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A B S T R A C T

In this paper, a physics-informed neural network (PINN) technique is developed to study the heat and mass
transfer for the process of vapour bubble growth in a superheated liquid domain and tested using three working
fluids including water, R-134a and FC-72. The work represents a novel step in the development of PINNs for
phase change scenarios where surface tension effects dominate, and acts as a necessary validation stage before
PINN techniques can be applied to complex boiling analysis. Initially, a forward analysis was performed using
water and R-134a as working fluids. For each of these investigations, the PINN algorithm was trained on 50 % of
the available CFD data. The proposed algorithm was able to accurately infer velocity fields, particularly in the
near-interfacial region. The resultant circulatory flow was found to maintain the desired circular shape of the
growing bubbles. As a result, when predicting the evolution of a water vapour bubble, the developed PINN al-
gorithm produced a reduction in peak error by 0.87 % compared to CFD reference data, and 3.42 % reduction in
peak error for prediction of the evolution of the R-134a vapour bubble. To test and optimise the transfer learning
capabilities of the developed methodology, the evolution of an FC-72 vapour bubble in superheated FC-72 was
predicted without supplying supporting observational data. For this scenario, the PINN algorithm produced a
peak error within 1.3 % of the unobserved CFD reference data. The proposed approach confirms the robustness of
PINN methodologies as a method of solving phase-change problems where surface tension plays a pivotal,
promising to expedite parametric studies in practice. This study represents a pioneering effort in the development
of PINNs for phase change by applying the current algorithm to investigate bubble growth within superheated
liquid domains, serving as a basis for the application of PINNs for boiling problems and as a benchmark for
inverse training strategy.

1. Introduction

Boiling has many applications across the fields of science and engi-
neering, such as the thermal management of electronics [1], the distil-
lation of fossil fuel [2] and the cooling of solar collectors [3]. Reliable
modelling of bubble behaviour in real systems is a complex task because
of the transient nature of bubble dynamics [4]. As products shrink in size
and become increasingly powerful, it is becoming necessary to foray
beyond accepted safety margins. To do this, tools must be developed
which can model the local interfacial behaviours during the process of
evaporation. Validation of numerical methods for fluid behaviours
during evaporation must be performed against cases with a known
analytical solution to understand and improve upon existing solver

limitations before one can begin the sequence of modelling more com-
plex interactions with a solver [5,6]. Therefore, analytical solutions
relating to the rate of growth of a bubble dependent on fluid properties
provide a basis for many studies across an array of industries. Often, a
compromise must be struck that balances the complexity of modelling
algorithms and solution accuracy at the interfacial level [7]. One
promising method of achieving this compromise for investigating
phase-change phenomena is Physics-Informed Neural Networks (PINNs)
[8]. The present work therefore marks a novel initiative in applying
PINNs to study the growth of bubbles in superheated liquid domains to
learn more about the complex phenomenon of boiling.

The growth of a bubble in a single-component fluid can be divided
into three distinct stages; inertial, thermal, and diffusive growth [9]. At
each stage, a different mechanism is responsible for restricting the rate
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of growth. It is the inertial growth which initially transforms the vapour
from a nucleating seed to a small bubble. However, the overall time
taken to complete inertial growth is on the order of milliseconds.
Diffusive growth occurs due to gas molecules from the surrounding
liquid diffusing into the bubble. This stage calls upon Fick’s law of
diffusion, which is analogous to Fourier’s law of heat conduction [10].
Falling between inertial and diffusive growth is thermal growth. Ther-
mal growth is driven by the heat energy consumed by vaporisation
across the bubble interface. This process can be assumed to be isobaric
and lasts significantly longer than the inertial growth stage. The rate of
growth during the isobaric stage is much slower, though. It is this
isobaric process which contributes most to the increase in the volume of
a bubble [11]. The isobaric growth regime enables the bubble to grow
equally in all directions, which provides predictability and stability for
system operations. Management of the isobaric period enables precise
control of bubble size, which is vital for applications ranging from
boiling heat transfer [12] to drug delivery [13]. During this isobaric
period, the rate of growth can be described by standard mass and mo-
mentum equations on the assumption that the vapour remains incom-
pressible and non-viscous. This stage also neglects the effects of gravity.
Therefore, isobaric growth of a bubble is a problem generalisable to
many domains, and correct modelling of this regime has widespread

implications for the accuracy of many multiphase solvers which include
phase-change. The theoretical solution to the growth of a single bubble
in a superheated liquid has received much attention in literature. As-
sumptions made by Scriven [14] of constant pressure inside a symmet-
rical vapour bubble which obeys ideal gas laws provide a reliable
analytical solution to the isobaric growth stage. The growth of a single
bubble in a superheated liquid has been used in countless validations of
numerical methods [15-17]. The classical Scriven case provides several
useful simplifications compared to a real-world study. For example, the
geometry for the Scriven problem is simplified to a 1D axisymmetric
domain and the vapour interaction is only considered for the liquid
phase. Interactions with walls are not considered, nor are any variations
in material properties during the evaporation process. This procedure,
along with similar analytical methods [18], is employed to ensure
solvers under development produce sharp interfaces and accurately
assign the transfer of mass under expected conditions of operation.
Doing so requires precise calculation of thermal boundary layers in the
liquid-vapour interface, thus ensuring the conservation of energy, mo-
mentum, and mass across the boundary. To date, there is a lack of
literature which quantifies the level of accuracy attainable by PINN
methods for predictions of evaporation using classical validation
studies.

Nomenclature

Cp Specific heat capacity at constant pressure (J/(kg⋅K))
D Diameter (m)
Er Percentage Error ([(Φ̂ − Φ)/Φ] × 100)
Fr Froude number

(
Uref /

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
g Lcharacteristic

√ )

h Enthalpy (J/kg)
j Mass flux (evaporative) (kg/(m2⋅s))
Ja Jakob number
L Characteristic length (m)
N Source term scaling coefficient
n Cell surface normal vector
Pe Peclet number

(
uLρCp /k

)

p Pressure (Pa)
pdynamic Dynamic pressure

(
ρu2

)
(Pa)

R Radius (m)
Rgas, int Thermal resistance (K/W)
Re Reynolds number
T Temperature (K)
t Time (s)
u Instantaneous streamwise velocity (m/s)
v Instantaneous spanwise velocity (m/s)
U Characteristic velocity (scalar) (m/s)
u Instantaneous velocity (vector) (m/s)
W Weight parameter value
We Weber number (ρref U2

ref Lcharacteristic/σ)
x Length in the streamwise direction (m)
y Length in the spanwise direction (m)

Symbols
α Volume fraction
β Growth rate constant
∇ Spatial differential (del)
η Learning rate coefficient
Θ Neural network trainable parameter
θ Angle (Rads)
ι Loss value (MSE loss in the current study)

κ Interface curvature
ρ Density (Kg/m3)
σ Surface tension (N/m)
ν Kinematic viscosity (m2/s)
γ Evaporation coefficient
δ Infinitesimal change
Φ Data generated by CFD
Φ̂ Data predicted by PINN

Subscript
cut Threshold value
data Training data
f Cell face
Int Interfacial
lv Liquid-to-vapour
NN Neural Network
ref Pre-determined reference value
sat Saturation
T Temperature
0 Initial condition
1 Subsequent condition

Superscript
* Dimensionless parameter
T Transpose
^ Predicted data by PINN
⋅ Rate of change

