tool for CKM, emphasizing oxidative stress’s role in 
CKM staging and mortality risk management.

1. Introduction

The American Heart Association (AHA) has recently introduced the 
cardiovascular-kidney-metabolism syndrome (CKM), which is a sys-
temic, progressive health disorder characterised by the coexistence of 
obesity, diabetes mellitus (DM), chronic kidney disease (CKD), and 
cardiovascular disease (CVD) [1]. The complex interactions and com-
mon pathological mechanisms among these conditions further exacer-
bate the burden of disease and the mortality risk. CKM affects a 
significant proportion (89.4 %) of the US adult population, with more 
than half of them at stage 2 or higher and no improvement between 
2011 and 2020 [2]. A nationwide Italian primary care study reported a 
significant increase in hypertension, dyslipidaemia and obesity during 
the coronavirus disease 2019 pandemic, with a 1.7-fold sharp increase in 
pre-diabetes, as well as an increase in the prevalence of CKM with age, 
almost 50 % of the population having one or more complications of CKM 
[3].

The pathophysiology of CKM involves a complex spectrum of inter-
play mechanisms, where oxidative stress plays a key role. The hyper-
glycaemic state, impaired cardiac and renal function can lead to 
activation of the renin-angiotensin-aldosterone system on the one hand, 
and increases in reactive oxygen species (ROS), late glycosylation end 
products, and protein kinase C on the other hand, thus exacerbating 
oxidative stress, consequently exacerbating organ damage and 
dysfunction [4–6]. Therefore, comprehensive assessment of oxidative 
stress status is critically valuable for risk stratification of staging and 
mortality in CKM.

The oxidative balance score (OBS) is a holistic indicator that in-
tegrates 15 antioxidant and 5 pro-oxidant factors (16 dietary and 4 
lifestyle factors) to assess an individual’s oxidative stress status [7]. 
Typically, higher OBS reflects lower levels of oxidative stress and has 
been shown in studies to be strongly associated with the mortality risk 
from various chronic diseases, such as DM [7], CKD [8], and CVD [9]. 
However, no study has comprehensively examined the association be-
tween OBS and mortality risk in patients with CKM.

In this study, we focused on three main aspects: (1) examining the 

relationship between the OBS and the stages of CKM; (2) investigating 
the association between OBS and mortality risk in patients with CKM; 
and (3) exploring OBS as a potential mediator between various factors 
(e.g., Life’s Simple 7 Score [LS7], frailty score) and mortality outcomes.

2. Methods

2.1. Data sources

Data of this study were obtained from the US nationally represen-
tative cohort, National Health and Nutrition Examination Survey 
(NHANES), which was approved by the National Center for Health 
Statistics Ethics Review Board. Since all data were anonymised, ethical 
review and informed consent for this study were waived. This study 
complies with the Strengthening the Reporting of Observational Studies 
in Epidemiology guideline (Supplementary Table S1).

2.2. Definitions of CKM and OBS

The definition of CKM in this study is shown in Supplementary 
Table S2. Here, the predicted 10-year CVD risk in subclinical CVD was 
calculated using the AHA PREVENT equations (Supplementary 
Table S3) [10], and renal function was categorised according to Kidney 
Disease: Improving Global Outcomes [11]. As defined by the AHA CKM 
definition, CKM was categorised into four stages (Supplementary 
Table S4) [1]. The OBS consists of 16 dietary nutrients and 4 lifestyle 
factors, the intake of each nutrient was calculated by averaging the two 
24-h dietary recalls, incorporating contributions from diet and dietary 
supplements (Supplementary Table S5).

2.3. Study participants and sample size

Ten consecutive waves between 1999 and 2018 were included in this 
study, and of the 55,081 participants aged ≥20 years initially screened, 
17,949 respondents with missing CKM-related information, 14,922 with 
missing OBS-related information, 385 with pregnancy, 27 without 
complete mortality follow-up, and 189 with extreme dietary intake were 
excluded, the final sample size was 21,609 (Supplementary Fig. S1). The 
extreme dietary intake was defined as less than 500 kcal/day or more 
than 5000 kcal/day for females, and less than 500 kcal/day or more than 
8000 kcal/day for males [12].

2.4. Survival outcome

The survival outcomes were all-cause mortality, CVD mortality, and 
non-CVD mortality, which were sourced from the Centers for Disease 
Control and Prevention website (https://wwwn.cdc.gov/nchs/nhanes/ 
Default.aspx) and were updated until December 31, 2019. The causes 
of mortality were identified using the tenth-vision International Statis-
tical Classification of Diseases and Related Health Problems.

2.5. Definitions of covariates

Covariates extracted in this study included demographic information 
(age, sex, race and ethnicity, education level, poverty income ratio 
[PIR]), anthropometric measurements (weight, height, and waist 

Abbreviations list
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CKD chronic kidney disease
CKM cardiovascular-kidney-metabolism syndrome
CVD cardiovascular disease
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SII systemic immune inflammation index

Y. Chen et al.                                                                                                                                                                                                                                    Redox Biology 81 (2025) 103588 

