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ABSTRACT 

 

Salt-marsh foraminifera serve as proxy sea-level indicators due to a quantifiable 

relationship with elevation in the contemporary environment. In this paper, we document the 

distribution of salt-marsh foraminifera from two microtidal sites, Jadrtovac and Blace, along the 

Adriatic coast of Croatia and assess their suitability as proxies for elevation in transfer-function-

based reconstructions of sea level, which has so far evaded the Mediterranean region. The 

assemblages are dominated by typical salt-marsh agglutinated taxa, Jadammina macrescens and 

Trochammina inflata, and the calcareous taxa Ammonia spp. and Quinqueloculina spp. 

Quantitative analyses revealed that the assemblages are divided into three faunal zones, which 

are elevation dependent, and where an assemblage dominated by J. macrescens and T. inflata 

extends to higher elevations in the intertidal frame. The training set was used to develop a tidal- 

level transfer function using linear regression due to the short environmental gradients observed. 

The model predicts sea level with a precision of ± 0.08 m. This study highlights the strong 

potential of salt-marsh foraminifera in reconstructing RSL trends for the Mediterranean region, 

where studies of past sea-level have previously been restricted to other indicators.  
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INTRODUCTION 

 

The application of salt-marsh sediments and microfossils (e.g., foraminifera, diatoms and 

testate amoebae) in reconstructing relative sea level (RSL) has extended our knowledge of sea-

level change beyond the limits of direct observations (i.e., tide-gauges) that are, at best, restricted 

to the past ~250 years or so (Woodworth, 1999). Salt-marsh sediments and, in particular, 

foraminifera have proven useful in providing supplementary evidence to assess the timing of 

recent accelerations in sea level (Gehrels & Woodworth, 2013) and can be regarded as natural 

archives comparable to tide-gauge records (e.g., Barlow et al., 2013), permitting sea-level 

inferences as far back in time as the sediments reliably allow. In addition, proxy-based 

reconstructions have also helped provide an insight into the spatial and temporal variability of 

Late Holocene sea-level trends (Kemp et al., 2011; 2013; Barlow et al., 2014; Long et al., 2014).   

The premise of using salt-marsh foraminifera as markers for former sea levels stems from 

an established, quantifiable relationship with tidal level in the modern environment (e.g., Scott & 

Medioli, 1978, 1980a, 1986), referred to as the indicative meaning (Shennan, 1982, 1986; van de 

Plassche, 1986). This intrinsic connection forms narrow vertical niches in which characteristic 

assemblages occur in abundance, allowing sub-environments to be identified based on the 

tolerance or preference to limiting ecological parameters, such as frequency and duration of tidal 

flooding, sub-aerial exposure, salinity, substrate composition and food availability (de Rijk, 

1995; de Rijk & Troelstra, 1997; Berkeley et al., 2007). Despite differences in climate, tidal 

regime and site characteristics (e.g., vegetation and salinity), this vertical zonation is persistent 
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across many salt-marsh and mangrove environments where similar foraminiferal assemblages are 

observed (Edwards & Wright, 2015; fig. 13.1).   

Typically, agglutinated foraminifera are restricted to the vegetated salt-marsh platform 

where the common high-marsh species, Jadammina macrescens and Trochammina inflata, are 

consistently found in the upper reaches of the tidal frame. Indeed, Scott & Medioli (1978) 

suggested that monospecific assemblages of J. macrescens could be used to relocate (both 

vertically and in time) past sea level to within ±0.05 m when applied to fossil counterparts found 

in sediment cores. Along the environmental gradient towards lower intertidal and unvegetated 

tidal-flat environments, a transition in assemblage composition occurs, reflecting a change in 

indicative range (Edwards et al., 2004; Leorri et al., 2010; Kemp et al., 2012; Strachan et al., 

2015). While there is much similarity in the spatial distribution of intertidal foraminiferal 

assemblages, variability between sample sites with respect to their position in the tidal frame is 

not uniform, necessitating the need for site-specific data (Horton & Edwards, 2006).  

Research on the distribution of foraminifera across salt-marsh environments for the 

purpose of sea-level reconstruction for the Mediterranean region is lacking in the published 

literature (e.g., Petrucci et al., 1983). The Mediterranean, and in particular Adriatic Sea, offers 

ideal conditions for a study of this type due to the typically low wave-energy conditions and 

microtidal regime. The foremost conclusion drawn from using salt-marsh foraminifera in RSL 

studies is the improved accuracy when conducted under microtidal settings in reducing the 

vertical uncertainties involved (Horton & Edwards, 2006; Southall et al., 2006; Callard et al., 

2011; Mills et al., 2013; Barlow et al., 2013). While benthic foraminifera are well documented in 

the Adriatic Sea (e.g., Jorissen, 1987, 1988), previous research in this region has primarily 
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focused on the use of intertidal foraminifera as indicators of pollution histories (e.g., Coccioni, 

2000; Albani et al., 2007; Frontalini & Coccioni, 2008; Frontalini et al., 2010).  

Expressing biological indicators (e.g., foraminifera) as a function of an environmental 

variable (e.g., tidal level), known as a transfer function (Imbrie & Kipp, 1971), first requires an 

understanding of the contemporary environment and how the two are related. In this paper we 

present the first quantified, contemporary, surface-foraminiferal distributions from two 

microtidal salt-marsh sites along the Adriatic coast of Croatia (Fig. 1a) and assess their 

suitability for reconstructing former sea level through the development of a tidal-level transfer 

function. 

 

STUDY AREA 

 

The Croatian coastline is predominantly rocky and steep with numerous pockets of sand 

and gravel beaches and few alluvial zones (Baric et al., 2008). The karstic nature of the coastline 

makes vegetated coastal sedimentary environments a rare habitat for this region, with only one 

large alluvial plain along the coastline at the Neretva Delta towards the south. A limited amount 

of research exists on salt-marsh environments in the eastern Adriatic region, with most studies 

focusing on the Italian and northern shoreline, primarily from a pollution perspective (e.g., 

Frontalini & Coccioni, 2011). The coastal wetland environments along the Croatian coast have 

also become increasingly threatened by human activity, as increased tourism development has 

converted these habitats to beaches (Pandža et al., 2007). A review of salt-marsh vegetation by 

Pandža et al. (2007) for the central and south-eastern Adriatic, however, identified eight 
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ecologically important sites and two of the sites considered, Jadrtovac (Fig. 1b) and Blace (Fig. 

1c), are the focus of this investigation.  

