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Abstract 14 

The palaeoanthropological literature contains numerous examples of putative home range sizes 15 

associated with various hominin species. However, the resolution of the palaeoenvironmental 16 

record seldom allows the quantitative analysis of the effects of different range sizes on access to 17 

different habitat types and resources. Here we develop a novel approach of using remote sensing 18 

data of modern African vegetation as an analogue for past hominin habitats, and examine the 19 

effects of different range sizes on the access to habitat types. We show that when the location of the 20 

ranges are chosen randomly then the number of habitat types within a range is surprisingly scale 21 

invariant – that is increasing range size makes only a very modest difference to the number of 22 

habitat types within an estimated hominin home range. However, when transects are placed 23 

perpendicular to a water body (such as a lake or river bank) it is apparent that the greatest number 24 

of habitats are seen near water bodies, and decline with distance. This suggests additional 25 

advantages to living by freshwater other than the obvious one associated with access to drinking 26 

water, and may indicate that the finding of hominins in fluvial and lacustrine deposits is not simply a 27 

taphonomic issue.  28 

 29 
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Introduction 30 

In the nineteenth and early twentieth century relatively little emphasis was given to the 31 

environmental context in studies of human evolution – this started to change in the 1930’s around 32 

the time of the ‘evolutionary synthesis’ (Bowler, 1986). While there is now some consensus in the 33 

literature that many early hominins in Africa lived in mosaic habitats (see Reynolds et al. (2015) for a 34 

review and history of this terminology), little work has been undertaken on how variable habitats 35 

might have been within hominin home ranges. While site-level analyses can produce highly detailed 36 

results (e.g. Kroll and Isaac, 1984; Magill et al. 2016), and analyses integrating climate and 37 

palaeoproxies have been undertaken at a continental scale (e.g. Blome et al., 2012), very little 38 

detailed landscape reconstruction has been attempted at the level of individual hominins or their 39 

social groups. Here we take a novel approach to hominin spatial ecology by using remote sensing to 40 

quantify patterns in the vegetation of modern Africa at hominin-relevant scales, to examine the 41 

distribution and habitat variability that may have been encountered in the past.  Such an approach 42 

has the obvious disadvantage of characterising the modern vegetation, rather than the vegetation at 43 

the time of interest for any given past hominin species. However, it does allow variation to be 44 

quantified at a far greater spatial and narrower temporal scale  than is possible based on 45 

palaeoenvironmental proxies such as pollen, pedogenic carbonate analysis or phytoliths (although 46 

these can be incorporated, see below), or  from traditional field-based approaches. We explore 47 

these advantages here, using data from seven separate regions of sub-Saharan Africa to quantify 48 

habitat variability at a variety of hominin-relevant scales.  49 

We are particularly considering the range sizes and habitat variability associated with various species 50 

of Australopithecus and early Homo, although the methods are equally applicable to earlier and later 51 

hominin taxa. While it is obvious that hominins lived on and within the landscape, we have few tools 52 

at our disposal to examine exactly how different habitat types may have influenced their 53 

movements. Suggested key characteristics are the presence of water (Ashley et al. 2009; Finlayson, 54 

2014; Quinn et al. 2013), trees for shade (Habermann et al., 2016),  and river cobbles or outcrops for 55 

tool making (Harmand, 2009). It is rare, however, to have stone tools or cutmarked bones directly 56 

associated with palaeoenvironmental proxies that can be used to reconstruct that exact location 57 

(although FLK Zinj may be a notable exception, Magill et al. 2016). Rather than seeking to 58 

reconstruct a particular place at a specific point in time (which can usually only be achieved on a 59 

scale of tens to hundreds of metres, rather than the kilometres that hominins are likely to have 60 

ranged), we are examining vegetation at a larger scale to look for physical patterns – such as the 61 

number of different habitat types a hominin may have encountered in a daily round, or even within 62 
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their lifetime. If the presence of a number of different habitat types such as trees, bushes, water, 63 

swamp or bare rock was important to hominins, then we can examine how likely it is that such 64 

variability is would have been encountered on a regular basis or at specific locations (such as 65 

riversides) using vegetation classifications derived from modern remote sensing.   66 

This new approach allows us to consider, for measures identified in the fossil record (e.g. % canopy 67 

cover, Cerling et al. 2011; Quinn et al., 2013) and vegetation patchiness (i.e. ‘mosaic’ habitats), how 68 

the land cover in modern Africa varies on a number of hominin-relevant scales. Questions such as  69 

‘how many vegetation types would typically be found within the putative range size of a given 70 

hominin species and how does this number vary as range size increases (or decreases)?’. In this 71 

paper we set out the basic ideas of this approach – which is intended to be complimentary to, rather 72 

than replacing, existing ways of addressing these questions. We use our data to address two specific 73 

points: 74 

1)  We look at randomly placed home ranges and calculate land cover within them. This 75 

allows us to quantify the effect of increasing range size on access to different vegetation types.  76 

2)  We focus on water, and examine how land cover and patchiness change as one moves 77 

away from water sources.  78 

Note that we are not attempting to reconstruct past environments, rather quantifying the landscape 79 

as it is today (with adjustment for anthropogenic change, see methods) and using this as a surrogate 80 

for the unquantifiable spatial variation of the past. We also provide, as an illustrative example of the 81 

ways in which this approach could be developed, a brief case study which compares data from our 82 

analysis with data gained from pedogenic carbonates from East African hominin localities.  83 

Home ranges 84 

A home range may be defined as a circumscribed area in which an individual spends much of its life, 85 

and contains the requisite resources (food, water, shelter and conspecifics to mate with) (Barnard, 86 