Abbreviation
API Application programming interface
CFD Computational Fluid Dynamics
CNN Convolutional neural network
DL Deep learning
ML Machine learning
MSE Mean-squared error
NN Neural network
PINN Physics-informed neural networks
Tanh Hyperbolic tangent (activation function)
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In recent times, an abundance of literature has been produced that
centres on the application of physics-informed learning methods to
increasingly complex fluid flow studies. Ranging from canonical prob-
lems [19,20] to questions which have eluded researchers for decades
[21], PINNs are proving invaluable in the quest to minimise necessary
assumptions when modelling physical processes [22] and improve un-
derstanding where fidelity in modelling results is insufficient through
sparse or incomplete data [23-25]. By placing significant weight on the
Boussinesq approximation, Cai et al. [26] successfully inferred the tur-
bulent rise of vapour from a cup of espresso using tomographic
background-oriented Schlieren (Tomo-BOS) measurement methods. The
application of PINNs to heat transfer was taken further by Zhu et al.
[27], who accurately predicted weld pool dynamics. Nikai et al. [28]
extended this understanding to incorporate real-time simulations of
resin cure kinematics. Masclans et al. [29] have applied PINNs to
determine flow physics in scenarios which combine turbulence and heat
transfer [29]. Kim et al. [30] applied a PINN algorithm to determine
minimum film temperature, however, this relied on a large sample size
of around 400 studies. Jahanbakhsh et al. [31] demonstrated that PINNs
could be applied to complex geometries and attain high levels of accu-
racy for thin film evaporation investigations. Once again, this relied on a
large training dataset. Despite these advances, PINN remains novel and
as such gaps in knowledge of best practice remain. Most notably, there is
a lack of true validation of PINN methodologies for the evaporation
process. Some work on classification and guidelines has been performed
by Sharma et al. [32], who delved into the fundamental architecture
decisions faced by researchers when implementing PINN solutions,
while Papadopoulos et al. [33] discussed the Bayesian optimisation for
heat transfer problems. Royer et al. [34] discussed the process of
interfacing ANNs with traditional numerical methods to achieve robust
interpolative performances relating to radiative heat transfer processes.
Recent research [35-37] has also encompassed the optimisation of in-
verse studies. Radhakrishnan et al. [38] have attempted to do this by
applying a variation of transfer learning to predict the behaviour of a
bubble in a vortex and also a bubble rising in a quiescent fluid. Under-
standing the most effective method of harnessing the inverse capabilities
of PINN promises to enable rapid querying to understand the impact of
changing simulation parameters. Consequently, there is significant
momentum to fill the existing gap in the literature for the application of
PINN algorithms to investigate phase-change processes especially when
data availability is limited [39].

In the present work, a physics-informed neural network (PINN)
technique is developed in order study the evaporative phase change
process for the first time. The model is validated using the phase-change
benchmark of the Scriven bubble problem, with significant focus on heat
and mass transfer within this multiphase flow process. Initially, the
proposed approach provides forward solutions for evaporation using
two working fluids (water and refrigerant R-134a). Comparisons are
made to analytical solutions and obtained CFD data for these fluids,
which demonstrate that the PINN methodology can reliably and accu-
rately obtain a sharp interfacial region. Next, the algorithm is robustly
assessed on its ability to effectively leverage previous training through
transfer learning by predicting the interface progression of a third
working fluid (FC-72) for which no observational data was provided.
Instead, the PINN algorithm relies on resolving PDEs and inferring be-
haviours observed in the forward cases. A detailed explanation of this
transfer learning optimisation is included. Similar comparisons are
made to assess the effectiveness of transfer learning methods when
tasked with predicting a sharp and accurate interfacial region. An
insightful analysis is performed on how one can optimise the process of
obtaining inverse predictions for phase-change problems where surface
tension is a deterministic factor. Ultimately, this process forms the
foundations of a use-case for PINN as a rapid and flexible investigative
method of determining behaviours of disparate fluids under the phase-
change process. This contribution will guide future research on
applying PINN methods to more complex phase-change phenomena.

2. Computational methodology

This section provides an overview of the PINN architecture and
corresponding hyperparameter decisions. Additionally, the partial dif-
ferential equations (PDEs) utilised by the solver are introduced,
accompanied by a concise discussion on the computational resources
necessary for training.

2.1. Governing equations

PINN techniques rely on a range of partial differential equations
(PDEs) to comprehensively model the behaviour of two-phase systems
[40]. In this work, liquid and vapour phases are treated as Newtonian
and incompressible fluids, as the observed Mach numbers in the vapour
region are always appropriately low. The current work encompasses 6
PDEs, to be solved simultaneously. Due to the assumptions made when
modelling the Scriven problem, gravitational effects are neglected. The
governing equations therefore include:

Mass conservation,

∂α
∂t* + u

*⋅∇*α = 0 (1)

Momentum transport via the incompressible Navier-Stokes
equations,

ρ*
(

∂u*
∂t* +(u*⋅∇*)u*

)

+∇*p* − ∇*⋅
1
Re

(
∇*⋅u* +∇*⋅u*T

)
−

1
We

κ∇*α = 0

(2)

where,

κ = − ∇*⋅
∇*α
|∇*α| (3)

We =
ρref U2

ref Lcharacteristic
σ (4)

and an energy conservation equation based on the transient heat
equation:

u*⋅∇*T* +
q̇
k

−
1

PrRe
⋅∇*2T* = 0 (5)

Notably, Eq. (5) contains a Peclet number (Pe) term. The Peclet number
represents the rate of advection to thermal diffusion, which ultimately
determines heat and mass transfer across liquid-vapour interface. The
Volume-of-Fluid (VOF) methodology [41] uses a colour function (α) to
advect the phase interface. It offers notable advantages over other
interface capturing methods such as level-set. One such advantage is
preservation of volume for each phase, which promotes stability of the
solution [42]. Fluids 1 and 2 correspond to cells where α = 0 and α = 1,
respectively. Locations where α is neither 0 nor 1 identify cells as being
cut by an interface. Piecing together these cells allows the true shape of
the interface to be determined. In this work, it was exceptionally
important that a sharp fluid interface was maintained to provide accu-
rate details of fluid behaviour during the process of evaporation. To
achieve suitably sharp interfaces in the training data used for this work,
additional interfacial sharpening terms are utilised in the CFD solver by
way of an artificial compressive velocity Urelative, however, this behav-
iour must be inferred by the PINN methodology where no such source
term is explicitly specified. Urelative is given by:

Urelative = nfmin
[

Cγ
ṁ
⃒
⃒Sf

⃒
⃒
, max

(
ṁ
⃒
⃒Sf

⃒
⃒

)]

(6)

To ensure the compressive source term only acts in the interfacial
region, the term is set to 0 unless 0.05 < α < 0.999. The term Cγ is set to
1 in accordance with literature [43].

D. Jalili et al.
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The phase change model implemented in this body of work was
taken from Hardt & Wondra [44]. The Hardt & Wondra model is
self-described as a non-specific model which does not rely on any single
numerical algorithm to ensure continuity of mass, momentum, enthalpy,
and phase distribution. This flexible mass transfer model can be added to
both level-set and VOF schemes because all required quantities are
determined from scalar fields in the numerical grid. It can therefore be
added to existing two-phase solvers, which means existing work using
VOF in PINN [45] can be augmented to model temperature-dependent
phase change. In addition to excellent comparisons with analytical so-
lutions, this phase change model allows for a range of boundary con-
ditions at the fluid interface and does not require that the fluidic
interface is at a fixed temperature. This feature promises scope to
interrogate complex boiling behaviour in future works. While the phase
change models presented in [43,44] represent significant advances in
CFD modelling, this work marks the inaugural application of these
pertinent principles to PINNs.

