Shaw, TA, Kirby, JR, Holgate, S, Tutman, P and Plater, AJ

CONTEMPORARY SALT-MARSH FORAMINIFERAL DISTRIBUTION FROM THE ADRIATIC COAST OF CROATIA AND ITS POTENTIAL FOR SEA-LEVEL STUDIES

http://researchonline.ljmu.ac.uk/3760/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/
CONTEMPORARY SALT-MARSH FORAMINIFERAL DISTRIBUTION FROM THE ADRIATIC COAST OF CROATIA AND ITS POTENTIAL FOR SEA-LEVEL STUDIES

TIMOTHY A. SHAW¹,⁵,⁶, JASON R. KIRBY², SIMON HOLGATE³, PERO TUTMAN⁴, ANDREW J. PLATER⁵

¹Sea Level Research, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA.
²School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, Merseyside, L3 3AF, U.K.
³Sea Level Research Ltd, Studio D, Baltic Creative Campus, Liverpool, Merseyside, L1 0AH, U.K.
⁴Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića, 21000, Split, Croatia.
⁵Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Roxby Building, Liverpool, Merseyside L69 7ZT, U.K.

⁶Correspondence author: tshaw@marine.rutgers.edu
ABSTRACT

Salt-marsh foraminifera serve as proxy sea-level indicators due to a quantifiable relationship with elevation in the contemporary environment. In this paper, we document the distribution of salt-marsh foraminifera from two microtidal sites, Jadrtovac and Blace, along the Adriatic coast of Croatia and assess their suitability as proxies for elevation in transfer-function-based reconstructions of sea level, which has so far evaded the Mediterranean region. The assemblages are dominated by typical salt-marsh agglutinated taxa, Jadammina macrescens and Trochammina inflata, and the calcareous taxa Ammonia spp. and Quinqueloculina spp. Quantitative analyses revealed that the assemblages are divided into three faunal zones, which are elevation dependent, and where an assemblage dominated by J. macrescens and T. inflata extends to higher elevations in the intertidal frame. The training set was used to develop a tidal-level transfer function using linear regression due to the short environmental gradients observed. The model predicts sea level with a precision of ± 0.08 m. This study highlights the strong potential of salt-marsh foraminifera in reconstructing RSL trends for the Mediterranean region, where studies of past sea-level have previously been restricted to other indicators.
INTRODUCTION

The application of salt-marsh sediments and microfossils (e.g., foraminifera, diatoms and testate amoebae) in reconstructing relative sea level (RSL) has extended our knowledge of sea-level change beyond the limits of direct observations (i.e., tide-gauges) that are, at best, restricted to the past ~250 years or so (Woodworth, 1999). Salt-marsh sediments and, in particular, foraminifera have proven useful in providing supplementary evidence to assess the timing of recent accelerations in sea level (Gehrels & Woodworth, 2013) and can be regarded as natural archives comparable to tide-gauge records (e.g., Barlow et al., 2013), permitting sea-level inferences as far back in time as the sediments reliably allow. In addition, proxy-based reconstructions have also helped provide an insight into the spatial and temporal variability of Late Holocene sea-level trends (Kemp et al., 2011; 2013; Barlow et al., 2014; Long et al., 2014).

The premise of using salt-marsh foraminifera as markers for former sea levels stems from an established, quantifiable relationship with tidal level in the modern environment (e.g., Scott & Medioli, 1978, 1980a, 1986), referred to as the indicative meaning (Shennan, 1982, 1986; van de Plassche, 1986). This intrinsic connection forms narrow vertical niches in which characteristic assemblages occur in abundance, allowing sub-environments to be identified based on the tolerance or preference to limiting ecological parameters, such as frequency and duration of tidal flooding, sub-aerial exposure, salinity, substrate composition and food availability (de Rijk, 1995; de Rijk & Troelstra, 1997; Berkeley et al., 2007). Despite differences in climate, tidal regime and site characteristics (e.g., vegetation and salinity), this vertical zonation is persistent.
across many salt-marsh and mangrove environments where similar foraminiferal assemblages are observed (Edwards & Wright, 2015; fig. 13.1).

Typically, agglutinated foraminifera are restricted to the vegetated salt-marsh platform where the common high-marsh species, *Jadammina macrescens* and *Trochammina inflata*, are consistently found in the upper reaches of the tidal frame. Indeed, Scott & Medioli (1978) suggested that monospecific assemblages of *J. macrescens* could be used to relocate (both vertically and in time) past sea level to within ±0.05 m when applied to fossil counterparts found in sediment cores. Along the environmental gradient towards lower intertidal and unvegetated tidal-flat environments, a transition in assemblage composition occurs, reflecting a change in indicative range (Edwards et al., 2004; Leorri et al., 2010; Kemp et al., 2012; Strachan et al., 2015). While there is much similarity in the spatial distribution of intertidal foraminiferal assemblages, variability between sample sites with respect to their position in the tidal frame is not uniform, necessitating the need for site-specific data (Horton & Edwards, 2006).

Research on the distribution of foraminifera across salt-marsh environments for the purpose of sea-level reconstruction for the Mediterranean region is lacking in the published literature (e.g., Petrucci et al., 1983). The Mediterranean, and in particular Adriatic Sea, offers ideal conditions for a study of this type due to the typically low wave-energy conditions and microtidal regime. The foremost conclusion drawn from using salt-marsh foraminifera in RSL studies is the improved accuracy when conducted under microtidal settings in reducing the vertical uncertainties involved (Horton & Edwards, 2006; Southall et al., 2006; Callard et al., 2011; Mills et al., 2013; Barlow et al., 2013). While benthic foraminifera are well documented in the Adriatic Sea (e.g., Jorissen, 1987, 1988), previous research in this region has primarily
focused on the use of intertidal foraminifera as indicators of pollution histories (e.g., Coccioni, 2000; Albani et al., 2007; Frontalini & Coccioni, 2008; Frontalini et al., 2010).

Expressing biological indicators (e.g., foraminifera) as a function of an environmental variable (e.g., tidal level), known as a transfer function (Imbrie & Kipp, 1971), first requires an understanding of the contemporary environment and how the two are related. In this paper we present the first quantified, contemporary, surface-foraminiferal distributions from two microtidal salt-marsh sites along the Adriatic coast of Croatia (Fig. 1a) and assess their suitability for reconstructing former sea level through the development of a tidal-level transfer function.

STUDY AREA

The Croatian coastline is predominantly rocky and steep with numerous pockets of sand and gravel beaches and few alluvial zones (Baric et al., 2008). The karstic nature of the coastline makes vegetated coastal sedimentary environments a rare habitat for this region, with only one large alluvial plain along the coastline at the Neretva Delta towards the south. A limited amount of research exists on salt-marsh environments in the eastern Adriatic region, with most studies focusing on the Italian and northern shoreline, primarily from a pollution perspective (e.g., Frontalini & Coccioni, 2011). The coastal wetland environments along the Croatian coast have also become increasingly threatened by human activity, as increased tourism development has converted these habitats to beaches (Pandža et al., 2007). A review of salt-marsh vegetation by Pandža et al. (2007) for the central and south-eastern Adriatic, however, identified eight
ecologically important sites and two of the sites considered, Jadrtovac (Fig. 1b) and Blace (Fig. 1c), are the focus of this investigation.

