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Abstract 
We present a genome assembly from a specimen of Gibbaranea 
gibbosa (orbweaving spider; Arthropoda; Arachnida; Araneae; 
Araneidae). The genome sequence has a total length of 2,816.88 
megabases. Most of the assembly (98.61%) is scaffolded into 13 
chromosomal pseudomolecules, including the X1 and X2 sex 
chromosomes. The mitochondrial genome has also been assembled 
and is 14.1 kilobases in length.
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Species taxonomy
Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Pro-
tostomia; Ecdysozoa; Panarthropoda; Arthropoda; Chelicerata; 
Arachnida; Araneae; Araneomorphae; Entelegynae; Orbicular-
iae; Araneoidea; Araneidae; Gibbaranea; Gibbaranea gibbosa  
(Walckenaer, 1802) (NCBI:txid1907000)

Background
Gibbaranea gibbosa (Walckenaer, 1802) is a medium-sized 
orbweaving spider (Araneidae) with adult females ranging from  
5–7 mm in length and males from 4–5 mm (Locket & Millidge, 
1951; Roberts, 1987). Both sexes are adult from early to mid- 
summer (Harvey et al., 2002). It is eminently recognisable through 
its distinctive carapace, decorated with two prominent tuber-
cles anterolaterally on the dorsal side of the abdomen (Roberts,  
1987) and is unlikely to be confused with other species except in 
the immature stages when it can superficially resemble Araneus  
angulatus (Bee et al., 2020). 

Whilst previously described as Araneus gibbosa, Archer (1951) 
split the genus Gibbaranea from Araneus Clerck, 1757. Four  
species of Gibbaranea occur in continental Europe – G. gibbosa,  
G. bituberculata (Walckenaer, 1802), G. omoeda (Thorell,  
1870), and G. ullrichi (Hahn, 1835) (van Helsdingen, 1996a), 
though only G. bituberculata and G. gibbosa have been recorded 
from the UK and only G. gibbosa from Ireland. However,  
G. bituberculata was found in only a single UK locality and with 
no sightings since 1950 it is potentially now locally extinct 
(Harvey et al., 2002), making G. gibbosa the sole representative  
of the genus in Britain and Ireland.

This species can be difficult to detect due to its colouration and 
habitat, being typically drably coloured. In northern Europe,  
including the UK and Ireland, the opisthoma is typically greenish  
in colour (Bee et al., 2020; Lissner & Bosmans, 2016), though 
in southern Europe they are typically less green (Lissner &  
Bosmans, 2016) with more variable colouration from light brown 
to greenish grey (Nentwig et al., 2024). There is an obvious  
folium (the broad leaf-like marking on the dorsal abdomen  
midline), sometimes with a paler margin (Nentwig et al., 2024). 
The carapace is brown and legs brown and annulated. Its preferred 
habitat is often high in trees, though it occurs also on shrubs,  
hedgerows and scrub (Harvey et al., 2002). Here it spins strong, 
dense, inconspicuous orb-webs, often in the tree crown.

It is common throughout continental Europe into western Asia 
occurring as far east as Iran (Zamani et al., 2022a) across Europe  
to the Iberian Peninsula (Branco et al., 2019), and as far north 
as Finland (Zamani et al., 2022b). In the UK it is widespread 
in the south and east but becomes more rare further west and 
north (https://srs.britishspiders.org.uk/portal.php/p/Summary/s/ 
Gibbaranea+gibbosa). On the island of Ireland there are species  
records from 11 counties, from Cork in the south to Antrim  
in the north (van Helsdingen, 1996b) although it likely to be  
found elsewhere.

Here we present a chromosomally complete genome sequence  
for G. gibbosa based on an individual collected from Wytham 

woods, Oxfordshire. Spider genomes provide important insights 
into venomics, evo-devo, silk production and provide addi-
tional data to aid in resolution of phylogenetic difficulties  
(Garb et al., 2018). This additional genome will aid such efforts.