The evaporative mass flux at the liquid-vapour interface is calculated
by:

jevap =
Tint − Tsat
Rinthlv

(7)

Tsat is the predetermined saturation temperature of the liquid phase,
while Tint is the temperature at the interface. hlv is the latent heat of
evaporation, while Rint is the interfacial thermal resistance which is
determined by:

Rint =
2 − γ

γ

̅̅̅̅̅̅̅̅̅̅̅̅̅
2πRgas

√

h2lv
T3/2sat

ρgas
(8)

Determination of Rint therefore relies on the parameter γ, whose
value varies from 0 < γ < 1. For the working fluids of water liquid and
water vapour used in this investigation, a value of unity has been used
following the literature [46-49]. All other parameters are predetermined
as constants of the working fluids. To enhance stability, the mass flux
calculations Eq. (7) must be incorporated into volumetric source terms.
This is relatively straightforward:

ρ̇0 = jevap|∇α| (9)

and subsequently,

ṁint =

∫∫

ρ̇0dA (10)

Eq. (10) is used to ensure that rates of evaporation from the liquid
phase are matched exactly by additional mass being supplied to the
vapour phase. A Neumann boundary condition is imposed to artificially
smoothen the source term in Eq. (11), where Δt is an artificial timestep.
The value D must be adjusted to the mesh resolution to ensure that the
source term field is sufficiently distributed across enough cells to sta-
bilise the calculation.

ρ̇1 − ∇⋅[(DΔt)∇ρ̇1] = ρ̇0 (11)

Scaling coefficients Nl and Nv from Georgoulas et al. [43] are
determined by integration of the smoothed source term field in each
phase such that:

Nl = ṁint

[ ∫∫

(α − 1+ αcut)ρ̇1dA
]− 1

(12)

Nv = ṁint

[ ∫∫

(αcut − α)ρ̇1dA
]− 1

(13)

where values of α fall beyond the region of α > 1 − αcut or α < αcut (αcut
is set to 1 × 10− 3 in this work), the source terms are artificially reduced
to zero. This cropping step ensures that source terms are shifted into the
pure vapour and liquid cells are only in the vicinity of the interface. The

interface therefore is not subjected to any source terms and is only
transported by the calculated velocity field. As a result, the transport
algorithm for the volume fraction field as well as the associated interface
compression can work efficiently without any interference with the
source term field. The remaining source term field is scaled individually
on the liquid and the vapour side through the application of appropriate
scaling coefficients. This scaling step ensures that the mass is globally
conserved and that the evaporating or condensing mass flow corre-
sponds globally to the net mass flow through the interface. The final
source term distribution is given by:

ρ̇ = Nv(αcut − α)ρ̇1 − Nl(α − 1+αcut)ρ̇1 (14)

Finally, the enthalpy source term can be obtained with additional
knowledge of the thermal properties of the working fluids:

ḣ =
[
Nv(1 − α)Cp,v − NlαCp,l

]
ρ̇1T − ρ̇hlv (15)

2.2. PINN methodology

Upon determining suitable PDEs, initial, and boundary conditions, a
mapping exercise is performed to equate physical parameters to space
and time:

(u, v, p, α, T) = FNN(x, y, t, Θ) (16)

where, FNN represents the total contributions of the sequential neural
networks, determined by the trainable parameters Θ of weights W and
biases B. In this work, each physical parameter is mapped to a unique
network (Fig. 1(a)). Fig. 1(b) illustrates this ensemble learning
approach. The ensemble approach effectively reduces the number of
unknowns to be solved at any one time. The networks employed here
also use an additional trainable nodewise coefficient a. The non-linear
activation parameter a is applied at each component of the vector pro-
duced at nodal outputs. The inclusion of this parameter at each node
increases the number of degrees of freedom in the network by providing
each node with a unique activation slope. These nodewise coefficients
effectively transfer the problem of optimisation to a nodal (rather than
global) level [50], which provides improved performance when
resolving non-linear relationships and ensures better generalisation to
unseen data. This ultimately means improved resilience to overtraining.
Furthermore, the enhanced parametric space enables complex patterns
to be attained in fewer iterations compared to a standard network
because each node need only be optimised over a much smaller range of
scenarios [50]. While the high parametric space increases computa-
tional cost by around 1 % compared to a standard architecture, the
additional draw of high dimensionality is significantly less than the
increased number of iterations (epochs) required to meet the required
low error threshold when using standard architecture (without the
trainable coefficient a).

The total loss of PINN systems is determined by the summation of
residual terms across each parameter network. These residuals are
composed of the differences between predictions made by the PINN and
known data or by direct solution of PDEs at a given collocation
(assessment) point. Naturally, the lower the residuals, the more accurate
the predictions become. Training continued until the residuals reached a
predetermined threshold (Fig. 1(b)). To minimise these residuals, it was
essential to determine the optimum architecture for each case. It is
known that the batch size of training data plays a deterministic role in
prediction accuracy [51]. So, a hyperparameter grid search to find the
optimum batch size along with the number of hidden layers, activation
function and number of nodes per layer, was performed using an alter-
native dataset which negated the effects of surface tension. This
hyperparameter search extended to the learning rate, the hyper-
parameter responsible for governing the speed at which the weights and
biases within the network are updated [52], based on the error calcu-
lated at each iteration. If the learning rate is too large, the algorithm is

D. Jalili et al.
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likely to diverge [53], while a low learning rate can significantly extend
training time [54]. Therefore, defining learning rate is a compromise
between ensuring training time remains practical, and small enough to
obtain accurate solutions. It was found that a fixed learning rate of 0.001
was sufficient to predict an interface of comparable sharpness to the CFD
reference solution. The optimum parameters are shown in Table 1,
which were found to optimise solution accuracy and computational cost.

The computational cost was defined by core hours (number of
computational cores × number of hours). The quoted core hours come
with the caveat that the total computational time is impacted by the
processor clock. For both forward problems in this work, the optimum
PINN architecture required 184 core hours. The optimum inverse solu-
tion required a total training time of 306 core hours. The PINN training
time represents a significant reduction in computational expense
compared to the investment required to generate the CFD training data.
For the CFD models of water and R-134a, 2400 and 1400 core hours
were required, respectively. For the FC-72 CFD solution, only 1624 core
hours were needed. This is roughly 5 times the computational cost
required to train the inverse PINNmethod, which could then also predict
new solutions in a matter of seconds, unlike the CFD solution. Further
details on computational cost are included in the Appendix. Moreover,
the PINN method represents the possibility of more extreme savings in
industrial and research applications; much of the data preparation relies

(a) The Scriven problem studies used 5 fully connected neural networks. True architecture 

properties are shown in Table 1, but for representation purposes, each network displays 4 layers 

and 4 neurons per hidden layer. All derivatives are computed using automatic differentiation. Each 

loss term ‘L’ is converted to an MSE value. The sum of these MSE values (LTot) gives the total loss 

to be optimised

(b) PINN sequential training strategy

p

Fig. 1. Configuration and training strategy of the PINN algorithm; (a) network architecture; (b) training strategy. (a) The Scriven problem studies used 5 fully
connected neural networks. True architecture properties are shown in Table 1, but for representation purposes, each network displays 4 layers and 4 neurons per
hidden layer. All derivatives are computed using automatic differentiation. Each loss term ‘L’ is converted to an MSE value. The sum of these MSE values (LTot) gives
the total loss to be optimised (b) PINN sequential training strategy.

