
Insight into Electron Traps and Their Energy Distribution under Positive Bias Temperature Stress and Hot Carrier Aging

http://researchonline.ljmu.ac.uk/3883/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Insight into Electron Traps and Their Energy Distribution under Positive Bias Temperature Stress and Hot Carrier Aging

Abstract— The access transistor of SRAM can suffer both Positive Bias Temperature Instability (PBTI) and Hot Carrier Aging (HCA) during operation. The understanding of electron traps (ETs) is still incomplete and there is little information on their similarity and differences under these two stress modes. The key objective of this paper is to investigate ETs in terms of energy distribution, charging and discharging properties, and generation. We found that both PBTI and HCA can charge ETs which center at 1.4 eV below conduction band (Ec) of high-k (HK) dielectric, agreeing with theoretical calculation. For the first time, clear evidences are presented that HCA generates new ETs, which do not exist when stressed by PBTI. When charged, the generated ETs’ peak is 0.2 eV deeper than that of pre-existing ETs. In contrast with the power law kinetics for charging the pre-existing ETs, filling the generated ETs saturates in seconds, even under an operation bias of 0.9 V. ET generation shortens device lifetime and must be included in modelling HCA. A cyclic and anti-neutralization ETs model (CAM) is proposed to explain PBTI and HCA degradation, which consists of pre-existing cyclic electron traps (PCET), generated cyclic electron traps (GCET), and anti-neutralization electron traps (ANET).

Index terms: electron traps, PBTI, hot carriers, BTIs, aging, trap generation, energy distribution, device lifetime, SRAM.

I. INTRODUCTION

Since 45 nm node, hafnium based high-k (HK) materials have been widely used as gate dielectric to increase physical thickness and reduce gate leakage. Application of metal gate/HK stack, however, has increased positive bias temperature instability (PBTI) [1-8]. PBTI originates from electron traps (ETs) and one of their sources is water/hydrogen related species [9, 10]. In the early stage of HK development, it was reported that there are as-grown ETs above the Si conduction band edge, Ec, [1, 5, 8] and located in the HK layer [3, 11]. Their charging-discharging is highly dynamic: the charging and discharging completes within seconds [1, 3, 12]. Process optimization has made these energetically shallow ETs negligible, but PBTI still is a reliability issue, as deeper ETs are found [1, 13].

In addition to PBTI, such as the access transistors in a SRAM cell, also suffer from hot carrier aging (HCA) [14]. As channel length down-scales, HCA scales up and has attracted many attentions recently [14-17]. It has been reported that ETs contribute substantially to HCA, especially under $V_g = V_d$ [16]. However there is little information on the similarity and differences of ETs under PBTI and HCA, leaving us the chance to investigate ETs in terms of energy distribution, charging and discharging properties, and generation.

II. DEVICES AND EXPERIMENTS

Devices used are nMOSFETs, fabricated by an industrial 28nm high-k process. The channel width and length are 900nm and 36nm with HK/metal gate. C-V measurement gives a 1.2 nm equivalent oxide thickness (EOT). For nanometer MOSFETs, it has been reported that HCA is higher under $V_g = V_d$, rather than the conventional worst condition of $V_g = V_d/2$ [14-16]. $V_g = V_d$ was used for HCA, therefore. All tests were at 125 °C.

![Gate bias waveform](image1)

Fig. 1(a) Gate bias waveform for energy profile measurement. Discharging during T_{dis} was monitored by Id-Vg measurement after charging at V_{str}. V_{dis} was lowered down from 0 V by steps of 50 mV. Each discharging voltage (V_{dis}) was kept for T_{dis}. (b) Energy band diagram after discharging under flat band voltage V_{fb}. (c) Discharging under $V_{dis} < V_{fb}$. All traps in the striped area are discharged when V_g step down from V_{fb} to $V_{dis} < V_{fb}$. Here we assumed that tunneling mediated through interface states was insignificant [1].

To probe ETs energy profile, the discharge based technique was implemented [18]. The V_g waveform is shown in Fig. 1 and the test procedure is: 1) Stress the device under $V_g = V_{str}$ for a certain time. 2) V_g is then lowered to V_{dis} = 0 for discharge. 3) The discharging voltage is kept for T_{dis}, during which Id-Vg curve is monitored with a logarithmic time.
interval. 4) Vg is then lowered further by -50 mV to another Vdis and repeat step 3), until the preset VdisN is reached. The ETs moving above Si Ec were discharged progressively (Fig. 1(c)). The threshold voltage, Vth, was monitored during each discharge period under a fixed drain current of 100nA×W/L.