1999). This is somewhat different to a territory, which is the section of a home range that is actively 87 

defended (Manning and Dawkins, 2012). A territory may cover the entire home range or be 88 

restricted to around a particular resource, such as nesting site. Barnard (1999) points out that home 89 

range size is not always easy to quantify for extant animals, and it is even harder to infer for extinct 90 

taxa. However, there are some general rules than can be applied; for example, home range size (or 91 

feeding territory size) tends to be scaled with body mass (Clutton-Brock and Harvey, 1984). This is 92 

unsurprising as not only do larger animals require more physical space but they also require more 93 

food than smaller animals (McNab, 2012).  94 
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Following from these patterns established for extant species, for hominins an increase in range size 95 

has been inferred from increasing carnivory (Foley, 2001), a direct result of increasing body size and 96 

dietary quality (Leonard and Robertson, 2000, and see below). However, it has proved difficult to 97 

gain accurate estimates of home range size, even using modern isotopic techniques (e.g. Copeland 98 

et al. 2011), so we have used a variety of measures based on archaeological information and 99 

estimates based on data from extant human groups or other animals. 100 

 101 

Methods 102 

Calculating landcover 103 

To quantify land cover heterogeneity in a variety of modern African landscapes, we analysed seven 104 

Landsat ETM+ satellite image pairs ranging in latitude from Ethiopia to South Africa, and in habitat 105 

types from forest to semi-desert (Fig. 1).  These were chosen from a larger study of sub-Saharan 106 

Africa land cover, in whichsites were selected randomly and from thesewe chose seven sites that we 107 

considered representative of the main habitats and geographical locations most often discussed in 108 

studies of early human evolution in Africa. 109 

Due to the highly seasonal nature of many African landscapes as a result of climate and rainfall 110 

patterns, both wet and dry season Landsat ETM+ satellite imagery was used in combination to 111 

generate a single land cover classification for each study area. This enabled land cover classes 112 

present, or only able to be discriminated, at certain times of the year, such as seasonal water to be 113 

identified. A number of image pre-processing steps were performed on the images using ERDAS 114 

IMAGINE 2010 to ensure data quality was maintained. These included: error detection and 115 

recording; cloud and cloud shadow masking; image geometric accuracy checking; atmospheric 116 

correction; and finally compositing the wet and dry season images into a single dual-date composite 117 

image (Morton et al., 2011). For both the wet and dry season Landsat ETM+ images spectral bands 1 118 

(0.45-0.52 µm wavelength), 2 (0.52-0.60 µm), 3 (0.63-0.69 µm), 4 (0.77-0.90 µm), 5 (1.55-1.75 µm) 119 

and 7 (2.09-2.35 µm) were used to enable characterisation of the varying wavelength-dependent 120 

spectral response of land surface features. Band 6 (thermal, 10.40-12.5 µm) was used only during 121 

the cloud masking stage, and was not included in the final composited image. The composite images 122 

were projected in the Universal Transverse Mercator (UTM) WGS84 coordinate system.  123 

An unsupervised pixel-based classification technique with post-classification refinement was used to 124 

generate land cover maps of the study areas. Unsupervised classification algorithms aggregate all 125 

pixels within an image into groupings based on the spectral characteristics of those pixels, with the 126 
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clustering process controlled by predetermined parameters for numbers of iterations and classes 127 

generated (Loveland and Belward, 1997). Unsupervised classification techniques are well established 128 

for land cover mapping applications, and have been used in the production of regional and global 129 

land cover maps (Loveland et al., 2000; McGwire et al, 1992; Fleischmann and Walsh, 1991). An 130 

unsupervised classification generating 75 spectral classes was produced for the composite image 131 

using the Iterative Self-Organising Data Analysis Technique (ISODATA) (Bezdek, 1973). This large 132 

number of classes was used to minimise the problem of split land cover class spectral clusters 133 

(Horner et al., 1997; Wayman et al., 2001).  134 

High-resolution satellite imagery of the study areas available via public portals such as Google Earth 135 

was used a reference to enable the unsupervised spectral classes to be assigned specific land cover 136 

class labels (Loveland et al., 2000; Juang, et al., 2004; Cihlar, 2000) corresponding to the project 137 

classification nomenclature in Table 1. Additionally, field surveys conducted in the Kruger National 138 

Park, South Africa (shown as area F in Fig. 1), in July 2014 involved further identification of ground 139 

truthing locations of known land cover types for validation of the classification generated at this site. 140 

This field data was combined with the high resolution imagery-derived validation data and showed 141 

good congruence between methodologies (Marston et al. in prep.), however given the logistical 142 

challenges of collecting ground truthing data over such broad geographical areas, high resolution 143 

reference imagery provided the sole source of validation data for the other sites. The classification 144 

nomenclature used was designed to be applied broadly across sub-Saharan Africa and was based on 145 

a modified version of the Global Land Cover 2000 Land Cover Map of Africa classification system 146 

(Mayaux et al., 2000). Our classification also pays special attention to the forest – grassland gradient, 147 

and follows the approach of Torellos-Raventos et al., (2013) which stratified this gradient into five 148 

forest to grassland categories at 25% intervals (100-75%, 75-50%, 50-25%, 25-5% and 5-0%). We 149 

have amalgamated the latter two categories to form a 25-0% canopy grouping. The generated 150 

classification maintained the 30 m spatial resolution of the input Landsat ETM+ imagery. 151 

Although the unsupervised spectral classes generally corresponded well to specific land cover 152 

classes, occasionally they contained groups of pixels that when inspected were found to relate to 153 

more than one land cover class. For these areas of known misclassification, post-classification 154 

refinement in the form of manual knowledge-based enhancement procedures was performed to 155 

split these classes into single category sub-classes (Loveland et al., 2000), and also to re-label land 156 

cover patches to resolve the spectral confusion between disparate land cover classes. 157 