Table 1
Network architecture for the Scriven cases studied in this work.

Scriven
case

Nodes Layers Activation
function

Batch
size

Epochs

Water 150 10 Local ‘tan-h’ 512 2000
R-134a 150 10 Local ‘tan-h’ 512 3000
FC-72 150 10 Local ‘tan-h’ 512 See Section

4.2

D. Jalili et al.
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only on simple scripts which are not problem-specific, whereas much of
the CFD preparation time in meshing and geometry design requires
dedicated labour. The data used for architecture tuning modelled the
phase transition of water-to-water vapour (properties shown in Table 2).
It used 160,000 mesh cells and neglected the effects of surface tension σ
= 0 N/m as in [55,56]. This artificial step was used specifically to pro-
vide valuable insights to the modelling of interface advection and the
phase change algorithm. In ML applications, the hyperparameter tuning
process is a vital step which ensures the relevant networks are of suffi-
cient complexity to be capable of recognising desirable behaviours while
being simple enough to remain computationally efficient. This could
happen without the explicit consideration of surface tension, whose
impact of affecting fluid mixing affects all networks equally. PINN
predictions were performed using networks of node×
layer arrangements ranging between (20 × 8), (50 × 10) and
(150 × 10).

The difference in the magnitude of input parameters creates a sys-
tematic problem for PINNs. To overcome this, each parameter was made
dimensionless. Quantitative comparisons against the analytical solution
were made at regular intervals in time. As such, the time parameter was
made dimensionless such that t* = t/(L /U), where U was taken as unity
to enable the division. It was found that compared to the analytical
solution, the (50 × 10) PINN architecture obtained an error of just 6.08
%. The (50 × 10) architecture produced a final mean-squared error
(MSE) of 1.05 × 10− 4. This compared favourably to the (20 × 8) ar-
chitecture, whose error peaked at 6.72% for t* = 32. MSE for this design
was reduced to 5.7 × 10− 5. The (150 × 10) architecture obtained a
peak error of 3.73 % at the same timestep. MSE for this architecture
reached just 9.7 × 10− 6. A qualitative element was also considered
when determining network architecture. All three architectures pro-
duced symmetrical bubbles but increasing network density resulted in a
reduction of diffusion for the interfacial region. The ability to produce
sharply reconstructed interfaces was a deterministic factor when
assessing the capabilities of the PINN methodology. The (20 × 8) dis-
played an undesirable level of interfacial diffusion. The (50 × 10) ar-
chitecture produced acceptable results, but the (150 × 10) architecture
produced an interfacial region which was as sharp as the CFD reference
data for the test case. Though the (150 × 10) architecture necessitated
roughly 25 % additional training time, the increased qualitative accu-
racy was determined to provide good value for this investment. Since
both the qualitative and quantitative assessments were satisfied by the
(150 × 10) architecture, no further dense architectures were investi-
gated. Therefore, (150 × 10) was deemed to be the most effective ar-
chitecture in balancing computational cost and solution accuracy.

The bubble interface was defined as the location of α = 0.5 for the
entirety of this work. While Fig. 2(a-f) provides a qualitative comparison
of PINN predictions and reference CFD data, a quantitative comparison

of the interface location was also made between the analytical solution,
the CFD solution and PINN predictions (Fig. 3) to reveal a maximum
error of 3.73 % against the analytical solution at t* = 37. This improved
upon the accuracy obtained by the CFD solution, which produced a
maximum error of 6.1 % at t* = 84. It is also important to note that the
PINN prediction aligned increasingly accurately to the analytical solu-
tion the longer the growth was modelled, whereas the CFD solution
continued to oscillate about the analytical solution. Accordingly, the
architecture used to achieve these results was used to study the forward
and inverse problems which involved surface tension effects with minor
variations in training time.

3. Overview of test cases and numerical settings

The next validation case considers a spherical bubble which is heated
uniformly and considers surface tension effects. This work is distinctive
from the Stefan problem since surface tension plays a pivotal role [57],
due to the small length scales associated with bubble growth. The other
major factor in growth trajectory is the inertia of the fluids, but the
bubble is large enough to neglect inertial effects once the bulk vapour is
at saturation temperature [43]. Assumptions are made such that the
bubble growth is assumed to be symmetrical and can be simplified to a
circle accordingly. Thus, it is possible to simplify growth to a
one-dimensional equation and provide an analytical solution to this
problem. A one-dimensional heat conduction equation can be used to
represent the temperature field in the domain. This begins by aug-
menting the equation of continuity (refer to Section 2.1) and augment-
ing it to account for spherical symmetry in an incompressible fluid, such
that ur2 = f(θ). r is the radial coordinate here, whose datum is at the
bubble centre. From this, the liquid velocity at any radius can be eval-
uated. As a result, liquid mass flow is determined by
ṁl = 4πR2ρl[Ṙ − u(R)]. To balance, the liquid mass flowmust be equated
with the additional mass in the vapour region, giving a mass balance Eq.
(17):

d
dθ

(
4
3

πR3ρv
)

= 4πR2ρl[Ṙ − u(R)] (17)

Since changes to the bubble radius are orders of magnitude larger than
the change to bubble density (ρv), it is possible to assume density is
independent of time. This results in ur2 = εṘR2. Here, u(R) = Ṙ(ρl −
ρv)/ρl = εṘ. Further simplifications to the growth are made using the
Clausius-Clapeyron equation and by neglecting the heat of mixing. A full
explanation can be found in [14], where Scriven culminates by
expressing the analytical solution to isobaric bubble growth as:

R = 2β
̅̅̅̅̅
δθ

√
(18)

Table 2
Material properties of working fluids water, R-134a and FC-72.

Property Unit Water R-134a FC-72

Liquid Vapour Liquid Vapour Liquid Vapour

ρ
(
kg /m3) 958 0.597 1388 4.43 1621.20 13.49

Cp (J /kg⋅K) 4220 2030 1270 720 1106.7 924.81
k (W /m⋅K) 0.679 0.025 0.106 0.009 0.054 0.014
μ (Pa⋅s) 2.77 × 10− 4 1.3 × 10− 5 4.01 × 10− 4 9.64 × 10− 6 4.13 × 10− 4 1.19 × 10− 5

hlv (J /kg) 2.26 × 106 2.195 × 105 8.36 × 104

σ (N /m) 0.059 0.016 0.0084
P (bar) 1.013 0.84 1.013
Pe 297.7 831.49 1661.28
Tsat (K) 373.15 303.15 330.06
β 14.59 8.75 7.69
D

(
m2 /s

)
1.68 × 10− 7 6.01 × 10− 8 3.02 × 10− 8

ΔT (K) 5 5 5
Ja

(
Cp,L⋅ΔT

)

hlv

9.35 × 10− 4 2.89 × 10− 2 6.62 × 10− 2
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where δ is the thermal diffusivity of the liquid phase. The growth rate
constant, β, varies depending on the level of superheat and relative
densities of the liquid and vapour phases. For very small superheats, β is
given by (19), otherwise, it can be assumed to be (20).