Genome sequence report
Sequencing data
The genome of a specimen of Gibbaranea gibbosa (Figure 1)  
was sequenced using Pacific Biosciences single-molecule HiFi 
long reads, generating 122.54 Gb from 14.08 million reads.  
GenomeScope analysis of the PacBio HiFi data estimated  
the haploid genome size at 2,835.31 Mb, with a heterozygos-
ity of 1.11% and repeat content of 37.00%. These values provide  
an initial assessment of genome complexity and the challenges 
anticipated during assembly. Based on this estimated genome  
size, the sequencing data provided approximately 42.0x cover-
age of the genome. Chromosome conformation Hi-C sequencing  
produced 240.61 Gb from 1,593.46 million reads.

Table 1 summarises the specimen and sequencing informa-
tion, including the BioProject, study name, BioSample numbers, 
and sequencing data for each technology.

Assembly statistics
The primary haplotype was assembled, and contigs correspond-
ing to an alternate haplotype were also deposited in INSDC  
databases. The assembly was improved by manual curation, 
which corrected 77 misjoins or missing joins and removed 16  
haplotypic duplications. These interventions reduced the total 
assembly length by 0.72%, decreased the scaffold count by 9.88%, 
and increased the scaffold N50 by 5.26%. The final assembly  
has a total length of 2,816.88 Mb in 227 scaffolds, with 208  
gaps, and a scaffold N50 of 226.11 Mb (Table 2).

The snail plot in Figure 2 provides a summary of the assem-
bly statistics, indicating the distribution of scaffold lengths and  
other assembly metrics. Figure 3 shows the distribution of scaf-
folds by GC proportion and coverage. Figure 4 presents a cumu-
lative assembly plot, with separate curves representing different  
scaffold subsets assigned to various phyla, illustrating the  
completeness of the assembly.

Figure 1. Photograph of the Gibbaranea gibbosa (qqGibGibb2) 
specimen used for genome sequencing.
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Table 1. Specimen and sequencing data for Gibbaranea gibbosa.

Project information

Study title Gibbaranea gibbosa

Umbrella BioProject PRJEB73645

Species Gibbaranea gibbosa

BioSpecimen SAMEA10166988

NCBI taxonomy ID 1907000

Specimen information

Technology ToLID BioSample 
accession

Organism part

PacBio long read sequencing qqGibGibb2 SAMEA10201191 cephalothorax

Hi-C sequencing qqGibGibb1 SAMEA10200839 Whole organism

Sequencing information

Platform Run 
accession

Read count Base count 
(Gb)

Hi-C Illumina NovaSeq 6000 ERR12737269 1.59e+09 240.61

PacBio Revio ERR12736872 9.41e+06 72.19

PacBio Sequel IIe ERR12736873 2.28e+06 22.74

PacBio Sequel IIe ERR12736871 2.38e+06 27.61

Most of the assembly sequence (98.51%) was assigned to 13 
chromosomal-level scaffolds, representing 11 autosomes and the  
X

1
 and X

2
 sex chromosome. These chromosome-level scaf-

folds, confirmed by Hi-C data, are named according to size  
(Figure 5; Table 3). During curation, chromosomes X

1
 and X

2
  

were assigned based on Hi-C signal.

The mitochondrial genome was also assembled. This sequence 
is included as a contig in the multifasta file of the genome  
submission and as a standalone record in GenBank.

Assembly quality metrics
The estimated Quality Value (QV) and k-mer completeness  
metrics, along with BUSCO completeness scores, were calcu-
lated for each haplotype and the combined assembly. The QV  
reflects the base-level accuracy of the assembly, while k-mer  
completeness indicates the proportion of expected k-mers iden-
tified in the assembly. BUSCO scores provide a measure of 
completeness based on benchmarking universal single-copy  
orthologues.

The primary haplotype has a QV of 66.8, and the combined pri-
mary and alternate assemblies achieve an estimated QV of 65.1.  
The k-mer completeness for the primary haplotype is 77.86%, 
and for the alternate haplotype it is 75.90%. The combined  
primary and alternate assemblies achieve a k-mer complete-
ness of 99.47%. BUSCO analysis using the arachnida_odb10  

reference set (n = 2,934) indicated a completeness score of  
98.3% (single = 92.4%, duplicated = 5.9%).