Multiple unsupervised spectral classes would frequently correspond to the same land cover class in 158 

the nomenclature due to the inherent spectral variability of that class. For example, the agriculture 159 
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class comprised multiple crop types with different planting, growth cycle, harvesting and watering 160 

characteristics which are spectrally distinct when present in the satellite imagery. This enabled the 161 

spectral variability of each land cover class to be captured prior to the unsupervised spectral classes 162 

being aggregated using well defined merging steps (Juang et al., 2004) until a single merged class for 163 

each desired land cover class was achieved.  164 

Accuracy assessment of the classification using ground truth locations was performed. Ground 165 

truthing data (i.e. independent verification) of known land cover types was derived from high-166 

resolution imagery of the survey area (e.g. Google Earth), and also from field survey data for site F. 167 

The use of higher resolution imagery as a source of validation data for testing the accuracy of 168 

classifications derived from coarser resolution satellite products such as Landsat ETM+ imagery is an 169 

established technique (Duro et al., 2012; Xie et al., 2008; Cihlar et al., 2003). Due to differences 170 

between the Landsat ETM+ and high resolution reference data acquisition dates, all points exhibiting 171 

suspected temporal change or human or natural disturbance between the two acquisition dates 172 

were disregarded. Classification accuracy assessments are shown in Table 2, and confusion matrices 173 

for all study areas are provided as Supplementary Information.  174 

Topographical variability across the buffer extents was also examined using Shuttle Radar 175 

Topography Mission (SRTM) digital elevation model (DEM) data. Slope data was derived from the 176 

SRTM DEM data, with mean, minimum, maximum and standard deviation variables for both 177 

elevation and slope extracted for each buffer using the Geospatial Modelling Environment software. 178 

Patch richness for all buffers at each radius size was compared to mean elevation and mean slope 179 

data across the dataset (data not shown), and no convincing relationships were found.  180 

Range-size estimates 181 

We have used a number of postulated hominin home range sizes from the literature, deliberately 182 

sampling a wide size range, supplemented with estimates based on archaeological and 183 

anthropological data. Milton and May (1976) proposed a method of estimating home range sizes for 184 

individual primates based on body masses and known group-home range sizes. For group-living 185 

primates the range size for an individual was estimated by dividing the group home range size by the 186 

numbers of individuals within the group. While this necessarily creates an under-estimate of the 187 

area any individual may actually roam, it has been widely used and cited in hominin studies (e.g. 188 

Leonard and Robertson, 2000; Antón et al.  2002; Antón and Swisher, 2004). Leonard and Robertson 189 

(2000) also included estimates of diet quality (whether ape-like or human-forager-like) to calculate 190 

their estimated hominin home range sizes. Their equations were subsequently used in Antón et al. 191 
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(2002), but with slightly different results. Here we have used the figures from Antón et al. (2002), 192 

taking the smallest estimated hominin range size (38 ha for Australopithecus africanus on an ape-like 193 

diet) and largest pre-sapiens range size (452 ha for Homo erectus on a low quality human forager-194 

like diet) (see Table 3). We have also utilised published data on modern Hadza maximum foraging 195 

distances (Raichlen et al. 2014). For this home range estimate we used the median distance (~1,100 196 

m) based on the maximum distance travelled during 715 foraging bouts (Raichlen et al., 2014). The 197 

largest range size is based on the 13 km distance estimated from the original sources of the raw 198 

material found at the Oldowan site of Kanjera, Kenya (Braun et al. 2008). While this estimate is 199 

necessarily approximate, it provides a useful larger range size and is one of the few approaches 200 

available for estimating range size directly from the archaeological record. We also calculated an 201 

intermediate home range size estimate of 2.5 km, covering an area of some 19.6km2, as an 202 

additional model.    203 

 204 

Data cleaning and sample sizes 205 

The calculated home range sizes from Table 3 were overlaid onto the classified images as circular 206 

areas (buffers). Circular buffers are the simplest geometric shape with which to undertake these 207 

types of analysis. While clearly not capturing the complexity of an animal’s daily or yearly movement 208 

patterns, they have a long history of use in archaeology as a heuristic device (e.g. Vita-Finzi and 209 

Higgs, 1970; Flannery, 1976; Bird et al. 2008, Grove, 2009). Our buffers were fixed on a central point, 210 

with increasing radii corresponding to the estimated home range sizes (Fig. 2). There were 300 211 

randomly located central points per image. Once the buffers had been applied around these central 212 

points, the data were quality checked to remove all buffers containing any cloud, >80% saltwater or 213 

freshwater or >10% anthropogenic land cover classes (arable agriculture, built-up environments, and 214 

coniferous plantations). Any point where buffers extended beyond the classified area at any buffer 215 

size were also disregarded, and only the central points that remained across all five radii sizes 216 

retained for further analysis, ensuring that the same buffers were being examined at each scale. This 217 

left a variable number of buffers in the analysis for each study area (area A, n = 19; area B, n = 82; 218 

area C, n = 48; area D, n = 31; area E, n = 78; area F, n = 174; area G, n = 164), totalling 596 buffers 219 

for each estimated home range size. 220 

Analysis 221 

We calculated patch richness (PR) based on the land cover classifications shown in Table 1. PR is a 222 

simple measure of how many land cover types (e.g. open woodland, closed woodland) there are 223 
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within each buffer. As we are looking to perform analogous studies of hominin landscapes, for the 224 

PR results presented here we removed all land cover types that are clearly anthropogenic, leaving 225 

only ‘natural’ vegetation types present (i.e. if a buffer had a PR of 5, but one of the land cover types 226 

was ‘built up’ we removed it to give a ‘natural’ PR of 4).  227 

We also calculated the percentage of canopy cover within each randomly placed buffer using four 228 

categories. Closed woodland = >75% canopy cover, open woodland = 75% - 50% canopy cover, 229 

discontinuous grassland = 50% - 25% canopy cover and continuous grassland = 25% - 0% canopy 230 

cover. To make these buffer data directly comparable to the vegetation palaeoproxy data from 231 

pedogenic carbonates, where other land covers were present, such as bare or swamp they were 232 

disregarded and the four % canopy cover categories were scaled to cover 100% of the buffer. 233 