2 

https://wwwn.cdc.gov/nchs/nhanes/Default.aspx
https://wwwn.cdc.gov/nchs/nhanes/Default.aspx


circumference), lifestyle factors (physical activity, smoking status, and 
alcohol consumption), biomarkers (total cholesterol, highdensity lipo-
protein cholesterol, estimated glomerular filtration rate, haemoglobin 
A1c), urine albumin to creatinine ratio, and C-reative protein), and other 
indicators (Life’s Simple 7 score [LS7], systemic immune inflammation 
index [SII], and frailty score). Standard protocols were followed to 
measure weight, height, and waist circumference in the mobile exami-
nation center. Blood and urine samples were also collected there ac-
cording to standard operating procedures, then processed, stored, and 
sent to the University of Minnesota in Minneapolis, MN for analysis. 
Body mass index (BMI) was determined by dividing weight (kg) by the 
height [2] (m2). Smoking status was categorised as follows: never 
smoker (<100 cigarettes smoked in lifetime), former smoker (≥100 
cigarettes smoked but no smoking now), and current smoker (≥100 
cigarettes smoked and currently smoking). Physical activity was cat-
egorised into three levels: “less than moderate,” “moderate,” and 
“vigorous,” based on intensity. Estimated glomerular filtration rate was 
derived from the Chronic Kidney Disease Epidemiology Collaboration 
Equation [13]. Urine albumin to creatinine ratio was calculated by urine 
albumin (ug/mL) dividing urine creatinine (mg/dL) multiple 100. SII 
was calculated using the formula: platelet count × neutrophil coun-
t/lymphocyte count [14]. The LS7 was defined based on AHA defini-
tions, ranged from 0 to 14 points, with higher scores indicating better 
cardiovascular health (Supplementary Table S6 & Supplementary 
Table S7) [15]. The frailty score was evaluated through a comprehensive 
assessment method based on 49 frailty-related items (Supplementary 
Table S8) [16]. Race and ethnicity was self-reported by participants, 
including non-Hispanic White, non-Hispanic Black, Mexican American, 
Hispanic and others.

2.6. Statistical analysis

Some of the variables included in this study had varying proportions 
of missing values (Supplementary Table S9), all had less than 8 %, and 
we assumed that the missing data were Missing At Random. To handle 
missing values, we used the ‘miceforest’ package in Python, which 
employs multiple imputation of chained equations based on random 
forest model. The number of imputations was set to 10 iterations, and 
the imputed variables included education level, PIR, smoking status, 
physical activity, LS7, and SII, as these variables had missing values. 
Additionally, LS7 and SII were key variables in the mediation analysis, 
and the remaining covariates were included in the adjusted logistic 
regression and Cox proportional hazards models.

First, continuous variables were described by median and inter-
quartile range (IQR) due to non-normal distribution and group com-
parisons were performed using the Kruskal-Wallis test. Categorical 
variables were described by counts and percentages, with group differ-
ences assessed using the Fisher’s exact test. OBS quartile grouping was 
defined as quartile 1 (Q1): OBS<15; quartile 2 (Q2): 15≤ OBS <20; 
quartile 3 (Q3): 20≤ OBS <26; quartile 4 (Q4): OBS ≥26. Second, CKM 
staging was considered an ordinal variable, we used ordinal logistic 
regression to examine the relationship between OBS and CKM stages 
0–4. However, the proportional odds assumption was violated, as indi-
cated by the significant results of the test for parallel lines. Therefore, we 
performed multinomial logistic regression as an alternative to evaluate 
the associations between OBS and individual CKM stages, adjusted for 
age, sex, race and ethnicity, education level, PIR, smoking status, 
alcohol consumption, physical activity. Third, Kaplan-Meier survival 
curves were generated to illustrate cumulative mortality outcomes 
across OBS quartiles in CKM patients, and statistical differences were 
tested using the log-rank test. Fourth, restricted cubic spline (RCS) an-
alyses were employed to visualise and explore the potential nonlinear 
associations between OBS with mortality outcomes in CKM patients. To 
determine the optimal number of knots, we calculated the Akaike In-
formation Criterion (AIC) and Bayesian Information Criterion (BIC) for 
different knots (3–6) for model selection. Since our cohort is large-scale, 

to achieve a better balance between model complexity and generalisa-
tion capability, we preferentially refer to BIC for knots selection to 
reduce the risk of overfitting and improve the interpretability of the 
model. The results of AIC and BIC calculations and the finalised number 
of knots are detailed in Supplementary Table S10. Fifth, multivariable 
Cox proportional hazards models were constructed to estimate hazard 
ratios (HR) and 95 % confidence intervals (CI) for mortality outcomes 
across OBS quartiles, using the Q1 as the reference group. Models were 
adjusted for age, sex, race and ethnicity, education level, PIR, smoking 
status, alcohol consumption, physical activity. Additionally, the pro-
portional hazards assumption was evaluated using Schoenfeld residuals, 
and the results confirmed that the assumption was satisfied. Sixth, 
subgroup analyses were performed to evaluate the influence of age (<65 
vs. ≥65 years), sex, BMI (<30 vs. ≥30 kg/m2), and CKM staging group 
(1–2 vs. 3–4) on the associations between each OBS and mortality out-
comes in CKM patients.

Additionally, we performed two sensitivity analyses. First, to avoid 
potential reverse causation, CKM patients who died within the first two 
years of follow-up were excluded, and the associations between each 
OBS and mortality outcomes were re-evaluated. Second, given the 
substantial impact of cancer on mortality outcomes, we examined the 
robustness of primary analysis after excluding CKM patients with a 
history of cancer.

Moreover, using the ‘surv_cutpoint’ function from the ‘survminer 
package’, we applied the maximally selected rank statistics method to 
identify the optimal risk stratification cut-off points for OBS on mortality 
outcomes [17].

Furthermore, to evaluate whether OBS serves as a mediator between 
specific predictors of mortality (LS7, SII, frailty score) and mortality 
outcomes, we performed mediation analysis using R with ‘mediation’ 
package. Bootstrapping with 1000 resamples was employed to estimate 
the 95 % CI of the mediation effect.