Jadrtovac is a small coastal town situated within Morinje Bay (43°40’48”N, 15°57’24”E), approximately 3 km south of Šibenik and 50 km north of Split, central Croatia. With a surface area of 3.5 km² and a maximum water depth of 21 m, the bay can be divided into two sections, a shallow northern region and a deeper southern channel (Mihelčič et al., 2006). Communication with the open Adriatic Sea occurs through a 2.5 km-long channel (150–350 m wide). A relatively high sedimentation rate of 1.0 m/ka has resulted in the accumulation of 4.5 m of organic-rich sediment, which began approximately 4.5 ka BP as the Morinje depression was inundated during the latter stages of the Holocene transgression (Bačani et al., 2004; Šparica et al., 2005). The salt-marsh is located on the eastern side of the bay (Fig. 1b) and is roughly 130 m at its widest point before thinning out to the north around the bay. No tidal-flat environment is exposed at Jadrtovac and the low salt-marsh/sea interface is characterized by a micro-cliff edge 10-20 cm high. The salt marsh displays distinct zones of vegetation with Juncus spp., Halimione, Atriplex, Scirpus spp., Phragmites and occasional Suaeda spp. colonising higher elevations in the upper salt-marsh zone, while mid- to low salt-marsh zones are dominated by Halimione spp., Salicornia spp. and again occasional Suaeda spp. The salt marsh is intersected in the middle by a narrow (~2 m) man-made channel (which was avoided for sampling), presumably for drainage and local fishing access to the bay. The mean daily tidal range at this site is approximately 23 cm, derived from values obtained at the nearby Split tide-gauge (Table 1; Hydrographic Institute, 1956-2000).

Blace is a similarly small coastal town bordering the Adriatic Sea (43°00’15”N, 17°28’27”E) approximately 120 km south of Jadrtovac. This site comprises a remote small
pocket salt-marsh just north of the town, approximately 3 km south of the Neretva River delta, the largest outflow along the Croatian coastline with a large, 12,000 hectare alluvial plain, representing an important ecological and agricultural site (Romić et al., 2008) and recognized under the Ramsar Convention since 1993. The studied salt marsh is roughly 40 m wide and located within a sheltered embayment from the open Adriatic Sea. Distinct zones of vegetation are again apparent, with *Juncus* spp. and members of the Chenopodiaceae family (e.g., *Halimione* spp.) dominating high- to mid-salt-marsh zones; *Limonium* spp. and *Salicornia* spp. dominate the mid- to low salt marsh. The mean daily tidal range at this site is almost identical to Jadrtovac at 23 cm, as taken from values from the nearby Ploče tide-gauge (Hydrographic Institute, 1956-2000).

METHODOLOGY

FIELD SAMPLING

To quantify the relationship between elevation and foraminiferal assemblages, modern surface samples were collected to develop a training set suitable for use in constructing a tidal-level transfer function. At both sites, sample stations were established across two separate transects running perpendicular to the coast, incorporating all sub-environments from the high salt marsh to the low salt marsh/sea interface, following Scott & Medioli (1980a). While sampling frequency varied between sample sites, it was focused around areas of topographical and/or floral community change. To reduce the potential effects of seasonality on surface
foraminiferal distributions, as discussed by Horton & Edwards (2003, 2006), field work was conducted during winter months (January 2010).

Sediment samples of a standardised volume (10 cm3) were collected from the upper 1 cm of the salt-marsh surface for foraminiferal analyses. Specific details regarding the sampling procedure are provided in Edwards & Wright (2015) and follows the commonly adopted sampling depth of 1 cm for studies analyzing modern foraminiferal distributions from salt-marsh environments (e.g., Scott & Medioli, 1980a; Horton et al., 1999a; Gehrels et al., 2001; Edwards et al., 2004; Kemp et al., 2009a, 2012). This assumes the foraminiferal assemblages used are primarily epifaunal. Some studies, however, have highlighted the importance of infaunal populations and their potential implications for sea-level reconstructions (i.e., mixing of live foraminifera with fossil assemblages) (Tobin et al., 2005). Indeed this has shown to be evident from studies of North American salt marshes where infaunal populations can be significant (Ozarko et al., 1997; Hippensteel et al., 2002; Duchemin et al., 2005; Tobin et al., 2005). In contrast, studies from European saltmarshes have found infaunal populations to be less significant (Horton, 1997; Alve & Murray, 2001; Horton & Edwards, 2006). While the population of infaunal foraminifera may be variable and site specific, differences in these observations may in part reflect the organic nature of northern American salt-marsh environments compared to their more minerogenic European counterparts, which restrict the penetration of subsurface foraminifera (Horton, 1999). Nonetheless, using a sampling depth interval incorporating the upper 1 cm of the salt-marsh sediment surface provides an adequate model from which palaeoenvironmental reconstructions can be based (Culver & Horton, 2005; Horton & Edwards, 2006). To establish absolute altitudes, sample stations were surveyed relative to Croatian national geodetic benchmarks (m HVRS71) using Real Time Kinetic (RTK) satellite
navigation in conjunction with Leica Na820 optical levelling apparatus referenced to local benchmarks.

FORAMINIFERAL ANALYSES

While in the field, samples were immersed using the protein stain, rose Bengal (Walton, 1952), to differentiate ‘living’ foraminifera at the time of collection; samples were stored in buffered ethanol (Edwards & Wright, 2015). Despite some contention (e.g., Bernhard, 2000; Bernhard et al., 2006), this technique is widely adopted amongst the research community and represents an effective way of staining live foraminifera (Murray & Bowser, 2000; Figueira et al., 2012). Sample preparation followed that outlined by Horton & Edwards (2006), i.e., wet sieving sediment to isolate the 63 µm to 500 µm fraction before transferring into a wet splitter (Scott & Hermelin, 1993), dividing the sample into eight equal aliquots. The >500 µm fraction and supernatant were checked periodically for foraminiferal tests before being discarded. Foraminifera were counted wet under a stereo microscope at 63x magnification until a minimum of 100 (dead) specimens was reached. The precise number required to produce reliable statistical results is proportional to the relative abundance of taxa observed and the accuracy required specific to the study (Patterson & Fishbein, 1989; Fatela & Taborda, 2002). Counts of ~100, however, are statistically robust given the low diversity assemblages typical of salt-marsh environments (Edwards & Wright, 2015), and this threshold was easily surpassed in most samples (Appendix B). Relatively few living (stained) foraminiferal tests were found in the samples at the time of collection. Our statistical analysis and interpretation is therefore based on the relative abundance (%) of dead foraminiferal assemblages only (following Gehrels et al.,
10

2001; Horton & Edwards, 2003; Leorri et al., 2010; Rossi et al., 2011; Kemp et al., 2013), which are less susceptible to seasonal (Murray, 1991) and/or post-depositional changes (Horton & Edwards, 2006). Foraminiferal assemblages can suffer from test destruction through dissolution in intertidal environments (e.g., Murray, 1989; Berkeley et al., 2007) caused by acidic conditions often associated with salt-marsh sediments (Scott & Medioli, 1980a). However, we observed no obvious sign of this taphonomic process in the samples analyzed.

Foraminiferal taxonomy was confirmed through comparison with type specimens logged at the Smithsonian Institution, Washington, DC, and Scanning Electron Microscope (SEM) images of salt-marsh foraminifera from the published literature (e.g., Horton & Edwards, 2006; Appendix A). Figure 2 provides SEM images of the main foraminiferal taxa encountered in this study, which were captured using a Hitachi TM3000 tabletop microscope. The various calcareous species of Ammonia, Elphidium and Quinqueloculina are grouped together at genus level following Horton & Edwards (2006) and Kemp et al. (2012). Raw counts of both ‘living’ and ‘dead’ foraminifera are provided in Appendix B.