β =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ΔT

2
(

ρv
ρl

)[
L
cl
±

(
cl − cv
cl

)]

ΔT

√
√
√
√
√

, β→0 (19)

β ≅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
3
π

)
ΔT

2
(

ρv
ρl

)[
L
cl
±

(
cl − cv
cl

)]

ΔT

√
√
√
√
√

(20)

Table 2 displays the relevant properties of the working fluids which
were liquid water and water vapour in this preliminary study. One such
property is the Jakob number, which is evaluated using liquid properties

cp,l and ρl at Tsat. hlv and ρv are also evaluated at Tsat.
A schematic of the Scriven problem is shown in Fig. 4.

3.1. Forward bubble growth study

Forward problems are defined by complete initial and boundary
conditions [58]. They produce a unique solution which is insensitive to
initial predictions of weight values in DL applications. In this work, the
capabilities of the PINN algorithm are tested on two forward problems of
the bubble growth of water vapour and R-134a vapour in superheated
liquid water and liquid R-134a, respectively. In these cases, the initial
condition is provided and various checkpoints in time are provided with
all parameters relating to the motion of the interface (i.e., volume
fraction, velocity, and pressure). At times when this data is not provided,
the algorithm was required to rely on the physics it learned and infer the
correct rate of growth. The inferred results have been presented in
Section 4.1.

3.1.1. Water vapour bubble in superheated water
The first case to be assessed is the forward problem of water vapour

growing in superheated water. This differs from the work performed in
Section 2.2 by the inclusion of surface tension effects. Transformation of
water to water vapour can occur in scenarios ranging from the mundane
task of cooking food [59] to the application of liquid cooling of elec-
tronics [60]. As a result, there are many researchers interested in
modelling this phase-change scenario. An analytical comparison of the
bubble growth process is therefore necessary for many of these works.
The computational domain for this study used a uniform hexahedral cell
size of 1 × 10− 6m, resulting in a total of 116,579 mesh cells. PINN
physics loss error was collocated at the same number of points.
Boundary conditions can be found in Fig. 4. A comparison of the CFD
simulation is made against the analytical solution in Section 4.1.1,
produced using constants found in [43]. The PINNmodel was trained on
a subset of the total temporal data. In this case, 50% of the total data was
used to train the model. The PINN predictions relied on trained models
based on physical PDEs to determine interface locations. These assess-
ment times fell between the temporal information provided by the CFD
training data (i.e. the time at which the algorithm was tested was never
observed by the PINN during training). Forward-problem PINN results

Fig. 2. Comparative analysis of CFD volume fraction (α) (without surface tension) and PINN Predictions for the 150 × 10 (optimal) architecture.

Fig. 3. Quantitative comparison of the analytical interface location evolution
(R*) against CFD and PINN predictions.
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for water are discussed and compared against CFD and analytical solu-
tions in Section 4.1.1.

3.1.2. R-134a vapour bubble in superheated water
R-134a is commonly used in refrigeration systems. It is currently

being phased out due to its high global warming potential (GWP) value
of 1430 [61] and has been banned from new vehicles in the EU since
2011 [62]. However, it is not possible to simply replace R-134a in sys-
tems designed for its specifications. This is because it is not flammable
(as with all hydrofluoroolefins (HFOs)), nor can they withstand the
critical pressure of many R-134a systems [63]. R-134a still forms a basis
for many of the more environmentally friendly refrigerants because it is
so effective [64]. Therefore, the modelling of R-134a is still of interest to
researchers and industry alike. A similar process to that described in
Section 3.1.1 was followed for forward modelling of R-134a vapour
bubble growth.

The computational domain used a uniform mesh of 116,571 hex-
ahedral cells with a side length of 1 × 10− 6m. CFD data was provided to
train the PINN model, using 44 % of the available temporal data. The
CFD solution was validated against the analytical solution, attaining a
maximum discrepancy of 7.7 % at t* = 28. The vast majority of the CFD
simulated growth made minor over predictions of bubble growth rate
until t* = 20, where it began diverging more substantially. For rigour,
CFD training data was provided in equally spaced intervals up to t* =

36. Beyond this, the PINN algorithm relied upon trained weights to
predict an extrapolative solution at t* = 38. PINN physics error collo-
cations were performed at the same 116,571 points as defined by the
CFD grid. Forward-problem PINN results for R-134a are discussed and
compared against CFD and analytical solutions in Section 4.1.2.

3.2. Inverse bubble growth study

In ML applications, the alternative to the ‘forward’ problem is the so-
called inverse problem. Inverse problems are common across almost all
scientific applications [65], as they arise whenever the quantity in
question is not directly measured. To overcome the lack of direct mea-
surement, a mathematical relationship must be defined to map the
known quantities to those which must be discovered. FC-72 is a
fully-fluorinated liquid, designed for electronics cooling [66]. FC-72 is
non-flammable and non-toxic. It also evaporates without depositing
residue on the heated surface. It is inert, and thus compatible with a
wide variety of materials. FC-72 is therefore at the centre of many

studies performed in modelling liquid cooling systems. It is a better
dielectric than water but requires more pumping effort than R-134a for
an equivalent cooling load [67]. FC-72 also generally operates at higher
pressures than R-134a. A complete list of relevant properties can be
found in Table 2, however, there are several properties of major interest
which makes the selection of FC-72 a challenge for the PINN method-
ology. The first is the density of both liquid and vapour forms of FC-72,
which exceed densities observed in the training data by a factor of up to
1.5 in the liquid phase and up to 22.5 times in the vapour phase. The
thermal conductivity of FC-72 liquid and vapour is much lower than
either water or R-134a, as are also the surface tension σ and heat of
vaporisation hlv. Therefore, the PINN was required to utilise PDEs to
successfully map this extrapolative behaviour.

To assess the inverse modelling capabilities of the PINN algorithm,
additional investigations were performed using the models trained on
water vapour and R-134a. The algorithm was trained sequentially using
the R-134a (Ja = 0.0289, Section 3.1.2) dataset over 2000 epochs on a
network initialised by the existing weights obtained from the forward
study for water (Ja = 0.000935 – Section 3.1.1), before making pre-
dictions on the growth of a FC-72 bubble (Ja = 0.0662). This meant the
PINN was trained for 4000 epochs in total, using 116,571 mesh cells and
50 % of the available temporal data, but vitally it did not observe any
data for an equivalent growing bubble simulation where FC-72 was a
working fluid. Through this method, PINN was confirmed as a robust
method of mapping phase-change processes for canonical problems
involving surface tension across a range of material properties which
goes far beyond simple interpolation.

4. Discussion of Results

In this section, results obtained from PINN predictions are presented
and bubble growth obtained by PINN is compared to both analytical and
CFD-generated solutions.