To further enhance the analysis, machine learning (ML) mod-
els—including light gradient boosting machine (LightGBM), random 
forest, logistic regression, support vector machine, and multi-layer 
perceptron—were developed to predict two outcomes: advanced CKM 
staging (CKM3/4) in whole patients and all-cause mortality in CKM 
patients. ML models were built in Python (version 3.11.4) with packages 
Scikit-learn (version 1.2.2) and lightgbm (version 3.3.5). The dataset 
was randomly split into a training set (70 %) and a testing set (30 %). 
The models incorporated 20 OBS components along with key clinical 
features (age and sex). To assess multicollinearity among the included 
variables, we calculated the variance inflation factor for all features. All 
variables had variance inflation factor values less than 8 (Supplementary 
Fig. S2 & Supplementary Fig. S3), indicating no significant multi-
collinearity and ensuring the stability and reliability of the model. 
Hyperparameter tuning was performed using five-fold cross-validation 
combined with randomised search and manual fine-tuning to optimise 
model performance in the training set. Model performance was evalu-
ated in the testing set using receiver operating characteristic (ROC) 
curves, and metrics including the area under the curve (AUC), accuracy, 
specificity, precision, recall, F1-score, and G-mean. The best-performing 
model was selected based on these metrics, then we calculated Shapley 
Additive Explanations (SHAP) values to interpret and quantify the 
importance of OBS components in the best model for each of the two 
outcomes separately.

Descriptive analyses, Cox regression, and subgroup analyses were 
performed in SPSS Statistics (version 27, USA) following the official 
guidelines. Kaplan-Meier survival analyses, restricted cubic spline ana-
lyses, mediation analyses, and analyses for identifying optimal cut-off 
point were conducted in R (version 4.3.2, Austria). Multiple imputa-
tion and machine learning modelling process were implemented in Py-
thon (version 3.11.1, USA). The corresponding code for R and Python 
has been provided in the Supplementary Methods, where numerical 
parameters and file names have been replaced with placeholders (e.g., 
X) for clarity. Two-tailed P < 0.05 was regarded statistically significant.

Y. Chen et al.                                                                                                                                                                                                                                    Redox Biology 81 (2025) 103588 

3 



3. Results

3.1. Baseline characteristics

21,609 eligible participants were included in this analysis (meadian 
[IQR] age: 52.0 [38.0–65.0] years, 54.3 % male, median [IQR] follow- 
up: 9.4 [5.3–14.1] years), including 20,319 CKM patients (median 
[IQR] age: 53.0 [40.0–66.0] years, 55.2 % male, median [IQR] follow- 
up: 9.3 [5.2–13.9] years) and 1290 non-CKM individuals (median 
[IQR] age: 32.0 [25.0–43.0] years, 37.5 % male, median [IQR] follow- 
up: 11.1 [6.9–16.1] years). Table 1 shows the baseline characteristics 
of CKM patients categorised by OBS quartiles. Participants in higher OBS 

quartiles had higher education levels, higher PIR, more vigorous phys-
ical activity, and lower proportion of smoking (all P < 0.001). Moreover, 
the proportion of individuals in advanced CKM staging (stages 3–4) 
decreased as OBS increased. Additionally, the baseline characteristics of 
participants categorised by CKM staging is presented in Supplementary 
Table S11.

3.2. Distribution of mortality outcomes by OBS quartiles and CKM staging

As shown in Supplementary Fig. S4, all-cause mortality, cardiovas-
cular mortality, and non-cardiovascular mortality decrease progres-
sively across OBS quartiles (all P < 0.001). Specifically, all-cause 

Table 1 
Baseline characteristics of all participants categorised by oxidative balance score quartiles.

Characteristics All 
N = 20319

Q1 
N = 4912

Q2 
N = 4317

Q3 
N = 5701

Q4 
N = 5389

P

Age, years 53.0 (40.0, 66.0) 54.0 (40.0, 67.0) 54.0 (40.0, 66.0) 52.0 (39.0, 65.0) 53.0 (39.0, 65.0) 0.002
Age groups, n (%)      <0.001

Age ≤40 years 5435 (26.7) 1294 (26.3) 1132 (26.2) 1547 (27.1) 1462 (27.1) 
40< Age ≤50 years 3672 (18.1) 841 (17.1) 735 (17.0) 1091 (19.1) 1005 (18.6) 
50< Age ≤65 years 5989 (29.5) 1411 (28.7) 1296 (30.0) 1662 (29.2) 1620 (30.1) 
Age >65 years 5223 (25.7) 1366 (27.8) 1154 (26.7) 1401 (24.6) 1302 (24.2) 

Male, n (%) 11224 (55.2) 2856 (58.1) 2433 (56.4) 3067 (53.8) 2868 (53.2) <0.001
Ethnicity, n (%)      <0.001

Non-Hispanic White 9960 (49.0) 2133 (43.4) 2043 (47.3) 2872 (50.4) 2912 (54.0) 
Non-Hispanic Black 4108 (20.2) 1394 (28.4) 957 (22.2) 1014 (17.8) 743 (13.8) 
Mexican American 3123 (15.4) 736 (15.0) 682 (15.8) 886 (15.5) 819 (15.2) 
Hispanic and Other 3128 (15.4) 649 (13.2) 635 (14.7) 929 (16.3) 915 (17.0) 

Body mass index, kg/m2 28.6 (25.3, 32.8) 29.6 (26.1, 33.8) 29.0 (25.8, 33.0) 28.6 (25.3, 32.9) 27.5 (24.4, 31.5) <0.001
Waist circumference, cm 100.0 (90.9, 110.1) 102.5 (93.4, 112.6) 101.1 (92.2, 110.9) 99.7 (90.8, 110.0) 97.0 (88.6, 107.0) <0.001
Education, n (%)      <0.001