Table 2 provides assembly metric benchmarks adapted from  
Rhie et al. (2021) and the Earth BioGenome Project Report on 
Assembly Standards September 2024. The achieves the EBP  
reference standard of 7.C.Q66.

Methods
Sample acquisition and DNA barcoding
An adult female Gibbaranea gibbosa (specimen ID Ox001412, 
ToLID qqGibGibb2) was collected from Wytham Woods,  
Oxfordshire, United Kingdom (latitude 51.77, longitude -1.33)  
on 2021-06-03 by potting. The specimen used for Hi-C  
sequencing (specimen ID Ox001199, ToLID qqGibGibb1) was 
collected from the same location on 2021-04-13 by potting.  
Both specimens were collected and identified by Liam  
Crowley (University of Oxford) and preserved on dry ice.

The initial identification was verified by an additional DNA 
barcoding process according to the framework developed by  
Twyford et al. (2024). A small sample was dissected from the 
specimen and stored in ethanol, while the remaining parts were  
shipped on dry ice to the Wellcome Sanger Institute (WSI)  
(Pereira et al., 2022). The tissue was lysed, the COI marker 
region was amplified by PCR, and amplicons were sequenced 
and compared to the BOLD database, confirming the species  
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Table 2. Genome assembly data for Gibbaranea gibbosa.

Genome assembly

Assembly name qqGibGibb2.1

Assembly accession GCA_964059485.1

Alternate haplotype accession GCA_964059525.1

Assembly level for primary assembly chromosome

Span (Mb) 2,816.88

Number of contigs 435

Number of scaffolds 227

Longest scaffold (Mb) 435.79

Assembly metrics Measure Benchmark

Contig N50 length 50.82 Mb ≥ 1 Mb

Scaffold N50 length 226.11 Mb = chromosome N50

Consensus quality (QV) Primary: 66.8; alternate: 63.9; 
combined 65.1

≥ 40

k-mer completeness Primary: 77.86%; alternate: 75.90%; 
combined: 99.47%

≥ 95%

BUSCO* C:98.3%[S:92.4%,D:5.9%], 
F:0.6%,M:1.1%,n:2,934

S > 90%, D < 5%

Percentage of assembly mapped to 
chromosomes

98.51% ≥ 90%

Sex chromosomes X1 and X2 localised homologous pairs

Organelles Mitochondrial genome: 14.1 kb complete single alleles

* BUSCO scores based on the arachnida_odb10 BUSCO set using version 5.5.0. C = complete [S = single copy, D = duplicated], 
F = fragmented, M = missing, n = number of orthologues in comparison.

identification (Crowley et al., 2023). Following whole  
genome sequence generation, the relevant DNA barcode region 
was also used alongside the initial barcoding data for sample  
tracking at the WSI (Twyfordet al., 2024). The standard  
operating procedures for Darwin Tree of Life barcoding have  
been deposited on protocols.io (Beasley et al., 2023).

Metadata collection for samples adhered to the Darwin Tree  
of Life project standards described by Lawniczak et al. (2022).

Nucleic acid extraction
The workflow for high molecular weight (HMW) DNA extrac-
tion at the Wellcome Sanger Institute (WSI) Tree of Life Core  
Laboratory includes a sequence of procedures: sample prepara-
tion and homogenisation, DNA extraction, fragmentation and  
purification. Detailed protocols are available on protocols.io  
(Denton et al., 2023b). The qqGibGibb2 sample was prepared  
for DNA extraction by weighing and dissecting it on dry 
ice (Jay et al., 2023). Tissue from the cephalothorax was  
homogenised using a PowerMasher II tissue disruptor (Denton  
et al., 2023a).