Statistical Analyses

To identify faunal zones (clusters) based on similarities in the foraminiferal assemblages, unconstrained cluster analysis using unweighted Euclidean distance was performed using output from CONISS total sum of squares within Tilia View (Grimm, 2004). Elevation-dependent faunal zones were created for transects J-J1 and B-B1, represented through box plots of cluster order (faunal zone) by height relative to vertical datum (m HVRS71). Three surface samples (16,
17 and 18), taken from very similar locations and altitudes to sample stations 1 to 4 from transect B-B1, were also included in the analysis for Blace (Appendix B).

Surface data from additional transects at each site were included in developing a transfer function to maximize the full range of sub-environments studied, reduce the potential influence of spatial autocorrelation (Telford & Birks, 2005; Edwards & Wright, 2015) and improve reliability by increasing training set size (n=60) (Barlow et al., 2013; Kemp & Telford, 2015). The spatial scale from which training sets are derived can have important consequences for transfer-function performance in RSL studies (e.g., Watcham et al., 2013). While transfer functions based on local training sets may offer an increase in vertical precision, combining regional data provides a greater number of modern analogues and improvements in predictive power when applied to fossil counterparts (Horton & Edwards, 2005).

The utility of foraminiferal assemblages from salt-marsh environments as sea-level indicators is founded on their relationship with tidal level. Inter-correlation with other environmental parameters, however, can influence distribution patterns in explaining variance in modern training sets (e.g., Horton & Culver, 2008). While it is beyond the scope of this paper to document these in detail, Shaw (2013) studied the influence of elevation amongst other environmental variables (e.g., pH, salinity, organic matter and grain size) to confirm the suitability of salt-marsh foraminifera in transfer-function reconstructions. Within the observed inter-correlations between the variables, elevation within the tidal frame was statistically significant in explaining variance in the foraminiferal distributions from the sample sites presented. Following this, the combined training set was used to develop a transfer function quantifying the relationship between dead foraminiferal assemblages and tidal elevation.
Understanding species response, to thus derive ecological response functions (Horton & Edwards, 2006), first allows the selection of the most appropriate regression model based on the linear or unimodal distribution of training sets (Birks, 1995). Detrended canonical correspondence analysis (DCCA) was performed to determine the appropriate method (Birks, 1995; Leps & Smilauer, 2005) using CANOCO v4.5 (ter Braak & Šmilauer, 2002) and gradient lengths assessed in standard deviation units. Prior to analysis, low counts and insignificant species were removed, following Fatela & Taborda (2002). Usually, those species, which do not contribute more than 5% of the total dataset, are removed, however due to the low diversity of the studied salt-marsh environments this was amended to 2% (following Horton et al., 2003; Edwards et al., 2004). Species removed included *Balticammina pseudomacrescens*, *Haplophragmoides wilberti*, *Scherochorella monilformis*, *Siphotrochammina lobata* and *Textularia earlandi*. A transfer function using linear-based partial least-squares (PLS) regression was developed using C2 v1.7 (Juggins, 2003) due to the short gradient lengths observed (<2 SD units). The coefficient of determination (r^2) and root mean-square error of prediction (RMSEP) were used to assess the strength of relationship and prediction error of the transfer function. As r^2 and RMSEP can overestimate and underestimate the performance of the transfer function when applied to the whole dataset alone (Birks, 1995), cross-validation procedures through jack-knifing the data (ter Braak & Juggins, 1993) were also performed, providing a more robust and reliable assessment of the training sets predictive ability and error (Gehrels, 2000). Component selection followed the ‘principle of parsimony’ (Horton et al., 2003) in which the lowest component displaying low RMSEP under cross-validation and high r^2 values was chosen (Birks, 1995). The influence of other environmental variables (e.g., salinity), may inevitably cause some samples within the dataset to show a weaker relationship with elevation, displaying a high
residual distance from the first ordination axis constrained by the environmental variable of interest (Birks, 1995). Outliers in the training set were therefore screened to remove surface samples with an absolute residual greater than the standard deviation (SD) of the environmental gradient, following Horton & Edwards (2006).

RESULTS

FORAMINIFERAL DISTRIBUTIONS

Thirteen foraminifera species were identified in the dead assemblages across a transect spanning 122 m, covering an altitudinal range of 0.44 m at Jadrtovac (Fig. 3). With a mean and maximum abundance of 2917 and 8820 individuals per 5 cm3, the total concentration of dead tests increased in the mid-low salt-marsh environment. The assemblages (living and dead) were dominated by agglutinated species, *J. macrescens* and *T. inflata*, and calcareous species, *Ammonia* spp. and *Quinqueloculina* spp. Increased sampling frequency was focused in the high salt-marsh environment from sample station 1 to 10, where an elevation change from 0.485 m to 0.095 m HVRS71 occurs over 13 m. A small altitudinal range is then observed across the remainder of the transect. The uppermost two samples were beyond the clearly identifiable limits of tidal inundation (HAT; 0.284 m HVRS71) and were devoid of statistically sufficient counts, with sample station 1 (0.48 m) containing no foraminiferal tests while sample station 2 (0.44 m) contained < 10. From station 3, 2 m along the transect, *J. macrescens* and *T. inflata* were present in every sample covering all of the sampled altitudinal range.
In the high salt-marsh environment, *T. inflata* dominated the assemblages between stations 3 and 9, exceeding 73% of the total count at station 9. Its relative abundance then rapidly decreased at sample station 10 (7%) and remained relatively low across the transect as *J. macrescens* became increasingly common, peaking at sample station 14 to 78% of the total count at 53 m. While relatively low counts of *Miliammina fusca* were observed, its presence was limited to the upper 40 m between high and mid salt-marsh environments, reaching 14% of the total count in station 6 at an altitude of 0.185 m. The reappearance of calcareous taxa (principally *Quinqueloculina* spp. and *Ammonia* spp.) in the mid-low salt-marsh environment, at sample stations 16 and 17, coincided with a significant decrease in the relative abundance of *J. macrescens* at 83 m along the transect.

Relatively few living foraminifera were present at the time of collection at Jadrtovac. A minimum count of 100 stained tests was achieved at only five sample stations (sample stations 10, 16, 17, 20 and 22). Only ten sample stations contained ≥50 foraminiferal specimens, (Appendix B). Species diversity was also limited in the living assemblage and dominated by *J. macrescens, T. inflata* and *Quinqueloculina* spp. Minor occurrences of other taxa (e.g., *M. fusca* and *Spirillina vivipara*) were observed.

Eleven species were identified across a transect spanning 29.2 m, with an elevation change of 0.35 m at Blace (Fig. 4). Again *J. macrescens, T. inflata* and *M. fusca* dominated the assemblages, together with *Quinqueloculina* spp., *Ammonia* spp., *Elphidium* spp., and *Haynesina germanica*. Tests were abundant, with a maximum concentration of 8210 individuals per 5 cm3 occurring at sample station 11. In contrast to Jadrtovac, the abundance of dead tests decreased in the lower salt-marsh environment. With the exception of *Quinqueloculina* spp. in the upper 3 samples (up to 43% at 0 m), a clearer zonation between the foraminiferal assemblages was
observed at Blace. The transition to lower salt-marsh environment corresponded with an increase in the relative abundance of calcareous taxa and reduction of agglutinated forms. At 65% of the total count, *J. macrescens* peaked 2.5 m along the transect in the high salt-marsh, then gradually decreasing as the relative abundance of *T. inflata* increased to 66% at 12.5 m along the transect. Reaching 13% of the total count at 3.5 m along the transect, *M. fusca* was confined to the upper reaches of the salt-marsh environment (0.29 m HVRS71). Moving into the mid-low salt-marsh, the above taxa were replaced by a more diverse calcareous assemblage, as *Ammonia* spp., *Elphidium* spp., *Quinqueloculina* spp. and *Spirillina vivipara* increased in abundance. The maximum occurrence of *Quinqueloculina* spp. occurred 22.5 m along the transect, peaking at 68% of the overall count at sample station 11. The lowermost sample stations were dominated by *Ammonia* spp., rising to 66% of the total count at sample station 14 (29.1 m along transect).