Less than high school 1899 (9.3) 658 (13.4) 471 (10.9) 458 (8.0) 312 (5.8) 
High school or equivalent 7457 (36.7) 2178 (44.3) 1670 (38.7) 2036 (35.7) 1573 (21.1) 
College or above 10963 (54.0 %) 2076 (42.3) 2176 (50.4) 3207 (56.3) 3504 (65.0) 

Poverty income ratio 2.5 (1.2, 4.4) 1.93 (1.06, 3.54) 2.27 (1.21, 4.09) 2.64 (1.32, 4.59) 3.04 (1.50, 5.00) <0.001
Poverty income ratio, n (%)      <0.001
<1 3456 (17.0) 1103 (22.5) 781 (18.1) 864 (15.2) 708 (13.1) 
1-3 8330 (41.0) 2236 (45.5) 1849 (42.8) 2292 (40.2) 1953 (36.2) 
≥3 8533 (42.0) 1573 (32.0) 1687 (39.1) 2545 (44.6) 2728 (50.6) 

Physical activity, n (%)      <0.001
Less than moderate 9515 (46.8) 2435 (49.6) 2038 (47.2) 2650 (46.5) 2392 (44.4) 
Moderate 6398 (31.5) 1524 (31.0) 1342 (31.1) 1830 (32.1) 1702 (31.6) 
Vigorous 4406 (21.7) 953 (19.4) 937 (21.7) 1221 (21.7) 1295 (24.0) 

Smoking status, n (%)      <0.001
Never smoker 10542 (51.9) 2148 (43.7) 2200 (51.0) 2980 (52.3) 3214 (59.6) 
Former smoker 5857 (28.8) 1333 (27.1) 1231 (28.5) 1692 (29.7) 1601 (29.7) 
Current smoker 3920 (19.3) 1431 (29.1) 886 (20.5) 1029 (18.0) 574 (10.7) 

Alcohol consumption, n (%)      <0.001
Non-drinker 12459 (61.3) 3021 (61.5) 2665 (61.7) 3420 (60.0) 3353 (62.2) 
Mild to moderate 4979 (24.5) 1112 (22.6) 1024 (23.7) 1442 (25.3) 1401 (26.0) 
Heavy 2881 (14.2) 779 (15.9) 628 (14.5) 839 (14.7) 635 (11.8) 

SBP, mmHg 126.0 (115.0, 138.0) 128.0 (117.0, 141.0) 126.0 (116.0, 138.0) 125.0 (115.0, 137.0) 124.0 (114.0, 136.0) <0.001

DBP, mmHg 73.0 (65.0, 81.0) 74.0 (65.0, 82.0) 73.0 (65.0, 81.0) 73.0 (65.0, 81.0) 73.0 (65.0, 81.0) 0.256
Cancer, n (%) 2193 (10.8) 503 (10.2) 459 (10.6) 596 (10.5) 635 (11.8) 0.049
CKM stage, n (%)      <0.001

Stage 1 2506 (12.3) 438 (8.9) 462 (10.7) 767 (13.5) 839 (15.6) 
Stage 2 13478 (66.3) 3200 (65.1) 2868 (66.4) 3795 (66.6) 3615 (67.1) 
Stage 3 2011 (9.9) 558 (11.4) 461 (10.7) 535 (9.4) 457 (8.5) 
Stage 4 2324 (11.4) 716 (14.6) 526 (12.2) 604 (10.6) 478 (8.9) 

Laboratory indicators      
Hemoglobin A1c, % 5.5 (5.3, 5.9) 5.6 (5.3, 6.0) 5.6 (5.3, 6.0) 5.5 (5.3, 5.9) 5.5 (5.2, 5.8) <0.001
Total Cholesterol, mg/dL 196.0 (170.0, 224.0) 196.0 (170.0, 225.0) 196.0 (169.0, 226.0) 196.0 (170.0, 224.0) 195.0 (170.0, 223.0) 0.495
HDL-C, mg/dL 50.0 (41.0, 61.0) 48.0 (40.0, 59.0) 49.0 (41.0, 59.0) 50.0 (41.0, 61.0) 52.0 (43.0, 64.0) <0.001
eGFR, ml/min/1.73m2 91.8 (75.8, 106.4) 90.6 (73.7, 106.3) 91.4 (75.0, 106.5) 92.1 (76.1, 106.3) 92.5 (77.6, 106.5) <0.001
UACR, mg/g 7.2 (4.5, 14.8) 7.9 (4.8, 18.2) 7.4 (4.5, 15.9) 6.9 (4.4, 13.6) 6.7 (4.4, 13.2) <0.001

Multidimensional score      
SII 471.5 (337.9, 662.9) 480.0 (341.1, 688.0) 477.3 (339.3, 665.9) 468.3 (338.0, 658.0) 464.3 (333.1, 643.8) 0.002
Life’s Simple 7 score 8.0 (7.0, 9.0) 7.0 (6.0, 8.0) 8.0 (6.0, 9.0) 8.0 (7.0, 9.0) 9.0 (7.0, 10.0) <0.001
Frailty score × 10 1.3 (0.8, 1.9) 1.4 (0.9, 2.1) 1.3 (0.8, 2.0) 1.3 (0.8, 1.9) 1.2 (0.8, 1.7) <0.001

Note: Q1: OBS<15; Q2: 15≤ OBS <20; Q3: 20≤ OBS <26; Q4: OBS ≥26.
P values from the Kruskal-Wallis test and the Fisher’s exact test.
Abbreviations: CKM, cardiovascular-kidney-metabolic syndrome; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; HDL-C, high-density li-
poprotein cholesterol; SBP, systolic blood pressure; SII, systemic immune-inflammation index; UACR, urinary albumin to creatinine ratio.
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mortality was highest in Q1 of OBS [20.3 %] and lowest in Q4 [10.8 %]. 
Similarly, cardiovascular mortality decreased from 5.3 % in Q1 to 2.5 % 
in Q4, while non-cardiovascular mortality declined from 15.0 % to 8.3 % 
across quartiles. Additionally, all-cause mortality was lowest in the non- 
CKM group (2.2 %) and significantly higher in CKM stages 3 and 4, at 
48.1 % and 37.5 %, respectively. A similar trend was observed for car-
diovascular and non-cardiovascular mortality.