Jadrtovac is a small coastal town situated within Morinje Bay (43°40’48”N, 15°57’24”E), 

approximately 3 km south of Šibenik and 50 km north of Split, central Croatia. With a surface 

area of 3.5 km2 and a maximum water depth of 21 m, the bay can be divided into two sections, a 

shallow northern region and a deeper southern channel (Mihelčič et al., 2006). Communication 

with the open Adriatic Sea occurs through 2.5 km-long channel (150–350 m wide). A relatively 

high sedimentation rate of 1.0 m/ka has resulted in the accumulation of 4.5 m of organic-rich 

sediment, which began approximately 4.5 ka BP as the Morinje depression was inundated during 

the latter stages of the Holocene transgression (Bačani et al., 2004; Šparica et al., 2005). The 

salt-marsh is located on the eastern side of the bay (Fig. 1b) and is roughly 130 m at its widest 

point before thinning out to the north around the bay. No tidal-flat environment is exposed at 

Jadrtovac and the low salt-marsh/sea interface is characterized by a micro-cliff edge 10-20 cm 

high. The salt marsh displays distinct zones of vegetation with Juncus spp., Halimione, Atriplex, 

Scirpus spp., Phragmites and occasional Suaeda spp. colonising higher elevations in the upper 

salt-marsh zone, while mid- to low salt-marsh zones are dominated by Halimione spp., 

Salicornia spp. and again occasional Suaeda spp. The salt marsh is intersected in the middle by a 

narrow (~2 m) man-made channel (which was avoided for sampling), presumably for drainage 

and local fishing access to the bay. The mean daily tidal range at this site is approximately 23 

cm, derived from values obtained at the nearby Split tide-gauge (Table 1; Hydrographic Institute, 

1956-2000).  

Blace is a similarly small coastal town bordering the Adriatic Sea (43°00’15”N, 

17°28’27”E) approximately 120 km south of Jadrtovac. This site comprises a remote small 
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pocket salt-marsh just north of the town, approximately 3 km south of the Neretva River delta, 

the largest outflow along the Croatian coastline with a large, 12,000 hectare alluvial plain, 

representing an important ecological and agricultural site (Romić et al., 2008) and recognized 

under the Ramsar Convention since 1993. The studied salt marsh is roughly 40 m wide and 

located within a sheltered embayment from the open Adriatic Sea. Distinct zones of vegetation 

are again apparent, with Juncus spp. and members of the Chenopodiaceae family (e.g.,Halimione 

spp.) dominating high- to mid-salt-marsh zones; Limonium spp. and Salicornia spp. dominate the 

mid- to low salt marsh. The mean daily tidal range at this site is almost identical to Jadrtovac at 

23 cm, as taken from values from the nearby Ploće tide-gauge (Hydrographic Institute, 1956-

2000).  

 

METHODOLOGY 

 

FIELD SAMPLING 

 

To quantify the relationship between elevation and foraminiferal assemblages, modern 

surface samples were collected to develop a training set suitable for use in constructing a tidal- 

level transfer function. At both sites, sample stations were established across two separate 

transects running perpendicular to the coast, incorporating all sub-environments from the high 

salt marsh to the low salt marsh/sea interface, following Scott & Medioli (1980a). While 

sampling frequency varied between sample sites, it was focused around areas of topographical 

and/or floral community change. To reduce the potential effects of seasonality on surface 
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foraminiferal distributions, as discussed by Horton & Edwards (2003, 2006), field work was 

conducted during winter months (January 2010).  

Sediment samples of a standardised volume (10 cm3) were collected from the upper 1 cm 

of the salt-marsh surface for foraminiferal analyses. Specific details regarding the sampling 

procedure are provided in Edwards & Wright (2015) and follows the commonly adopted 

sampling depth of 1 cm for studies analyzing modern foraminiferal distributions from salt-marsh 

environments (e.g., Scott & Medioli, 1980a; Horton et al., 1999a; Gehrels et al., 2001; Edwards 

et al., 2004; Kemp et al., 2009a, 2012). This assumes the foraminiferal assemblages used are 

primarily epifaunal. Some studies, however, have highlighted the importance of infaunal 

populations and their potential implications for sea-level reconstructions (i.e., mixing of live 

foraminifera with fossil assemblages) (Tobin et al., 2005). Indeed this has shown to be evident 

from studies of North American salt marshes where infaunal populations can be significant 

(Ozarko et al., 1997; Hippensteel et al., 2002; Duchemin et al., 2005; Tobin et al., 2005). In 

contrast, studies from European saltmarshes have found infaunal populations to be less 

significant (Horton, 1997; Alve & Murray, 2001; Horton & Edwards, 2006). While the 

population of infaunal foraminifera may be variable and site specific, differences in these 

observations may in part reflect the organic nature of northern American salt-marsh 

environments compared to their more minerogenic European counterparts, which restrict the 

penetration of subsurface foraminifera (Horton, 1999). Nonetheless, using a sampling depth 

interval incorporating the upper 1 cm of the salt-marsh sediment surface provides an adequate 

model from which palaeoenvironmental reconstructions can be based (Culver & Horton, 2005; 

Horton & Edwards, 2006). To establish absolute altitudes, sample stations were surveyed relative 

to Croatian national geodetic benchmarks (m HVRS71) using Real Time Kinetic (RTK) satellite 
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navigation in conjunction with Leica Na820 optical levelling apparatus referenced to local 

benchmarks.  

 

FORAMINIFERAL ANALYSES 

 

While in the field, samples were immersed using the protein stain, rose Bengal (Walton, 

1952), to differentiate ‘living’ foraminifera at the time of collection; samples were stored in 

buffered ethanol (Edwards & Wright, 2015). Despite some contention (e.g., Bernhard, 2000; 

Bernhard et al., 2006), this technique is widely adopted amongst the research community and 

represents an effective way of staining live foraminifera (Murray & Bowser, 2000; Figueira et 

al., 2012). Sample preparation followed that outlined by Horton & Edwards (2006), i.e., wet 

sieving sediment to isolate the 63 µm to 500 µm fraction before transferring into a wet splitter 

(Scott & Hermelin, 1993), dividing the sample into eight equal aliquots. The >500 µm fraction 

and supernatant were checked periodically for foraminiferal tests before being discarded. 

Foraminifera were counted wet under a stereo microscope at 63x magnification until a minimum 

of 100 (dead) specimens was reached. The precise number required to produce reliable statistical 

results is proportional to the relative abundance of taxa observed and the accuracy required 

specific to the study (Patterson & Fishbein, 1989; Fatela & Taborda, 2002). Counts of ~100, 

however, are statistically robust given the low diversity assemblages typical of salt-marsh 

environments (Edwards & Wright, 2015), and this threshold was easily surpassed in most 

samples (Appendix B). Relatively few living (stained) foraminiferal tests were found in the 

samples at the time of collection. Our statistical analysis and interpretation is therefore based on 

the relative abundance (%) of dead foraminiferal assemblages only (following Gehrels et al., 
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2001; Horton & Edwards, 2003; Leorri et al., 2010; Rossi et al., 2011; Kemp et al., 2013), which 

are less susceptible to seasonal (Murray, 1991) and/or post-depositional changes (Horton & 

Edwards, 2006). Foraminiferal assemblages can suffer from test destruction through dissolution 

in intertidal environments (e.g., Murray, 1989; Berkeley et al., 2007) caused by acidic conditions 

often associated with salt-marsh sediments (Scott & Medioli, 1980a). However, we observed no 

obvious sign of this taphonomic process in the samples analyzed.  