 234 

Transects 235 

Complementary to the randomly located buffers which examine the general PR and land cover 236 

variability, targeted higher resolution analysis of the localised areas around rivers was performed. 237 

This involved the selection of twenty-one transects in two areas (area B, Kenya, n = 9; area F, South 238 

Africa, n=12). Each transect started in and then moved away from a water body or river channel with 239 

data extracted every 10 m for 5 km along the transects, with this dense sampling providing highly 240 

detailed information on localised landscape variability . Two types of data were extracted for each 241 

point along the transect - PR data with the central point of the buffers located on the transect for 4 242 

different buffer sizes (347 m, 1100 m, 1199 m and 2500 m), and the land cover class of each 243 

individual transect point. The transect locations were selected by eye to cover areas without human 244 

activity (such as tarmac roads, agriculture, etc.). The largest 13 km radii buffer size had the effect of 245 

smoothing the PR values to a degree where variability in PR values was lost along the transect extent 246 

when sampled at 10 m intervals. Therefore the 13 km radii size was disregarded from this element of 247 

the analysis which then focussed on the smaller radii. This did not affect the randomly located 248 

sample points due to the greater spacing between them. Note that the transect analyses reported 249 

here are intended to be illustrative rather than representative of the full range of possible results. 250 

 251 

Results 252 
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Accuracy assessment was performed on the land cover classifications for the seven study areas, with 253 

high accuracies observed from a minimum of 81.6% (area E) to a maximum of 91.8% (area B) 254 

recorded (Table 2). Individual site class error matrices are presented in supplementary information. 255 

Randomly placed buffers 256 

Patch Richness 257 

The results for PR are shown in Table 4. Perhaps unsurprisingly it shows that as the buffer sizes get 258 

larger, the number of different habitats within them increases, yet the difference in medians 259 

between the smallest and largest buffers are quite modest. The least variation (increase in median 260 

PR of 1) is seen in area G (South Africa), and the greatest (increase in median PR of 3) in area D 261 

(Rwanda/Burundi) and area F (South Africa/Mozambique).  262 

Table 4 also demonstrates that buffers containing uniform habitats are very rare – only 4 areas have 263 

such buffers, and they are mostly present at the smallest size (347 m). So even at the scale of our 264 

smallest putative range size habitat mosaics are almost ubiquitous. For area C, 10.42% of the 265 

smallest buffers were uniform (n=5), for area B it was 7.32% (n = 6), and areas F and G have two 266 

uniform buffers each (1.15% and 1.22% of the sample respectively). In total of the 596 buffers 267 

analysed at this smallest size, 2.52% (n=15) were uniform (or non-mosaic) habitats. Of these, at 347 268 

m one was continuous grassland (<25% canopy cover, area G), one was discontinuous grassland (25-269 

50% canopy cover, area F)), seven were closed woodland (>75% canopy cover, area C (n=5), area F 270 

(n=1), area G (n=1)), and the remaining six were all semi-desert (area B). For the next largest buffer 271 

size, there were only two uniform patches, one of closed woodland in area C and one of semi-desert 272 

in area B, while one of closed woodland was still present in area C in the 1199 m buffer.   273 

Percentage of canopy cover 274 

Table 5 shows the median and range values for the closed woodland (>75% canopy cover) within the 275 

different buffer sizes. While area A and area G show a >7% increase in median closed canopy cover 276 

from the smallest to the largest buffers, there is relatively little variation in medians within the other 277 

images and buffer sizes. Continuous grassland (<25% canopy cover) results are shown in Table 6. 278 

Overall the continuous grassland category is less common across images (except area C and area G), 279 

and again (with the exception of area G) the medians do not differ greatly across buffer sizes.  Tables 280 

7 and 8 give the same information for the open woodland (75%-50% canopy cover) and 281 

discontinuous grassland (50-25% canopy cover). These also suggest that, with the exception of area 282 

G and area A, the median amounts of cover within each category do not change as buffer sizes 283 
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increase. In essence, these data are surprisingly scale independent, suggesting that the medians of 284 

these land cover types tend not change as the estimated home range sizes get larger. 285 

We also compared the distribution of fraction of wooded canopy cover (%fwc) calculated from 286 

pedogenic carbonates from the Nachukui Formation, Koobi Fora (Quinn et al., 2013) with % of 287 

canopy cover observed for the central points of our randomly placed buffers in our seven different 288 

study areas (Fig. 3). The Nachukui Formation (2.4-1.4Ma) was chosen as a representative dataset for 289 

an East African hominin locality, for which the %fwc data had been published (Quinn et al. 2013).  290 

The central point from each buffer yielded a result such as ‘>75% canopy cover’ and those that were 291 

not on the forest-grassland continuum (i.e. bare, semi-desert, seasonal water and agriculture) were 292 

removed from the analysis. The data generated from these central points are directly analogous to 293 

those obtained from pedogenic carbonate analyses, as they are both spatially constrained estimates 294 

of canopy cover based on an individual point. However, this does not mean that the results of these 295 

analyses are analogous.  Our examination of areas from Ethiopia to South Africa (Fig. 1) show that 296 

there is great variability in land cover at single points within each image (Fig. 3), and that the 297 

expected land cover types are found in the appropriate landscapes. For example, 74 out of 82 points 298 

are semi-desert or bare in area B (the Turkana region, data not shown), while area F (encompassing 299 

the Kruger National Park) shows considerable heterogeneity with the majority of vegetation 300 

recorded as discontinuous grassland or open woodland (25-75% canopy cover). Comparison of these 301 

canopy cover distributions with the pedogenic carbonate data (Fig. 3) show that none of our modern 302 

images with randomly selected buffers has a similar distribution of habitats to that calculated from 303 

the pedogenic carbonates, although the pattern in the Nachukui Formation at Koobi Fora is most 304 

similar to our results from the southern side of the Rift valley in modern Ethiopia (area A). However, 305 

what is striking is the relative lack of closed habitat reconstructed from the pedogenic carbonates. In 306 

the Nachukui formation only 1.45% (n=1) of the total sample are reconstructed with >75% canopy, 307 

while in all of our study areas bar that of the Turkana region (area B, 0%), closed woodland 308 

comprises 14-45% of the central points examined. We also calculated the %fwc for pedogenic 309 

carbonates from three key hominin regions (Busidima Formation, Ethiopia, and the Koobi Fora and 310 