Live foraminifera were also uncommon at Blace compared to dead tests. Across all environments of the salt-marsh, the analyzed samples contained <100 living individuals each (Appendix B). Species diversity was similarly restricted, primarily comprising *J. macrescens*, *T. inflata* and *Quinqueloculina* spp.

Development of a Transfer Function

Unconstrained cluster analysis identifies three faunal zones at Jadrtovac (Fig. 5a). Zone JD-A is characterized by an exclusively agglutinated-dominated assemblage, dominated by *J. macrescens* (up to 77%) and *T. inflata* (up to 47%), with minor occurrences of *M. fusca* (up to 6%). This zone has a vertical range of 0.12 m, extending from 0.08 m to 0.20 m HVRS71 (Fig. 5b). A decrease in the relative abundance of *J. macrescens* and the increase in *T. inflata* (up to
78%) characterizes zone JD-B; while the occurrence of calcareous taxa, *Elphidium* spp. and *Quinqueloculina* spp., and peaks of *M. fusca* are also notable. The occurrence of *Elphidium* spp. at higher elevations in sample stations 3 and 4 creates a larger vertical range for this zone (0.23 m) between 0.04 m and 0.27 m HVRS71. Comprising four samples, zone JD-C, is characterized by an increase in calcareous taxa (*Ammonia* spp. and *Quinqueloculina* spp.) and occupies elevations below MTL between 0.06 m and 0.11 m.

Similar faunal zones are identified at Blace (Fig. 5c). Zone BL-A is dominated by *J. macrescens* (up to 65%) and *T. inflata* (up to 65%) and covers an altitudinal range above MHWST of 0.28–0.40 m HVRS71 (Fig. 5d). Zone BL-B is characterized by a more diverse assemblage of agglutinated and calcareous taxa. *Quinqueloculina* spp. typically dominates (up to 68%), while *Ammonia* spp. (< 21%) are common, as are *Spirillina vivipara*, *J. macrescens* and *T. inflata*, reflecting the vertical range between 0.17 m and 0.37 m HVRS71. An overlap with faunal zone BL-A is due to the inclusion of sample stations 1 and 18, where relatively high abundances of *Quinqueloculina* spp. occur at higher elevations (>0.29 m HVRS71). The occurrence of *Quinqueloculina* spp. in these samples is similar to that observed from sample stations 2, 3 and 17 from faunal zone BL-A. Sample stations 14 and 15 in zone BL-C have vertical range below MTL between -0.01 m and 0.05 m HVRS71 and are dominated by calcareous species *Ammonia* spp. (up to 56%), *Elphidium* spp. (up to 16%), *Haynesina germanica* and *Quinqueloculina* spp. (up to 22%).

Results from DCCA revealed short gradient lengths for axis one (1.5 SD units; Table 2) indicating a linear species response in relation to elevation in the tidal frame. To improve predictive ability and remove sample outliers in the contemporary training set, surface samples with an absolute residual (observed minus predicted) greater than the standard deviation for
elevation (0.141 m) were removed. A statistical summary for the five components produced by an unscreened and screened PLS transfer function is provided in Table 3. Component 2 was chosen, which revealed an improvement in the strength of relationship ($r^2_{\text{jack}} = 0.55$) and suggested precise reconstructions of former sea-level were possible ($\text{RMSEP}_{\text{jack}} = \pm 0.08$ m). Modelled elevations versus surveyed elevations illustrate this relationship and a bias in the training set towards the upper part of the elevational gradient, where the model both underestimates and overestimates the elevation of a number of samples (Fig. 6).

DISCUSSION

SALT-MARSH FORAMINIFERAL DISTRIBUTIONS

The distributions of salt-marsh foraminifera from two microtidal sites along the coast of Croatia were investigated to develop a potential proxy for tidal level in a transfer-function-based reconstruction of past sea level. Similarities in assemblage composition and their position in the tidal frame with previous studies of salt-marsh foraminifera imply that RSL studies adopting this approach are well suited to sites in microtidal settings. The foraminiferal assemblages at Jadrtovac and Blace were broadly similar throughout, where cluster analysis identified three faunal zones (Fig. 5). The main foraminiferal taxa observed included agglutinated species $J. macrescens$, $T. inflata$, $M. fusca$, and calcareous species $Ammonia$ spp., $Elphidium$ spp., $Haynesina$ germanica and $Quinqueloculina$ spp. Differences in the elevation extent of the faunal zones between each site, however, reflect the inter-site variability often observed in salt-marsh foraminiferal studies (e.g., Edwards et al., 2004; Edwards & Wright, 2015). Despite this, a
consistent overall pattern of intertidal vertical zonation is observed. Both transect datasets can be divided into agglutinated-dominated assemblages (JD-A and BL-A), which are prominent at higher elevations of the salt-marsh environment, and a calcareous-dominated assemblage (JD-C and BL-C), which typically occupies lower elevations in the mid-low salt-marsh environment. A mixed foraminiferal assemblage zone (JD-B and BL-B) created overlap between the faunal zones at both sites, implying that sea-level inferences made from such assemblages are less precise from these sites.

Faunal zones dominated by agglutinated assemblages (JD-A and BL-A), with high relative abundances of *J. macrescens* and *T. inflata* and relatively few calcareous taxa, extended from above MHWST to near MTL. The vertical range of this assemblage zone was the same between sites (0.12 m), however, at Blace, it reached a higher elevation by comparison to Jadrtovac, extending to 0.40 m HVRS71. A second mixed faunal zone (JD-B and BL-B), again with relatively high abundances of *J. macrescens* and *T. inflata* coupled with an increased calcareous input (e.g., *Quinqueloculina* spp), spanned a greater vertical range also from around MHWST to below MTL. At Jadrtovac, this extended to 0.04 m HVRS71. A third faunal zone (JD-C and BL-C), characterized by an increased abundance of calcareous taxa (notably *Ammonia* spp. and *Quinqueloculina* spp.), was also observed and was vertically constrained below MTL. These distributions resemble typically observed intertidal zonation patterns whereby agglutinated species, *J. macrescens* and *T. inflata*, consistently dominate around MHWST in salt-marsh and mangrove environments (de Rijk & Troelstra, 1997; Horton et al., 1999b; Horton et al., 2003; Edwards et al., 2004). Calcareous foraminifera, including *Ammonia* spp., *Elphidium* spp and *Quinqueloculina* spp., however are more indicative of lower vegetated salt-marsh and mudflat environments (de Rijk & Troelstra, 1997; Horton et al., 1999b; Woodroffe et al., 2005).
The lack of comparative studies concerning the vertical zonation of intertidal foraminiferal assemblages for the purpose of sea-level studies on the Croatian coast hinders direct assessment of our findings at a local level. However, similarities with studies from salt-marshes in the northern Adriatic are possible; these display similar characteristics to the assemblage zones observed in this study. Using foraminiferal distributions to identify biotopes that characterize different environments in the Venice Lagoon, similarly high abundances of *T. inflata* have been reported (e.g., Serandrei-Barbero et al., 1999, 2011; Albani et al., 2007). In these studies, the genus *Trochammina* characterizes two altimetric zones between MSL and mean high water level (MHWL) (Petrucci et al., 1983; Serandrei-Barbero et al., 1997, 1999) and also the zone above MHWL (Albani et al., 1984). Indeed Petrucci et al. (1983) showed a *T. inflata*-dominated assemblage to indicate a ground height of about 15 cm above the local MSL in the Venice Lagoon area. Utilizing foraminiferal distributions as ecological indicators, Albani et al. (2007) also observed foraminiferal assemblages dominated by *T. inflata* (>60%) to be indicative of an environment above MSL. The authors also demonstrate that high abundances of calcareous species, *Ammonia* spp. and *Haynesina germanica*, characterize inner areas of the lagoon environment, which are influenced by more marine waters. The foraminiferal distributions from Jadrtovac and Blace parallel these observations, supporting their potential as proxies for tidal level in paleo-RSL reconstructions.