Foraminiferal taxonomy was confirmed through comparison with type specimens logged 

at the Smithsonian Institution, Washington, DC, and Scanning Electron Microscope (SEM) 

images of salt-marsh foraminifera from the published literature (e.g., Horton & Edwards, 2006; 

Appendix A). Figure 2 provides SEM images of the main foraminiferal taxa encountered in this 

study, which were captured using a Hitachi TM3000 Tabletop microscope. The various 

calcareous species of Ammonia, Elphidium and Quinqueloculina are grouped together at genus 

level following Horton & Edwards (2006) and Kemp et al. (2012). Raw counts of both ‘living’ 

and ‘dead’ foraminifera are provided in Appendix B. 

 

STATISTICAL ANALYSES 

 

To identify faunal zones (clusters) based on similarities in the foraminiferal assemblages, 

unconstrained cluster analysis using unweighted Euclidean distance was performed using output 

from CONISS total sum of squares within Tilia View (Grimm, 2004). Elevation-dependent 

faunal zones were created for transects J-J1 and B-B1, represented through box plots of cluster 

order (faunal zone) by height relative to vertical datum (m HVRS71). Three surface samples (16, 
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17 and 18), taken from very similar locations and altitudes to sample stations 1 to 4 from transect 

B-B1, were also included in the analysis for Blace (Appendix B).  

Surface data from additional transects at each site were included in developing a transfer 

function to maximize the full range of sub-environments studied, reduce the potential influence 

of spatial autocorrelation (Telford & Birks, 2005; Edwards & Wright, 2015) and improve 

reliability by increasing training set size (n=60) (Barlow et al., 2013; Kemp & Telford, 2015). 

The spatial scale from which training sets are derived can have important consequences for 

transfer-function performance in RSL studies (e.g., Watcham et al., 2013). While transfer 

functions based on local training sets may offer an increase in vertical precision, combining 

regional data provides a greater number of modern analogues and improvements in predictive 

power when applied to fossil counterparts (Horton & Edwards, 2005).  

The utility of foraminiferal assemblages from salt-marsh environments as sea-level 

indicators is founded on their relationship with tidal level. Inter-correlation with other 

environmental parameters, however, can influence distribution patterns in explaining variance in 

modern training sets (e.g., Horton & Culver, 2008). While it is beyond the scope of this paper to 

document these in detail, Shaw (2013) studied the influence of elevation amongst other 

environmental variables (e.g., pH, salinity, organic matter and grain size) to confirm the 

suitability of salt-marsh foraminifera in transfer-function reconstructions. Within the observed 

inter-correlations between the variables, elevation within the tidal frame was statistically 

significant in explaining variance in the foraminiferal distributions from the sample sites 

presented. Following this, the combined training set was used to develop a transfer function 

quantifying the relationship between dead foraminiferal assemblages and tidal elevation. 
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Understanding species response, to thus derive ecological response functions (Horton & 

Edwards, 2006), first allows the selection of the most appropriate regression model based on the 

linear or unimodal distribution of training sets (Birks, 1995). Detrended canonical 

correspondence analysis (DCCA) was performed to determine the appropriate method (Birks, 

1995; Leps & Smilauer, 2005) using CANOCO v4.5 (ter Braak & Šmilauer, 2002) and gradient 

lengths assessed in standard deviation units. Prior to analysis, low counts and insignificant 

species were removed, following Fatela & Taborda (2002). Usually, those species, which do not 

contribute more than 5% of the total dataset, are removed, however due to the low diversity of 

the studied salt-marsh environments this was amended to 2% (following Horton et al., 2003; 

Edwards et al., 2004). Species removed included Balticammina pseudomacrescens, 

Haplophragmoides wilberti, Scherochorella monilformis, Siphotrochammina lobata and 

Textularia earlandi. A transfer function using linear-based partial least-squares (PLS) regression 

was developed using C2 v1.7 (Juggins, 2003) due to the short gradient lengths observed (<2 SD 

units). The coefficient of determination (r2) and root mean-square error of prediction (RMSEP) 

were used to assess the strength of relationship and prediction error of the transfer function. As r2  

and RMSEP can overestimate and underestimate the performance of the transfer function when 

applied to the whole dataset alone (Birks, 1995), cross-validation procedures through jack-

knifing the data (ter Braak & Juggins, 1993) were also performed, providing a more robust and 

reliable assessment of the training sets predictive ability and error (Gehrels, 2000). Component 

selection followed the ‘principle of parsimony’ (Horton et al., 2003) in which the lowest 

component displaying low RMSEP under cross-validation and high r2 values was chosen (Birks, 

1995). The influence of other environmental variables (e.g., salinity), may inevitably cause some 

samples within the dataset to show a weaker relationship with elevation, displaying a high 
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residual distance from the first ordination axis constrained by the environmental variable of 

interest (Birks, 1995). Outliers in the training set were therefore screened to remove surface 

samples with an absolute residual greater than the standard deviation (SD) of the environmental 

gradient, following Horton & Edwards (2006).  

 

RESULTS 

 

FORAMINIFERAL DISTRIBUTIONS 

 

Thirteen foraminifera species were identified in the dead assemblages across a transect 

spanning 122 m, covering an altitudinal range of 0.44 m at Jadrtovac (Fig. 3). With a mean and 

maximum abundance of 2917 and 8820 individuals per 5 cm3, the total concentration of dead 

tests increased in the mid-low salt-marsh environment. The assemblages (living and dead) were 

dominated by agglutinated species, J. macrescens and T. inflata, and calcareous species, 

Ammonia spp. and Quinqueloculina spp. Increased sampling frequency was focused in the high 

salt-marsh environment from sample station 1 to 10, where an elevation change from 0.485 m to 

0.095 m HVRS71 occurs over 13 m. A small altitudinal range is then observed across the 

remainder of the transect. The uppermost two samples were beyond the clearly identifiable limits 

of tidal inundation (HAT; 0.284 m HVRS71) and were devoid of statistically sufficient counts, 

with sample station 1 (0.48 m) containing no foraminiferal tests while sample station 2 (0.44 m) 

contained < 10. From station 3, 2 m along the transect, J. macrescens and T. inflata were present 

in every sample covering all of the sampled altitudinal range.  
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In the high salt-marsh environment, T. inflata dominated the assemblages between 

stations 3 and 9, exceeding 73% of the total count at station 9. Its relative abundance then rapidly 

decreased at sample station 10 (7%) and remained relatively low across the transect as J. 

macrescens became increasingly common, peaking at sample station 14 to 78% of the total count 

at 53 m. While relatively low counts of Miliammina fusca were observed, its presence was 

limited to the upper 40 m between high and mid salt-marsh environments, reaching 14% of the 

total count in station 6 at an altitude of 0.185 m. The reappearance of calcareous taxa (principally 

Quinqueloculina spp. and Ammonia spp.) in the mid-low salt-marsh environment, at sample 

stations 16 and 17, coincided with a significant decrease in the relative abundance of J. 

macrescens at 83 m along the transect.  

Relatively few living foraminifera were present at the time of collection at Jadrtovac. A 

minimum count of 100 stained tests was achieved at only five sample stations (sample stations 

10, 16, 17, 20 and 22). Only ten sample stations contained ≥50 foraminiferal specimens, 

(Appendix B). Species diversity was also limited in the living assemblage and dominated by J. 

macrescens, T. inflata and Quinqueloculina spp. Minor occurrences of other taxa (e.g., M. fusca 

and Spirillina vivipara) were observed.   