4.1. Forward solution

4.1.1. Forward solution – water
PINN modelling of the Scriven problem using water produced ac-

curate predictions of volume fraction and temperature distribution.
Trends of predictions created using surface tension effects (for testing,
σ = 0.059 N/m) are of a similar accuracy overall to those observed in
the validation stage (Section 2.2, σ = 0 N/m). In both cases, the largest

Fig. 4. Schematic of the analytical Scriven bubble growth problem. For water without surface tension, R0 = 1 × 10− 4m, L = 0.5mm andW = 0.22mm. For water, R-
134a, and FC-72 with surface tension R0 = 5 × 10− 5m, L = 0.75mm and W = 0.63mm.
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discrepancy between predictions and the analytical result is present
earlier in the growth process, similar to the CFD training data. For the
growth of a water vapour bubble with surface tension, PINN predictions
initially marginally underpredicted the growth rate, before it fell in line
with the analytical solution. Fig. 5 shows the qualitative comparison
between the CFD data used for training and PINN predictions at the
same points in time. PINN predictions produced an interface with
comparable sharpness to the CFD solution. While the PINN algorithm
may have benefited from an explicit symmetry condition being specified
on the domain boundaries, the bubble maintained a largely symmetrical
growth without this being in place. Explicit enforcement of a symmetry
condition would have served to reduce diffusion at the domain bound-
aries, however diffusion reduced as the predictions progressed in time.
Part of this phenomenon can be accredited to the relatively large gap
between the initial stationary condition and the first observed timestep,
where the volume fraction predictions were excessively smoothed. More
observation around the initial acceleration of the stagnant fluid would
serve to improve early predictions by displaying the early development
of advective behaviour. Increased accuracy of the velocity field beyond
this point translated to an accurate representation of the Peclet effect in
the convection-dominated regime, resulting in a sharpened interfacial
region for subsequent predictions.

Fig. 6 confirms this assertion since the PINN prediction of the ve-
locity field correctly ascertained aggressive circulation around the edges
of the bubble (where x* ≈ 6 and y* ≈ 6). While the aggressive advection
occurred at the boundary of the pure vapour volume fraction region,
there was a lower velocity predicted in the area immediately sur-
rounding the interface. The sharper velocity gradients shown in the
PINN prediction caused dispersion across the fluid interface by slightly
exaggerating the strength of the circulatory motion within the pure
vapour region which was not entirely consistent with the CFD reference
data. More observation at an earlier time would have helped to develop
smoother gradients across the domain velocity field. Therefore, while
the pure vapour region benefits from advective effects maintaining a
circular bubble shape, the mixed-fluid zone experiences greater
dispersion than the reference CFD data shows.

The time histories of the interface locations of the water vapour
bubble obtained through analytical, CFD and PINN methods have been
plotted in Fig. 7(a) (where R* = R1/R0). A quantitative comparison
between the analytical solution and PINN predictions revealed a
maximum discrepancy of 3.6 % at t* = 6.5. This compares favourably to

the CFD data, which has a maximum error of 4.47 % at t* = 20. It is
notable that beyond t* = 10, the CFD solver began overpredicting the
rate of vaporisation at the interface. It continued along this trajectory
throughout the remainder of the simulation. However, the PINN algo-
rithm initially deviated from the analytical solution earlier (t* = 6.5) by
underpredicting the rate of vaporisation at the bubble interface. Beyond
this point, the error produced by the PINN model reduced slightly as
time progressed. By t* = 21.5, the PINN prediction aligned with the
analytical solution. As part of the training process, the PINN algorithm
observed 50 % of the available temporal CFD data. However, beyond
t* = 25, the PINN algorithm did not observe any CFD data. Therefore, it
was necessary to predict an extrapolative solution at t* = 28. This
resulted in a minor overprediction of 1.82 % which remained closer to
the analytical solution than the CFD solution managed, whose disparity
to the analytical solution was 2.65 %. From this, it could be determined
that the PINN methodology produced phase-change predictions of
comparable accuracy to high-resolution CFD models. Fig. 7(b) confirms
these assertions since the increases above fluid saturation temperature
occurred only beyond the predicted pure vapour region. However, the
diffusion visible in the volume fraction field was translated to the tem-
perature field predictions. While the onset of increased temperature
occurred at the correct radius, the diffused interfacial region caused a
relatively gradual increase from saturation temperature to Tmax. This
diffusion culminated in the PINN predicted temperature field hovering
around 0.99 (see localised view in Fig. 7(b)). Therefore, while the PINN
temperature initially increased at the same rate as the CFD solution, the
PINN predicted temperature required an additional 1.1 % distance to
reach its maximum of T = Tmax. This translated to a thermal interface
thickness of 0.83 for the PINN prediction, compared to 0.64 for the CFD
solution. However, this discrepancy was considered inconsequential to
overall accuracy.

Therefore, this PINN methodology was deemed capable of solving
the forward Scriven problem for water, and incorporation of the selected
PDEs provided a demonstrable improvement over the CFD data used as a
reference. This gave the confidence to proceed with the investigation
into the forward Scriven problem for R-134a and the inverse investi-
gation into the prediction of FC-72 bubble growth as the introduction of
surface tension terms was not detrimental to PINN performance.

Fig. 5. Qualitative comparison of CFD (top row) and PINN (bottom row) results for volume fraction α for water vapour bubble growth.

D. Jalili et al.



International Journal of Heat and Mass Transfer 232 (2024) 125940

10

4.1.2. Forward solution – R-134a
The solution to the forward problem of R-134a evaporation was

similarly successful when water was used as the working fluid. An
additional 1000 epochs (a total of 3000 epochs) of training were
required to enforce the maximum value of α = 1. However, once this
training was completed, the PINN results met the accuracy expectations
set by the preceding work. For the duration of this case study, the PINN
algorithm was able to predictions in line with the analytical solution.
Fig. 8 displays the comparison of the CFD-generated volume fraction and
PINN-generated volume fraction at a variety of times throughout the
simulation.

Once again, the PINN was able to predict a sharp liquid-vapour
interface. The interface generated for R-134a displayed less diffusion
than the equivalent water study and was largely comparable to the
sharpness presented by the CFD training data. The velocity magnitude
and streamlines contours (Fig. 9) support this, since the PINN prediction

produced highly similar circulations approaching the interface within
the pure vapour region. Compared to the CFD reference data, the cir-
culations were in the correct position but displayed sharper gradients in
magnitude. This is particularly noticeable around y* = 0, where the flow
velocity in the PINN prediction (Fig. 9(b)) exceeds that of the CFD so-
lution (Fig. 9(a)). Immediately surrounding that circulation, the PINN-
predicted velocity is lower than the CFD solution, however. This
aggressive circulatory motion extended the thickness of the interfacial
region compared to the CFD data because of the velocity discrepancy
beyond the liquid-vapour interface, rather than desirable advection
throughout the entire mixed fluid region. This was not detrimental to
solution accuracy or overall interface position.

The level of accuracy is confirmed by Fig. 10(a), which revealed a
maximum error in the PINN predictions of 6.47 % at t* = 26. This
compares favourably with the CFD-generated solution which produced a
maximum error of 9.89 % at t* = 36. Importantly, the PINN solution

Fig. 6. Dimensionless velocity magnitude and streamlines during the evaporation of a water vapour bubble at t* = 28 for (a) CFD reference data and (b) PINN
inferred behaviour.