HMW DNA was extracted in the WSI Scientific Operations 
core using the Automated MagAttract v2 protocol (Oatley et al.,  
2023). The DNA was sheared into an average fragment size 
of 12–20 kb in a Megaruptor 3 system (Bates et al., 2023).  
Sheared DNA was purified by solid-phase reversible immo-
bilisation, using AMPure PB beads to eliminate shorter frag-
ments and concentrate the DNA (Strickland et al., 2023). The  
concentration of the sheared and purified DNA was assessed  
using a Nanodrop spectrophotometer and Qubit Fluorometer 
using the Qubit dsDNA High Sensitivity Assay kit. Fragment 
size distribution was evaluated by running the sample on the  
FemtoPulse system.

Hi-C sample preparation
Tissue from the whole organism of the qqGibGibb1 sample was 
processed for Hi-C sequencing at the WSI Scientific Operations 
core, using the Arima-HiC v2 kit. In brief, 20–50 mg of frozen  
tissue (stored at –80 °C) was fixed, and the DNA crosslinked 
using a TC buffer with 22% formaldehyde concentration. After 
crosslinking, the tissue was homogenised using the Diagnocine 
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Figure 2. Genome assembly of Gibbaranea gibbosa, qqGibGibb2.1: metrics. The BlobToolKit snail plot provides an overview of 
assembly metrics and BUSCO gene completeness. The circumference represents the length of the whole genome sequence, and the main 
plot is divided into 1,000 bins around the circumference. The outermost blue tracks display the distribution of GC, AT, and N percentages 
across the bins. Scaffolds are arranged clockwise from longest to shortest and are depicted in dark grey. The longest scaffold is indicated 
by the red arc, and the deeper orange and pale orange arcs represent the N50 and N90 lengths. A light grey spiral at the centre shows 
the cumulative scaffold count on a logarithmic scale. A summary of complete, fragmented, duplicated, and missing BUSCO genes in the 
arachnida_odb10 set is presented at the top right. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/
view/GCA_964059485.1/dataset/GCA_964059485.1/snail.

Power Masher-II and BioMasher-II tubes and pestles. Following 
the Arima-HiC v2 kit manufacturer’s instructions, crosslinked  
DNA was digested using a restriction enzyme master mix. The  
5’-overhangs were filled in and labelled with biotinylated  
nucleotides and proximally ligated. An overnight incubation was  
carried out for enzymes to digest remaining proteins and for 
crosslinks to reverse. A clean up was performed with SPRIselect  
beads prior to library preparation. Additionally, the biotinylation  
percentage was estimated using the Qubit Fluorometer  
v4.0 (Thermo Fisher Scientific) and Qubit HS Assay Kit and  
Arima-HiC v2 QC beads.

Library preparation and sequencing
Library preparation and sequencing were performed at the WSI  
Scientific Operations core.

PacBio HiFi
At a minimum, samples were required to have an average frag-
ment size exceeding 8 kb and a total mass over 400 ng to pro-
ceed to the low input SMRTbell Prep Kit 3.0 protocol (Pacific  
Biosciences, California, USA), depending on genome size 
and sequencing depth required. Libraries were prepared using 
the SMRTbell Prep Kit 3.0 (Pacific Biosciences, California, 
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Figure 3. Genome assembly of Gibbaranea gibbosa, qqGibGibb2.1: BlobToolKit GC-coverage plot. Blob plot showing sequence 
coverage (vertical axis) and GC content (horizontal axis). The circles represent scaffolds, with the size proportional to scaffold length and 
the colour representing phylum membership. The histograms along the axes display the total length of sequences distributed across 
different levels of coverage and GC content. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/
GCA_964059485.1/blob.

USA) as per the manufacturer’s instructions. The kit includes 
the reagents required for end repair/A-tailing, adapter ligation, 
post-ligation SMRTbell bead cleanup, and nuclease treatment.  
Following the manufacturer’s instructions, size selection and  
clean up was carried out using diluted AMPure PB beads 
(Pacific Biosciences, California, USA). DNA concentration was  
quantified using the Qubit Fluorometer v4.0 (Thermo Fisher  
Scientific) with Qubit 1X dsDNA HS assay kit and the final 
library fragment size analysis was carried out using the Agilent 
Femto Pulse Automated Pulsed Field CE Instrument (Agilent  
Technologies) and gDNA 55kb BAC analysis kit.