3.3. Relationship between OBS and CKM staging

Compared with Q4 of OBS, lower OBS quartiles were significantly 
associated with a higher likelihood of progressing from non-CKM to 
more advanced CKM staging (Fig. 1). For example, in Q1 of OBS, the 
odds ratios (OR) for progressing to CKM stages 1, 2, 3, and 4, compared 
to the non-CKM group, were 1.75 (95 % CI: 1.42–2.16), 2.80 (95 % CI: 
2.33–3.37), 3.75 (95 % CI: 2.90–4.85), and 4.41 (95 % CI: 3.49–5.58), 
respectively (all P < 0.001). A similar trend was observed when CKM 
stage 1/2 was used as the reference group. However, when comparing 
CKM stages 3 and 4, the associations were attenuated and no longer 
statistically significant across most OBS quartiles.

3.4. Associations between OBS and mortality outcomes in CKM patients

The KM survival curves (Supplementary Fig. S5) revealed that for all 
mortality outcomes, the Q1 of OBS group had the lowest probability of 
survival, whereas the Q4 of OBS group had the highest probability of 
survival, and all were statistically significant by Log-rank test (all P <
0.001). A significant negative linear relationship was found between 
OBS and all mortality outcomes (all P-overall < 0.001), but no non-linear 

relationship was found (Supplementary Fig. S6). Additionally, Fig. 2
shows that lower quartiles of OBS (Q1, Q2, Q3) were significantly 
associated with an increased risk of all-cause, cardiovascular and non- 
cardiovascular mortality compared to Q4 of OBS (all-cause mortality: 
Q1: HR 1.31, 95 % CI 1.18–1.46, Q2: HR 1.27, 95 % CI 1.14–1.42, Q3: 
HR 1.18, 95 % CI 1.06–1.32. Cardiovascular disease mortality: Q1: HR 
1.44, 95 % CI 1.16–1.79, Q2: HR 1.39, 95 % CI 1.11–1.74, Q3: HR 1.26, 
95 % CI 1.01–1.57. Non-cardiovascular disease mortality, Q1: HR 1.27, 
95 % CI 1.12–1.44, Q2: HR 1.23, 95 % CI 1.08–1.40, Q3: HR 1.16, 95 % 
CI 1.02–1.31).

3.5. Subgroup analysis

The results of subgroup analysis suggested a significant interaction of 
age in the relationship between OBS and cardiovascular mortality (P- 
interaction = 0.003), with the remainder showing no significant inter-
action (Supplementary Table S12). Additional RCS analyses showed a 
significant negative association between OBS and cardiovascular mor-
tality in those <65 years of age, whereas in those ≥65 years of age, the 
trend of negative association between OBS and the risk of cardiovascular 
mortality was more moderate, but a trend toward a decreasing risk was 
still present (Supplementary Fig. S7).

3.6. Sensitivity analysis

In sensitivity analyses, after excluding CKM patients who died within 
the first two-year follow-up and those with a history of cancer, and the 
association between each OBS and mortality outcome remained signif-
icant (Supplementary Table S13 and Supplementary Table S14).

Fig. 1. Association Between OBS Quartiles and CKM Staging (Stages 0–4). Q1: OBS<15; Q2: 15≤ OBS <20; Q3: 20≤ OBS <26; Q4: OBS ≥26. P values from 
multinomial logistic regression models adjusted for age, sex, race and ethnicity, education level, poverty income ratio, smoking status, alcohol consumption, physical 
activity. CI, confidence interval; CKM, cardiovascular-kidney-metabolic syndrome; OBS, oxidative balance score; OR, odds ratio.
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3.7. Optimal risk stratification cut-off points for OBS on mortality 
outcomes in CKM patients

For all-cause, cardiovascular, and non-cardiovascular mortality 
outcomes, the optimal risk stratification cut-off point for OBS was 22 in 
all cases (Supplementary Fig. S8). According to Supplementary 
Table S15, each mortality outcome risk was notably elevated in patients 
with OBS ≥22 compared to those with OBS <22.

3.8. Mediation analysis

Fig. 3 illustrates that OBS significantly mediated the associations of 
SII, LS7, and frailty scores with all-cause, cardiovascular, and non-
cardiovascular mortality outcomes (all P < 0.001). The proportions of 
effects mediated by OBS through the SII were 5.43 % (all-cause mor-
tality), 6.85 % (cardiovascular mortality) and 5.69 % (non-cardiovas-
cular mortality), respectively; the proportions of effects mediated by 

OBS through the LS7 were 26.03 %, 13.18 % and 32.85 %, respectively; 
and the proportions of effects mediated by OBS through the frailty score 
were 4.25 %, 4.44 % and 4.97 %, respectively.

3.9. Machine learning analysis

After inputting the OBS components and clinical characteristics into 
the five ML models, the best combinations of hyperparameters for the 
prediction models for predicting advanced CKM staging and all-cause 
mortality were determined after 5-fold cross-validation and manual 
fine-tuning, respectively (Supplementary Table S16 and Supplementary 
Table S17). For advanced CKM staging, ROC curves (Fig. 4a) and other 
metrics (Supplementary Table S18) were evaluated for all ML models in 
the testing set. LightGBM was considered to be the best model as it had 
the highest AUC (0.905), F1-score (0.668) and G-mean (0.677). For all- 
cause mortality in CKM, LightGBM was also the best performer with the 
highest AUC (0.875), F1-score (0.556) and G-mean (0.576) (Fig. 4b & 
Supplementary Table S19).