Eleven species were identified across a transect spanning 29.2 m, with an elevation 

change of 0.35 m at Blace (Fig. 4). Again J. macrescens, T. inflata and M. fusca dominated the 

assemblages, together with Quinqueloculina spp., Ammonia spp., Elphidium spp., and Haynesina 

germanica. Tests were abundant, with a maximum concentration of 8210 individuals per 5 cm3 

occurring at sample station 11. In contrast to Jadrtovac, the abundance of dead tests decreased in 

the lower salt-marsh environment. With the exception of Quinqueloculina spp. in the upper 3 

samples (up to 43% at 0 m), a clearer zonation between the foraminiferal assemblages was 
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observed at Blace. The transition to lower salt-marsh environment corresponded with an increase 

in the relative abundance of calcareous taxa and reduction of agglutinated forms. At 65% of the 

total count, J. macrescens peaked 2.5 m along the transect in the high salt-marsh, then gradually 

decreasing as the relative abundance of T. inflata increased to 66%  at 12.5 m along the transect. 

Reaching 13% of the total count at 3.5 m along the transect, M. fusca was confined to the upper 

reaches of the salt-marsh environment (0.29 m HVRS71). Moving into the mid-low salt-marsh, 

the above taxa were replaced by a more diverse calcareous assemblage, as Ammonia spp., 

Elphidium spp., Quinqueloculina spp. and Spirillina vivipara increased in abundance. The 

maximum occurrence of Quinqueloculina spp. occurred 22.5 m along the transect, peaking at 

68% of the overall count at sample station 11. The lowermost sample stations were dominated by 

Ammonia spp., rising to 66% of the total count at sample station 14 (29.1 m along transect). 

Live foraminifera were also uncommon at Blace compared to dead tests. Across all 

environments of the salt-marsh, the analyzed samples contained <100 living individuals each 

(Appendix B). Species diversity was similarly restricted, primarily comprising J. macrescens, T. 

inflata and Quinqueloculina spp.  

 

DEVELOPMENT OF A TRANSFER FUNCTION 

 

Unconstrained cluster analysis identifies three faunal zones at Jadrtovac (Fig. 5a). Zone 

JD-A is characterized by an exclusively agglutinated-dominated assemblage, dominated by J. 

macrescens (up to 77%) and T. inflata (up to 47%), with minor occurrences of M. fusca (up to 

6%). This zone has a vertical range of 0.12 m, extending from 0.08 m to 0.20 m HVRS71 (Fig. 

5b). A decrease in the relative abundance of J. macrescens and the increase in T. inflata (up to 
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78%) characterizes zone JD-B; while the occurrence of calcareous taxa, Elphidium spp. and 

Quinqueloculina spp., and peaks of M. fusca are also notable. The occurrence of Elphidium spp. 

at higher elevations in sample stations 3 and 4 creates a larger vertical range for this zone (0.23 

m) between 0.04 m and 0.27 m HVRS71. Comprising four samples, zone JD-C, is characterized 

by an increase in calcareous taxa (Ammonia spp. and Quinqueloculina spp.) and occupies 

elevations below MTL between 0.06 m and 0.11 m. 

Similar faunal zones are identified at Blace (Fig. 5c). Zone BL-A is dominated by J. 

macrescens (up to 65%) and T. inflata (up to 65%) and covers an altitudinal range above 

MHWST of 0.28–0.40 m HVRS71 (Fig. 5d). Zone BL-B is characterized by a more diverse 

assemblage of agglutinated and calcareous taxa. Quinqueloculina spp. typically dominates (up to 

68%), while Ammonia spp. (< 21%) are common, as are Spirillina vivipara, J. macrescens and T. 

inflata, reflecting the vertical range between 0.17 m and 0.37 m HVRS71. An overlap with 

faunal zone BL-A is due to the inclusion of sample stations 1 and 18, where relatively high 

abundances of Quinqueloculina spp. occur at higher elevations (>0.29 m HVRS71). The 

occurrence of Quinqueloculina spp. in these samples is similar to that observed from sample 

stations 2, 3 and 17 from faunal zone BL-A. Sample stations 14 and 15 in zone BL-C have 

vertical range below MTL between -0.01 m and 0.05 m HVRS71 and are dominated by 

calcareous species Ammonia spp. (up to 56%), Elphidium spp. (up to 16%), Haynesina 

germanica and Quinqueloculina spp. (up to 22%). 

Results from DCCA revealed short gradient lengths for axis one (1.5 SD units; Table 2) 

indicating a linear species response in relation to elevation in the tidal frame. To improve 

predictive ability and remove sample outliers in the contemporary training set, surface samples 

with an absolute residual (observed minus predicted) greater than the standard deviation for 
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elevation (0.141 m) were removed. A statistical summary for the five components produced by 

an unscreened and screened PLS transfer function is provided in Table 3. Component 2 was 

chosen, which revealed an improvement in the strength of relationship (r2
jack = 0.55) and 

suggested precise reconstructions of former sea-level were possible (RMSEPjack = ± 0.08 m). 

Modelled elevations versus surveyed elevations illustrate this relationship and a bias in the 

training set towards the upper part of the elevational gradient, where the model both 

underestimates and overestimates the elevation of a number of samples (Fig. 6).   

 

DISCUSSION 

 

SALT-MARSH FORAMINIFERAL DISTRIBUTIONS 

 

The distributions of salt-marsh foraminifera from two microtidal sites along the coast of 

Croatia were investigated to develop a potential proxy for tidal level in a transfer-function-based 

reconstruction of past sea level. Similarities in assemblage composition and their position in the 

tidal frame with previous studies of salt-marsh foraminifera imply that RSL studies adopting this 

approach are well suited to sites in microtidal settings. The foraminiferal assemblages at 

Jadrtovac and Blace were broadly similar throughout, where cluster analysis identified three 

faunal zones (Fig. 5). The main foraminiferal taxa observed included agglutinated species J. 

macrescens, T. inflata, M. fusca, and calcareous species Ammonia spp., Elphidium spp., 

Haynesina germanica and Quinqueloculina spp. Differences in the elevation extent of the faunal 

zones between each site, however, reflect the inter-site variability often observed in salt-marsh 

foraminiferal studies (e.g., Edwards et al., 2004; Edwards & Wright, 2015). Despite this, a 
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consistent overall pattern of intertidal vertical zonation is observed. Both transect datasets can be 

divided into agglutinated-dominated assemblages (JD-A and BL-A), which are prominent at 

higher elevations of the salt-marsh environment, and a calcareous-dominated assemblage (JD-C 

and BL-C), which typically occupies lower elevations in the mid-low salt-marsh environment. A 

mixed foraminiferal assemblage zone (JD-B and BL-B) created overlap between the faunal zones 

at both sites, implying that sea-level inferences made from such assemblages are less precise 

from these sites.  