The quantitative analyses focused solely on dead foraminiferal assemblages. The selection of the most appropriate foraminiferal assemblage can have important effects on transfer-function performance. The choice of which assemblage should be used (e.g., Jorissen & Wittling, 1999) remains a discussion topic in salt-marsh-based foraminiferal RSL reconstructions. Several authors have argued that total (i.e., living and dead) assemblages are an
accurate representation of the modern environment and so offer a more reliable model in palaeoenvironmental reconstructions (e.g., Scott & Medioli, 1980b; Gehrels, 1994; Hayward et al., 1999a; Tobin et al., 2005). However, incorporating living assemblages into a training set includes foraminifera which are suited to the environmental conditions at the time of sampling (Callard et al., 2011). As this will fluctuate in line with seasonal changes, species diversity and abundance can change over time (Murray, 1991; 2000; Horton et al., 1999a). In a comprehensive study of foraminiferal assemblages from Cowpen Marsh, Great Britain, Horton (1999) concluded, dead foraminiferal populations are a better analogue for sub-surface samples in sea-level reconstructions. Using dead foraminiferal assemblages takes into account both live and dead populations over a greater time-average and so species diversity is generally greater (Murray, 1982, 2003).

The analyzed environments in this study contained very few living specimens by comparison to dead tests. Indeed many of the samples were void of living foraminiferal tests altogether. The contrast between concentrations of living and dead foraminifera is a common feature characterizing low sedimentation environments (Murray, 1976). Our observations from Jadrtovac and Blace conform to previous analyses of foraminiferal assemblages along the coast of Croatia. Cosovic et al. (2006) collected sediments from sample stations along transects extending from the coast out towards the open sea, up to depths of 55 m, and revealed dead foraminiferal tests to be much more abundant regardless of sampling season. Other studies near the Gulf of Venice have also shown greater concentration and increased species diversity in dead foraminiferal assemblages (Serandrei-Barbero et al., 2003).

Anomalously high abundances of *Quinqueloculina* spp. were observed at upper elevations at Blace (Fig. 4) and may be explained by strong, regional winds enabling miliolid
shells into areas where agglutinated taxa (e.g. *J. macrescens* and *T. inflata*) typically dominate. The influence of winds can significantly affect tidal regimes in intertidal environments (Allen, 2000; Kim et al., 2011; Bartholdy, 2012). In the Adriatic region, meteorological forcing associated with low atmospheric pressure coupled with persistent north-easterly Bora and south-easterly Sirocco winds can considerably alter tidal amplitude (Orlić et al., 1994; Raicich, 2003; Ferla et al., 2007). The influx of an allochthonous component into surface samples from higher elevations may have important consequences for the predictive ability of foraminiferal-based transfer functions, essentially broadening the vertical range of calcareous taxa. Inevitably, their inclusion will have an adverse effect on the strength of relationship with tidal level and so may warrant their removal from the training set if it can be justified in the context of a clearly identifiable allochthonous contribution. Such assessment of modern training sets prior to fossil calibration is regarded a useful procedure (Birks, 1995; Horton and Edwards, 2006).

Potential of Mediterranean Salt-marsh Foraminifera to Reconstruct RSL Trends.

Using a training set derived from Jadrtovac and Blace, we developed a PLS transfer function for tidal level. Linear regression and calibration methods are typically less common in quantitative RSL reconstructions due to the often observed unimodal distribution of foraminiferal species in response to elevation in the tidal frame. However, the results from this study are comparable to other studies where PLS transfer functions have been employed. For example, in a study of foraminiferal distributions from Brittany, France, Rossi et al. (2011) also observed short environmental gradients (0.67 SD units), based on a modern training set comprising 36 surface samples. The authors demonstrated robust transfer-function performance.
(r² jack = 0.70; RMSEP jack = 0.07 m) and applied their PLS model to reconstruct RSL changes dating to AD 1850, showing comparable rates of change to direct observations from the nearby Brest tide-gauge. Using 43 samples from Tasmania, Callard et al. (2011) also used linear regression methods, although advocate caution in this approach. They showed that while PLS produced good statistical parameters and was comparable to unimodal, weighted-averaging, partial least-squares (WA-PLS) regression, unreliable predictions were produced in which the proxy reconstruction estimates were greater than both the sampled environment and tidal range.

Developing transfer-function models from within microtidal environments helps minimize vertical uncertainties, enabling more precise RSL reconstructions by comparison to those conducted under macrotidal settings (Southall et al., 2006; Callard et al., 2011; Barlow et al., 2013). The sampled vertical range of the contemporary training set has a strong impact on a model’s predictive ability (Mills et al., 2013). The driver for foraminiferal vertical zonation in extreme microtidal environments, however, can be weaker by comparison to macrotidal settings and directly related to the small vertical range (Horton & Edwards, 2006) where other environmental parameters, such as salinity, can become important (Barlow et al., 2013). Prediction errors should typically be proportional to the tidal range at the sample site, hence the benefit of studies under microtidal regimes. A tidal range of ~20 cm should provide prediction errors of approximately 10% of the tidal range (i.e., ~2 cm) (Barlow et al., 2013). Where the strength of relationship observed is weaker, prediction errors (RMSEP jack) may offer a more realistic assessment of the model performance (Gehrels et al., 2001; Leorri et al., 2010). Based on the contemporary training set presented in this study, our prediction errors (±0.08 m) equates to approximately 30% of the tidal range. While this is larger by comparison to other studies (Table 3; Barlow et al., 2013, Table 10; Mills et al., 2013), nonetheless the data can still be used.
to examine paleo-RSL trends providing that the record is independently assessed by other means such as tide-gauge records (Donnelly et al., 2004; Gehrels et al., 2005; Kemp et al., 2009b).