We calculated and ranked the corresponding SHAP values for each 
OBS component in the testing set for each of the two LightGBM models 
separately (Fig. 4c & d). In the LightGBM model for predicting advanced 
CKM staging, BMI and cotinine, both prooxidant factors, were the 
strongest predictors, indicating that higher BMI and tobacco exposure 
significantly increase the risk of CKM progression. Interestingly, higher 
alcohol intake was associated with a lower risk of CKM progression, 
though this inverse relationship should be interpreted cautiously due to 
potential confounding or the effects of moderate consumption. In 
contrast, the antioxidant components magnesium and vitamin B6 
showed potential protective effects against CKM progression. In the 
LightGBM model for predicting all-cause mortality in CKM, cotinine was 
the most influential predictor, further highlighting the detrimental 
impact of tobacco exposure on survival among CKM patients. 
Conversely, higher physical activity, an antioxidant factor, was associ-
ated with a reduced risk of all-cause mortality. Moreover, increased 
levels of the antioxidants (copper and riboflavin) were linked to a higher 
risk of mortality, suggesting that their effects may be context-dependent 
or influenced by underlying health conditions. Additionally, elevated 
vitamin E intake, another antioxidant, was associated with a protective 
effect.

4. Discussion

This study explored the associations between the OBS, CKM staging, 
and mortality outcomes among CKM patients, while evaluating its 
mediating role in pathways of key factors and mortality outcomes. RCS 
analysis demonstrated a significant negative linear relationship between 
OBS and mortality outcomes. Higher OBS quartiles were linked to better 

Fig. 2. Associations Between OBS and Mortality Outcomes in CKM Pa-
tients. P values from multivariable Cox proportional hazards models adjusted 
for age, sex, race and ethnicity, education level, poverty income ratio, smoking 
status, alcohol consumption, physical activity. CI, confidence interval; CKM, 
cardiovascular-kidney-metabolic syndrome; HR, hazard ratio; OBS, oxidative 
balance score.

Fig. 3. Mediation Analysis of OBS in the Associations Between SII, LS7, Frailty Scores, and Mortality Outcomes in CKM Patients. P values from the bootstrap 
sampling distribution or the normality assumption for statistical testing. CI, confidence interval; CKM, cardiovascular-kidney-metabolic syndrome; OBS, oxidative 
balance score.
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baseline characteristics and lower risks of all-cause, cardiovascular, and 
non-cardiovascular mortality. Lower OBS was significantly associated 
with greater odds of progressing to advanced CKM staging. The optimal 
OBS cut-off for mortality stratification was identified as 22. Mediation 
analysis showed that OBS significantly mediated the relationships be-
tween SII, LS7, frailty score with mortality outcomes. Additionally, the 
LightGBM models demonstrated excellent performance in predicting 
both advanced CKM staging and all-cause mortality, with an average 
AUC of 0.905 and 0.875, respectively. SHAP analysis was used to 
interpret the model, highlighting the most influential features. For 
advanced CKM staging, BMI, cotinine, alcohol intake, magnesium, and 
vitamin B6 were identified as the top predictors. In contrast, for all- 
cause mortality, cotinine, physical activity, vitamin E, copper, and 
riboflavin were the most impactful factors. These results highlight the 
potential roles of maintaining an antioxidant-based diet and lifestyle in 
mitigating CKM staging and mortality risk management.

The association between OBS and the CKM staging and mortality risk 

can be interpreted through multifaceted biological mechanisms. 
Elevated levels of oxidative stress are associated with an activated in-
flammatory response, and sustained activation of inflammation leads to 
vascular damage and deterioration of organ function [18,19], which is 
reflected in the mediating effects associated with SII. Additionally, 
oxidative stress disrupts vascular endothelial homeostasis by increasing 
ROS production components, exacerbates arterial stiffness, and further 
promotes the progression of cardiovascular or kidney disease [20,21]. 
Moreover, oxidative stress induces insulin resistance, lipid metabolism 
disorders and glucose metabolism abnormalities [22], exacerbating the 
progression of CKM as well as increasing the mortality risk. OBS, as a 
comprehensive measure of oxidative homeostasis, integrates 
pro-oxidant and antioxidant factors, reflecting the overall burden of 
oxidative stress on the body in a more holistic way than a single marker 
of oxidative stress. Based on the mediation analyses in our study, this 
comprehensive assessment metric can reveal the global impact of 
oxidative stress in pathological status such as inflammation, metabolic 

Fig. 4. ROC curves and SHAP-based feature importance of machine learning models in predicting advanced CKM staging and all-cause mortality. (a) ROC 
curves for model in predicting advanced CKM staging, (b) ROC curves for model in predicting all-cause mortality in CKM patients, (c) SHAP summary plot for model 
in predicting advanced CKM staging, (d) SHAP summary plot for model in predicting all-cause mortality in CKM patients. AUC, area under the curve; CKM, 
cardiovascular-kidney-metabolic syndrome; LightGBM, light gradient boosting machine; LR, logistic regression; MLP, multi-layer perceptron; RF, random forest; 
ROC, receiver operating characteristic; SHAP, SHapley Additive exPlanations; SVM, support vector machine.
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imbalance, and frailty, further elucidating its critical role in the staging 
of CKM and mortality risk.