Faunal zones dominated by agglutinated assemblages (JD-A and BL-A), with high 

relative abundances of J. macrescens and T. inflata and relatively few calcareous taxa, extended 

from above MHWST to near MTL. The vertical range of this assemblage zone was the same 

between sites (0.12 m), however, at Blace, it reached a higher elevation by comparison to 

Jadrtovac, extending to 0.40 m HVRS71. A second mixed faunal zone (JD-B and BL-B), again 

with relatively high abundances of J. macrescens and T. inflata coupled with an increased 

calcareous input (e.g., Quinqueloculina spp), spanned a greater vertical range also from around 

MHWST to below MTL. At Jadrtovac, this extended to 0.04 m HVRS71. A third faunal zone 

(JD-C and BL-C), characterized by an increased abundance of calcareous taxa (notably Ammonia 

spp. and Quinqueloculina spp.), was also observed and was vertically constrained below MTL. 

These distributions resemble typically observed intertidal zonation patterns whereby agglutinated 

species, J. macrescens and T. inflata, consistently dominate around MHWST in salt-marsh and 

mangrove environments (de Rijk & Troelstra, 1997; Horton et al., 1999b; Horton et al., 2003; 

Edwards et al., 2004). Calcareous foraminifera, including Ammonia spp., Elphidium spp and 

Quinqueloculina spp., however are more indicative of lower vegetated salt-marsh and mudflat 

environments (de Rijk & Troelstra, 1997; Horton et al., 1999b; Woodroffe et al., 2005).  
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The lack of comparative studies concerning the vertical zonation of intertidal 

foraminiferal assemblages for the purpose of sea-level studies on the Croatian coast hinders 

direct assessment of our findings at a local level. However, similarities with studies from salt-

marshes in the northern Adriatic are possible; these display similar characteristics to the 

assemblage zones observed in this study. Using foraminiferal distributions to identify biotopes 

that characterize different environments in the Venice Lagoon, similarly high abundances of T. 

inflata have been reported (e.g., Serandrei-Barbero et al., 1999, 2011; Albani et al., 2007). In 

these studies, the genus Trochammina characterizes two altimetric zones between MSL and 

mean high water level (MHWL) (Petrucci et al., 1983; Serandrei-Barbero et al., 1997, 1999) and 

also the zone above MHWL (Albani et al., 1984). Indeed Petrucci et al. (1983) showed a T. 

inflata-dominated assemblage to indicate a ground height of about 15 cm above the local MSL in 

the Venice Lagoon area. Utilizing foraminiferal distributions as ecological indicators, Albani et 

al. (2007) also observed foraminiferal assemblages dominated by T. inflata (>60%) to be 

indicative of an environment above MSL. The authors also demonstrate that high abundances of 

calcareous species, Ammonia spp. and Haynesina germanica, characterize inner areas of the 

lagoon environment, which are influenced by more marine waters. The foraminiferal 

distributions from Jadrtovac and Blace parallel these observations, supporting their potential as 

proxies for tidal level in paleo-RSL reconstructions. 

The quantitative analyses focused solely on dead foraminiferal assemblages. The 

selection of the most appropriate foraminiferal assemblage can have important effects on 

transfer-function performance. The choice of which assemblage should be used (e.g., Jorissen & 

Wittling, 1999) remains a discussion topic in salt-marsh-based foraminiferal RSL 

reconstructions. Several authors have argued that total (i.e., living and dead) assemblages are an 



20 
 

accurate representation of the modern environment and so offer a more reliable model in 

palaeoenvironmental reconstructions (e.g., Scott & Medioli, 1980b; Gehrels, 1994; Hayward et 

al., 1999a; Tobin et al., 2005). However, incorporating living assemblages into a training set 

includes foraminifera which are suited to the environmental conditions at the time of sampling 

(Callard et al., 2011). As this will fluctuate in line with seasonal changes, species diversity and 

abundance can change over time (Murray, 1991; 2000; Horton et al., 1999a). In a comprehensive 

study of foraminiferal assemblages from Cowpen Marsh, Great Britain, Horton (1999) 

concluded, dead foraminiferal populations are a better analogue for sub-surface samples in sea-

level reconstructions. Using dead foraminiferal assemblages takes into account both live and 

dead populations over a greater time-average and so species diversity is generally greater 

(Murray, 1982, 2003).  

The analyzed environments in this study contained very few living specimens by 

comparison to dead tests. Indeed many of the samples were void of living foraminiferal tests 

altogether. The contrast between concentrations of living and dead foraminifera is a common 

feature characterizing low sedimentation environments (Murray, 1976). Our observations from 

Jadrtovac and Blace conform to previous analyses of foraminiferal assemblages along the coast 

of Croatia. Cosovic et al. (2006) collected sediments from sample stations along transects 

extending from the coast out towards the open sea, up to depths of 55 m, and revealed dead 

foraminiferal tests to be much more abundant regardless of sampling season. Other studies near 

the Gulf of Venice have also shown greater concentration and increased species diversity in dead 

foraminiferal assemblages (Serandrei-Barbero et al., 2003).  

Anomalously high abundances of Quinqueloculina spp. were observed at upper 

elevations at Blace (Fig. 4) and may be explained by strong, regional winds enabling miliolid 
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shells into areas where agglutinated taxa (e.g. J. macrescens and T. inflata) typically dominate. 

The influence of winds can significantly affect tidal regimes in intertidal environments (Allen, 

2000; Kim et al., 2011; Bartholdy, 2012). In the Adriatic region, meteorological forcing 

associated with low atmospheric pressure coupled with persistent north-easterly Bora and south-

easterly Sirocco winds can considerably alter tidal amplitude (Orlić et al., 1994; Raicich, 2003; 

Ferla et al., 2007). The influx of an allochthonous component into surface samples from higher 

elevations may have important consequences for the predictive ability of foraminiferal-based 

transfer functions, essentially broadening the vertical range of calcareous taxa. Inevitably, their 

inclusion will have an adverse effect on the strength of relationship with tidal level and so may 

warrant their removal from the training set if it can be justified in the context of a clearly 

identifiable allochthonous contribution. Such assessment of modern training sets prior to fossil 

calibration is regarded a useful procedure (Birks, 1995; Horton and Edwards, 2006).  

 

POTENTIAL OF MEDITERRANEAN SALT-MARSH FORAMINIFERA TO RECONSTRUCT RSL TRENDS. 

 

Using a training set derived from Jadrtovac and Blace, we developed a PLS transfer 

function for tidal level. Linear regression and calibration methods are typically less common in 

quantitative RSL reconstructions due to the often observed unimodal distribution of 

foraminiferal species in response to elevation in the tidal frame. However, the results from this 

study are comparable to other studies where PLS transfer functions have been employed. For 

example, in a study of foraminiferal distributions from Brittany, France, Rossi et al. (2011) also 

observed short environmental gradients (0.67 SD units), based on a modern training set 

comprising 36 surface samples. The authors demonstrated robust transfer-function performance 
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(r2 jack = 0.70 ; RMSEP jack = 0.07 m) and applied their PLS model to reconstruct RSL changes 

dating to AD 1850, showing comparable rates of change to direct observations from the nearby 

Brest tide-gauge. Using 43 samples from Tasmania, Callard et al. (2011) also used linear 

regression methods, although advocate caution in this approach. They showed that while PLS 

produced good statistical parameters and was comparable to unimodal, weighted-averaging, 

partial least-squares (WA-PLS) regression, unreliable predictions were produced in which the 

proxy reconstruction estimates were greater than both the sampled environment and tidal range.  