While the application of subtidal foraminiferal-based transfer functions have been developed and applied in the Mediterranean, for example, reconstructing paleobathymetry (e.g., Rossi & Horton, 2009; Milker et al., 2011), we have documented the first quantitative use of foraminifera from intertidal environments and highlight their potential as proxy sea-level indicators for this region. Previous studies of sea-level change in the Mediterranean have primarily utilized geomorphological (e.g., tidal notches) and archeological (e.g., fish tanks) evidence (Flemming, 1969; Lambeck et al., 2004; Evelpidou et al., 2012; Antonioli et al., 2015). However, the nature and timing of their formation means their indicative meaning and range can often be hard to quantify with the necessary precision needed to delimit changes in late Holocene sea-level to the present. The use of salt-marsh foraminifera therefore significantly improves on the vertical accuracy if applied to fossil counterparts from sufficiently well-dated sediment cores (Shaw, 2013). Indeed, Marriner et al. (2014) recently highlighted high resolution records from salt-marsh environments and their underutilized potential in bridging the gap between geological and instrumental records of sea-level change for the Croatian coast, and more widely in the Mediterranean region.

SUMMARY AND CONCLUSIONS

Foraminiferal assemblages from two microtidal sites along the coast of Croatia were documented to assess their utility as a proxy for tidal level in transfer-function reconstructions of RSL. Three faunal zones were identified and showed a relationship with tidal level in the modern
environment, similar to previous studies in the Adriatic region and elsewhere. Faunal zones dominated by agglutinated species *J. macrescens* and *T. inflata* were vertically constrained from MTL to above MHWST. A second, more diverse faunal zone comprising *J. macrescens* and *T. inflata*, and calcareous *Quinqueloculina* spp., occupied a similar, albeit greater vertical range. Assemblages dominated by higher relative abundances of calcareous taxa (*Ammonia* spp. and *Quinqueloculina* spp.) were indicative of lower intertidal environments below MTL.

The small environmental gradients observed suggested the use of linear regression modelling for establishing a sea-level transfer function, which indicated the training sets potential to relocate former RSL to within ±0.08 m. This precision is comparable to previous studies utilizing salt-marsh foraminifera and highlights their potential for reconstructing RSL trends in the Mediterranean, and reducing the vertical uncertainties associated with sea-level indicators previously employed there. Future studies aimed at increasing the number of samples making up the modern training set for this region would ultimately improve the reconstructive potential of the transfer-function approach and simultaneously improve the modern analogues for application in paleo-RSL research.

ACKNOWLEDGMENTS

This research was conducted as part of Shaw’s Ph. D thesis at the Geography Department, University of Liverpool in collaboration with the National Oceanography Centre, Liverpool, Liverpool John Moores University and funded by a NERC studentship award. Technical staff at the University of Liverpool are thanked for their assistance in the laboratory, notably, Irene Cooper, Alan Henderson and Mike O’Connor. We also thank Hayley Mills for her
help with the statistical analyses. The authors are grateful to the Institute of Oceanography and Fisheries, Split, for their assistance in the field and with logistics. We are also grateful to Srdjan Cupic, Hydrographic Institute of the Republic of Croatia, for supplying tidal levels. Robin Edwards and Fabienne Marret-Davis are thanked for their useful input during discussions. The authors thank Stephen Culver for his taxonomic expertise and gratefully acknowledge Benjamin Horton for his support. Two anonymous reviewers are also thanked for their useful input in improving the manuscript. We also thank Pamela Hallock Muller for overseeing the editorial process.

REFERENCES

Andersen, H. V., 1953, Two new species of *Haplophragmoides* from the Louisiana coast: Contributions from the Cushman Foundation for Foraminiferal Research, v. 4, p. 21–22.

Flemming, N. C., 1969, Archaeological evidence for eustatic change of sea level and Earth movements in the Western Mediterranean during the Last 2,000 Years: Geological Society of America Special Papers, v. 109, p. 1–98.

Hydrographic Institute, 1956-2000, Report on sea level measurement along the eastern Adriatic coast. Split, Croatia.

Kemp, A. C., Horton, B. P., Culver, S. J., Corbett, D. R., van de Plassche, O., Gehrels, W. R.,
Douglas, B. C., and Parnell, A. C., 2009b, Timing and magnitude of recent accelerated sea-

Kemp, A. C., Horton, B. P., Donnelly, J. P., Mann, M. E., Vermeer, M., and Rahmstorf, S., 2011,
Climate related sea-level variations over the past two millennia: Proceedings of the National

Kemp, A. C., Horton, B. P., Vann, D. R., Engelhart, S. E., Grand Pre, C. A., Vane, C. H.,
foraminifera for reconstructing former sea level; an example from New Jersey, USA:
Quaternary Science Reviews, v. 54, p. 26–39.

Kemp, A. C., Horton, B. P., Vane, C. H., Bernhardt, C. E., Corbett, D. R., Engelhart, S. E.,
Anisfeld, S. C., Parnell, A. C., and Cahill, N., 2013, Sea-level change during the last 2500
years in New Jersey, USA: Quaternary Science Reviews, v. 81, p. 90–104.

Kim, D., Cairns, D. M., Bartholdy, J., 2011, Wind-driven sea-level variation influences
101, p. 231–248.

time in the Central Mediterranean and implications for recent change: Earth and Planetary

foraminifera in salt marshes along the Atlantic coast of SW Europe: Tools to reconstruct past

Patterson, R. T., and Fishbein, E., 1989, Re-examination of the statistical methods used to determine the number of point counts needed for micropaleontological quantitative research: Journal of Paleontology, v. 63, p. 245–248.

Saunders, J. B., 1957, Trochamminidae and certain Lituolidae (Foraminifera) from the recent brackish-water sediments of Trinidad, British West Indies: Smithsonian Miscellaneous Collection, v. 134, p. 1–16.

Received 14 September 2015
Accepted 9 November 2015
APPENDICES

APPENDIX A. Taxonomic reference list of species presented in text and Appendix B.

APPENDIX B. Contemporary foraminiferal counts of dead and live assemblages including sample station numbers and elevation (m HVRS71).
TABLE CAPTIONS

Table 1. Tide levels (m HVRS71) derived from the Split tide-gauge (Hydrographic Institute, 1956-2000). MLWST = Mean low water spring tide. MLWN = Mean low water neap. MTL = Mean tidal level. MHWN = Mean high water neap. MHWST = Mean high water spring tide.

Table 2. Summary of DCCA results.

Table 3. Statistical summary of the PLS transfer function performance. C = component.
FIGURE CAPTIONS

FIGURE 1. Location of study area along the coast of Croatia (A) and samples sites Jadrtovac (B) and Blace (C) showing location of modern surface transects presented in Figures 3 and 4.

FIGURE 2. Scanning electron microscope (SEM) images of foraminiferal species observed from salt-marshes at Jadrtovac and Blace, Croatia. 1, 2 Jadammina macrescens; 3, 4, 5 Trochammina inflata; 6 Miliammina fusca; 7, 8 Siphotrochammina lobata; 9 Haplophragmoides wilberti; 10 Scherochorella moniliformis; 11 Textularia earlandi; 12 Spirillina vivipara; 13 Elphidium sp.; 14 Ammonia sp.; 15 Quinqueloculina sp.; 16 Haynesina germanica. White scale bars = 100 µm.

FIGURE 3. Modern distribution of the relative abundances (%) of dead foraminifera plotted by distance for transect J-J1 at Jadrtovac. Foraminiferal abundance (per 5 cm3), elevation (m HVRS71) and salt-marsh zones are also shown. Transect location is shown in Fig. 1B.

FIGURE 4. Modern distribution of the relative abundance (%) of dead foraminifera plotted by distance for transect B-B1 at Blace. Foraminiferal abundance (per 5 cm3), elevation (m HVRS71) and salt-marsh zones are also shown. Transect location is shown in Fig. 1C.

