Amos, W, Nichols, HJ, Churchyard, T and Brooke, MDL

Rat eradication comes within a whisker! A case study of a failed project from the South Pacific

http://researchonline.ljmu.ac.uk/3361/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/
Annotated Visual Basic code for simulating impact of bottlenecks of different sizes on allele frequencies assuming samples of size 50 and 82 before and after the even.

Dim Mu As Single, Het As Single, Nal As Integer, silent As Integer, none As Integer
Dim popsize As Long, Leadin As Integer, w1 As Integer, w2 As Integer
Dim A(1000, 2, 2) As Integer, counts(2, 2) As Integer, ptge As Integer
Dim Survive As Integer, Initial As Integer, n1, n2 As Long

Sub Main()
 Worksheets("nulls2").Activate
 rw = 0
 Randomize Timer
 popsize = 1000 ' set the default population size of 1000
 For Survive = 5 To 100 Step 10 ' explore a range of survivor numbers
 For ptge = 1 To 50
 rw = rw + 1
 For silent = 0 To 3
 Setup ' initialise the genotypes
 Phase1 ' two generations of reproduction at full population size
 Call Assess(1) ' calculate pre-bottleneck frequencies
 prefq1 = counts(1, 1) / (2 * (50 - none1))
 prefq2 = counts(2, 1) / (2 * (50 - none1))
 Het1 = Het: Nal1 = Nal: none1 = none ' store parameters
 bottle ' undergo a bottleneck of size survive
 Call Assess(2) ' calculate post-bottleneck frequencies
 Het2 = Het: Nal2 = Nal: none2 = none ' store post-bottleneck parameters
 postfq1 = counts(1, 2) / (2 * (82 - none2))
 postfq2 = counts(2, 2) / (2 * (82 - none2))
 If prefq1 < prefq2 Then ' store results for minor allele
 pre = prefq1
 Post = postfq1
 Else
 pre = prefq2
 Post = postfq2
 End If
 Cells(rw, 1 + 4 * silent) = Survive ' output results
 Cells(rw, 2 + 4 * silent) = pre
 Cells(rw, 3 + 4 * silent) = Post
 Cells(rw, 4 + 4 * silent) = Abs(pre - Post)
 Next silent
 Next rep
 Next Survive
 Average ' calculate average values for all pre-bottleneck frequencies across all bottleneck sizes
End Sub

Sub Assess(x As Integer) ' count allele frequencies etc.
 If x = 1 Then num = 50 Else num = 82 ' used empirical sample sizes
 Nal = 0 ' zero allele count
 Het = 1 ' set het to 1
 Erase counts ' zero allele counter
 none = 0 ' zero null genotype counter
 n = 0
 For g = 1 To num ' sample pre-number of rats
 variable 'nulls' = 1 if second allele is null and 2 if first allele is a null
 nulls = Abs(2 * (A(g, 1, w2) = 3)) + Abs(1 * (A(g, 2, w2) = 3))
 For h = 1 To 2 ' assay each allele
 If nulls = 0 Then ' standard genotype
 countsA = counts(A(g, h, w2), x) = countsA + 1
 ElseIf nulls < 3 Then ' heterozygote null
 countsA = counts(A(g, nulls, w2), x) = countsA + 1
 Else ' homozygote nulls
 none = none + 1
 End If
 Next h
Next g

For h = 1 To 2 ' scan both alleles visible
 If counts(g, x) > 0 Then
 Nal = Nal + 1 ' store allele number
 Het = Het - (counts(h, x) / (num - none * 2)) ^ 2 ' and heterozygosity
 End If
Next h
End Sub

Sub bottle()
 For f = 1 To popsize ' zero the recipient array, just to be sure
 A(f, 1, w2) = 0
 A(f, 2, w2) = 0
 Next f
For gen = 0 To 20
 n1 = Survive * 3 ^ gen ' exponential increase up to a maximum of popsize (1000)
 n2 = Survive * 3 ^ (gen + 1)
 If n1 > popsize Then n1 = popsize
 If n2 > popsize Then n2 = popsize
 fem = Int(n1 / 2) ' introduce sexes because important at small sizes
 mal = n1 - fem
 For f = 1 To n2
 Z = Int(Rnd(1) * fem) + 1 ' select first half female
 If Rnd(1) < 0.5 Then A(f, 1, w2) = A(Z, 1, w1) Else A(f, 1, w2) = A(Z, 2, w1)
 Z = Int(Rnd(1) * mal) + fem ' select second half male
 If Rnd(1) < 0.5 Then A(f, 2, w2) = A(Z, 1, w1) Else A(f, 2, w2) = A(Z, 2, w1)
 Next f
 If n1 = popsize Then Exit For ' terminate when popsize is reached (drift will be minimal afterwards)
 w1 = 3 - w1
 w2 = 3 - w2
Next gen
End Sub

Sub Phase1() ' two generations to randomize the genotypes (only 1 really necessary!)
 For f = 1 To 2
 Reproduce
 w1 = 3 - w1 ' change the array pointers
 w2 = 3 - w2
 Next f
End Sub

Sub Reproduce() ' for g = 1 To popsize
 Z = Int(Rnd(1) * popsize) + 1 ' select first half female
 If Rnd(1) < 0.5 Then A(g, 1, w2) = A(Z, 1, w1) Else A(g, 1, w2) = A(Z, 2, w1)
 Z = Int(Rnd(1) * popsize) + 1 ' select second half male
 If Rnd(1) < 0.5 Then A(g, 2, w2) = A(Z, 1, w1) Else A(g, 2, w2) = A(Z, 2, w1)
Next g
End Sub

Sub Setup() ' w1 and w2 are pointers that alternate each generation between 1 and 2. Thus, genotypes in generation x stored in w1 are used to populate generation x+1 in w2. The pointers are then reversed.
 m = Int(Rnd(1) * 20) + 1
 w1 = 1
 w2 = 2
 x = 0
 For f = 1 To popsize ' initialise all individuals with genotype 1,1
 A(f, 1, 1) = 1
 A(f, 2, 1) = 1
 Next f
 pbn = ptge * popsize / 100 ' set the initial target percentage frequency of the minor allele
 For g = 1 To pbn ' set that frequency of individuals to genotype 2,2
 A(g, 1, 1) = 2
 A(g, 2, 1) = 2
 Next g
 pbn2 = times * silent * popsize / 100 ' if null alleles are present, add these
 For g = pbn + 1 To pbn + pbn2
 A(g, 1, 1) = 3
 A(g, 2, 1) = 3
 Next g
End Sub

Sub Average() ' then output the averages
 Dim sm(20, 100, 2) As Single ' array for storing averages
 For silent = 0 To 3
 sm = 0
 For f = 1
 v1 = (Cells(f, 1 + silent * 4) + 5) / 10 ' bottleneck size
 v2 = Cells(f, 2 + silent * 4) * 100 ' minor allele frequency pre-bottleneck
 v3 = Cells(f, 4 + silent * 4) ' change in frequency
 sm(v1, v2, 1) = sm(v1, v2, 1) + v3
 sm(v1, v2, 2) = sm(v1, v2, 2) + 1
 f = f + 1
 Loop Until IsEmpty(Cells(f, 1 + silent * 4)) ' then output the averages
 For g = 1 To 10
 For h = 0 To 100
 If sm(g, h, 2) > 1 Then Cells(h + 2, g + 20 + silent * 11) = sm(g, h, 1) / sm(g, h, 2)
 Next h
 Next g
End Sub
Next silent
End Sub