Olorgesaile Formations, Kenya) using data from Levin (2013). For the 1475 datapoints only 19 (1.3%) 311 

represent closed canopy woodland, suggesting considerable under-representation of these 312 

environments in the palaesol datasets.   313 

 314 

Transect results 315 
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The results of our 21 transects in areas B and F are best viewed as illustrative of the possibilities in 316 

modern Africa, rather than the more quantitative random sampling of buffers described above. They 317 

were chosen by eye, to allow us to take a 2.5km transect from a channel, without interference from 318 

roads, agriculture, etc. We here present results that illustrate the variety seen in these transects, and 319 

the resulting potential for these types of analyses.  320 

Patch richness. The greatest patch richness in the majority of transects were found by lakes and 321 

rivers, with a decrease in PR as the buffers move away from the water source (Fig. 4a-d). In both 322 

area B (Kenya) and area F (South Africa) the changes are seen most abruptly in the smallest 323 

estimated hominin home range size (347 m), and vary least with the largest (2500 m). This is 324 

expected, as the largest buffer size would still be including the channel and its environs until at least 325 

2510 m away from the water source. Transects in area B have lower numbers of habitats in total 326 

(Fig. 4a, b), in comparison with area F (Fig. 4c,d), and there is greater complexity in area F (i.e. PR 327 

increases and decreases rather than declining as distance to the water source increases).  328 

Land cover.  Our analyses show the land cover at each 10 m point along a 2500 m transect (Fig. 5) in 329 

a way that would approximate to a standard field survey, however with remote sensing the 330 

transects can be extended for much greater distances than is often feasible in the field. Figure 5 331 

shows two contrasting transects for area B (Turkana). Transect a starts at the edge of Lake Turkana 332 

and is largely semi-desert with patches of bare, except for two small patches of open woodland at 333 

approximately 2000 m and 2100 m. Transect b starts at the edge of the Turkwel River. The area of 334 

semi-desert at the start is an island in the braided channel, and then the main area of riparian 335 

woodland is reached and continues for ~620 m, until an abrupt transition to semi-desert and bare 336 

patches, with smaller areas of open woodland between 1000-1500 m. The transects for area F 337 

(Kruger National Park) show contrasting results (Fig. 5,c,d)– transect c is almost entirely 338 

discontinuous grassland, with small patches of continuous grassland and a small area of closed 339 

woodland at the channel edge. Transect d begins in seasonal freshwater and is largely open 340 

woodland throughout its length, interspersed with small patches of closed woodland.  Most notable 341 

is that at approximately ~1900 m the transect crosses another stream, which is indicated by the 342 

increase in closed woodland at this point. Fig. 5 also shows the calculated %fwc for a fossil 343 

pedogenic carbonate transect taken lateral to the river in the Dana Aouli Formation, Ethiopia, dated 344 

to ~2.7 Ma (Levin et al., 2004) and converted to our land cover classification. This is a much shorter 345 

transect (240 m), but lacks any woodland, suggesting an open area, perhaps more similar to that of 346 

transect c without the riparian woodland zone.  347 

 348 
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Discussion 349 

The spatial resolution of palaeoenvironmental reconstructions seldom, if ever, allow an analysis of 350 

the range of resources within a hominin’s home range. Here we have developed an alternative 351 

complementary approach to such questions in hominin behavioural ecology by using modern African 352 

vegetation as an analogue to ask questions about the effect of different putative range sizes on 353 

access to resources and the potential effects of water sources on such analyses. We have examined 354 

what vegetation types the hominins could access at different home range sizes, and concluded that 355 

range size does not greatly affect the number of available habitats at these scales of analysis. Even 356 

the smallest (perhaps unrealistic) estimated home ranges have habitat variability similar to the 357 

largest. In a palaeoecological context this is an encouraging result as it suggests that the fact that we 358 

do not know what the range sizes were for early hominins is not crucial if just considering access to a 359 

broad range of vegetation types. However, these results are for randomly placed sampling points 360 

and range size does make more of a difference if there is a river present (or absent, see below). 361 

Pedogenic carbonates are our current best method of reconstructing the woody cover of past 362 

habitats. However, they may underestimate the densest cover (in part as a result of preferentially 363 

forming in more open soils), and are limited to those regions with soils that are appropriate for their 364 

formation (Quade and Levin, 2013). While our land cover results are a 1 year snapshot, the 365 

carbonates are time-averaged over (possibly) 100s-1000s of years. Thus the pedogenic carbonates 366 

give a less complex ‘smoother’ result with less woody cover than those landscapes that we see in the 367 

modern day. We see analysis of satellite imagery as a complimentary method to that of the 368 

pedogenic carbonates to examine the potentially ‘missing’ components within the landscapes. It can 369 

be used to match the spatial heterogeneity picked up by fine-scale analysis within individual 370 

palaeosols (e.g. at Gona, Quade & Levin (2013)), and allow us to quantify landscape characteristics 371 

on continuous regional scales, rather than localised point samples. Remote sensing methodologies 372 