FIGURE 5. Unconstrained cluster analysis identifying faunal assemblage zones from transect J-J1 at Jadrtovac (A) and transect B-B1 from Blace (C) and boxplots of faunal zones plotted by elevation m HVRS71 (B, D) with tidal levels superimposed. JD = Jadrtovac; BL = Blace;
MHWST = Mean high water spring tide; MTL = mean tidal level. Samples 16, 17 and 18 (C) are from similar locations and altitudes to sample stations 1 to 4 from transect B-B₁.

Figure 6. Scatter plot from a screened PLS transfer function (component 2) showing observed versus predicted elevation (A) and residual values versus observed elevation (B).
<table>
<thead>
<tr>
<th>MLWST</th>
<th>MLWN</th>
<th>MTL</th>
<th>MHWN</th>
<th>MHWST</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.036</td>
<td>+0.034</td>
<td>+0.128</td>
<td>+0.233</td>
<td>+0.256</td>
</tr>
<tr>
<td>Axes</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Eigenvalues:</td>
<td>0.264</td>
<td>0.315</td>
<td>0.107</td>
<td>0.045</td>
</tr>
<tr>
<td>Lengths of gradient:</td>
<td>1.594</td>
<td>2.220</td>
<td>1.635</td>
<td>1.790</td>
</tr>
<tr>
<td>Sum of all Eigenvalues:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum of all Canonical Eigenvalues:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical Parameters</td>
<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>C4</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Unscreened training set</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r^2</td>
<td>0.37</td>
<td>0.44</td>
<td>0.44</td>
<td>0.45</td>
</tr>
<tr>
<td>RMSE (m)</td>
<td>0.11</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Max_bias</td>
<td>0.16</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>r^2_{jack}</td>
<td>0.27</td>
<td>0.32</td>
<td>0.32</td>
<td>0.28</td>
</tr>
<tr>
<td>RMSEP $_{\text{jack}}$ (m)</td>
<td>0.12</td>
<td>0.11</td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td>Max_bias $_{\text{jack}}$</td>
<td>0.17</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>Screened training set</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r^2</td>
<td>0.56</td>
<td>0.62</td>
<td>0.63</td>
<td>0.63</td>
</tr>
<tr>
<td>RMSE (m)</td>
<td>0.08</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>Max_bias</td>
<td>0.10</td>
<td>0.09</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>r^2_{jack}</td>
<td>0.47</td>
<td>0.55</td>
<td>0.56</td>
<td>0.55</td>
</tr>
<tr>
<td>RMSEP $_{\text{jack}}$ (m)</td>
<td>0.08</td>
<td>0.08</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>Max_bias $_{\text{jack}}$</td>
<td>0.11</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Ammonia spp. Murray, 1979, p. 57, fig. 18a-l; Horton and Edwards, 2006; p. 73, P3, fig. 10a-c, fig. 11a-c, fig. 12a-c.

Balticammina pseudomacrescens Brönnimann, Lutze and Whittaker, 1989. Gehrels and van de Plassche, 1999, p.98, P1, fig. 6-10; Horton and Edwards, 2006, p. 63, P1, fig. 1a-d; Wright et al., 2011, p. 58, fig. A1/1.

Elphidium spp. Murray, 1979, p. 53, fig. 16a-d; Hayward et al., 1999b, p. 219, P17, fig. 1-28; Murray, 2006, p. 65, fig. 4.2, 11; Horton and Edwards, 2006; p. 75, P4, fig. 15-20.

Haplophragmoides wilberti (Andersen, 1953). Hayward et al., 1999b, p. 217, P1, fig. 25, 26; Horton and Edwards, 2006, p. 63, P1, fig. 3a-d; Hawkes et al., 2010, p. 133, P1, fig. 2a, b; Wright et al., 2011, p. 58, fig. A1/7.

Haynesina germanica (Ehrenberg, 1840a, b). Murray, 1979, p. 55, fig. 17a, b; Horton and Edwards, 2006; p. 75, P4, fig. 21a, b.

Jadammina macrescens (Brady, 1870). Murray, 1979, p. 27, fig. 6k-m; Gehrels and van de Plassche, 1999, p.98, P1, fig. 1-5; Hayward et al., 1999b, p. 217, P1, fig. 27-29; Horton and Edwards, 2006; p. 67, P1, fig. 4a-d; Hawkes et al., 2010, p. 133, P1, fig. 7a-d; Wright et al., 2011, p. 58, fig. A1/5.

Miliammina fusca (Brady, 1870). Murray, 1979, p. 24, fig. 5d-f; Hayward et al., 1999b, p. 217, P1, fig. 25, 6; Edwards et al., 2004; p. 16, P1, fig. 7; Horton and Edwards, 2006; p. 67, P1, fig. 5a, b. Wright et al., 2011, p. 59, fig. A2/2.
Quinqueloculina spp. Murray, 1979, p. 35, fig. 9a-i; Hayward et al., 1999b, p. 223; P4, fig. 26-28; p. 225, P5, fig. 9, 10; Horton and Edwards, 2006; p. 71, P2, fig. 9a, b.

Scherochorella moniliformis Siddall, 1886. Murray, 1979, p. 24, fig. 5b; Horton and Edwards, 2006; p. 67, P1, fig. 6a-c; Wright et al., 2011, p. 58, fig. A1/6.

Siphotrochammina lobata (Saunders, 1957). Edwards et al., 2004; p. 16, P1, fig. 9, 10; Wright et al., 2011, p. 58, fig. A1/10; Kemp et al., 2012; p. 29, P1, fig. 13, 14.

Spirillina vivipara Ehrenberg, 1843. Ehrenberg, 1843, p. 422, P3, fig. 41, sec. 7; Murray, 1979, p. 39, fig. 11a; Hayward et al., 1999b, p. 221, P3, fig. 7.

Textularia earlandi Parker, 1952. Hayward et al., 1999b, p. 219, P2, fig. 22, 23; Edwards et al., 2004; p. 16, P1, fig. 11; Wright et al., 2011, p. 58, fig. A1/3.