Our work is the first to validate the negative association between 
OBS and mortality risk in the CKM population, which supplements and 
expands the evidence from existing literature. Our results are similar to 
previous studies on the relationship between oxidative stress and the 
occurrence or prognosis of chronic diseases. Son et al. reported that 
higher OBS was significantly associated with a lower incidence of new- 
onset CKD (lowest tertile as reference; highest tertile for male: HR 0.70, 
95 % CI 0.51–0.95; highest tertile for female: HR 0.73, 95 % CI 
0.55–0.96) [23]. Kong et al. demonstrated that OBS was significantly 
negatively correlated with the prevalence of dyslipidaemia (Q1 as 
reference; Q2: OR 0.86, 95 % CI 0.77–0.97; Q3: OR 0.80, 95 % CI 
0.72–0.91; Q4 OR 0.63, 95 % CI 0.56–0.70), and that continious OBS 
was also negatively associated with all-cause (HR 0.98, 95 % CI 
0.98–0.99) and cardiovascualr mortality (HR 0.98, 95 % CI 0.97–0.99) 
in dyslipidaemia patients [24]. Additionally, Li et al. indicated that OBS 
was negatively linked to the prevalence of metabolic syndrome and its 
assessment components (Q1 as reference; Q4 for metabolic syndrome: 
OR 0.55, 95 % CI 0.47–0.64; Q4 for abdominal obesity: OR 0.61, 95 % CI 
0.54–0.69; Q4 for hypertension: OR 0.69, 95 % CI 0.58–0.83) [25]. 
Notably, our study extends this evidence to the emerging concept of 
CKM, emphasizing the significance of OBS in this high-risk population.

Our study further highlights the clinical significance of OBS in 
mortality risk stratification of CKM patients. Specifically, we identified 
an optimal risk stratification threshold for OBS of 22, which is effective 
in identifying at-risk CKM populations and provides a valuable basis for 
developing targeted intervention strategies. Several studies have shown 
that different dietary patterns and antioxidant supplements can be 
effective in reducing levels of oxidative stress and maintaining meta-
bolic homeostasis. For example, Yubero-Serrano and colleagues re-
ported that patients who received the Mediterranean dietary 
intervention showed a significantly lower proportion of intracellular 
ROS-positive cells compared with the low-fat diet group, with a 
between-group difference of 11.1 % (95 % CI: 2.5 to 19.6) [26]. 
Thushara et al. found that crocin (100 μg/mL) effectively inhibited ROS 
generation in platelet-rich plasma (100.0 %) and washed platelets (99.0 
%) [27]. Additionally, de Meirelles et al. demonstrated a significant 
increase in platelet superoxide dismutase and catalase activity in pa-
tients who received 6 months of chronic exercise supervision (30 min of 
moderate-intensity treadmill exercise, resistance and stretching) 
compared to control patients who did not receive this exercise (super-
oxide dismutase activity: 24,638 ± 3375 vs. 42,998 ± 6371 U/mg 
protein; catalase activity: 0.14 ± 0.01 vs. 0.16 ± 0.01 U/mg protein), 
suggesting that exercise training of appropriate intensity improves 
oxidative stress status [28]. These findings highlight the potential ben-
efits of applying targeted dietary, supplement-based, and exercise in-
terventions to high-risk CKM populations with OBS <22, aiming to 
reduce oxidative stress and improve clinical outcomes.

To the best of our knowledge, this analysis is the first to develop and 
validate ML models for predicting advanced staging and all-cause 
mortality risk in CKM. By integrating simple clinical features with OBS 
components, especially using the LightGBM model, the model per-
formed well in CKM staging and mortality risk prediction, providing a 
new tool for risk stratification and management of CKM patients. The 
findings reveal the key role of antioxidants and pro-oxidants in CKM 
progression and mortality risk. Cotinine (a marker of smoking exposure) 
was one of the strongest predictors of advanced staging and mortality 
risk in CKM, highlighting the negative impact of smoking on the body’s 
metabolic status [29]. BMI, a pro-oxidant, also significantly increased 
the risk of CKM progression, highlighting the need for interventions 
targeting poor lifestyles such as obesity and smoking. Notably, alcohol 
intake was associated with a lower risk of CKM staging, a result that may 
be related to the potential metabolic effects of moderate alcohol con-
sumption or may be influenced by confounding factors. Ding et al. re-
ported that that the lowest risk of mortality and recurrent cardiovascular 

events in individuals with CVD might be associated with lower levels of 
alcohol consumption [30]. Therefore, this inverse relationship needs to 
be interpreted with caution and further studies are needed to clarify the 
mechanism. In addition, some antioxidant components showed protec-
tive effects, such as higher magnesium and vitamin B6 intake were 
significantly associated with a lower risk of CKM progression, and higher 
physical activity and Vitamin E intake were also associated with a lower 
risk of death in CKM patients. However, elevated copper was associated 
with an increased risk of death, suggesting that certain antioxidants may 
be dose-dependent or associated with underlying metabolic abnormal-
ities and that excessive intake may lead to toxicity due to copper accu-
mulation. Li et al. demonstrated that excessive copper intake was related 
to an increased risk of mortality and CVD incidence among the general 
adult population in Asia [31]. These results emphasise the importance of 
maintaining oxidative homeostasis in the management of CKM. Future 
studies need to further explore the interaction mechanisms between 
antioxidants and pro-oxidants, clarify the dose effect, and develop more 
precise and individualised intervention strategies for CKM patients.