can also be used to examine spatial heterogeneity in regions where pedogenic carbonates do not 373 

form. While we have not attempted here to directly match modern landscapes to any reconstructed 374 

palaeoenvironments, there is clearly the potential to do so. While we cannot match the same 375 

vegetation in exactly the same locality as seen in the past, it is likely that a similar mixture of water, 376 

grassland and trees can be identified in a number of locations, allowing quantifiable models to be 377 

built in future.  378 

Our buffers were randomly located in each image, and the results show that patchy (‘mosaic’) 379 

habitats are very widespread. However, the transect data indicate that the greatest number of 380 

habitats (PR) is found near water courses (Fig. 4), and that these are likely to exert an influence for 381 
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some distance from the channel (Fig. 5). The habitat variability that water sources introduce are not 382 

just the obvious ones of water and riparian woodland, but also for example, seasonal water, swamp, 383 

and bare (in gravel bars, etc.). This is important for two reasons – firstly, the highest habitat 384 

variability appears to be around water courses, the places that hominins appear to have preferred, 385 

but also the places with the appropriate sediments for fossilisation and recovery (see Kullmer, 2007). 386 

This has led to suggestions that hominins may not have preferred these habitats, but that we are 387 

finding them there as a result of recovery bias (White, 1988). Quinn et al. (2013) demonstrated that 388 

lithic sites were significantly more wooded than localities sampled at random within the Koobi Fora 389 

and Nachukui formation, and that this association was maintained through the 1.0 Ma time span of 390 

deposition.  However, the mean woodland density through time was 40 %fwc (Quinn et al. 2013), 391 

which in our classification would equate with discontinuous grassland. Either thicker woodland was 392 

very rare at the time, in comparison with the present day (Fig. 3), or hominins were seeking these 393 

slightly more wooded sites within open areas. Quinn et al. (2013) examine four possible reasons for 394 

the association of lithics sites with discontinuous grassland, including the need for shade, access to 395 

drinking water, raw materials or specific foodstuffs, and explicitly link them to the presence of water 396 

(and by association C3 vegetation, shade and cobbles for tool making). In agreement with Quinn et 397 

al. (2013), our results suggest that if hominins preferred areas with high habitat heterogeneity (i.e. 398 

‘mosaic’), then the water courses of Africa are the places to find them, and while we have largely 399 

focussed on rivers, the same may also be true of lakes and other water sources (Ashley et al., 2009). 400 

This does not rule out the taphonomic explanation but does show that, as mentioned by Roe (1997) 401 

and Plummer (2004), there are very many plausible non-taphonomic reasons (beyond just access to 402 

drinking water) for utilizing sites near rivers.  403 

 404 

Conclusions 405 

Modern African land cover is highly complex, yet at the scales proposed for hominin range sizes, this 406 

may be less important than we may have first thought. A key factor driving the variability in habitats 407 

appears to be the presence of rivers (or other water bodies), and this result fits with other proxies 408 

used to reconstruct hominin palaeoenvironments. Overall, remote-sensing will not and cannot 409 

replace these proxies, but it does allow for examination of spatial complexity on a much large scale 410 

than is usual, and may also highlight land cover types and patterns of distributions that many have 411 

been present but are under-represented in the fossil record. 412 

 413 
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Table 1. Land cover map classification nomenclature. 552 

General habitat  Land cover class and code Description 

 
Woodland 

 
Closed woodland (CDW) 

 
Closed woodland (75%-100% tree cover) 

 Open woodland (ODW) Open woodland (50%-75% tree cover) 
 

Grassland Continuous grassland (CG) Continuous grassland (75%-100% 
grassland) 

 Discontinuous grassland 
(DG) 

Discontinuous grassland (50%-75% 
grassland) 
 

Anthropogenic 
classes 

Agriculture (AG) Croplands (>50%)  
Irrigated croplands  
Tree crops 

 Built-up (BU) Urban areas and settlements 
Roads  
Quarry and open-cast mine 

 Closed coniferous woodland 
(CCW) 

Coniferous plantation 
Felled coniferous plantation 
 

Bare Bare (BA) Bare soil  
Bare rock 
Bare gravel (braided rivers) 
Stony desert  
Sandy desert and dunes  
Salt hardpans  
Lava flows 
 

Freshwater Permanent freshwater (PF) Permanent  waterbodies  
 Seasonal  Freshwater (SF) Seasonal waterbodies  
 Swamp (SW) Swamps and wetland areas 

 
Coastal Saltwater (ST) Seas and oceans 
 Mangrove (M) Mangrove forests 
 Littoral sediment (LS) Littoral sediment 

Littoral rock 
 Supra-littoral sediment (SLS) Supra-littoral sediment 

Supra-littoral rock 
 Saltmarsh (SM) Saltmarsh 

 
Semi-desert Semi-desert (SD) Semi-desert (bare ground with scattered 

bushes) 
 

Ice and Snow Ice and Snow (IS) Permanent ice and snow 
Seasonal ice and snow 
 

Sodic lake Sodic lake (SLA) Sodic lake 
 

 553 
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Table 2. Image locations, acquisition dates and classification accuracies. Note that the timings of dry 554 

and wet seasons varied each year, with images selected to best represent the variability in 555 

vegetation levels between wet and dry seasons. 556 

Area Location Dry season image 

acquisition data 

Wet season 

image acquisition 

data 

Classification 

accuracy 

A Ethiopia 
 

7 Mar 2002 
 

24 Apr 2002 
 

82.69% 

B Kenya 15 Oct 2002 
 

5 Feb 2003 
 

91.84% 

C DR Congo / Uganda 
 

9 Jan 2001 
 

25 Nov 2001 86.02% 

D Rwanda / Burundi 
 

17 Aug 2002 
 

13 May 2002 
 

86.89% 

E Malawi / 
Mozambique 
 

2 Oct 2000 
 

28 Apr 2001 
 

81.64% 

F South Africa / 
Mozambique 
 

19 Dec 1999 
 

9 Apr 2000 
 

84.73% 

G South Africa 
 

31 July 2001 
 

19 Dec 2000 
 

85.39% 

 557 

 558 

Table 3. The five hominin-relevant buffer sizes used in this study. 559 

Radius (m) Diameter (m) Area (ha) Basis Reference 

347 694 38 A. africanus Antón et al. (2002) 