Samples were sequenced using the Sequel IIe system (Pacific 
Biosciences, California, USA). The concentration of the library  
loaded onto the Sequel IIe was in the range 40–135 pM. The  
SMRT link software, a PacBio web-based end-to-end work-
flow manager, was used to set-up and monitor the run, as well as  
perform primary and secondary analysis of the data upon  
completion.

Hi-C
For Hi-C library preparation, DNA was fragmented using 
the Covaris E220 sonicator (Covaris) and size selected using  
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Figure 4. Genome assembly of Gibbaranea gibbosa, qqGibGibb2.1: BlobToolKit cumulative sequence plot. The grey line shows 
cumulative length for all scaffolds. Coloured lines show cumulative lengths of scaffolds assigned to each phylum using the buscogenes 
taxrule. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/GCA_964059485.1/dataset/GCA_
964059485.1/cumulative.

Figure 5. Genome assembly of Gibbaranea gibbosa: Hi-C contact map of the qqGibGibb2.1 assembly, visualised using HiGlass.
Chromosomes are shown in order of size from left to right and top to bottom. An interactive version of this figure may be viewed at https://
genome-note-higlass.tol.sanger.ac.uk/l/?d=K4Y5RpnLTA-UQCWSLaiYsQ.
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SPRISelect beads to 400 to 600 bp. The DNA was then enriched 
using the Arima-HiC v2 kit Enrichment beads. Using the  
NEBNext Ultra II DNA Library Prep Kit (New England Biolabs) 
for end repair, a-tailing, and adapter ligation. This uses a cus-
tom protocol which resembles the standard NEBNext Ultra II  
DNA Library Prep protocol but where library preparation occurs 
while DNA is bound to the Enrichment beads. For library ampli-
fication, 10 to 16 PCR cycles were required, determined by  
the sample biotinylation percentage. The Hi-C sequencing was 
performed using paired-end sequencing with a read length of  
150 bp on an Illumina NovaSeq 6000 instrument.

Genome assembly, curation and evaluation
Assembly
Prior to assembly of the PacBio HiFi reads, a database of k-mer 
counts (k = 31) was generated from the filtered reads using FastK. 
GenomeScope2 (Ranallo-Benavidez et al., 2020) was used to 
analyse the k-mer frequency distributions, providing estimates  
of genome size, heterozygosity, and repeat content.

The HiFi reads were first assembled using Hifiasm (Cheng et al., 
2021) with the --primary option. The Hi-C reads were mapped 
to the primary contigs using bwa-mem2 (Vasimuddin et al.,  
2019). The contigs were further scaffolded using the provided  
Hi-C data (Rao et al., 2014) in YaHS (Zhou et al., 2023) using 
the --break option for handling potential misassemblies. The 
scaffolded assemblies were evaluated using Gfastats (Formenti  
et al., 2022), BUSCO (Manni et al., 2021) and MERQURY.FK 
(Rhie et al., 2020).

The mitochondrial genome was assembled using MitoHiFi  
(Uliano-Silva et al., 2023), which runs MitoFinder (Allio et al., 
2020) and uses these annotations to select the final mitochondrial 
contig and to ensure the general quality of the sequence.

Assembly curation
The assembly was decontaminated using the Assembly Screen 
for Cobionts and Contaminants (ASCC) pipeline (article in  
preparation). Flat files and maps used in curation were generated 
in TreeVal (Pointon et al., 2023). Manual curation was prima-
rily conducted using PretextView (Harry, 2022), with additional  
insights provided by JBrowse2 (Diesh et al., 2023) and HiGlass 
(Kerpedjiev et al., 2018). Scaffolds were visually inspected  
and corrected as described by Howe et al. (2021). Any identified 
contamination, missed joins, and mis-joins were corrected, and 
duplicate sequences were tagged and removed. Sex chromosomes 
were identified by Hi-C data coverage. The curation process is 
documented at https://gitlab.com/wtsi-grit/rapid-curation (article 
in preparation).