One typical result is given in Fig. 2. The discharge under Vg>0 was not measured, since our results [14] and early work [15] showed discharge under Vdis = 0 was insignificant. The test finished at Vdis=-2 V, as there is little further discharge when Vdis<-1.5 V (Figs. 2(a) and (b)). Fig. 2(b) compares the ΔVth at different discharge time. The discharge is driven mainly by Vdis and there is little difference when time increases from 1 to 100 sec. This agrees well with early works that carrier tunneling completes in seconds for thin dielectric [12, 18]. Unless stated otherwise, a discharge time of 100 sec was used. The measurement itself causes little degradation.

III. ENERGY DISTRIBUTION: PBTI AND HCA

A. Extraction of ETs energy distribution

The data in Fig. 2 is used as a demonstration for the extraction of energy distribution. Following the early works [7, 8, 18], ΔVth is converted to ΔNt, the equivalent trap density at the interface of interfacial layer (IL) and HK using eq. (1).

When Vdis changes, the trap energy, Ec - Et at IL/HK interface is modulated against Si Ec by the same amount as the potential drop over the IL, V_il, as shown in Fig. 1(c). V_il and Ec can be calculated with eqs. (2-3), respectively, where Ec_hk - Et is the energy level where ETs become dischargeable at Vdis.

\[\Delta N_t = (1 + \epsilon_{\text{HK}}/\epsilon_{\text{IL}}) \times C \times \Delta V_{\text{th}}/q \]
\[V_{\text{IL}} = (V_{\text{g}} - \Delta V_{\text{th}} - \Phi_s - V_{\text{FB}})/(1 + \epsilon_{\text{IL}}/\epsilon_{\text{HK}} \times t_{\text{HK}}/t_{\text{IL}}) \]
\[E_{\text{HK}} - E_{\text{trap}} = \Phi_s \times (1.2 - V_{\text{IL}}) \]

where C is gate dielectric capacitance per unit area, Vfb flat band voltage, Ψs silicon surface potential, ε permittivity, and t the thickness of dielectric. The relation between (Vg-ΔVth) and Ψs was calculated and details are given in [19]. The use of (Vg-ΔVth), rather than Vg, in Fig. 3(a) takes into account the effect of trapped charges on V_il [20]. Following previous works [1, 8], a 1.2 eV conduction band offset between Si and HK was used under flat band condition, as shown in Fig. 1(b).

By using the eqs. (1-3) and Fig. 3(a), the energy profile of trap density ΔNt in Fig. 3(b) was extracted from the ΔVth versus Vdis data in Fig. 2(b). The ETs energy density, ΔDt, in Fig. 3(c) was obtained from |d(ΔNt)/d(E_hk-E_trap)|. ET peaks at 1.4eV below the HK conduction band, in agreement with early work [1] and theoretical work [21]. The dischargeable ETs becomes insignificant above 1.7 eV.

B. A comparison of energy distribution: PBTI and HCA

Fig. 4 compares the ETs energy distributions when stressed by PBTI and HCA under different biases. An increase of the Vstr for PBTI raises ΔDt, but the distribution shape is broadly similar with a peak around 1.4 eV, as shown in Fig. 4(a). For HCA in Fig. 4b, however, the distribution is wider and a second peak can be observed around 1.6eV. These two peaks of HCA suggest there are two types of dischargeable ETs, which will be further explored in the next section.

Fig. 3 Procedure for extracting the energy profile of trap density. (a) The calculated potential drop over interfacial layer (V_il) and the corresponding Ec_hk-E_trap at the IL/HK interface. (b) Vdis of Fig. 2(b) is converted to Ec_hk-E_trap at the IL/HK interface. (c) The profile of traps energy density ΔDt=|d(ΔNt)/d(E_hk-E_trap)|.

Fig. 4 The distribution of energy density ΔDt under PBTI (a) and HCA (b) for different stress voltages. HCA was under Vg=Vd.
The ETs energy distributions of PBTI and HCA after different stress time are also compared in Fig. 5. Similar feature can be observed: PBTI has one peak close to 1.4 eV, while two peaks for HCA with one at 1.4 eV and the other at 1.6 eV. It is interesting to note, for the longest stress time (10 ksec), the peak near 1.4 eV is overwhelmed by the ‘pull-up’ of the dominant peak around 1.6 eV. The peak at 1.6 eV broadly keep constant and insensitive to stress voltages and time.