1100 2200 380 Hadza Raichlen et al. (2014) 

1199 2398 452 H. erectus Antón et al. (2002) 

2500 5000 1963.5  This study 

13000 26000 53093 Kanjera Braun et al. (2008) 

 560 

 561 

 562 

 563 

 564 

 565 

 566 
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Table 4. Median patch richness (and range) results for the 7 study areas at 5 different buffer sizes. 567 
PR has been adjusted to remove all anthropogenically-related land covers (agriculture, coniferous 568 
plantations and built up areas). 569 

Buffer 
size (m) 

Area A 
(n=19) 

Area B 
(n=82) 

Area C 
(n=48) 

Area D 
(n=31) 

Area E 
(n=78) 

Area F 
(n=174) 

Area G 
(n=164) 

347 4 (2,6) 2 (1,4) 4 (1,6) 4 (3,5) 4 (2,6) 4 (1,6) 4 (1,5) 

1100 5 (4,6) 3 (1,5) 5 (1,7) 5 (3,6) 4 (3,7) 5 (3,8) 4 (3,6) 

1199 5 (4,6) 3 (2,5) 5 (1,7) 5 (3,6) 4 (3,7) 5 (3,8) 4 (3,6) 

2500 5 (4,7) 3 (3,7) 5 (4,7) 6 (4,7) 4 (4,7) 6 (4,8) 5 (4,8) 

13000 6 (5,7) 4 (3,7) 6 (5,7) 7 (6,8) 6 (5,7) 7 (6,8) 5 (5,8) 

 570 

 571 

Table 5. Median (and range) of % of closed woodland habitat for the 7 study areas at 5 different 572 
buffer sizes (scaled to be 100% across the 4 closed woodland – continuous grassland land cover 573 
categories). 574 

Buffer 
size (m) 

Area A 
(n=19) 

Area B 
(n=82) 

Area 
C 
(n=48) 

Area D 
(n=31) 

Area E 
(n=78) 

Area F 
(n=174) 

Area G 
(n=164) 

347 2.5  
(0, 80.5) 

0  
(0, 100) 

16.8  
(0, 
100) 

28.7  
(0, 97.0) 

42.5  
(0, 98.8) 

3.9  
(0, 100) 

7.2  
(0, 100) 

1100 9.0 
(0.3, 
59.9) 

0 
(0, 98.2) 

17.2  
(0.1, 
100) 

29.5 
(1.6, 88.3) 

46.4 
(1.9, 
94.6) 

5.0 
(0, 96.4) 

10.8 
(0, 89.0) 

1199 9.4 
(0.3, 
61.1) 

0 
(0, 98.8) 

17.9 
(0.2, 
100) 

30.0 
(1.9, 87.8) 

46.3 
(2.3, 
94.3) 

4.9 
(0, 96.0) 

11.7 
(0, 88.4) 

2500 6.4  
(0.2, 
65.0) 

0 
(0, 77.3) 

15.8 
(0.5, 
99.9) 

28.8 
(4.7, 78.7) 

46.5 
(2.2, 
91.8) 

7.9 
(0, 92.3) 

15.3 
(0, 79.3) 

13000 10.2 
(1.6, 
38.9) 

0.3 
(0, 52.1) 

12.7 
(1.1, 
99.5) 

29.9 
(15.1,45.4) 

42.3 
(4.7, 
86.1) 

8.2 
(0.6, 
66.7) 

19.5 
(0.3, 
47.7) 

 575 

 576 

  577 
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Table 6. Median (and range) of % continuous grassland habitat for the 7 study areas at 5 different 578 
buffer sizes (scaled to be 100% across the 4 closed woodland –  continuous grassland land cover 579 
categories). 580 

Buffer 
size (m) 

Area A 
(n=19) 

Area B 
(n=82) 

Area C 
(n=48) 

Area D 
(n=31) 

Area E 
(n=78) 

Area F 
(n=174) 

Area G 
(n=164) 

347 1.7  
(0, 44.7) 

0 
(0,0) 

36.3 
(0, 99.1) 

2.9 
(0, 41.2) 

3.7 
(0, 83.0) 

3.6 
(0, 99.8) 

36.5 
(0, 100) 

1100 3.1 
(0, 32.1) 

0 
(0,0) 

38.7 
(0, 79.2) 

4.4 
(0, 29.8) 

6.3 
(0, 70.2) 

4.3 
(0, 96.4) 

41.7 
(2.3, 
99.7) 

1199 3.4 
(0, 30.5) 

0 
(0,0) 

38.7 
(0, 80.1) 

4.3 
(0, 30.2) 

7.3 
(0, 69.8) 

4.6 
(0, 96.8) 

41.5 
(2.2, 
99.6) 

2500 7.6 
(0.4, 
35.6) 

0 
(0, 0.2) 

38.3 
(0, 77.7) 

4.8 
(0.6, 25.9) 

7.6 
(0.1, 
67.0) 

5.9 
(0, 92.6) 

42.6 
(5.2, 
96.1) 

13000 9.2 
(2.0, 
27.7) 

0 
(0, 2.1) 

42.6 
(0, 69.4) 

5.2 
(2.4, 17.3) 

8.6 
(1.5, 
53.6) 

8.6 
(0.3, 
75.1) 

45.9 
(18.9, 
92.4) 