Assembly quality assessment
The Merqury.FK tool (Rhie et al., 2020), run in a Singular-
ity container (Kurtzer et al., 2017), was used to evaluate k-mer  
completeness and assembly quality for the primary and alternate 
haplotypes using the k-mer databases (k = 31) that were com-
puted prior to genome assembly. The analysis outputs included  
assembly QV scores and completeness statistics.

A Hi-C contact map was produced for the final version of the  
assembly. The Hi-C reads were aligned using bwa-mem2  
(Vasimuddin et al., 2019) and the alignment files were combined 
using SAMtools (Danecek et al., 2021). The Hi-C alignments  
were converted into a contact map using BEDTools (Quinlan 
& Hall, 2010) and the Cooler tool suite (Abdennur & Mirny,  
2020). The contact map is visualised in HiGlass (Kerpedjiev  
et al., 2018).

The blobtoolkit pipeline is a Nextflow port of the previous  
Snakemake Blobtoolkit pipeline (Challis et al., 2020). It aligns 
the PacBio reads in SAMtools and minimap2 (Li, 2018) and 
generates coverage tracks for regions of fixed size. In parallel, it  
queries the GoaT database (Challis et al., 2023) to identify 
all matching BUSCO lineages to run BUSCO (Manni et al., 
2021). For the three domain-level BUSCO lineages, the pipeline  
aligns the BUSCO genes to the UniProt Reference Proteomes  
database (Bateman et al., 2023) with DIAMOND blastp (Buchfink 
et al., 2021). The genome is also divided into chunks according 
to the density of the BUSCO genes from the closest taxonomic 
lineage, and each chunk is aligned to the UniProt Reference  
Proteomes database using DIAMOND blastx. Genome sequences 
without a hit are chunked using seqtk and aligned to the NT  
database with blastn (Altschul et al., 1990). The blobtools  
suite combines all these outputs into a blobdir for visualisation.

The blobtoolkit pipeline was developed using nf-core tooling 
(Ewels et al., 2020) and MultiQC (Ewels et al., 2016), relying 
on the Conda package manager, the Bioconda initiative  

Table 3. Chromosomal pseudomolecules 
in the genome assembly of Gibbaranea 
gibbosa, qqGibGibb2.

INSDC 
accession

Name Length (Mb) GC%

OZ060745.1 1 435.79 32

OZ060746.1 2 318.48 31.5

OZ060747.1 3 316.74 31.5

OZ060748.1 4 238.9 31.5

OZ060749.1 5 226.11 32

OZ060750.1 6 216.38 31.5

OZ060751.1 7 211.95 32

OZ060752.1 8 190.43 32

OZ060755.1 9 150.93 32

OZ060756.1 10 56.36 32.5

OZ060757.1 11 47.6 32.5

OZ060758.1 MT 0.01 24

OZ060753.1 X1 186.29 31.5

OZ060754.1 X2 178.82 31.5

Page 9 of 16

Wellcome Open Research 2025, 10:97 Last updated: 28 MAR 2025

https://github.com/thegenemyers/FASTK
https://gitlab.com/wtsi-grit/rapid-curation
https://www.anaconda.com/


(Grüning et al., 2018), the Biocontainers infrastructure (da Veiga 
Leprevost et al., 2017), as well as the Docker (Merkel, 2014)  
and Singularity (Kurtzer et al., 2017) containerisation solutions.

Table 4 contains a list of relevant software tool versions and 
sources.

Wellcome Sanger Institute – Legal and Governance
The materials that have contributed to this genome note have  
been supplied by a Darwin Tree of Life Partner. The submission 
of materials by a Darwin Tree of Life Partner is subject to the  

‘Darwin Tree of Life Project Sampling Code of Practice’, which 
can be found in full on the Darwin Tree of Life website here.  
By agreeing with and signing up to the Sampling Code of  
Practice, the Darwin Tree of Life Partner agrees they will meet 
the legal and ethical requirements and standards set out within  
this document in respect of all samples acquired for, and  
supplied to, the Darwin Tree of Life Project.