After heavy PBTI stress under $V_g = 2$ V and discharge under -1.8 V, the biases in the stage 1 were applied again for CET measurement in the stage_3. Fig. 6(b) compares CETs in the stage_1 and stage_3 and a good agreement is obtained. This leads to the conclusion that PBTI stress does not generate new CET.

To confirm that ANET originates from ETs rather than interface states, the subthreshold swing (SS) was measured, as generation of interface states will cause SS degradation [25,26]. Fig. 7 confirms that PBTI does not degrade SS.

To further study the relation between CET and ANET, the energy distributions before and after heavy PBTI stress are compared in Fig. 8. Despite of the different levels of ANETs, the CETs are same. We conclude that charging CET and ANET are two independent processes. They have different origins and are different types of traps.

IV. AN ANALYSIS OF ELECTRON TRAPS

A. Types of electron traps under PBTI

Pre-existing cyclic electron traps (PCET): When a relatively low gate voltage +1.5 V was applied, stage_1 in Fig. 6(a) shows that the charged ETs can be fully discharged by applying $V_g= -1.8$ V. The charging and discharging can be cycled by alternating V_g between +1.5 and -1.8 V in both stage_1 and stage_3, so that these ETs will be referred to as cyclic electron traps (CET). To differentiate with CET after stress, the CET in stage_1 is named as PCET since they are already pre-existing.

Anti-neutralization electron traps (ANET): After characterizing the PCETs, a heavy PBTI stress with $V_g = 2$ V was applied at the stage_2. Fig. 6(a) shows that there are ETs that do not discharge even under $V_g= -1.8$ V and they are referred to as Anti-neutralization electron traps (ANET). The discharge reaches a clear saturation for $V_g< -1.5$ V in Fig. 2(b), so that ANET is well separated from CET. The energy level of ANET is deeper than ~1.8 eV from E_{c} of HK, the end of range probed in Fig. 3(c). We cannot precisely measure it since ANET does not discharge even under $V_g= -2$ V for 1000 sec.

For NBTI, the term permanent component was used [22, 23]. This can be misleading, since they are not really permanent and can be neutralized by raising temperature [22, 24]. The term ‘anti-neutralization’ is preferred, therefore.

Fig. 5 The distribution of energy density ΔD_t under PBTI (a) and HCA (b) for different stress time. HCA was under $V_g=V_d$. Unlike other distributions, the 10000s one in b) is dominated by the 1.6 eV ETs which masks out the groove between 1.4 eV and 1.6 eV.

Fig. 6 A typical test procedure of CETs and ANET. (a) At stage_1, a gate voltage sequence of 1.5V, -1.8V, 1.5V, -1.8V was applied to monitor the pre-existing cyclic electron traps (PCET). At stage_2, a heavy stress was applied with $V_g=2$V, followed by a discharge at $V_g= -1.8$V for 1ks. State_3 was a repeat of State_1 to re-monitor CET. (b) compares PCET and CET at stage_3 by removing anti-neutralization electron traps (ANET), CET=PCET.

Fig. 7 A comparison of subthreshold swing (SS) degradation under PBTI and HCA. SS does not degrade for PBTI, suggesting no interface states created. But a clear SS degradation can be observed on HCA stress. Inset shows the SS extraction method.
B. Types of electron traps under HCA

Generated cyclic electron traps (GCET): When the heavy PBTI stress in stage_2 of Fig. 6(a) was replaced by a HCA, Fig. 9 shows that CET clearly increases after HCA, i.e. CET > PCET in Fig. 9(b). Since the charging conditions in the stage_1 and stage_3 are exactly same, higher CET can only be explained by the presence of more traps. In another word, additional CET is generated by HCA, which is referred to as the generated cyclic electron traps (GCET). GCET can be characterized quantitatively from CET - PCET. Fig. 9 also shows the overall degradation for HCA is much larger than PBTI, agreeing with earlier reported result [15].

SS degradation in Fig. 7 suggests HCA can also generate interface states. The contribution of generated interface states under HCA is estimated being around 67% of ANET [25].

C. Charging kinetics of CETs

It can be seen in Fig. 9 that GCET can be charged and discharged repeatedly. The energy profiles were extracted from discharging and we will examine the charging kinetics in this section.