Developing transfer-function models from within microtidal environments helps 

minimize vertical uncertainties, enabling more precise RSL reconstructions by comparison to 

those conducted under macrotidal settings (Southall et al., 2006; Callard et al., 2011; Barlow et 

al., 2013). The sampled vertical range of the contemporary training set has a strong impact on a 

model’s predictive ability (Mills et al., 2013). The driver for foraminiferal vertical zonation in 

extreme microtidal environments, however, can be weaker by comparison to macrotidal settings 

and directly related to the small vertical range (Horton & Edwards, 2006) where other 

environmental parameters, such as salinity, can become important (Barlow et al., 2013). 

Prediction errors should typically be proportional to the tidal range at the sample site, hence the 

benefit of studies under microtidal regimes. A tidal range of ~20 cm should provide prediction 

errors of approximately 10% of the tidal range (i.e., ~2 cm) (Barlow et al., 2013). Where the 

strength of relationship observed is weaker, prediction errors (RMSEP jack) may offer a more 

realistic assessment of the model performance (Gehrels et al., 2001; Leorri et al., 2010). Based 

on the contemporary training set presented in this study, our prediction errors (±0.08 m) equates 

to approximately 30% of the tidal range. While this is larger by comparison to other studies 

(Table 3; Barlow et al., 2013, Table 10; Mills et al., 2013), nonetheless the data can still be used 
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to examine paleo-RSL trends providing that the record is independently assessed by other means 

such as tide-gauge records (Donnelly et al., 2004; Gehrels et al., 2005; Kemp et al., 2009b).   

While the application of subtidal foraminiferal-based transfer functions have been 

developed and applied in the Mediterranean, for example, reconstructing paleobathymetry (e.g., 

Rossi & Horton, 2009; Milker et al., 2011), we have documented the first quantitative use of 

foraminifera from intertidal environments and highlight their potential as proxy sea-level 

indicators for this region. Previous studies of sea-level change in the Mediterranean have 

primarily utilized geomorphological (e.g., tidal notches) and archeological (e.g., fish tanks) 

evidence (Flemming, 1969; Lambeck et al., 2004; Evelpidou et al., 2012; Antonioli et al., 2015). 

However, the nature and timing of their formation means their indicative meaning and range can 

often be hard to quantify with the necessary precision needed to delimit changes in late Holocene 

sea-level to the present. The use of salt-marsh foraminifera therefore significantly improves on 

the vertical accuracy if applied to fossil counterparts from sufficiently well-dated sediment cores 

(Shaw, 2013). Indeed, Marriner et al. (2014) recently highlighted high resolution records from 

salt-marsh environments and their underutilized potential in bridging the gap between geological 

and instrumental records of sea-level change for the Croatian coast, and more widely in the 

Mediterranean region.  

 

SUMMARY AND CONCLUSIONS 

 

Foraminiferal assemblages from two microtidal sites along the coast of Croatia were 

documented to assess their utility as a proxy for tidal level in transfer-function reconstructions of 

RSL. Three faunal zones were identified and showed a relationship with tidal level in the modern 
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environment, similar to previous studies in the Adriatic region and elsewhere. Faunal zones 

dominated by agglutinated species J. macrescens and T. inflata were vertically constrained from 

MTL to above MHWST. A second, more diverse faunal zone comprising J. macrescens and T. 

inflata, and calcareous Quinqueloculina spp., occupied a similar, albeit greater vertical range. 

Assemblages dominated by higher relative abundances of calcareous taxa (Ammonia spp. and 

Quinqueloculina spp.) were indicative of lower intertidal environments below MTL.  

The small environmental gradients observed suggested the use of linear regression 

modelling for establishing a sea-level transfer function, which indicated the training sets 

potential to relocate former RSL to within ±0.08 m. This precision is comparable to previous 

studies utilizing salt-marsh foraminifera and highlights their potential for reconstructing RSL 

trends in the Mediterranean, and reducing the vertical uncertainties associated with sea-level 

indicators previously employed there. Future studies aimed at increasing the number of samples 

making up the modern training set for this region would ultimately improve the reconstructive 

potential of the transfer-function approach and simultaneously improve the modern analogues for 

application in paleo-RSL research.   
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APPENDICIES 

 

APPENDIX A. Taxonomic reference list of species presented in text and Appendix B.  

 

APPENDIX B. Contemporary foraminiferal counts of dead and live assemblages including sample 

station numbers and elevation (m HVRS71).  
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TABLE CAPTIONS 

 

TABLE 1. Tide levels (m HVRS71) derived from the Split tide-gauge (Hydrographic Institute, 

1956-2000). MLWST = Mean low water spring tide. MLWN = Mean low water neap. MTL = 

Mean tidal level. MHWN = Mean high water neap. MHWST = Mean high water spring tide.  

 

TABLE 2. Summary of DCCA results.  

 

TABLE 3. Statistical summary of the PLS transfer function performance. C = component.  
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FIGURE CAPTIONS 

 

FIGURE 1. Location of study area along the coast of Croatia (A) and samples sites Jadrtovac (B) 

and Blace (C) showing location of modern surface transects presented in Figures 3 and 4. 

 

FIGURE 2. Scanning electron microscope (SEM) images of foraminiferal species observed from 

salt-marshes at Jadrtovac and Blace, Croatia. 1, 2 Jadammina macrescens; 3, 4, 5 Trochammina 

inflata; 6 Miliammina fusca; 7, 8 Siphotrochammina lobata; 9 Haplophragmoides wilberti; 10 

Scherochorella moniliformis; 11 Textularia earlandi; 12 Spirillina vivipara; 13 Elphidium sp.; 

14 Ammonia sp.; 15 Quinqueloculina sp.; 16 Haynesina germanica. White scale bars = 100 µm.  

 

FIGURE 3. Modern distribution of the relative abundances (%) of dead foraminifera plotted by 

distance for transect J-J1 at Jadrtovac. Foraminiferal abundance (per 5 cm3), elevation (m 

HVRS71) and salt-marsh zones are also shown. Transect location is shown in Fig. 1B. 

 

FIGURE 4. Modern distribution of the relative abundance (%) of dead foraminifera plotted by 

distance for transect B-B1 at Blace. Foraminiferal abundance (per 5 cm3), elevation (m 

HVRS71) and salt-marsh zones are also shown. Transect location is shown in Fig. 1C. 

 

FIGURE 5. Unconstrained cluster analysis identifying faunal assemblage zones from transect J-J1 

at Jadrtovac (A) and transect B-B1 from Blace (C) and boxplots of faunal zones plotted by 

elevation m HVRS71 (B, D) with tidal levels superimposed. JD = Jadrtovac; BL = Blace; 
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MHWST = Mean high water spring tide; MTL = mean tidal level. Samples 16, 17 and 18 (C) are 

from similar locations and altitudes to sample stations 1 to 4 from transect B-B1. 