Further, the Wellcome Sanger Institute employs a process whereby 
due diligence is carried out proportionate to the nature of the  
materials themselves, and the circumstances under which they 

Table 4. Software tools: versions and sources.

Software 
tool

Version Source

BEDTools 2.30.0 https://github.com/arq5x/bedtools2

BLAST 2.14.0 ftp://ftp.ncbi.nlm.nih.gov/blast/executables/
blast+/

BlobToolKit 4.3.9 https://github.com/blobtoolkit/blobtoolkit

BUSCO 5.5.0 https://gitlab.com/ezlab/busco

bwa-mem2 2.2.1 https://github.com/bwa-mem2/bwa-mem2

Cooler 0.8.11 https://github.com/open2c/cooler

DIAMOND 2.1.8 https://github.com/bbuchfink/diamond

fasta_
windows

0.2.4 https://github.com/tolkit/fasta_windows

FastK 427104ea91c78c3b8b8b49f1a7d6bbeaa869ba1c https://github.com/thegenemyers/FASTK

Gfastats 1.3.6 https://github.com/vgl-hub/gfastats

GoaT CLI 0.2.5 https://github.com/genomehubs/goat-cli

Hifiasm 0.19.8-r603 https://github.com/chhylp123/hifiasm

HiGlass 44086069ee7d4d3f6f3f0012569789ec138f42b84a
a44357826c0b6753eb28de

https://github.com/higlass/higlass

Merqury.FK d00d98157618f4e8d1a9190026b19b471055b22e https://github.com/thegenemyers/
MERQURY.FK

Minimap2 2.24-r1122 https://github.com/lh3/minimap2

MitoHiFi 3 https://github.com/marcelauliano/MitoHiFi

MultiQC 1.14, 1.17, and 1.18 https://github.com/MultiQC/MultiQC

NCBI 
Datasets

15.12.0 https://github.com/ncbi/datasets

Nextflow 23.10.0 https://github.com/nextflow-io/nextflow

PretextView 0.25 https://github.com/sanger-tol/PretextView

samtools 1.19.2 https://github.com/samtools/samtools

sanger-tol/
ascc

- https://github.com/sanger-tol/ascc
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Software 
tool

Version Source

sanger-tol/
blobtoolkit

0.5.1 https://github.com/sanger-tol/blobtoolkit

Seqtk 1.3 https://github.com/lh3/seqtk

Singularity 3.9.0 https://github.com/sylabs/singularity

TreeVal 1.2.0 https://github.com/sanger-tol/treeval

YaHS 1.2a.2 https://github.com/c-zhou/yahs

have been/are to be collected and provided for use. The purpose  
of this is to address and mitigate any potential legal and/or ethi-
cal implications of receipt and use of the materials as part  
of the research project, and to ensure that in doing so we align 
with best practice wherever possible. The overarching areas of  
consideration are:

•    Ethical review of provenance and sourcing of the material

•     Legality of collection, transfer and use (national and  
international)

Each transfer of samples is further undertaken according to 
a Research Collaboration Agreement or Material Transfer  
Agreement entered into by the Darwin Tree of Life Partner,  
Genome Research Limited (operating as the Wellcome Sanger 
Institute), and in some circumstances other Darwin Tree of  
Life collaborators.

Data availability
European Nucleotide Archive: Gibbaranea gibbosa. Acces-
sion number PRJEB73645; https://identifiers.org/ena.embl/
PRJEB73645. The genome sequence is released openly for  
reuse. The Gibbaranea gibbosa genome sequencing initiative is 
part of the Darwin Tree of Life (DToL) project. All raw sequence 
data and the assembly have been deposited in INSDC databases. 
The genome will be annotated using available RNA-Seq data  
and presented through the Ensembl pipeline at the European  

Bioinformatics Institute. Raw data and assembly accession  
identifiers are reported in Table 1 and Table 2.
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This data note reports a chromosome level genome for the spider Gibbaranea gibbosa, the only 
extant representative of this genus in Britain and Ireland.  The work follows the protocols of the 
Wellcome Sanger Trust Darwin Tree of Life project and appears thorough in terms of producing a 
high-quality genome assembly.  This is a nice contribution to the growing genomic resources for 
spiders. 
 