After each pre-specified charging time, PCET was measured from the discharged amount by applying $V_g = -1.8$ V for 100s, as illustrated in Fig. 6(a). Fig. 11(a) plots the PCET against charging time under different filling V_g. As expected, PCET is V_g accelerated and follow a power law. To generate GCET, a HCA stress was used. The same filling V_g used in Fig. 11(a) was then applied in Fig. 11(b). Two differences can be observed: 1) higher starting degradation gives a smaller time exponent, and 2) PCET+GCET is weakly V_g-acceleration. This can be explained by Fig. 11(c). The GCET already reaches saturation within seconds, i.e. the first measurement point. It supports that GCET and PCET are different types of defects.

D. Cyclic and anti-neutralization ETs model (CAM)

Based on the defects property, a new CAM framework for ETs is proposed in Fig. 13, consisting of three types of ETs: PCET, GCET and ANET.
The charged PCET locates in the energy range of 1.2-1.6 eV, and its peak is round 1.4 eV, as shown in Fig. 8(c), so that their discharge/recovery under Vg=0 is insignificant. The PCET charging is negligible under Vg=0.9 V, suggesting the uncharged PCET has energy levels above 1.1 eV. As a result, when charging-discharging is cycled, their energy level also alternates [27] between two wells, as illustrated in Fig. 13(b). Through a relaxation/reconfiguration process, a charge most likely transit from a shallow well into a deep well for stable trapping. The energy barrier between the two wells controls the relaxation/reconfiguration rate and in turn, the trapping rate. One may speculate that the barrier height results from a spread of the barrier height. PCET is pre-existing and can be charged by both PBTI and HCA.

Fig. 10 A comparison of CETs energy distributions before and after heavy HCA stress. The test procedure is similar to Fig. 8 except that PBTI in stage_2 was changed to HCA stress. (a) compares the trap density before and after heavy HCA stress. (b) was obtained by removing ANETs. (c) shows energy profile of both GCET and PCET. GCET peaks at 1.6 eV, 0.2 eV deeper than that for the original PCET.

GCET is only generated by HCA. One may speculate that they are created through the bombardment of hot carriers. The bombardment also creates interface states and GCET can be close to the substrate interface, where bombardment is most effective. The detailed generation process remains unknown. Once generated, GCET can be charged by PBTI as well. The charged GCET is deeper than PCET in energy, peaks around 1.6 eV. Like PCET, its energy level also reduces after charging. Energy level of neutral GCET is lower than PCET, resulting in substantial filling even under the operation Vg=0.9 V. GCET saturates around Vg ~ +1.5 V and the saturation is reached in seconds. One may speculate that the barrier between the two wells is negligible, as illustrated in Fig. 13(c), so that charging rate is controlled by carrier fluency, similar to fill the generated traps in SiO$_2$ [28] and as-grown shallow electron traps above Si Ec in early HK stacks [12], where saturation is reached rapidly.

ANET cannot be discharged even under Vg= -2 V, indicating their energy levels are below 1.8 eV. ANET is the only anti-neutralization defects under PBTI stress, but HCA also creates interface states that are charged when nMOSFET is switched on.

Fig. 11 Charging kinetics of PCET (a) and CET (b) under different Vg. PCET under Vg=0.9V is negligible and not shown in (a), however after HCA stress CET under Vg=0.9V is significant in (b), since GCET is generated. (c) The difference between (a) and (b), i.e., the GCET.

Fig. 12 Charging Vg dependency of PCET and GCET. At an operation voltage of 0.9 V, GCET is one order magnitude more than PCET.
V. CONCLUSION

This work investigates the similarity and difference of electron traps under PBTI and HCA, in terms of energy distributions, charging and discharging properties, and trap generation. A new cyclic and anti-neutralization model (CAM) has been proposed for electron traps, consisting of pre-existing cyclic electron traps (PCET), generated CET (GCET), and anti-neutralization electron traps (ANET). CETs can be repeatedly charged and discharged by alternating Vg polarity. After charging, their energy level is reduced probably through a relaxation/reconfiguration process.

There is a clear CET generation process under HCA, but not under PBTI. Charged PCET peaks at ~1.4 eV below the HK conduction band, while generated GCET is 0.2 eV deeper than the PCET when charged. In contrast with the power law relaxation/reconfiguration process, there is a clear CET generation process under HCA, but not under PBTI. Charged PCET peaks at ~1.4 eV below the HK conduction band, while generated GCET is 0.2 eV deeper than the PCET when charged. In contrast with the power law relaxation/reconfiguration process.

REFERENCES