 

FIGURE 6. Scatter plot from a screened PLS transfer function (component 2) showing observed 

versus predicted elevation (A) and residual values versus observed elevation (B). 
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2359 Shaw, Table 1   

MLWST MLWN MTL MHWN MHWST 

-0.036 +0.034 + 0.128 +0.233 +0.256 
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2359 Shaw, Table 2  

Axes 1 2 3 4 Total inertia 

Eigenvalues: 0.264 0.315 0.107 0.045 1.280 

Lengths of gradient: 1.594 2.220 1.635 1.790  

Sum of all Eigenvalues:     1.280 

Sum of all Canonical Eigenvalues:     0.264 
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2359 Shaw, Table 3  

Statistical Parameters C1 C2 C3 C4 C5 

Unscreened training set      

r2 0.37 0.44 0.44 0.45 0.45 

RMSE (m) 0.11 0.10 0.10 0.10 0.10 

Max_bias 0.16 0.14 0.14 0.14 0.14 

r2 
jack 0.27 0.32 0.32 0.28 0.25 

RMSEP jack (m) 0.12 0.11 0.11 0.12 0.12 

Max_bias jack 0.17 0.16 0.16 0.16 0.16 

Screened training set      

r2 0.56 0.62 0.63 0.63 0.63 

RMSE (m) 0.08 0.07 0.07 0.07 0.07 

Max_bias 0.10 0.09 0.09 0.10 0.09 

r2 
jack 0.47 0.55 0.56 0.55 0.54 

RMSEP jack (m) 0.08 0.08 0.07 0.08 0.08 

Max_bias jack 0.11 0.10 0.10 0.10 0.12 
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2359 Shaw, Appendix A. 

 

Ammonia spp. Murray, 1979, p. 57, fig. 18a-l; Horton and Edwards, 2006; p. 73, P3, fig. 10a-c, 

fig. 11a-c, fig. 12a-c. 

Balticammina pseudomacrescens Brönnimann, Lutze and Whittaker, 1989. Gehrels and van de 

Plassche, 1999, p.98, P1, fig. 6-10; Horton and Edwards, 2006, p. 63, P1, fig. 1a-d; Wright et 

al., 2011, p. 58, fig. A1/1. 

Elphidium spp. Murray, 1979, p. 53, fig. 16a-d; Hayward et al., 1999b, p. 219, P17, fig. 1-28; 

Murray, 2006, p. 65, fig. 4.2, 11; Horton and Edwards, 2006; p. 75, P4, fig. 15-20. 

Haplophragmoides wilberti (Andersen, 1953). Hayward et al., 1999b, p. 217, P1, fig. 25, 26; 

Horton and Edwards, 2006, p. 63, P1, fig. 3a-d; Hawkes et al., 2010, p. 133, P1, fig. 2a, b; 

Wright et al., 2011, p. 58, fig. A1/7. 

Haynesina germanica (Ehrenberg, 1840a, b). Murray, 1979, p. 55, fig. 17a, b; Horton and 

Edwards, 2006; p. 75, P4, fig. 21a, b. 

Jadammina macrescens (Brady, 1870). Murray, 1979, p. 27, fig. 6k-m; Gehrels and van de 

Plassche, 1999, p.98, P1, fig. 1-5; Hayward et al., 1999b, p. 217, P1, fig. 27-29; Horton and 

Edwards, 2006; p. 67, P1, fig. 4a-d; Hawkes et al., 2010, p. 133, P1, fig. 7a-d; Wright et al., 

2011, p. 58, fig. A1/5.  

Miliammina fusca (Brady, 1870). Murray, 1979, p. 24, fig. 5d-f; Hayward et al., 1999b, p. 217, 

P1, fig. 25, 6; Edwards et al., 2004; p. 16, P1, fig. 7; Horton and Edwards, 2006; p. 67, P1, 

fig. 5a, b. Wright et al., 2011, p. 59, fig. A2/2. 
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Quinqueloculina spp. Murray, 1979, p. 35, fig. 9a-i; Hayward et al., 1999b, p. 223; P4, fig. 26-

28; p. 225, P5, fig. 9, 10; Horton and Edwards, 2006; p. 71, P2, fig. 9a, b.  

Scherochorella moniliformis Siddall, 1886. Murray, 1979, p. 24, fig. 5b; Horton and Edwards, 

2006; p. 67, P1, fig. 6a-c; Wright et al., 2011, p. 58, fig. A1/6. 

Siphotrochammina lobata (Saunders, 1957). Edwards et al., 2004; p. 16, P1, fig. 9, 10; Wright et 

al., 2011, p. 58, fig. A1/10; Kemp et al., 2012; p. 29, P1, fig. 13, 14. 

Spirillina vivipara Ehrenberg, 1843. Ehrenberg, 1843, p. 422, P3, fig. 41, sec. 7; Murray, 1979, 

p. 39, fig. 11a; Hayward et al., 1999b, p, 221, P3, fig. 7. 

Textularia earlandi Parker, 1952. Hayward et al., 1999b, p. 219, P2, fig. 22, 23; Edwards et al., 

2004; p. 16, P1, fig. 11; Wright et al., 2011, p. 58, fig. A1/3. 

Trochammina inflata (Montagu, 1808). Hayward et al., 1999b, p. 219, P2, fig. 6-8; Edwards et 

al., 2004; p. 16, P1, fig. 14, 15; Horton and Edwards, 2006; p. 71, P2, fig. 8a-d; Wright et al., 

2011, p. 58, fig. A1/9; Kemp et al., 2012; p. 29, P1, fig. 7, 8. 
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2359 Shaw, Appendix B. 

 

Transect J-J1 (Jadrtovac)                                                                                                           Sample Station Number 
Species Name                      Assemblage 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 
Ammonia spp.                                                    
                                                                               

Dead 
Live 

0 
0 

0 
0 

0 
0 

4 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

231 
25 

0 
0 

0 
0 

0 
0 

2 
0 

1 
0 

67 
11 

59 
6 

3 
0 

1 
3 

58 
3 

15 
1 

23 
0 

Balticammina  pseudomacrescens                  
                                                                               

Dead 
Live 

0 
0 

0 
0 

3 
0 

0 
0 

2 
0 

9 
0 

1 
0 

5 
0 

1 
0 

0 
0 

1 
0 

4 
0 

0 
0 

8 
0 

0 
0 

3 
0 

8 
0 

16 
0 

0 
0 

0 
0 

1 
0 

8 
0 

Elphidium spp.  
                                                                               