4.1. Limitations

This study has the following limitations. First, this was an observa-
tional study, which makes it difficult to determine the causal relation-
ships between OBS and mortality risk, and prospective interventional 
studies are needed. Second, the calculation of OBS relied on dietary and 
lifestyle data, which may be subject to information bias and measure-
ment error, especially when relying on retrospective self-reporting. 
Third, the sample was derived from the CKM population in the 
NHANES, and there may have been misclassification of the CKM staging 
due to some missing information and limitations of self-reported data, 
which may have affected our findings. Fourth, although we adjusted for 
various potential confounders, the effect of residual confounding on the 
results cannot be avoided. Fifth, the relationship between OBS and CKM 
staging was based on cross-sectional analyses, and time series and cau-
sality could not be determined; therefore, prospective studies are 
required. Sixth, the sample was primarily derived from the CKM popu-
lation, and extrapolation of the results may be limited, pending vali-
dation in other populations. Seventh, the role of oxidative stress in 
cardiology remains controversial, and in light of this, our findings 
should be interpreted with caution, especially since OBS is not a direct 
measure of oxidative stress. Further prospective studies and mechanistic 
studies are needed to clarify the causal role of oxidative stress in CKM- 
related mortality and to validate the utility of OBS as a predictor in 
clinical practice. Eighth, although we found that OBS <22 could be used 
as a risk stratification threshold for high-risk CKM patients, data from 
clinical trials directly intervening in OBS are lacking, and thus specific 
strategies to improve OBS and their long-term effects are needed. 
Finally, the ML model was developed and validated using only internal 
datasets without external validation, which may limit the general-
isability of the findings. Despite interpreting model predictions using 
SHAP values, a causal relationship could not be established due to the 
observational design. Future studies should incorporate external data-
sets and prospective designs to confirm these findings and improve the 
robustness and clinical applicability of predictive models.

5. Conclusion

This study reveals for the first time the negative correlation between 
OBS and the CKM staging and the mortality risk of CKM patients, with a 
clear dose-response relationship, emphasizing the clinical value of OBS 
as a risk stratification and disease management tool. Particularly, OBS 
below 22 can effectively identify high-risk groups, suggesting the 
important role of oxidative stress in the poor prognosis of CKM popu-
lation. Moreover, the LightGBM model demonstrated optimal discrimi-
natory power and predictive accuracy in predicting the risk of advanced 
CKM staging (AUC for CKM staging: 0.905) and all-cause mortality (AUC 
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for all-cause mortality of CKM: 0.875), with cotinine being the main risk 
factor. By optimising dietary structure and improving lifestyle, it is 
promising to enhance the level of OBS, delay the staging of CKM and 
improve the prognosis of patients, and promote the clinical application 
of precision chronic disease management. Additionally, future pro-
spective studies should further validate these findings in larger and more 
diverse cohorts to explore mechanistic pathways underlying the path-
ophysiology between oxidative stress and CKM.

CRediT authorship contribution statement

Yang Chen: Writing – review & editing, Writing – original draft, 
Visualization, Validation, Formal analysis, Data curation, Conceptuali-
zation. Shuang Wu: Writing – review & editing, Visualization, Valida-
tion, Formal analysis, Data curation, Conceptualization. Hongyu Liu: 
Writing – review & editing, Visualization, Validation. Ziyi Zhong: 
Writing – review & editing. Tommaso Bucci: Writing – review & edit-
ing. Yimeng Wang: Writing – review & editing. Manlin Zhao: Writing – 
review & editing. Yang Liu: Writing – review & editing. Zhengkun 
Yang: Writing – review & editing, Visualization, Validation. Ying Gue: 
Writing – review & editing, Supervision. Garry McDowell: Writing – 
review & editing, Supervision. Bi Huang: Writing – review & editing, 
Supervision, Methodology, Conceptualization. Gregory Y.H. Lip: 
Writing – review & editing, Supervision, Methodology, 
Conceptualization.

Funding

No funding towards this work.

Declaration of competing interest

The authors declare that there are no conflicts of interest associated 
with this manuscript. All authors have no financial, personal, or pro-
fessional relationships that could inappropriately influence or bias the 
content of this work.

Acknowledgements

The authors sincerely thank the researchers, staff, and participants of 
the NHANES study for their invaluable contributions.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.redox.2025.103588.

Data availability

Data will be made available on request.

References

[1] C.E. Ndumele, J. Rangaswami, S.L. Chow, I.J. Neeland, K.R. Tuttle, S.S. Khan, 
J. Coresh, R.O. Mathew, C.M. Baker-Smith, M.R. Carnethon, J.-P. Despres, J.E. Ho, 
J.J. Joseph, W.N. Kernan, A. Khera, M.N. Kosiborod, C.L. Lekavich, E.F. Lewis, K. 
B. Lo, B. Ozkan, L.P. Palaniappan, S.S. Patel, M.J. Pencina, T.M. Powell-Wiley, L. 
S. Sperling, S.S. Virani, J.T. Wright, R. Rajgopal Singh, M.S.V. Elkind, 
Cardiovascular-kidney-metabolic health: a presidential advisory from the 
American heart association, Circulation 148 (20) (2023) 1606–1635.

[2] R. Aggarwal, J.W. Ostrominski, M. Vaduganathan, Prevalence of cardiovascular- 
kidney-metabolic syndrome stages in US adults, 2011-2020, JAMA 331 (21) (2024) 
1858–1860.

[3] V. Trimarco, R. Izzo, D. Pacella, M. Virginia Manzi, U. Trama, M. Lembo, 
R. Piccinocchi, P. Gallo, G. Esposito, C. Morisco, F. Rozza, P. Mone, S. 
S. Jankauskas, G. Piccinocchi, G. Santulli, B. Trimarco, Increased prevalence of 
cardiovascular-kidney-metabolic syndrome during COVID-19: a propensity score- 
matched study, Diabetes Res. Clin. Pract. 218 (2024) 111926.

[4] S.A. Sebastian, I. Padda, G. Johal, Cardiovascular-Kidney-Metabolic (CKM) 
syndrome: a state-of-the-art review, Curr. Probl. Cardiol. 49 (2) (2024) 102344.

[5] P. Sen, J. Hamers, T. Sittig, B. Shashikadze, L. d’Ambrosio, J.B. Stöckl, 
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