Trochammina inflata (Montagu, 1808). Hayward et al., 1999b, p. 219, P2, fig. 6-8; Edwards et al., 2004; p. 16, P1, fig. 14, 15; Horton and Edwards, 2006; p. 71, P2, fig. 8a-d; Wright et al., 2011, p. 58, fig. A1/9; Kemp et al., 2012; p. 29, P1, fig. 7, 8.
<table>
<thead>
<tr>
<th>Transect J-J1 (Jadrtovac)</th>
<th>Species Name</th>
<th>Assemblage</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodularia sp.</td>
<td>Dead</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Live</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Balanomorpha pseudomacrescens</td>
<td>Dead</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Live</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Elphidium spp.</td>
<td>Dead</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Live</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Haplophragmoides wilberti</td>
<td>Dead</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Live</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hastenina germanica</td>
<td>Dead</td>
<td>0</td>
<td>1</td>
<td>11</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Live</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idasmina macrescens</td>
<td>Dead</td>
<td>0</td>
<td>7</td>
<td>83</td>
<td>90</td>
<td>91</td>
<td>108</td>
<td>113</td>
<td>323</td>
<td>184</td>
<td>240</td>
<td>214</td>
<td>143</td>
<td>95</td>
<td>277</td>
<td>265</td>
<td>90</td>
<td>59</td>
<td>162</td>
<td>160</td>
<td>144</td>
<td>199</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>Live</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>13</td>
<td>11</td>
<td>16</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>53</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>19</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Melianella fusca</td>
<td>Dead</td>
<td>0</td>
<td>0</td>
<td>34</td>
<td>0</td>
<td>10</td>
<td>69</td>
<td>24</td>
<td>16</td>
<td>13</td>
<td>12</td>
<td>8</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Live</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitzschia acida spp.</td>
<td>Dead</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>193</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>334</td>
<td>314</td>
<td>1</td>
<td>19</td>
<td>598</td>
</tr>
<tr>
<td>Live</td>
<td>0</td>
<td>1</td>
<td>87</td>
<td>47</td>
<td>2</td>
<td>26</td>
<td>74</td>
<td>10</td>
<td>137</td>
<td>72</td>
<td>10</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>Nitzschia delicatissima</td>
<td>Dead</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Live</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitephorella triqueta</td>
<td>Dead</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Live</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spicillaria vitiensis</td>
<td>Dead</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>19</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Live</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrakirina larvalis</td>
<td>Dead</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Live</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trochammina inflata</td>
<td>Dead</td>
<td>0</td>
<td>2</td>
<td>519</td>
<td>515</td>
<td>63</td>
<td>312</td>
<td>232</td>
<td>316</td>
<td>548</td>
<td>60</td>
<td>58</td>
<td>16</td>
<td>28</td>
<td>69</td>
<td>105</td>
<td>235</td>
<td>250</td>
<td>319</td>
<td>570</td>
<td>431</td>
<td>335</td>
<td>1050</td>
<td></td>
</tr>
<tr>
<td>Live</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>28</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>36</td>
<td>67</td>
<td>11</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>10</td>
<td>34</td>
<td>37</td>
<td>10</td>
<td>52</td>
<td>64</td>
<td>35</td>
<td>121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Dead</td>
<td>0</td>
<td>9</td>
<td>748</td>
<td>931</td>
<td>166</td>
<td>499</td>
<td>394</td>
<td>669</td>
<td>750</td>
<td>785</td>
<td>312</td>
<td>205</td>
<td>124</td>
<td>358</td>
<td>386</td>
<td>774</td>
<td>765</td>
<td>517</td>
<td>757</td>
<td>1280</td>
<td>646</td>
<td>1764</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Live</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>28</td>
<td>0</td>
<td>5</td>
<td>6</td>
<td>50</td>
<td>80</td>
<td>104</td>
<td>11</td>
<td>5</td>
<td>1</td>
<td>68</td>
<td>15</td>
<td>146</td>
<td>101</td>
<td>13</td>
<td>94</td>
<td>157</td>
<td>67</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>Elevation (m HVRS71)</td>
<td>0.48</td>
<td>0.44</td>
<td>0.27</td>
<td>0.22</td>
<td>0.20</td>
<td>0.18</td>
<td>0.19</td>
<td>0.15</td>
<td>0.14</td>
<td>0.09</td>
<td>0.06</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.11</td>
<td>0.10</td>
<td>0.06</td>
<td>0.05</td>
<td>0.06</td>
<td>0.10</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2359 Shaw, Appendix B.
<table>
<thead>
<tr>
<th>Traysect B-B1 (Blace)</th>
<th>Assemblage</th>
<th>Sample Station Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species Name</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18</td>
<td></td>
</tr>
<tr>
<td>Ammonia spp.</td>
<td>Dead</td>
<td>1 0 0 0 0 0 0 0 0 0 0 0 87 103 38 35 98 78 0 25 74</td>
</tr>
<tr>
<td>Live</td>
<td></td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 1 0 15 13 13 0 1 4</td>
</tr>
<tr>
<td>Balticammina pseudomacrescens</td>
<td>Dead</td>
<td>0 0</td>
</tr>
<tr>
<td>Live</td>
<td></td>
<td>0 0</td>
</tr>
<tr>
<td>Elphidium spp.</td>
<td>Dead</td>
<td>1 0 1 0 0 0 0 0 0 0 0 5 16 30 6 7 29 0 0 0</td>
</tr>
<tr>
<td>Live</td>
<td></td>
<td>0 0 1 2 0 0 0 0 0 0 0 2 2 15 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Haplophragmoides wilberti</td>
<td>Dead</td>
<td>5 17 17 4 22 7 0 5 9 3 0 0 1 0 0 0 1 1</td>
</tr>
<tr>
<td>Live</td>
<td></td>
<td>0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Haynesina germanica</td>
<td>Dead</td>
<td>0 0 0 0 0 0 0 0 0 0 0 33 42 12 16 17 8 0 4 15</td>
</tr>
<tr>
<td>Live</td>
<td></td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Jadammina macrescens</td>
<td>Dead</td>
<td>78 295 200 90 488 289 507 240 280 140 79 25 23 5 4 101 170 240</td>
</tr>
<tr>
<td>Live</td>
<td></td>
<td>1 3 2 1 12 18 19 11 10 21 16 13 22 0 0 4 10 12</td>
</tr>
<tr>
<td>Melammina fusca</td>
<td>Dead</td>
<td>45 10 5 3 38 70 34 7 42 0 17 0 0 2 1 30 0 1</td>
</tr>
<tr>
<td>Live</td>
<td></td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Quinquelocalina spp.</td>
<td>Dead</td>
<td>643 178 50 0 0 0 0 0 0 0 200 1117 95 68 21 39 1 197 510</td>
</tr>
<tr>
<td>Live</td>
<td></td>
<td>0 19 4 0 0 0 0 0 0 34 14 36 45 19 25 0 9 30</td>
</tr>
<tr>
<td>Schroecharella moniliformis</td>
<td>Dead</td>
<td>0 0</td>
</tr>
<tr>
<td>Live</td>
<td></td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Strophecomumina lobata</td>
<td>Dead</td>
<td>0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1</td>
</tr>
<tr>
<td>Live</td>
<td></td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Spirillina vivipara</td>
<td>Dead</td>
<td>10 3 1 0 0 0 0 0 0 31 170 8 4 3 5 0 13 5</td>
</tr>
<tr>
<td>Live</td>
<td></td>
<td>0 2 1 0 0 0 0 0 0 7 0 0 0 0 1 0 7 0</td>
</tr>
<tr>
<td>Textularia earlandi</td>
<td>Dead</td>
<td>0 0 0 0 1 0 1 0 2 0 3 5 3 4 4 0 0 0</td>
</tr>
<tr>
<td>Live</td>
<td></td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0</td>
</tr>
<tr>
<td>Trochammina inflata</td>
<td>Dead</td>
<td>695 450 400 139 200 145 303 285 638 245 95 41 24 17 7 343 650 720</td>
</tr>
<tr>
<td>Live</td>
<td></td>
<td>30 9 35 3 10 9 9 12 10 20 13 15 13 1 0 15 16 33</td>
</tr>
<tr>
<td>Total</td>
<td>Dead</td>
<td>1478 953 674 237 749 511 847 537 971 764 1642 274 181 174 175 475 1061 1564</td>
</tr>
<tr>
<td>Live</td>
<td></td>
<td>31 34 45 6 22 28 27 23 20 84 46 79 95 34 41 19 45 83</td>
</tr>
</tbody>
</table>

Elevation (m HVR571) 0.37 0.37 0.36 0.34 0.32 0.29 0.28 0.29 0.3 0.26 0.2 0.17 0.18 0.05 0.01 0.4 0.34 0.29
Shaw, Figure 3.
Shaw, Figure 4.
Shaw, Figure 5.
Shaw, Figure 6.