Fig. 7. Quantitative comparison of (a) interface location over time and (b) temperature field distribution for the water (with surface tension) PINN forward pre-
diction compared against results achieved through analytical means and a reference CFD solution.
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produced a time history which more closely matched the analytical
solution. The CFD solution began deviating from the analytical solution
by overpredicting the rate of vaporisation at the interface beyond t* =

20. In comparison, the PINN predictions provided a solution truer to the
analytical solution with only minor oscillations about the true rate of
growth. Fig. 10(b) validates the accuracy of the PINN predictions. Once
again, the predicted temperature only increases beyond the saturation
temperature (T* = 0) within the interfacial region and beyond. This is
consistent with the physics required by the analytical solution. Since the
CFD solution modelled a larger vapour bubble at t* = 38 compared to
either the PINN prediction or analytical solution, the onset increasing
temperature correspondingly occurred at a larger radius. The PINN
prediction constructed the temperature field with a much steeper
gradient across the interface in comparison to the CFD solution, whose

temperature field was significantly more diffused across the interfacial
region. The PINN prediction provided a temperature field which was 8
% less diffused than the CFD solution overall by the time the PINN al-
gorithm predicted the fluid reached Thot . The PINN algorithm predicted
the thickness of the thermal interface to be 0.38, compared to the CFD-
generated solution at 0.4. Both solutions were consistent with the
analytical solution in predicting a constant maximum temperature
within the liquid region.

4.2. Inverse solution
An extended study was performed to optimise the inverse capabil-

ities of this PINN algorithm. This was necessary to determine the correct
methodology for tuning the network weights and biases to predict fluid
behaviour where material properties differ from those used for training.
Three approaches were investigated. The first of these (hereby known as

Fig. 8. Qualitative comparison of CFD (a-d) and PINN (e-h) results for volume fraction α for R-134a vapour bubble growth.

Fig. 9. Dimensionless velocity magnitude and streamlines during the evaporation of the R-134a vapour bubble at t* = 38 for (a) CFD reference data and (b) PINN
inferred behaviour.
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physics) relied solely on the governing PDEs and the initial condition of
the bubble. The remaining methods used ‘prewarmed’ networks, which
combined weights and biases generated from forward problems and
some training on the physical properties of FC-72 using an initial con-
dition defining the volume fraction and pressure fields at t* = 0. The
following combinations were used to assess predictions of prewarmed
networks: weights and biases from the R-134a forward problem (hereby
known as R-134a) and finally the combined weights and biases created
by training the algorithm firstly using the water data, then by the R-134a
data before training the algorithm on the material properties of FC-72
(hereby known as combined). These combined weights and biases were
then augmented by training on the physical properties of FC-72 for 200
epochs. Prewarming of the algorithm using the weights from the for-
ward problem for water was not assessed because of the disparity be-
tween the material properties of water and both R-134a and FC-72. The
training specification for each approach is displayed in Table 3. The
training time required by all PINN approaches was less than that
required by the reference CFD solution, which needed 1640 core hours.
To further improve the speed of preparation for prewarmed networks,
future investigations will extend to the activation function and specif-
ically a comparison between Rectified Linear Activation Unit function
(ReLU or its derivatives) and the hyperbolic tangent function. ReLU is an
increasingly popular function because it is computationally cheap and
does not exhibit the vanishing gradient problems which exist to limit
network architecture where ‘tan-h’ is the chosen activation function.

A complete quantitative comparison of the chosen approaches is
shown in Fig. 11. As expected, most PINN approaches performed at their
worst when tasked with predicting a timestep which had not been
observed in training (t* = 38), with the notable exception of the PINN-R-
134a approach. Error for PINN-R-134a peaked at 21 % when t* = 12.
However, beyond this point, the R-134a approach tended to converge
upon the analytical solution. The PINN-physics approach gave a

reasonable forecast of bubble growth until t* = 14, where it began to
deviate significantly from the analytical solution.

Eventual error peaked at 33 % when t* = 38. The PINN-combined
approach provided a much better account of PINN inverse capabilities
than the other two methods, providing results which were on par with
the traditional CFD methodology. The bubble growth forecast provided
by the combined approach showed no significant deviation from the
analytical solution. While the CFD approach produced a maximum error
of 4.7 % at t* = 38, the PINN-combined approach compared well with a
peak error of 6.1 % at the same timestep. The training process revealed
that the MSE reached an optimum value of 1.2 × 10− 5 using the com-
bined approach. The underprediction of bubble radius by the inverse
PINN is reflected in the corresponding combined temperature field
(Fig. 11(b)).

As with other PINN temperature field predictions, the predicted
temperature quickly reaches Tmax beyond the pure vapour region.
Notably, the transfer learning approach produced a temperature field
prediction which resembled the desired analytical Heaviside step more
closely than the CFD reference data. This is clear in the localised view
(Fig. 11(b)), which highlights the relatively gradual transition of the
CFD temperature field in comparison to the PINN prediction. The PINN
thermal interface region thickness was predicted to be just 0.035,
compared to 0.315 for the CFD prediction.

Fig. 12 shows a qualitative comparison between a CFD simulation of
FC-72 bubble growth and PINN-combined predictions. The FC-72 CFD
data was not observed by the PINN algorithm, it was only included here
for comparative purposes. While the initial radius location on both the x
and y-axes of the PINN-predicted FC-72 bubble was correct, the initial
shape was deformed and not quite spherical. Training on relevant PDEs
enforced the correct spherical nature of the vapour bubble at all sub-
sequent timesteps. As a meshless solver, the PINN algorithm was able to
produce an interfacial region with less diffusion than the comparative
CFD simulation of an FC-72 vapour bubble. Fig. 13 displays that the
velocity streamlines and contour of velocity magnitude of the predicted
behaviour and the unobserved CFD data were very similar. The nar-
rower interface produced by the PINN predictions can be credited to the
highly concentrated circulation patterns, which tracked along the
liquid-vapour interface. As the PINN algorithm could only resolve the
bubble growth based on the supplied PDEs, the effects of timestep
spacing from data supplied during the training process were minimised.
Since no data fields were supplied to compare against the PINN algo-
rithm resolved the interfacial region with less dispersion than the CFD
solution, which closely followed the rapid flow circulations it predicted.

Fig. 10. Quantitative comparison of (a) interface location over time and (b) temperature field distribution for the R-134a PINN forward prediction compared against
results achieved through analytical means and a reference CFD solution.

Table 3
Training specification for PINN-inverse approaches.

Training mechanism

PINN
approach

Water
weights/
biases

R-134a
weights/
biases

Additional PDE
training

Training
time
(core
hours)

Physics × × ✓ 64
R-134a × ✓ ✓ 184
Combined ✓ ✓ ✓ 306
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This is confirmed by analysis of Fig. 13, which that the velocity
magnitude gradients are smoother for the inferred case than the two
forward cases. While the predicted velocity magnitude in the liquid re-
gion remains lower than in the CFD reference data, the difference is
negligible. Due to the PINN algorithm being able to infer the steady
development of the velocity profile across the interfacial region, the
PINN results produced an interface of comparable sharpness to the CFD
reference data and analytical solution. Despite this, the overall bubble
size produced by PINN inference was slightly smaller than that produced
by the analytical and CFD solution methods.