 581 

 582 

Table 7. Median (and range)of % of open woodland habitat for the 7 study areas at 5 different buffer 583 
sizes (scaled to be 100% across the 4 closed woodland –  continuous grassland land cover 584 
categories). 585 

Buffer 
size (m) 

Area A 
(n=19) 

Area B 
(n=82) 

Area C 
(n=48) 

Area D 
(n=31) 

Area E 
(n=78) 

Area F 
(n=174) 

Area G 
(n=164) 

347 3.3  
(0, 39.7) 

100 
(0,100) 

2.0 
(0, 17.2) 

30.8 
(1.0, 
63.5) 

12.9 
(0, 56.5) 

34.1 
(0, 88.8) 

6.4 
(0, 57.6) 

1100 4.1 
(0.5, 
38.1) 

100 
(0, 
100) 

1.8 
(0, 7.5) 

32.8 
(5.0, 
61.4) 

14.4 
(1.7, 
57.3) 

35.3 
(0.2, 
74.9) 

8.7 
(0, 47.9) 

1199 4.6 
(0.6, 
38.0) 

100 
(0, 
100) 

1.8 
(0, 7.1) 

33.5 
(5.0, 
62.6) 

14.6 
(1.5, 
57.2) 

36.0 
(0.2, 
74.6) 

9.0 
(0, 46.0) 

2500 5.1 
(0.5, 
29.3) 

100 
(2.2, 
100) 

2.2 
(0.04, 
5.6) 

37.0 
(9.8, 
57.9) 

14.2 
(2.9, 
56.2) 

35.2 
(0.1, 
70.4) 

9.9 
(0.01, 
37.9) 

13000 5.7 
(2.5, 
15.2) 

99.7 
(37.9, 
100) 

2.7 
(0.2, 4.0) 

37.1 
(23.9, 
43.9) 

17.2 
(5.5, 
42.1) 

34.7 
(3.4, 
55.8) 

9.7 
(0.6, 
23.9) 

 586 
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Table 8.  Median (and range) of % of discontinuous grassland habitat for the 7 images at 5 different 588 
buffer sizes (scaled to be 100% across the 4 closed woodland – continuous grassland land cover 589 
categories). 590 

Buffer 
size 
(m) 

Area A 
(n=19) 

Area B 
(n=82) 

Area C 
(n=48) 

Area D 
(n=31) 

Area E 
(n=78) 

Area F 
(n=174) 

Area G 
(n=164) 

347 76.8 
(13.2, 
98.8) 

0 
(0, 
63.9) 

33.9 
(0, 62.5) 

28.9 
(0, 93.1) 

15.2 
(0, 77.8) 

30.7 
(0, 100) 

21.0 
(0, 73.0) 

1100 73.6 
(15.3, 
98.2) 

0 
(0, 
69.2) 

33.4 
(0, 58.2) 

25.7 
(4.6, 
67.2) 

16.6 
(0.6, 
69.6) 

29.5 
(0.4, 
96.6) 

21.3 
(0.3, 
66.1) 

1199 73.2 
(14.3, 
98.2) 

0 
(0, 
71.5) 

33.3 
(0, 57.4) 

26.6 
(4.6, 
66.4) 

17.1 
(0.6, 
70.7) 

28.9 
(0.4, 
96.0) 

20.9 
(0.4, 
65.2) 

2500 68.7 
(11.9, 
95.8) 

0 
(0, 
68.8) 

36.5 
(0, 52.3) 

23.8 
(5.2, 
63.0) 

17.5 
(1.6, 
70.5) 

29.8 
(1.7, 
92.6) 

22.2 
(3.5, 
57.2) 

13000 63.9 
(44.9, 
82.1) 

0 
(0, 
13.4) 

37.2 
(0.4, 
49.3) 

27.6 
(14.4, 
47.8) 

24.6 
(5.0, 
44.8) 

34.7 
(6.6, 
79.7) 

23.7 
(6.8, 
34.0) 
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Figure 1. Location of Landsat ETM+ images used as study areas in this analysis, see Table 2 for details 593 

of site locations.  594 

 595 
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Figure 2. Nested buffers of different radii based on estimated hominin home range sizes, overlaid on 597 

land cover classification for area F, the Kruger National Park, demonstrating the land cover variability 598 

within different radii.  599 

 600 

 601 

 602 
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Figure 3. Land cover class frequency for the central points in each randomly placed buffer by study 604 

area (A-G) in comparison with % fraction of woody canopy cover (%fwc) from the Nachukui 605 

Formation, Koobi Fora calculated from pedogenic carbonates (%fwc methods and data from Quinn 606 

et al., 2013). Note: all central points that were not on the forest –grassland continuum (i.e. bare, 607 

semi-desert, seasonal water and agriculture) were removed. 608 
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Figure 4. Patch richness over 5000 m transects in Area B (southern Turkana Basin, Kenya) and Area F 614 

(Kruger National Park and environs, South Africa). A, b and c illustrate relatively simple transects 615 

showing PR largely declining with distance moved away from the water source. a) runs south-west 616 

from Lake Turkana, b) runs south-west from the Turkwel River, c) runs southward from the 617 

N’wanetzi River, and d) is an example of greater variability in a transect running southward from the 618 

N’waswitsontso River. 619 
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Figure 5. Land cover categories recorded every 10 m for 2500 m starting at a water source, for two 626 

transects from Area B (the Turkana region, Kenya), and two from Area F (the Kruger National Park, 627 

South Africa). The letters correspond to the PR data shown in Fig. 4 for the same transect locations. 628 

Also included for comparison is the fraction of woody cover (ƒwc) calculated from pedogenic 629 

carbonate data from a palaeosol transect from the Dana Aouli Formation, Gona, Ethiopia (Levin et al. 630 

2004), and converted to our land cover classifications. 631 
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