Dead 
Live 

0 
0 

0 
0 

90 
0 

312 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

5 
2 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

12 
5 

17 
3 

0 
0 

3 
3 

19 
6 

7 
0 

14 
1 

Haplophragmoides wilberti           
                                                                              

Dead 
Live 

0 
0 

0 
0 

5 
0 

0 
0 

0 
0 

1 
0 

1 
0 

2 
0 

2 
0 

2 
0 

7 
0 

1 
0 

0 
0 

0 
0 

7 
0 

3 
0 

31 
0 

6 
0 

1 
1 

4 
0 

12 
0 

13 
0 

Haynesina germanica  
                                                                               

Dead 
Live 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

35 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

11 
0 

21 
0 

0 
0 

0 
0 

10 
0 

3 
0 

4 
0 

Jadammina macrescens  
                                                                               

Dead 
Live 

0 
0 

7 
0 

83 
0 

90 
0 

91 
0 

108 
4 

113 
0 

323 
13 

184 
11 

240 
16 

214 
4 

143 
4 

95 
0 

277 
53 

265 
4 

90 
2 

59 
5 

162 
1 

160 
8 

144 
8 

199 
19 

243 
8 

Miliammina fusca  
                                                                               

Dead 
Live 

0 
0 

0 
0 

34 
0 

0 
0 

10 
0 

69 
0 

34 
0 

16 
1 

13 
2 

12 
0 

8 
0 

5 
0 

1 
0 

0 
0 

0 
0 

0 
0 

0 
0 

1 
0 

1 
1 

4 
0 

0 
0 

8 
0 

Quinqueloculina spp.  
                                                                              

Dead 
Live 

0 
0 

0 
0 

14 
0 

8 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

193 
50 

10 
0 

0 
0 

0 
0 

0 
0 

3 
1 

334 
87 

314 
47 

1 
2 

19 
26 

598 
74 

63 
10 

384 
137 

Scherochorella moniliformis  
                                                                               

Dead 
Live 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

12 
0 

30 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

2 
0 

0 
0 

0 
0 

Siphotrochammina lobata 
                                                                               

Dead 
Live 

0 
0 

0 
0 

0 
0 

2 
0 

0 
0 

0 
0 

13 
0 

7 
0 

2 
0 

0 
0 

0 
0 

5 
0 

0 
0 

0 
0 

2 
0 

0 
0 

2 
0 

1 
0 

0 
0 

0 
0 

3 
0 

0 
0 

Spirillina vivipara  
                                                                               

Dead 
Live 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

4 
0 

0 
0 

1 
0 

0 
0 

0 
0 

1 
0 

19 
7 

3 
3 

0 
0 

0 
0 

6 
2 

1 
2 

7 
0 

Textularia earlandi                                                      
                                                                               

Dead 
Live 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

3 
0 

2 
0 

0 
0 

0 
0 

2 
0 

2 
0 

0 
0 

0 
0 

8 
0 

2 
0 

0 
0 

7 
0 

10 
1 

Trochammina inflata 
                                                                               

Dead 
Live 

0 
0 

2 
0 

519 
9 

515 
28 

63 
0 

312 
1 

232 
6 

316 
36 

548 
67 

60 
11 

58 
7 

16 
1 

28 
1 

69 
15 

105 
10 

235 
34 

250 
37 

319 
10 

570 
52 

431 
64 

335 
35 

1050 
121 

Total  Dead 0 9 748 931 166 499 394 669 750 785 312 205 124 358 386 774 765 517 757 1280 646 1764 
Total  Live 0 0 9 28 0 5 6 50 80 104 11 5 1 68 15 146 101 13 94 157 67 265 
Elevation (m  HVRS71)  0.48 0.44 0.27 0.22 0.20 0.18 0.19 0.15 0.14 0.09 0.06 0.08 0.05 0.08 0.08 0.11 0.10 0.06 0.05 0.06 0.10 0.04 
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Transect B-B1 (Blace)                                                                                      Sample Station Number 
Species Name Assemblage 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
Ammonia spp.                                                    
                                                                               

Dead 
Live 

1 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

87 
0 

103 
1 

58 
0 

35 
15 

98 
13 

78 
13 

0 
0 

25 
1 

74 
4 

Balticammina  pseudomacrescens                  
                                                                               

Dead 
Live 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

Elphidium spp.  
                                                                               

Dead 
Live 

1 
0 

0 
1 

1 
2 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

5 
2 

16 
2 

30 
15 

6 
0 

7 
0 

29 
0 

0 
0 

0 
0 

0 
0 

Haplophragmoides wilberti           
                                                                              

Dead 
Live 

5 
0 

17 
0 

17 
1 

4 
2 

22 
0 

7 
0 

0 
0 

5 
0 

9 
0 

3 
0 

0 
0 

0 
0 

1 
0 

0 
0 

0 
0 

0 
0 

1 
0 

1 
0 

Haynesina germanica  
                                                                               

Dead 
Live 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

33 
0 

42 
0 

12 
0 

16 
0 

17 
0 

8 
0 

0 
0 

4 
0 

13 
0 

Jadammina macrescens  
                                                                               

Dead 
Live 

78 
1 

295 
3 

200 
2 

90 
1 

488 
12 

289 
19 

507 
18 

240 
11 

280 
10 

140 
21 

79 
16 

25 
13 

23 
22 

5 
0 

4 
0 

101 
4 

170 
10 

240 
12 

Miliammina fusca  
                                                                               

Dead 
Live 

45 
0 

10 
0 

5 
0 

3 
0 

38 
0 

70 
0 

34 
0 

7 
0 

42 
0 

0 
0 

17 
0 

0 
0 

0 
0 

2 
0 

1 
0 

30 
0 

0 
0 

1 
0 

Quinqueloculina spp.  
                                                                              

Dead 
Live 

643 
0 

178 
19 

50 
4 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

240 
34 

1117 
14 

95 
36 

68 
45 

21 
19 

39 
25 

1 
0 

197 
9 

510 
30 

Scherochorella moniliformis  
                                                                               

Dead 
Live 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

Siphotrochammina lobata 
                                                                               

Dead 
Live 

0 
0 

0 
0 

0 
0 

1 
0 

0 
0 

0 
0 

2 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

1 
0 

0 
0 

0 
0 

0 
0 

1 
0 

0 
0 

Spirillina vivipara  
                                                                               

Dead 
Live 

10 
0 

3 
2 

1 
1 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

31 
7 

170 
0 

8 
0 

4 
0 

3 
0 

5 
1 

0 
0 

13 
7 

5 
0 

Textularia earlandi                                                      
                                                                               

Dead 
Live 

0 
0 

0 
0 

0 
0 

0 
0 

1 
0 

0 
0 

1 
0 

0 
0 

2 
0 

0 
0 

3 
0 

5 
0 

3 
0 

4 
1 

4 
2 

0 
0 

0 
0 

0 
0 

Trochammina inflata 
                                                                               

Dead 
Live 

695 
30 

450 
9 

400 
35 

139 
3 

200 
10 

145 
9 

303 
9 

285 
12 

638 
10 

245 
20 

95 
13 

41 
15 

24 
13 

17 
1 

7 
0 

343 
15 

650 
16 

720 
33 

Total  Dead 1478 953 674 237 749 511 847 537 971 784 1642 274 181 174 175 475 1061 1564 
Total  Live 31 34 45 6 22 28 27 23 20 84 46 79 95 34 41 19 43 83 
Elevation (m  HVRS71)  0.37 0.37 0.36 0.34 0.32 0.29 0.28 0.29 0.3 0.26 0.2 0.17 0.18 0.05 0.01 0.4 0.34 0.29 
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Shaw, Figure 1. 
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Shaw, Figure 2.  
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Shaw, Figure 3. 
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Shaw, Figure 4.   
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Shaw, Figure 5.  
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Shaw, Figure 6.  

 

 