Though PINN methods have the capability of modelling problems by
providing just the initial and boundary conditions, providing supple-
mental data significantly aids the inference process. The optimised

transfer learning approach has been shown to provide a feasible alter-
native to additional CFD studies in the parametric design process by
being able to correctly predict the evaporation process of a vapour
bubble during the isobaric growth stage. This study illustrates that the
inverse capabilities of PINN methods can be unlocked to create a robust
alternative to CFD methods when tasked with solving phase-change
problems. Providing that the correct preparation is performed, the
transfer learning PINN approach discussed in this work has the potential
to be used to accelerate the design process of real systems reliant on
boiling heat transfer and even become a part of a live response control
system which calls upon learned trends and inferred physics to build a
more complete picture of system operations than can be provided by
discrete sensing locations. It is this compelling capability which will

Fig. 11. Quantitative comparison of interface location over time and temperature field distribution; (a) Dimensionless bubble radius (R*) evolution with respect to
dimensionless time (t*) for FC-72, achieved through PINN predictions made using the physics, R-134a, and combined algorithms against analytical solution and an
unobserved CFD prediction of FC-72 vapour bubble growth; (b) Temperature field distribution for the analytical solution, CFD reference prediction and combined
PINN prediction at t* = 38.

Fig. 12. Qualitative comparison of unobserved CFD (top) and PINN-combined (bottom) results for volume fraction α for inverse prediction of FC-72 vapour bub-
ble growth.
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enable researchers and industry alike to reduce necessary safety margins
and further optimise system performance.

5. Conclusions and future work

In the current study, a physics-informed neural network (PINN) has
been developed to solve the process of evaporative phase change in a
range of fluids and validated against both analytical solutions and CFD
reference data for the evolution of vapour bubbles in superheated liquid
for a range of working fluids. These findings demonstrate that the PINN
approach is robust when modelling liquid-to-vapour phase change and
accurately captures surface tension effects. As a result, the findings
significantly enhance the capability of PINNs to be used as a method for
solving boiling heat transfer problems.

The forward problem PINN volume fraction predictions for water-to-
water vapour produced a peak error of 3.6 % which bettered the volume
fraction error of 4.47 % produced by the traditional CFD reference so-
lution. There was similar success for the forward problem predicting the
evaporation of an R-134a bubble in superheated liquid R-134a, where
PINN volume fraction predictions peaked at a percentage error of 6.47
%, which again exceeded the accuracy of the reference CFD solution
whose error peaked at 9.89 %. PINN temperature field predictions
convey the level of diffusion in the interfacial region displayed in PINN
volume fraction predictions compared to the ideal analytical solution
(where the interface is infinitely thin) and reference CFD solutions. The
accurate inferences of the velocity field in both cases provided qualita-
tive confirmation that the physics of the evaporation process was rep-
resented well, with circulations driven by interfacial advection clearly
present, though diffusion across the interface was found to be caused by
flow circulations which followed a sharp path around the pure vapour
region. While excess interfacial interface diffusion caused an additional
1.1 % error in the temperature field compared to the CFD solution, all
other studies demonstrated that the PINN prediction could achieve a
thermal interface of reduced thickness and more closely aligned to the
analytical solution than reference CFD data. This peaked at an 8 %
reduction in thermal field diffusion for forward problems in comparison
to reference CFD data. For these forward problems, the developed al-
gorithm was also able to infer symmetry boundary conditions, meaning
uniform bubble growth was predicted correctly. Additionally, the

interfacial diffusion produced by PINN predictions for forward problems
using the 150 × 10 (layer × node) architecture was low enough to be
comparable to the diffusion present in reference CFD data.

The major highlight of this work is the extended inference study,
which demonstrated the resilience of PINN in accurately determining
the evaporation process and illustrated the level of agnosticism of this
technique to relevant simulation properties such as saturation temper-
atures, conductivities, densities, and surface tension. The scope of the
inference study included a comparison of the extrapolative and inter-
polative capabilities of the PINN algorithm, assisted by further training
on relevant PDEs. It was found that by providing a spectrum of data to
prewarm the PINN solver, accurate inferences could be made for
different fluid properties. This resulted in an inferred solution for new
fluid properties (FC-72) with a peak volume fraction interface location
error of just 6.1 %, which was comparable to the equivalent CFD model.
The CFD model bettered the inferred result by just 1.4 % for this case,
despite the PINN algorithm observing no FC-72 data. Further, the
thermal diffusion across the PINN-predicted bubble interface was more
akin to the desirable Heaviside step of the analytical solution than the
results achieved by the CFD solution. In this scenario, the inferred
interfacial region was only around 10% of the thickness compared to the
interface produced by the reference CFD solution. This was found to be
driven by aggressive advection behaviour on approach to the bubble
interface. As with the PINN forward investigations, analysis of the in-
verse predictions revealed that the axisymmetric boundary conditions
could be inferred. Thus, symmetric bubble growth was also predicted for
the inverse investigation.

In future work, it may be beneficial to explore meshless VOF inter-
face sharpening techniques which promise to further reduce the level of
smearing at liquid-vapour interfaces. The authors also intend to utilise
this phase-change algorithm to investigate more complex phase-change
processes to enhance knowledge of boiling heat transfer and ease opti-
misation processes for real-world systems. Therefore, additional efforts
in eliminating diffused interfacial regions may be required, since
investigation of boiling heat transfer requires an extremely precise un-
derstanding of thermal properties at interfacial regions. The benefits of
applying PINN techniques to boiling studies are two-fold; one advantage
is the speed at which PINN methodologies will allow accurate para-
metric studies to be performed, while the overriding benefit will be the

Fig. 13. Dimensionless velocity magnitude and streamlines during the evaporation of a FC-72 vapour bubble at t* = 38 for (a) CFD reference data and (b) PINN
inferred behaviour.
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opportunity to infer hidden variables where direct measurement is not
possible. It is the latter outcome which provides great motivation to
continue research into PINN methods. The ability to extend operators’
knowledge of a system in real-time beyond information provided by
fixed sensing locations has the potential to dramatically reduce the
necessary safety margin required to maintain reliable system operation.
In systems which rely on phase change, the implementation of PINN as a
real-time control method would have profound implications and could
significantly increase the heat transfer efficiency of such systems by
minimising any necessary safety margins.
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Appendix

In this appendix, more information is provided pertaining to the computational resource required by both the CFD and PINN methodologies. For
the investigations which form the basis of Section 4, CFD simulations were performed on an axisymmetric geometry containing 400,000 computa-
tional cells. Results were calculated using a remote-access Linux virtual machine high-performance computer (HPC). From this data, a ‘slice’ was
extracted, containing 116,571 cells. Properties of velocity, pressure and volume fraction were tracked over time at equally spaced intervals of t* = 2
until t* = 36 (for R-134a) or t* = 26 (for water). This represented at most 50 % of the available CFD timesteps. The PINN algorithmwas trained on this
data and used to predict the timesteps which were not observed during training. These were compared against the reference CFD data and analytical
solutions.

The PINN algorithm was built using Keras (an API of TensorFlow for neural network development). Training was hosted on Manchester CSF3
(HPC), using 8 Nvidia v100 GPU nodes. Training was performed in parallel to expedite the process. The total computational resource (core hours) to
produce solutions for both the CFD and PINN methods are displayed in Table A.1.

Table A.1
Tabulation of core hours for CFD-generated solutions and PINN predictions.

Methodology Simulated fluid

Water R-134a FC-72 (Transfer learning)

CFD core hours 2400 1400 1624
PINN training epochs 2000 3000 See Section 4.2
PINN training core hours 184 184 306
PINN prediction core hours 0.03 0.03 0.03

Although training the R-134a solution required 1000 additional epochs compared to predicting water evaporation, both fluids utilized the same
number of core hours. This is due to the slightly larger dataset used for training the water algorithm, which comprised 50 % of the available data,
compared to 44 % for the R-134a solution.
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