I have a few comments related to issues I am interested in and perhaps things for the authors to 
think about going forward. 
 

It would be worth collecting at least one more individual, if not an additional male and 
female from the same locality as the specimens used for the genome sequencing to be 
deposited in a museum as a morphological voucher.  That may become important if there is 
a need to document some aspect of phenotype in relation to the genome.  
 

1. 

The use of mitochondrial genotyping of the sequenced specimen and comparing to the 
BOLD database makes sense for confirming the species identity, but the database is only as 
reliable as the original input data and how close the match is.  The authors could briefly 
comment on how good the match of their sequenced specimen’s barcode is to those that it 
matches in the database with this species name.  The paper only says the species was 
confirmed but not the level of similarity. 
 

2. 

The paper states the genome will be annotated using available RNA-Seq data and presented 
through the Ensemble pipeline at the European Bioinformatics Institute.  It is unclear if the 
available RNA-Seq data will be from other spider species or from this species (Gibbaranea 
gibbosa).  It would be ideal and seemingly not much more effort to include additional 
specimens from the same population for RNA-Seq for annotation.  While an annotation 
based on other spider species RNA/protein sequences may be reasonable and probably 
could yield good BUSCO scores, most likely it will miss out on finding and/or properly 
annotating the more interesting and rapidly evolving genes like those involved in venom 

3. 
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and silk, which are what many people in the community would be interested in.  
 
The authors say that for the Pacbio HiFi sequencing that samples were required to have an 
average fragment size greater than 8kb and a total mass over 400 ng to proceed to the low 
input smrt bell prep kit 3.0 protocol.  But then as far as I can tell they never say how much 
DNA they were able to obtain from the single specimen and whether they definitely did use 
the low input protocol – it is implied they did.  I would like to know the amount of DNA 
obtained from their specimen before and after size selection. 
 

4. 

Can the authors confirm whether or not any PCR was involved in generating the primary 
PacBio sequence data? That would be helpful for me to know. 
 

5. 

Like one of the other reviewers, I’d also like to read a few more details on how the HiC data 
provides signal to infer which are the sex chromosomes. 

6. 
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This paper provides a chromossome-level genome assembly for a orb-weaving spider, as part of 
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the Darwin Tree of Life initiative. The genome sequencing was done with state-of-the-art PacBio 
long-read sequencing and Hi-C scaffolding. 
 
The description is clear and the genome quality measures are high, such as contiguity and 
completeness (ex: BUSCO). 
 
My one general concern is the HiC data, which does not seem to have resolution to show the 
chromosomes. It was not clear to me how much the HiC really contributed to the scaffolding of 
the genome. I think this point needs to be clarified in the text.  
 
Besides this point, I also suggest providing additional details about how the sex chromosomes 
were inferred. There are also small nomenclature suggestions and minor comments in the 
attached pdf. 
 
This paper provides a great quality resource for the community.
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I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.
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This article is overall excellent, with a well-executed analytical approach and solid data. Notably, 
the use of PacBio and Hi-C sequencing on a single tiny individual provides valuable insights for 
studying other small invertebrates of similar size. Incorporating gene annotation files such as GFF 
would further enhance the study’s impact, particularly for research on spider traits like toxin, silk 
and behaviors. The Hi-C contact map of the chromosomes appears less distinct, as clear block 
patterns between different chromosomes are not readily visible. It would be helpful if the study 
could provide a more detailed Hi-C interaction map or discuss potential factors that might have 
influenced the resolution. Has a karyotype analysis been conducted for this species? If so, 
incorporating relevant information could further support the chromosome assembly.
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